1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/libfs.c 4 * Library for filesystems writers. 5 */ 6 7 #include <linux/blkdev.h> 8 #include <linux/export.h> 9 #include <linux/pagemap.h> 10 #include <linux/slab.h> 11 #include <linux/cred.h> 12 #include <linux/mount.h> 13 #include <linux/vfs.h> 14 #include <linux/quotaops.h> 15 #include <linux/mutex.h> 16 #include <linux/namei.h> 17 #include <linux/exportfs.h> 18 #include <linux/iversion.h> 19 #include <linux/writeback.h> 20 #include <linux/buffer_head.h> /* sync_mapping_buffers */ 21 #include <linux/fs_context.h> 22 #include <linux/pseudo_fs.h> 23 #include <linux/fsnotify.h> 24 #include <linux/unicode.h> 25 #include <linux/fscrypt.h> 26 27 #include <linux/uaccess.h> 28 29 #include "internal.h" 30 31 int simple_getattr(struct mnt_idmap *idmap, const struct path *path, 32 struct kstat *stat, u32 request_mask, 33 unsigned int query_flags) 34 { 35 struct inode *inode = d_inode(path->dentry); 36 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 37 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9); 38 return 0; 39 } 40 EXPORT_SYMBOL(simple_getattr); 41 42 int simple_statfs(struct dentry *dentry, struct kstatfs *buf) 43 { 44 buf->f_type = dentry->d_sb->s_magic; 45 buf->f_bsize = PAGE_SIZE; 46 buf->f_namelen = NAME_MAX; 47 return 0; 48 } 49 EXPORT_SYMBOL(simple_statfs); 50 51 /* 52 * Retaining negative dentries for an in-memory filesystem just wastes 53 * memory and lookup time: arrange for them to be deleted immediately. 54 */ 55 int always_delete_dentry(const struct dentry *dentry) 56 { 57 return 1; 58 } 59 EXPORT_SYMBOL(always_delete_dentry); 60 61 const struct dentry_operations simple_dentry_operations = { 62 .d_delete = always_delete_dentry, 63 }; 64 EXPORT_SYMBOL(simple_dentry_operations); 65 66 /* 67 * Lookup the data. This is trivial - if the dentry didn't already 68 * exist, we know it is negative. Set d_op to delete negative dentries. 69 */ 70 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 71 { 72 if (dentry->d_name.len > NAME_MAX) 73 return ERR_PTR(-ENAMETOOLONG); 74 if (!dentry->d_sb->s_d_op) 75 d_set_d_op(dentry, &simple_dentry_operations); 76 d_add(dentry, NULL); 77 return NULL; 78 } 79 EXPORT_SYMBOL(simple_lookup); 80 81 int dcache_dir_open(struct inode *inode, struct file *file) 82 { 83 file->private_data = d_alloc_cursor(file->f_path.dentry); 84 85 return file->private_data ? 0 : -ENOMEM; 86 } 87 EXPORT_SYMBOL(dcache_dir_open); 88 89 int dcache_dir_close(struct inode *inode, struct file *file) 90 { 91 dput(file->private_data); 92 return 0; 93 } 94 EXPORT_SYMBOL(dcache_dir_close); 95 96 /* parent is locked at least shared */ 97 /* 98 * Returns an element of siblings' list. 99 * We are looking for <count>th positive after <p>; if 100 * found, dentry is grabbed and returned to caller. 101 * If no such element exists, NULL is returned. 102 */ 103 static struct dentry *scan_positives(struct dentry *cursor, 104 struct list_head *p, 105 loff_t count, 106 struct dentry *last) 107 { 108 struct dentry *dentry = cursor->d_parent, *found = NULL; 109 110 spin_lock(&dentry->d_lock); 111 while ((p = p->next) != &dentry->d_subdirs) { 112 struct dentry *d = list_entry(p, struct dentry, d_child); 113 // we must at least skip cursors, to avoid livelocks 114 if (d->d_flags & DCACHE_DENTRY_CURSOR) 115 continue; 116 if (simple_positive(d) && !--count) { 117 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 118 if (simple_positive(d)) 119 found = dget_dlock(d); 120 spin_unlock(&d->d_lock); 121 if (likely(found)) 122 break; 123 count = 1; 124 } 125 if (need_resched()) { 126 list_move(&cursor->d_child, p); 127 p = &cursor->d_child; 128 spin_unlock(&dentry->d_lock); 129 cond_resched(); 130 spin_lock(&dentry->d_lock); 131 } 132 } 133 spin_unlock(&dentry->d_lock); 134 dput(last); 135 return found; 136 } 137 138 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence) 139 { 140 struct dentry *dentry = file->f_path.dentry; 141 switch (whence) { 142 case 1: 143 offset += file->f_pos; 144 fallthrough; 145 case 0: 146 if (offset >= 0) 147 break; 148 fallthrough; 149 default: 150 return -EINVAL; 151 } 152 if (offset != file->f_pos) { 153 struct dentry *cursor = file->private_data; 154 struct dentry *to = NULL; 155 156 inode_lock_shared(dentry->d_inode); 157 158 if (offset > 2) 159 to = scan_positives(cursor, &dentry->d_subdirs, 160 offset - 2, NULL); 161 spin_lock(&dentry->d_lock); 162 if (to) 163 list_move(&cursor->d_child, &to->d_child); 164 else 165 list_del_init(&cursor->d_child); 166 spin_unlock(&dentry->d_lock); 167 dput(to); 168 169 file->f_pos = offset; 170 171 inode_unlock_shared(dentry->d_inode); 172 } 173 return offset; 174 } 175 EXPORT_SYMBOL(dcache_dir_lseek); 176 177 /* 178 * Directory is locked and all positive dentries in it are safe, since 179 * for ramfs-type trees they can't go away without unlink() or rmdir(), 180 * both impossible due to the lock on directory. 181 */ 182 183 int dcache_readdir(struct file *file, struct dir_context *ctx) 184 { 185 struct dentry *dentry = file->f_path.dentry; 186 struct dentry *cursor = file->private_data; 187 struct list_head *anchor = &dentry->d_subdirs; 188 struct dentry *next = NULL; 189 struct list_head *p; 190 191 if (!dir_emit_dots(file, ctx)) 192 return 0; 193 194 if (ctx->pos == 2) 195 p = anchor; 196 else if (!list_empty(&cursor->d_child)) 197 p = &cursor->d_child; 198 else 199 return 0; 200 201 while ((next = scan_positives(cursor, p, 1, next)) != NULL) { 202 if (!dir_emit(ctx, next->d_name.name, next->d_name.len, 203 d_inode(next)->i_ino, 204 fs_umode_to_dtype(d_inode(next)->i_mode))) 205 break; 206 ctx->pos++; 207 p = &next->d_child; 208 } 209 spin_lock(&dentry->d_lock); 210 if (next) 211 list_move_tail(&cursor->d_child, &next->d_child); 212 else 213 list_del_init(&cursor->d_child); 214 spin_unlock(&dentry->d_lock); 215 dput(next); 216 217 return 0; 218 } 219 EXPORT_SYMBOL(dcache_readdir); 220 221 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos) 222 { 223 return -EISDIR; 224 } 225 EXPORT_SYMBOL(generic_read_dir); 226 227 const struct file_operations simple_dir_operations = { 228 .open = dcache_dir_open, 229 .release = dcache_dir_close, 230 .llseek = dcache_dir_lseek, 231 .read = generic_read_dir, 232 .iterate_shared = dcache_readdir, 233 .fsync = noop_fsync, 234 }; 235 EXPORT_SYMBOL(simple_dir_operations); 236 237 const struct inode_operations simple_dir_inode_operations = { 238 .lookup = simple_lookup, 239 }; 240 EXPORT_SYMBOL(simple_dir_inode_operations); 241 242 static void offset_set(struct dentry *dentry, u32 offset) 243 { 244 dentry->d_fsdata = (void *)((uintptr_t)(offset)); 245 } 246 247 static u32 dentry2offset(struct dentry *dentry) 248 { 249 return (u32)((uintptr_t)(dentry->d_fsdata)); 250 } 251 252 static struct lock_class_key simple_offset_xa_lock; 253 254 /** 255 * simple_offset_init - initialize an offset_ctx 256 * @octx: directory offset map to be initialized 257 * 258 */ 259 void simple_offset_init(struct offset_ctx *octx) 260 { 261 xa_init_flags(&octx->xa, XA_FLAGS_ALLOC1); 262 lockdep_set_class(&octx->xa.xa_lock, &simple_offset_xa_lock); 263 264 /* 0 is '.', 1 is '..', so always start with offset 2 */ 265 octx->next_offset = 2; 266 } 267 268 /** 269 * simple_offset_add - Add an entry to a directory's offset map 270 * @octx: directory offset ctx to be updated 271 * @dentry: new dentry being added 272 * 273 * Returns zero on success. @so_ctx and the dentry offset are updated. 274 * Otherwise, a negative errno value is returned. 275 */ 276 int simple_offset_add(struct offset_ctx *octx, struct dentry *dentry) 277 { 278 static const struct xa_limit limit = XA_LIMIT(2, U32_MAX); 279 u32 offset; 280 int ret; 281 282 if (dentry2offset(dentry) != 0) 283 return -EBUSY; 284 285 ret = xa_alloc_cyclic(&octx->xa, &offset, dentry, limit, 286 &octx->next_offset, GFP_KERNEL); 287 if (ret < 0) 288 return ret; 289 290 offset_set(dentry, offset); 291 return 0; 292 } 293 294 /** 295 * simple_offset_remove - Remove an entry to a directory's offset map 296 * @octx: directory offset ctx to be updated 297 * @dentry: dentry being removed 298 * 299 */ 300 void simple_offset_remove(struct offset_ctx *octx, struct dentry *dentry) 301 { 302 u32 offset; 303 304 offset = dentry2offset(dentry); 305 if (offset == 0) 306 return; 307 308 xa_erase(&octx->xa, offset); 309 offset_set(dentry, 0); 310 } 311 312 /** 313 * simple_offset_rename_exchange - exchange rename with directory offsets 314 * @old_dir: parent of dentry being moved 315 * @old_dentry: dentry being moved 316 * @new_dir: destination parent 317 * @new_dentry: destination dentry 318 * 319 * Returns zero on success. Otherwise a negative errno is returned and the 320 * rename is rolled back. 321 */ 322 int simple_offset_rename_exchange(struct inode *old_dir, 323 struct dentry *old_dentry, 324 struct inode *new_dir, 325 struct dentry *new_dentry) 326 { 327 struct offset_ctx *old_ctx = old_dir->i_op->get_offset_ctx(old_dir); 328 struct offset_ctx *new_ctx = new_dir->i_op->get_offset_ctx(new_dir); 329 u32 old_index = dentry2offset(old_dentry); 330 u32 new_index = dentry2offset(new_dentry); 331 int ret; 332 333 simple_offset_remove(old_ctx, old_dentry); 334 simple_offset_remove(new_ctx, new_dentry); 335 336 ret = simple_offset_add(new_ctx, old_dentry); 337 if (ret) 338 goto out_restore; 339 340 ret = simple_offset_add(old_ctx, new_dentry); 341 if (ret) { 342 simple_offset_remove(new_ctx, old_dentry); 343 goto out_restore; 344 } 345 346 ret = simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 347 if (ret) { 348 simple_offset_remove(new_ctx, old_dentry); 349 simple_offset_remove(old_ctx, new_dentry); 350 goto out_restore; 351 } 352 return 0; 353 354 out_restore: 355 offset_set(old_dentry, old_index); 356 xa_store(&old_ctx->xa, old_index, old_dentry, GFP_KERNEL); 357 offset_set(new_dentry, new_index); 358 xa_store(&new_ctx->xa, new_index, new_dentry, GFP_KERNEL); 359 return ret; 360 } 361 362 /** 363 * simple_offset_destroy - Release offset map 364 * @octx: directory offset ctx that is about to be destroyed 365 * 366 * During fs teardown (eg. umount), a directory's offset map might still 367 * contain entries. xa_destroy() cleans out anything that remains. 368 */ 369 void simple_offset_destroy(struct offset_ctx *octx) 370 { 371 xa_destroy(&octx->xa); 372 } 373 374 /** 375 * offset_dir_llseek - Advance the read position of a directory descriptor 376 * @file: an open directory whose position is to be updated 377 * @offset: a byte offset 378 * @whence: enumerator describing the starting position for this update 379 * 380 * SEEK_END, SEEK_DATA, and SEEK_HOLE are not supported for directories. 381 * 382 * Returns the updated read position if successful; otherwise a 383 * negative errno is returned and the read position remains unchanged. 384 */ 385 static loff_t offset_dir_llseek(struct file *file, loff_t offset, int whence) 386 { 387 switch (whence) { 388 case SEEK_CUR: 389 offset += file->f_pos; 390 fallthrough; 391 case SEEK_SET: 392 if (offset >= 0) 393 break; 394 fallthrough; 395 default: 396 return -EINVAL; 397 } 398 399 return vfs_setpos(file, offset, U32_MAX); 400 } 401 402 static struct dentry *offset_find_next(struct xa_state *xas) 403 { 404 struct dentry *child, *found = NULL; 405 406 rcu_read_lock(); 407 child = xas_next_entry(xas, U32_MAX); 408 if (!child) 409 goto out; 410 spin_lock(&child->d_lock); 411 if (simple_positive(child)) 412 found = dget_dlock(child); 413 spin_unlock(&child->d_lock); 414 out: 415 rcu_read_unlock(); 416 return found; 417 } 418 419 static bool offset_dir_emit(struct dir_context *ctx, struct dentry *dentry) 420 { 421 u32 offset = dentry2offset(dentry); 422 struct inode *inode = d_inode(dentry); 423 424 return ctx->actor(ctx, dentry->d_name.name, dentry->d_name.len, offset, 425 inode->i_ino, fs_umode_to_dtype(inode->i_mode)); 426 } 427 428 static void offset_iterate_dir(struct inode *inode, struct dir_context *ctx) 429 { 430 struct offset_ctx *so_ctx = inode->i_op->get_offset_ctx(inode); 431 XA_STATE(xas, &so_ctx->xa, ctx->pos); 432 struct dentry *dentry; 433 434 while (true) { 435 dentry = offset_find_next(&xas); 436 if (!dentry) 437 break; 438 439 if (!offset_dir_emit(ctx, dentry)) { 440 dput(dentry); 441 break; 442 } 443 444 dput(dentry); 445 ctx->pos = xas.xa_index + 1; 446 } 447 } 448 449 /** 450 * offset_readdir - Emit entries starting at offset @ctx->pos 451 * @file: an open directory to iterate over 452 * @ctx: directory iteration context 453 * 454 * Caller must hold @file's i_rwsem to prevent insertion or removal of 455 * entries during this call. 456 * 457 * On entry, @ctx->pos contains an offset that represents the first entry 458 * to be read from the directory. 459 * 460 * The operation continues until there are no more entries to read, or 461 * until the ctx->actor indicates there is no more space in the caller's 462 * output buffer. 463 * 464 * On return, @ctx->pos contains an offset that will read the next entry 465 * in this directory when offset_readdir() is called again with @ctx. 466 * 467 * Return values: 468 * %0 - Complete 469 */ 470 static int offset_readdir(struct file *file, struct dir_context *ctx) 471 { 472 struct dentry *dir = file->f_path.dentry; 473 474 lockdep_assert_held(&d_inode(dir)->i_rwsem); 475 476 if (!dir_emit_dots(file, ctx)) 477 return 0; 478 479 offset_iterate_dir(d_inode(dir), ctx); 480 return 0; 481 } 482 483 const struct file_operations simple_offset_dir_operations = { 484 .llseek = offset_dir_llseek, 485 .iterate_shared = offset_readdir, 486 .read = generic_read_dir, 487 .fsync = noop_fsync, 488 }; 489 490 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev) 491 { 492 struct dentry *child = NULL; 493 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs; 494 495 spin_lock(&parent->d_lock); 496 while ((p = p->next) != &parent->d_subdirs) { 497 struct dentry *d = container_of(p, struct dentry, d_child); 498 if (simple_positive(d)) { 499 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED); 500 if (simple_positive(d)) 501 child = dget_dlock(d); 502 spin_unlock(&d->d_lock); 503 if (likely(child)) 504 break; 505 } 506 } 507 spin_unlock(&parent->d_lock); 508 dput(prev); 509 return child; 510 } 511 512 void simple_recursive_removal(struct dentry *dentry, 513 void (*callback)(struct dentry *)) 514 { 515 struct dentry *this = dget(dentry); 516 while (true) { 517 struct dentry *victim = NULL, *child; 518 struct inode *inode = this->d_inode; 519 520 inode_lock(inode); 521 if (d_is_dir(this)) 522 inode->i_flags |= S_DEAD; 523 while ((child = find_next_child(this, victim)) == NULL) { 524 // kill and ascend 525 // update metadata while it's still locked 526 inode_set_ctime_current(inode); 527 clear_nlink(inode); 528 inode_unlock(inode); 529 victim = this; 530 this = this->d_parent; 531 inode = this->d_inode; 532 inode_lock(inode); 533 if (simple_positive(victim)) { 534 d_invalidate(victim); // avoid lost mounts 535 if (d_is_dir(victim)) 536 fsnotify_rmdir(inode, victim); 537 else 538 fsnotify_unlink(inode, victim); 539 if (callback) 540 callback(victim); 541 dput(victim); // unpin it 542 } 543 if (victim == dentry) { 544 inode->i_mtime = inode_set_ctime_current(inode); 545 if (d_is_dir(dentry)) 546 drop_nlink(inode); 547 inode_unlock(inode); 548 dput(dentry); 549 return; 550 } 551 } 552 inode_unlock(inode); 553 this = child; 554 } 555 } 556 EXPORT_SYMBOL(simple_recursive_removal); 557 558 static const struct super_operations simple_super_operations = { 559 .statfs = simple_statfs, 560 }; 561 562 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc) 563 { 564 struct pseudo_fs_context *ctx = fc->fs_private; 565 struct inode *root; 566 567 s->s_maxbytes = MAX_LFS_FILESIZE; 568 s->s_blocksize = PAGE_SIZE; 569 s->s_blocksize_bits = PAGE_SHIFT; 570 s->s_magic = ctx->magic; 571 s->s_op = ctx->ops ?: &simple_super_operations; 572 s->s_xattr = ctx->xattr; 573 s->s_time_gran = 1; 574 root = new_inode(s); 575 if (!root) 576 return -ENOMEM; 577 578 /* 579 * since this is the first inode, make it number 1. New inodes created 580 * after this must take care not to collide with it (by passing 581 * max_reserved of 1 to iunique). 582 */ 583 root->i_ino = 1; 584 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR; 585 root->i_atime = root->i_mtime = inode_set_ctime_current(root); 586 s->s_root = d_make_root(root); 587 if (!s->s_root) 588 return -ENOMEM; 589 s->s_d_op = ctx->dops; 590 return 0; 591 } 592 593 static int pseudo_fs_get_tree(struct fs_context *fc) 594 { 595 return get_tree_nodev(fc, pseudo_fs_fill_super); 596 } 597 598 static void pseudo_fs_free(struct fs_context *fc) 599 { 600 kfree(fc->fs_private); 601 } 602 603 static const struct fs_context_operations pseudo_fs_context_ops = { 604 .free = pseudo_fs_free, 605 .get_tree = pseudo_fs_get_tree, 606 }; 607 608 /* 609 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that 610 * will never be mountable) 611 */ 612 struct pseudo_fs_context *init_pseudo(struct fs_context *fc, 613 unsigned long magic) 614 { 615 struct pseudo_fs_context *ctx; 616 617 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL); 618 if (likely(ctx)) { 619 ctx->magic = magic; 620 fc->fs_private = ctx; 621 fc->ops = &pseudo_fs_context_ops; 622 fc->sb_flags |= SB_NOUSER; 623 fc->global = true; 624 } 625 return ctx; 626 } 627 EXPORT_SYMBOL(init_pseudo); 628 629 int simple_open(struct inode *inode, struct file *file) 630 { 631 if (inode->i_private) 632 file->private_data = inode->i_private; 633 return 0; 634 } 635 EXPORT_SYMBOL(simple_open); 636 637 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 638 { 639 struct inode *inode = d_inode(old_dentry); 640 641 dir->i_mtime = inode_set_ctime_to_ts(dir, 642 inode_set_ctime_current(inode)); 643 inc_nlink(inode); 644 ihold(inode); 645 dget(dentry); 646 d_instantiate(dentry, inode); 647 return 0; 648 } 649 EXPORT_SYMBOL(simple_link); 650 651 int simple_empty(struct dentry *dentry) 652 { 653 struct dentry *child; 654 int ret = 0; 655 656 spin_lock(&dentry->d_lock); 657 list_for_each_entry(child, &dentry->d_subdirs, d_child) { 658 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED); 659 if (simple_positive(child)) { 660 spin_unlock(&child->d_lock); 661 goto out; 662 } 663 spin_unlock(&child->d_lock); 664 } 665 ret = 1; 666 out: 667 spin_unlock(&dentry->d_lock); 668 return ret; 669 } 670 EXPORT_SYMBOL(simple_empty); 671 672 int simple_unlink(struct inode *dir, struct dentry *dentry) 673 { 674 struct inode *inode = d_inode(dentry); 675 676 dir->i_mtime = inode_set_ctime_to_ts(dir, 677 inode_set_ctime_current(inode)); 678 drop_nlink(inode); 679 dput(dentry); 680 return 0; 681 } 682 EXPORT_SYMBOL(simple_unlink); 683 684 int simple_rmdir(struct inode *dir, struct dentry *dentry) 685 { 686 if (!simple_empty(dentry)) 687 return -ENOTEMPTY; 688 689 drop_nlink(d_inode(dentry)); 690 simple_unlink(dir, dentry); 691 drop_nlink(dir); 692 return 0; 693 } 694 EXPORT_SYMBOL(simple_rmdir); 695 696 /** 697 * simple_rename_timestamp - update the various inode timestamps for rename 698 * @old_dir: old parent directory 699 * @old_dentry: dentry that is being renamed 700 * @new_dir: new parent directory 701 * @new_dentry: target for rename 702 * 703 * POSIX mandates that the old and new parent directories have their ctime and 704 * mtime updated, and that inodes of @old_dentry and @new_dentry (if any), have 705 * their ctime updated. 706 */ 707 void simple_rename_timestamp(struct inode *old_dir, struct dentry *old_dentry, 708 struct inode *new_dir, struct dentry *new_dentry) 709 { 710 struct inode *newino = d_inode(new_dentry); 711 712 old_dir->i_mtime = inode_set_ctime_current(old_dir); 713 if (new_dir != old_dir) 714 new_dir->i_mtime = inode_set_ctime_current(new_dir); 715 inode_set_ctime_current(d_inode(old_dentry)); 716 if (newino) 717 inode_set_ctime_current(newino); 718 } 719 EXPORT_SYMBOL_GPL(simple_rename_timestamp); 720 721 int simple_rename_exchange(struct inode *old_dir, struct dentry *old_dentry, 722 struct inode *new_dir, struct dentry *new_dentry) 723 { 724 bool old_is_dir = d_is_dir(old_dentry); 725 bool new_is_dir = d_is_dir(new_dentry); 726 727 if (old_dir != new_dir && old_is_dir != new_is_dir) { 728 if (old_is_dir) { 729 drop_nlink(old_dir); 730 inc_nlink(new_dir); 731 } else { 732 drop_nlink(new_dir); 733 inc_nlink(old_dir); 734 } 735 } 736 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 737 return 0; 738 } 739 EXPORT_SYMBOL_GPL(simple_rename_exchange); 740 741 int simple_rename(struct mnt_idmap *idmap, struct inode *old_dir, 742 struct dentry *old_dentry, struct inode *new_dir, 743 struct dentry *new_dentry, unsigned int flags) 744 { 745 int they_are_dirs = d_is_dir(old_dentry); 746 747 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE)) 748 return -EINVAL; 749 750 if (flags & RENAME_EXCHANGE) 751 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry); 752 753 if (!simple_empty(new_dentry)) 754 return -ENOTEMPTY; 755 756 if (d_really_is_positive(new_dentry)) { 757 simple_unlink(new_dir, new_dentry); 758 if (they_are_dirs) { 759 drop_nlink(d_inode(new_dentry)); 760 drop_nlink(old_dir); 761 } 762 } else if (they_are_dirs) { 763 drop_nlink(old_dir); 764 inc_nlink(new_dir); 765 } 766 767 simple_rename_timestamp(old_dir, old_dentry, new_dir, new_dentry); 768 return 0; 769 } 770 EXPORT_SYMBOL(simple_rename); 771 772 /** 773 * simple_setattr - setattr for simple filesystem 774 * @idmap: idmap of the target mount 775 * @dentry: dentry 776 * @iattr: iattr structure 777 * 778 * Returns 0 on success, -error on failure. 779 * 780 * simple_setattr is a simple ->setattr implementation without a proper 781 * implementation of size changes. 782 * 783 * It can either be used for in-memory filesystems or special files 784 * on simple regular filesystems. Anything that needs to change on-disk 785 * or wire state on size changes needs its own setattr method. 786 */ 787 int simple_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 788 struct iattr *iattr) 789 { 790 struct inode *inode = d_inode(dentry); 791 int error; 792 793 error = setattr_prepare(idmap, dentry, iattr); 794 if (error) 795 return error; 796 797 if (iattr->ia_valid & ATTR_SIZE) 798 truncate_setsize(inode, iattr->ia_size); 799 setattr_copy(idmap, inode, iattr); 800 mark_inode_dirty(inode); 801 return 0; 802 } 803 EXPORT_SYMBOL(simple_setattr); 804 805 static int simple_read_folio(struct file *file, struct folio *folio) 806 { 807 folio_zero_range(folio, 0, folio_size(folio)); 808 flush_dcache_folio(folio); 809 folio_mark_uptodate(folio); 810 folio_unlock(folio); 811 return 0; 812 } 813 814 int simple_write_begin(struct file *file, struct address_space *mapping, 815 loff_t pos, unsigned len, 816 struct page **pagep, void **fsdata) 817 { 818 struct folio *folio; 819 820 folio = __filemap_get_folio(mapping, pos / PAGE_SIZE, FGP_WRITEBEGIN, 821 mapping_gfp_mask(mapping)); 822 if (IS_ERR(folio)) 823 return PTR_ERR(folio); 824 825 *pagep = &folio->page; 826 827 if (!folio_test_uptodate(folio) && (len != folio_size(folio))) { 828 size_t from = offset_in_folio(folio, pos); 829 830 folio_zero_segments(folio, 0, from, 831 from + len, folio_size(folio)); 832 } 833 return 0; 834 } 835 EXPORT_SYMBOL(simple_write_begin); 836 837 /** 838 * simple_write_end - .write_end helper for non-block-device FSes 839 * @file: See .write_end of address_space_operations 840 * @mapping: " 841 * @pos: " 842 * @len: " 843 * @copied: " 844 * @page: " 845 * @fsdata: " 846 * 847 * simple_write_end does the minimum needed for updating a page after writing is 848 * done. It has the same API signature as the .write_end of 849 * address_space_operations vector. So it can just be set onto .write_end for 850 * FSes that don't need any other processing. i_mutex is assumed to be held. 851 * Block based filesystems should use generic_write_end(). 852 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty 853 * is not called, so a filesystem that actually does store data in .write_inode 854 * should extend on what's done here with a call to mark_inode_dirty() in the 855 * case that i_size has changed. 856 * 857 * Use *ONLY* with simple_read_folio() 858 */ 859 static int simple_write_end(struct file *file, struct address_space *mapping, 860 loff_t pos, unsigned len, unsigned copied, 861 struct page *page, void *fsdata) 862 { 863 struct folio *folio = page_folio(page); 864 struct inode *inode = folio->mapping->host; 865 loff_t last_pos = pos + copied; 866 867 /* zero the stale part of the folio if we did a short copy */ 868 if (!folio_test_uptodate(folio)) { 869 if (copied < len) { 870 size_t from = offset_in_folio(folio, pos); 871 872 folio_zero_range(folio, from + copied, len - copied); 873 } 874 folio_mark_uptodate(folio); 875 } 876 /* 877 * No need to use i_size_read() here, the i_size 878 * cannot change under us because we hold the i_mutex. 879 */ 880 if (last_pos > inode->i_size) 881 i_size_write(inode, last_pos); 882 883 folio_mark_dirty(folio); 884 folio_unlock(folio); 885 folio_put(folio); 886 887 return copied; 888 } 889 890 /* 891 * Provides ramfs-style behavior: data in the pagecache, but no writeback. 892 */ 893 const struct address_space_operations ram_aops = { 894 .read_folio = simple_read_folio, 895 .write_begin = simple_write_begin, 896 .write_end = simple_write_end, 897 .dirty_folio = noop_dirty_folio, 898 }; 899 EXPORT_SYMBOL(ram_aops); 900 901 /* 902 * the inodes created here are not hashed. If you use iunique to generate 903 * unique inode values later for this filesystem, then you must take care 904 * to pass it an appropriate max_reserved value to avoid collisions. 905 */ 906 int simple_fill_super(struct super_block *s, unsigned long magic, 907 const struct tree_descr *files) 908 { 909 struct inode *inode; 910 struct dentry *root; 911 struct dentry *dentry; 912 int i; 913 914 s->s_blocksize = PAGE_SIZE; 915 s->s_blocksize_bits = PAGE_SHIFT; 916 s->s_magic = magic; 917 s->s_op = &simple_super_operations; 918 s->s_time_gran = 1; 919 920 inode = new_inode(s); 921 if (!inode) 922 return -ENOMEM; 923 /* 924 * because the root inode is 1, the files array must not contain an 925 * entry at index 1 926 */ 927 inode->i_ino = 1; 928 inode->i_mode = S_IFDIR | 0755; 929 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 930 inode->i_op = &simple_dir_inode_operations; 931 inode->i_fop = &simple_dir_operations; 932 set_nlink(inode, 2); 933 root = d_make_root(inode); 934 if (!root) 935 return -ENOMEM; 936 for (i = 0; !files->name || files->name[0]; i++, files++) { 937 if (!files->name) 938 continue; 939 940 /* warn if it tries to conflict with the root inode */ 941 if (unlikely(i == 1)) 942 printk(KERN_WARNING "%s: %s passed in a files array" 943 "with an index of 1!\n", __func__, 944 s->s_type->name); 945 946 dentry = d_alloc_name(root, files->name); 947 if (!dentry) 948 goto out; 949 inode = new_inode(s); 950 if (!inode) { 951 dput(dentry); 952 goto out; 953 } 954 inode->i_mode = S_IFREG | files->mode; 955 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 956 inode->i_fop = files->ops; 957 inode->i_ino = i; 958 d_add(dentry, inode); 959 } 960 s->s_root = root; 961 return 0; 962 out: 963 d_genocide(root); 964 shrink_dcache_parent(root); 965 dput(root); 966 return -ENOMEM; 967 } 968 EXPORT_SYMBOL(simple_fill_super); 969 970 static DEFINE_SPINLOCK(pin_fs_lock); 971 972 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count) 973 { 974 struct vfsmount *mnt = NULL; 975 spin_lock(&pin_fs_lock); 976 if (unlikely(!*mount)) { 977 spin_unlock(&pin_fs_lock); 978 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL); 979 if (IS_ERR(mnt)) 980 return PTR_ERR(mnt); 981 spin_lock(&pin_fs_lock); 982 if (!*mount) 983 *mount = mnt; 984 } 985 mntget(*mount); 986 ++*count; 987 spin_unlock(&pin_fs_lock); 988 mntput(mnt); 989 return 0; 990 } 991 EXPORT_SYMBOL(simple_pin_fs); 992 993 void simple_release_fs(struct vfsmount **mount, int *count) 994 { 995 struct vfsmount *mnt; 996 spin_lock(&pin_fs_lock); 997 mnt = *mount; 998 if (!--*count) 999 *mount = NULL; 1000 spin_unlock(&pin_fs_lock); 1001 mntput(mnt); 1002 } 1003 EXPORT_SYMBOL(simple_release_fs); 1004 1005 /** 1006 * simple_read_from_buffer - copy data from the buffer to user space 1007 * @to: the user space buffer to read to 1008 * @count: the maximum number of bytes to read 1009 * @ppos: the current position in the buffer 1010 * @from: the buffer to read from 1011 * @available: the size of the buffer 1012 * 1013 * The simple_read_from_buffer() function reads up to @count bytes from the 1014 * buffer @from at offset @ppos into the user space address starting at @to. 1015 * 1016 * On success, the number of bytes read is returned and the offset @ppos is 1017 * advanced by this number, or negative value is returned on error. 1018 **/ 1019 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos, 1020 const void *from, size_t available) 1021 { 1022 loff_t pos = *ppos; 1023 size_t ret; 1024 1025 if (pos < 0) 1026 return -EINVAL; 1027 if (pos >= available || !count) 1028 return 0; 1029 if (count > available - pos) 1030 count = available - pos; 1031 ret = copy_to_user(to, from + pos, count); 1032 if (ret == count) 1033 return -EFAULT; 1034 count -= ret; 1035 *ppos = pos + count; 1036 return count; 1037 } 1038 EXPORT_SYMBOL(simple_read_from_buffer); 1039 1040 /** 1041 * simple_write_to_buffer - copy data from user space to the buffer 1042 * @to: the buffer to write to 1043 * @available: the size of the buffer 1044 * @ppos: the current position in the buffer 1045 * @from: the user space buffer to read from 1046 * @count: the maximum number of bytes to read 1047 * 1048 * The simple_write_to_buffer() function reads up to @count bytes from the user 1049 * space address starting at @from into the buffer @to at offset @ppos. 1050 * 1051 * On success, the number of bytes written is returned and the offset @ppos is 1052 * advanced by this number, or negative value is returned on error. 1053 **/ 1054 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos, 1055 const void __user *from, size_t count) 1056 { 1057 loff_t pos = *ppos; 1058 size_t res; 1059 1060 if (pos < 0) 1061 return -EINVAL; 1062 if (pos >= available || !count) 1063 return 0; 1064 if (count > available - pos) 1065 count = available - pos; 1066 res = copy_from_user(to + pos, from, count); 1067 if (res == count) 1068 return -EFAULT; 1069 count -= res; 1070 *ppos = pos + count; 1071 return count; 1072 } 1073 EXPORT_SYMBOL(simple_write_to_buffer); 1074 1075 /** 1076 * memory_read_from_buffer - copy data from the buffer 1077 * @to: the kernel space buffer to read to 1078 * @count: the maximum number of bytes to read 1079 * @ppos: the current position in the buffer 1080 * @from: the buffer to read from 1081 * @available: the size of the buffer 1082 * 1083 * The memory_read_from_buffer() function reads up to @count bytes from the 1084 * buffer @from at offset @ppos into the kernel space address starting at @to. 1085 * 1086 * On success, the number of bytes read is returned and the offset @ppos is 1087 * advanced by this number, or negative value is returned on error. 1088 **/ 1089 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos, 1090 const void *from, size_t available) 1091 { 1092 loff_t pos = *ppos; 1093 1094 if (pos < 0) 1095 return -EINVAL; 1096 if (pos >= available) 1097 return 0; 1098 if (count > available - pos) 1099 count = available - pos; 1100 memcpy(to, from + pos, count); 1101 *ppos = pos + count; 1102 1103 return count; 1104 } 1105 EXPORT_SYMBOL(memory_read_from_buffer); 1106 1107 /* 1108 * Transaction based IO. 1109 * The file expects a single write which triggers the transaction, and then 1110 * possibly a read which collects the result - which is stored in a 1111 * file-local buffer. 1112 */ 1113 1114 void simple_transaction_set(struct file *file, size_t n) 1115 { 1116 struct simple_transaction_argresp *ar = file->private_data; 1117 1118 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT); 1119 1120 /* 1121 * The barrier ensures that ar->size will really remain zero until 1122 * ar->data is ready for reading. 1123 */ 1124 smp_mb(); 1125 ar->size = n; 1126 } 1127 EXPORT_SYMBOL(simple_transaction_set); 1128 1129 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size) 1130 { 1131 struct simple_transaction_argresp *ar; 1132 static DEFINE_SPINLOCK(simple_transaction_lock); 1133 1134 if (size > SIMPLE_TRANSACTION_LIMIT - 1) 1135 return ERR_PTR(-EFBIG); 1136 1137 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL); 1138 if (!ar) 1139 return ERR_PTR(-ENOMEM); 1140 1141 spin_lock(&simple_transaction_lock); 1142 1143 /* only one write allowed per open */ 1144 if (file->private_data) { 1145 spin_unlock(&simple_transaction_lock); 1146 free_page((unsigned long)ar); 1147 return ERR_PTR(-EBUSY); 1148 } 1149 1150 file->private_data = ar; 1151 1152 spin_unlock(&simple_transaction_lock); 1153 1154 if (copy_from_user(ar->data, buf, size)) 1155 return ERR_PTR(-EFAULT); 1156 1157 return ar->data; 1158 } 1159 EXPORT_SYMBOL(simple_transaction_get); 1160 1161 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos) 1162 { 1163 struct simple_transaction_argresp *ar = file->private_data; 1164 1165 if (!ar) 1166 return 0; 1167 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size); 1168 } 1169 EXPORT_SYMBOL(simple_transaction_read); 1170 1171 int simple_transaction_release(struct inode *inode, struct file *file) 1172 { 1173 free_page((unsigned long)file->private_data); 1174 return 0; 1175 } 1176 EXPORT_SYMBOL(simple_transaction_release); 1177 1178 /* Simple attribute files */ 1179 1180 struct simple_attr { 1181 int (*get)(void *, u64 *); 1182 int (*set)(void *, u64); 1183 char get_buf[24]; /* enough to store a u64 and "\n\0" */ 1184 char set_buf[24]; 1185 void *data; 1186 const char *fmt; /* format for read operation */ 1187 struct mutex mutex; /* protects access to these buffers */ 1188 }; 1189 1190 /* simple_attr_open is called by an actual attribute open file operation 1191 * to set the attribute specific access operations. */ 1192 int simple_attr_open(struct inode *inode, struct file *file, 1193 int (*get)(void *, u64 *), int (*set)(void *, u64), 1194 const char *fmt) 1195 { 1196 struct simple_attr *attr; 1197 1198 attr = kzalloc(sizeof(*attr), GFP_KERNEL); 1199 if (!attr) 1200 return -ENOMEM; 1201 1202 attr->get = get; 1203 attr->set = set; 1204 attr->data = inode->i_private; 1205 attr->fmt = fmt; 1206 mutex_init(&attr->mutex); 1207 1208 file->private_data = attr; 1209 1210 return nonseekable_open(inode, file); 1211 } 1212 EXPORT_SYMBOL_GPL(simple_attr_open); 1213 1214 int simple_attr_release(struct inode *inode, struct file *file) 1215 { 1216 kfree(file->private_data); 1217 return 0; 1218 } 1219 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */ 1220 1221 /* read from the buffer that is filled with the get function */ 1222 ssize_t simple_attr_read(struct file *file, char __user *buf, 1223 size_t len, loff_t *ppos) 1224 { 1225 struct simple_attr *attr; 1226 size_t size; 1227 ssize_t ret; 1228 1229 attr = file->private_data; 1230 1231 if (!attr->get) 1232 return -EACCES; 1233 1234 ret = mutex_lock_interruptible(&attr->mutex); 1235 if (ret) 1236 return ret; 1237 1238 if (*ppos && attr->get_buf[0]) { 1239 /* continued read */ 1240 size = strlen(attr->get_buf); 1241 } else { 1242 /* first read */ 1243 u64 val; 1244 ret = attr->get(attr->data, &val); 1245 if (ret) 1246 goto out; 1247 1248 size = scnprintf(attr->get_buf, sizeof(attr->get_buf), 1249 attr->fmt, (unsigned long long)val); 1250 } 1251 1252 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size); 1253 out: 1254 mutex_unlock(&attr->mutex); 1255 return ret; 1256 } 1257 EXPORT_SYMBOL_GPL(simple_attr_read); 1258 1259 /* interpret the buffer as a number to call the set function with */ 1260 static ssize_t simple_attr_write_xsigned(struct file *file, const char __user *buf, 1261 size_t len, loff_t *ppos, bool is_signed) 1262 { 1263 struct simple_attr *attr; 1264 unsigned long long val; 1265 size_t size; 1266 ssize_t ret; 1267 1268 attr = file->private_data; 1269 if (!attr->set) 1270 return -EACCES; 1271 1272 ret = mutex_lock_interruptible(&attr->mutex); 1273 if (ret) 1274 return ret; 1275 1276 ret = -EFAULT; 1277 size = min(sizeof(attr->set_buf) - 1, len); 1278 if (copy_from_user(attr->set_buf, buf, size)) 1279 goto out; 1280 1281 attr->set_buf[size] = '\0'; 1282 if (is_signed) 1283 ret = kstrtoll(attr->set_buf, 0, &val); 1284 else 1285 ret = kstrtoull(attr->set_buf, 0, &val); 1286 if (ret) 1287 goto out; 1288 ret = attr->set(attr->data, val); 1289 if (ret == 0) 1290 ret = len; /* on success, claim we got the whole input */ 1291 out: 1292 mutex_unlock(&attr->mutex); 1293 return ret; 1294 } 1295 1296 ssize_t simple_attr_write(struct file *file, const char __user *buf, 1297 size_t len, loff_t *ppos) 1298 { 1299 return simple_attr_write_xsigned(file, buf, len, ppos, false); 1300 } 1301 EXPORT_SYMBOL_GPL(simple_attr_write); 1302 1303 ssize_t simple_attr_write_signed(struct file *file, const char __user *buf, 1304 size_t len, loff_t *ppos) 1305 { 1306 return simple_attr_write_xsigned(file, buf, len, ppos, true); 1307 } 1308 EXPORT_SYMBOL_GPL(simple_attr_write_signed); 1309 1310 /** 1311 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation 1312 * @sb: filesystem to do the file handle conversion on 1313 * @fid: file handle to convert 1314 * @fh_len: length of the file handle in bytes 1315 * @fh_type: type of file handle 1316 * @get_inode: filesystem callback to retrieve inode 1317 * 1318 * This function decodes @fid as long as it has one of the well-known 1319 * Linux filehandle types and calls @get_inode on it to retrieve the 1320 * inode for the object specified in the file handle. 1321 */ 1322 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid, 1323 int fh_len, int fh_type, struct inode *(*get_inode) 1324 (struct super_block *sb, u64 ino, u32 gen)) 1325 { 1326 struct inode *inode = NULL; 1327 1328 if (fh_len < 2) 1329 return NULL; 1330 1331 switch (fh_type) { 1332 case FILEID_INO32_GEN: 1333 case FILEID_INO32_GEN_PARENT: 1334 inode = get_inode(sb, fid->i32.ino, fid->i32.gen); 1335 break; 1336 } 1337 1338 return d_obtain_alias(inode); 1339 } 1340 EXPORT_SYMBOL_GPL(generic_fh_to_dentry); 1341 1342 /** 1343 * generic_fh_to_parent - generic helper for the fh_to_parent export operation 1344 * @sb: filesystem to do the file handle conversion on 1345 * @fid: file handle to convert 1346 * @fh_len: length of the file handle in bytes 1347 * @fh_type: type of file handle 1348 * @get_inode: filesystem callback to retrieve inode 1349 * 1350 * This function decodes @fid as long as it has one of the well-known 1351 * Linux filehandle types and calls @get_inode on it to retrieve the 1352 * inode for the _parent_ object specified in the file handle if it 1353 * is specified in the file handle, or NULL otherwise. 1354 */ 1355 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid, 1356 int fh_len, int fh_type, struct inode *(*get_inode) 1357 (struct super_block *sb, u64 ino, u32 gen)) 1358 { 1359 struct inode *inode = NULL; 1360 1361 if (fh_len <= 2) 1362 return NULL; 1363 1364 switch (fh_type) { 1365 case FILEID_INO32_GEN_PARENT: 1366 inode = get_inode(sb, fid->i32.parent_ino, 1367 (fh_len > 3 ? fid->i32.parent_gen : 0)); 1368 break; 1369 } 1370 1371 return d_obtain_alias(inode); 1372 } 1373 EXPORT_SYMBOL_GPL(generic_fh_to_parent); 1374 1375 /** 1376 * __generic_file_fsync - generic fsync implementation for simple filesystems 1377 * 1378 * @file: file to synchronize 1379 * @start: start offset in bytes 1380 * @end: end offset in bytes (inclusive) 1381 * @datasync: only synchronize essential metadata if true 1382 * 1383 * This is a generic implementation of the fsync method for simple 1384 * filesystems which track all non-inode metadata in the buffers list 1385 * hanging off the address_space structure. 1386 */ 1387 int __generic_file_fsync(struct file *file, loff_t start, loff_t end, 1388 int datasync) 1389 { 1390 struct inode *inode = file->f_mapping->host; 1391 int err; 1392 int ret; 1393 1394 err = file_write_and_wait_range(file, start, end); 1395 if (err) 1396 return err; 1397 1398 inode_lock(inode); 1399 ret = sync_mapping_buffers(inode->i_mapping); 1400 if (!(inode->i_state & I_DIRTY_ALL)) 1401 goto out; 1402 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 1403 goto out; 1404 1405 err = sync_inode_metadata(inode, 1); 1406 if (ret == 0) 1407 ret = err; 1408 1409 out: 1410 inode_unlock(inode); 1411 /* check and advance again to catch errors after syncing out buffers */ 1412 err = file_check_and_advance_wb_err(file); 1413 if (ret == 0) 1414 ret = err; 1415 return ret; 1416 } 1417 EXPORT_SYMBOL(__generic_file_fsync); 1418 1419 /** 1420 * generic_file_fsync - generic fsync implementation for simple filesystems 1421 * with flush 1422 * @file: file to synchronize 1423 * @start: start offset in bytes 1424 * @end: end offset in bytes (inclusive) 1425 * @datasync: only synchronize essential metadata if true 1426 * 1427 */ 1428 1429 int generic_file_fsync(struct file *file, loff_t start, loff_t end, 1430 int datasync) 1431 { 1432 struct inode *inode = file->f_mapping->host; 1433 int err; 1434 1435 err = __generic_file_fsync(file, start, end, datasync); 1436 if (err) 1437 return err; 1438 return blkdev_issue_flush(inode->i_sb->s_bdev); 1439 } 1440 EXPORT_SYMBOL(generic_file_fsync); 1441 1442 /** 1443 * generic_check_addressable - Check addressability of file system 1444 * @blocksize_bits: log of file system block size 1445 * @num_blocks: number of blocks in file system 1446 * 1447 * Determine whether a file system with @num_blocks blocks (and a 1448 * block size of 2**@blocksize_bits) is addressable by the sector_t 1449 * and page cache of the system. Return 0 if so and -EFBIG otherwise. 1450 */ 1451 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks) 1452 { 1453 u64 last_fs_block = num_blocks - 1; 1454 u64 last_fs_page = 1455 last_fs_block >> (PAGE_SHIFT - blocksize_bits); 1456 1457 if (unlikely(num_blocks == 0)) 1458 return 0; 1459 1460 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT)) 1461 return -EINVAL; 1462 1463 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) || 1464 (last_fs_page > (pgoff_t)(~0ULL))) { 1465 return -EFBIG; 1466 } 1467 return 0; 1468 } 1469 EXPORT_SYMBOL(generic_check_addressable); 1470 1471 /* 1472 * No-op implementation of ->fsync for in-memory filesystems. 1473 */ 1474 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1475 { 1476 return 0; 1477 } 1478 EXPORT_SYMBOL(noop_fsync); 1479 1480 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 1481 { 1482 /* 1483 * iomap based filesystems support direct I/O without need for 1484 * this callback. However, it still needs to be set in 1485 * inode->a_ops so that open/fcntl know that direct I/O is 1486 * generally supported. 1487 */ 1488 return -EINVAL; 1489 } 1490 EXPORT_SYMBOL_GPL(noop_direct_IO); 1491 1492 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */ 1493 void kfree_link(void *p) 1494 { 1495 kfree(p); 1496 } 1497 EXPORT_SYMBOL(kfree_link); 1498 1499 struct inode *alloc_anon_inode(struct super_block *s) 1500 { 1501 static const struct address_space_operations anon_aops = { 1502 .dirty_folio = noop_dirty_folio, 1503 }; 1504 struct inode *inode = new_inode_pseudo(s); 1505 1506 if (!inode) 1507 return ERR_PTR(-ENOMEM); 1508 1509 inode->i_ino = get_next_ino(); 1510 inode->i_mapping->a_ops = &anon_aops; 1511 1512 /* 1513 * Mark the inode dirty from the very beginning, 1514 * that way it will never be moved to the dirty 1515 * list because mark_inode_dirty() will think 1516 * that it already _is_ on the dirty list. 1517 */ 1518 inode->i_state = I_DIRTY; 1519 inode->i_mode = S_IRUSR | S_IWUSR; 1520 inode->i_uid = current_fsuid(); 1521 inode->i_gid = current_fsgid(); 1522 inode->i_flags |= S_PRIVATE; 1523 inode->i_atime = inode->i_mtime = inode_set_ctime_current(inode); 1524 return inode; 1525 } 1526 EXPORT_SYMBOL(alloc_anon_inode); 1527 1528 /** 1529 * simple_nosetlease - generic helper for prohibiting leases 1530 * @filp: file pointer 1531 * @arg: type of lease to obtain 1532 * @flp: new lease supplied for insertion 1533 * @priv: private data for lm_setup operation 1534 * 1535 * Generic helper for filesystems that do not wish to allow leases to be set. 1536 * All arguments are ignored and it just returns -EINVAL. 1537 */ 1538 int 1539 simple_nosetlease(struct file *filp, int arg, struct file_lock **flp, 1540 void **priv) 1541 { 1542 return -EINVAL; 1543 } 1544 EXPORT_SYMBOL(simple_nosetlease); 1545 1546 /** 1547 * simple_get_link - generic helper to get the target of "fast" symlinks 1548 * @dentry: not used here 1549 * @inode: the symlink inode 1550 * @done: not used here 1551 * 1552 * Generic helper for filesystems to use for symlink inodes where a pointer to 1553 * the symlink target is stored in ->i_link. NOTE: this isn't normally called, 1554 * since as an optimization the path lookup code uses any non-NULL ->i_link 1555 * directly, without calling ->get_link(). But ->get_link() still must be set, 1556 * to mark the inode_operations as being for a symlink. 1557 * 1558 * Return: the symlink target 1559 */ 1560 const char *simple_get_link(struct dentry *dentry, struct inode *inode, 1561 struct delayed_call *done) 1562 { 1563 return inode->i_link; 1564 } 1565 EXPORT_SYMBOL(simple_get_link); 1566 1567 const struct inode_operations simple_symlink_inode_operations = { 1568 .get_link = simple_get_link, 1569 }; 1570 EXPORT_SYMBOL(simple_symlink_inode_operations); 1571 1572 /* 1573 * Operations for a permanently empty directory. 1574 */ 1575 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 1576 { 1577 return ERR_PTR(-ENOENT); 1578 } 1579 1580 static int empty_dir_getattr(struct mnt_idmap *idmap, 1581 const struct path *path, struct kstat *stat, 1582 u32 request_mask, unsigned int query_flags) 1583 { 1584 struct inode *inode = d_inode(path->dentry); 1585 generic_fillattr(&nop_mnt_idmap, request_mask, inode, stat); 1586 return 0; 1587 } 1588 1589 static int empty_dir_setattr(struct mnt_idmap *idmap, 1590 struct dentry *dentry, struct iattr *attr) 1591 { 1592 return -EPERM; 1593 } 1594 1595 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size) 1596 { 1597 return -EOPNOTSUPP; 1598 } 1599 1600 static const struct inode_operations empty_dir_inode_operations = { 1601 .lookup = empty_dir_lookup, 1602 .permission = generic_permission, 1603 .setattr = empty_dir_setattr, 1604 .getattr = empty_dir_getattr, 1605 .listxattr = empty_dir_listxattr, 1606 }; 1607 1608 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence) 1609 { 1610 /* An empty directory has two entries . and .. at offsets 0 and 1 */ 1611 return generic_file_llseek_size(file, offset, whence, 2, 2); 1612 } 1613 1614 static int empty_dir_readdir(struct file *file, struct dir_context *ctx) 1615 { 1616 dir_emit_dots(file, ctx); 1617 return 0; 1618 } 1619 1620 static const struct file_operations empty_dir_operations = { 1621 .llseek = empty_dir_llseek, 1622 .read = generic_read_dir, 1623 .iterate_shared = empty_dir_readdir, 1624 .fsync = noop_fsync, 1625 }; 1626 1627 1628 void make_empty_dir_inode(struct inode *inode) 1629 { 1630 set_nlink(inode, 2); 1631 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO; 1632 inode->i_uid = GLOBAL_ROOT_UID; 1633 inode->i_gid = GLOBAL_ROOT_GID; 1634 inode->i_rdev = 0; 1635 inode->i_size = 0; 1636 inode->i_blkbits = PAGE_SHIFT; 1637 inode->i_blocks = 0; 1638 1639 inode->i_op = &empty_dir_inode_operations; 1640 inode->i_opflags &= ~IOP_XATTR; 1641 inode->i_fop = &empty_dir_operations; 1642 } 1643 1644 bool is_empty_dir_inode(struct inode *inode) 1645 { 1646 return (inode->i_fop == &empty_dir_operations) && 1647 (inode->i_op == &empty_dir_inode_operations); 1648 } 1649 1650 #if IS_ENABLED(CONFIG_UNICODE) 1651 /** 1652 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems 1653 * @dentry: dentry whose name we are checking against 1654 * @len: len of name of dentry 1655 * @str: str pointer to name of dentry 1656 * @name: Name to compare against 1657 * 1658 * Return: 0 if names match, 1 if mismatch, or -ERRNO 1659 */ 1660 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len, 1661 const char *str, const struct qstr *name) 1662 { 1663 const struct dentry *parent = READ_ONCE(dentry->d_parent); 1664 const struct inode *dir = READ_ONCE(parent->d_inode); 1665 const struct super_block *sb = dentry->d_sb; 1666 const struct unicode_map *um = sb->s_encoding; 1667 struct qstr qstr = QSTR_INIT(str, len); 1668 char strbuf[DNAME_INLINE_LEN]; 1669 int ret; 1670 1671 if (!dir || !IS_CASEFOLDED(dir)) 1672 goto fallback; 1673 /* 1674 * If the dentry name is stored in-line, then it may be concurrently 1675 * modified by a rename. If this happens, the VFS will eventually retry 1676 * the lookup, so it doesn't matter what ->d_compare() returns. 1677 * However, it's unsafe to call utf8_strncasecmp() with an unstable 1678 * string. Therefore, we have to copy the name into a temporary buffer. 1679 */ 1680 if (len <= DNAME_INLINE_LEN - 1) { 1681 memcpy(strbuf, str, len); 1682 strbuf[len] = 0; 1683 qstr.name = strbuf; 1684 /* prevent compiler from optimizing out the temporary buffer */ 1685 barrier(); 1686 } 1687 ret = utf8_strncasecmp(um, name, &qstr); 1688 if (ret >= 0) 1689 return ret; 1690 1691 if (sb_has_strict_encoding(sb)) 1692 return -EINVAL; 1693 fallback: 1694 if (len != name->len) 1695 return 1; 1696 return !!memcmp(str, name->name, len); 1697 } 1698 1699 /** 1700 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems 1701 * @dentry: dentry of the parent directory 1702 * @str: qstr of name whose hash we should fill in 1703 * 1704 * Return: 0 if hash was successful or unchanged, and -EINVAL on error 1705 */ 1706 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str) 1707 { 1708 const struct inode *dir = READ_ONCE(dentry->d_inode); 1709 struct super_block *sb = dentry->d_sb; 1710 const struct unicode_map *um = sb->s_encoding; 1711 int ret = 0; 1712 1713 if (!dir || !IS_CASEFOLDED(dir)) 1714 return 0; 1715 1716 ret = utf8_casefold_hash(um, dentry, str); 1717 if (ret < 0 && sb_has_strict_encoding(sb)) 1718 return -EINVAL; 1719 return 0; 1720 } 1721 1722 static const struct dentry_operations generic_ci_dentry_ops = { 1723 .d_hash = generic_ci_d_hash, 1724 .d_compare = generic_ci_d_compare, 1725 }; 1726 #endif 1727 1728 #ifdef CONFIG_FS_ENCRYPTION 1729 static const struct dentry_operations generic_encrypted_dentry_ops = { 1730 .d_revalidate = fscrypt_d_revalidate, 1731 }; 1732 #endif 1733 1734 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1735 static const struct dentry_operations generic_encrypted_ci_dentry_ops = { 1736 .d_hash = generic_ci_d_hash, 1737 .d_compare = generic_ci_d_compare, 1738 .d_revalidate = fscrypt_d_revalidate, 1739 }; 1740 #endif 1741 1742 /** 1743 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry 1744 * @dentry: dentry to set ops on 1745 * 1746 * Casefolded directories need d_hash and d_compare set, so that the dentries 1747 * contained in them are handled case-insensitively. Note that these operations 1748 * are needed on the parent directory rather than on the dentries in it, and 1749 * while the casefolding flag can be toggled on and off on an empty directory, 1750 * dentry_operations can't be changed later. As a result, if the filesystem has 1751 * casefolding support enabled at all, we have to give all dentries the 1752 * casefolding operations even if their inode doesn't have the casefolding flag 1753 * currently (and thus the casefolding ops would be no-ops for now). 1754 * 1755 * Encryption works differently in that the only dentry operation it needs is 1756 * d_revalidate, which it only needs on dentries that have the no-key name flag. 1757 * The no-key flag can't be set "later", so we don't have to worry about that. 1758 * 1759 * Finally, to maximize compatibility with overlayfs (which isn't compatible 1760 * with certain dentry operations) and to avoid taking an unnecessary 1761 * performance hit, we use custom dentry_operations for each possible 1762 * combination rather than always installing all operations. 1763 */ 1764 void generic_set_encrypted_ci_d_ops(struct dentry *dentry) 1765 { 1766 #ifdef CONFIG_FS_ENCRYPTION 1767 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME; 1768 #endif 1769 #if IS_ENABLED(CONFIG_UNICODE) 1770 bool needs_ci_ops = dentry->d_sb->s_encoding; 1771 #endif 1772 #if defined(CONFIG_FS_ENCRYPTION) && IS_ENABLED(CONFIG_UNICODE) 1773 if (needs_encrypt_ops && needs_ci_ops) { 1774 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops); 1775 return; 1776 } 1777 #endif 1778 #ifdef CONFIG_FS_ENCRYPTION 1779 if (needs_encrypt_ops) { 1780 d_set_d_op(dentry, &generic_encrypted_dentry_ops); 1781 return; 1782 } 1783 #endif 1784 #if IS_ENABLED(CONFIG_UNICODE) 1785 if (needs_ci_ops) { 1786 d_set_d_op(dentry, &generic_ci_dentry_ops); 1787 return; 1788 } 1789 #endif 1790 } 1791 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops); 1792 1793 /** 1794 * inode_maybe_inc_iversion - increments i_version 1795 * @inode: inode with the i_version that should be updated 1796 * @force: increment the counter even if it's not necessary? 1797 * 1798 * Every time the inode is modified, the i_version field must be seen to have 1799 * changed by any observer. 1800 * 1801 * If "force" is set or the QUERIED flag is set, then ensure that we increment 1802 * the value, and clear the queried flag. 1803 * 1804 * In the common case where neither is set, then we can return "false" without 1805 * updating i_version. 1806 * 1807 * If this function returns false, and no other metadata has changed, then we 1808 * can avoid logging the metadata. 1809 */ 1810 bool inode_maybe_inc_iversion(struct inode *inode, bool force) 1811 { 1812 u64 cur, new; 1813 1814 /* 1815 * The i_version field is not strictly ordered with any other inode 1816 * information, but the legacy inode_inc_iversion code used a spinlock 1817 * to serialize increments. 1818 * 1819 * Here, we add full memory barriers to ensure that any de-facto 1820 * ordering with other info is preserved. 1821 * 1822 * This barrier pairs with the barrier in inode_query_iversion() 1823 */ 1824 smp_mb(); 1825 cur = inode_peek_iversion_raw(inode); 1826 do { 1827 /* If flag is clear then we needn't do anything */ 1828 if (!force && !(cur & I_VERSION_QUERIED)) 1829 return false; 1830 1831 /* Since lowest bit is flag, add 2 to avoid it */ 1832 new = (cur & ~I_VERSION_QUERIED) + I_VERSION_INCREMENT; 1833 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1834 return true; 1835 } 1836 EXPORT_SYMBOL(inode_maybe_inc_iversion); 1837 1838 /** 1839 * inode_query_iversion - read i_version for later use 1840 * @inode: inode from which i_version should be read 1841 * 1842 * Read the inode i_version counter. This should be used by callers that wish 1843 * to store the returned i_version for later comparison. This will guarantee 1844 * that a later query of the i_version will result in a different value if 1845 * anything has changed. 1846 * 1847 * In this implementation, we fetch the current value, set the QUERIED flag and 1848 * then try to swap it into place with a cmpxchg, if it wasn't already set. If 1849 * that fails, we try again with the newly fetched value from the cmpxchg. 1850 */ 1851 u64 inode_query_iversion(struct inode *inode) 1852 { 1853 u64 cur, new; 1854 1855 cur = inode_peek_iversion_raw(inode); 1856 do { 1857 /* If flag is already set, then no need to swap */ 1858 if (cur & I_VERSION_QUERIED) { 1859 /* 1860 * This barrier (and the implicit barrier in the 1861 * cmpxchg below) pairs with the barrier in 1862 * inode_maybe_inc_iversion(). 1863 */ 1864 smp_mb(); 1865 break; 1866 } 1867 1868 new = cur | I_VERSION_QUERIED; 1869 } while (!atomic64_try_cmpxchg(&inode->i_version, &cur, new)); 1870 return cur >> I_VERSION_QUERIED_SHIFT; 1871 } 1872 EXPORT_SYMBOL(inode_query_iversion); 1873 1874 ssize_t direct_write_fallback(struct kiocb *iocb, struct iov_iter *iter, 1875 ssize_t direct_written, ssize_t buffered_written) 1876 { 1877 struct address_space *mapping = iocb->ki_filp->f_mapping; 1878 loff_t pos = iocb->ki_pos - buffered_written; 1879 loff_t end = iocb->ki_pos - 1; 1880 int err; 1881 1882 /* 1883 * If the buffered write fallback returned an error, we want to return 1884 * the number of bytes which were written by direct I/O, or the error 1885 * code if that was zero. 1886 * 1887 * Note that this differs from normal direct-io semantics, which will 1888 * return -EFOO even if some bytes were written. 1889 */ 1890 if (unlikely(buffered_written < 0)) { 1891 if (direct_written) 1892 return direct_written; 1893 return buffered_written; 1894 } 1895 1896 /* 1897 * We need to ensure that the page cache pages are written to disk and 1898 * invalidated to preserve the expected O_DIRECT semantics. 1899 */ 1900 err = filemap_write_and_wait_range(mapping, pos, end); 1901 if (err < 0) { 1902 /* 1903 * We don't know how much we wrote, so just return the number of 1904 * bytes which were direct-written 1905 */ 1906 iocb->ki_pos -= buffered_written; 1907 if (direct_written) 1908 return direct_written; 1909 return err; 1910 } 1911 invalidate_mapping_pages(mapping, pos >> PAGE_SHIFT, end >> PAGE_SHIFT); 1912 return direct_written + buffered_written; 1913 } 1914 EXPORT_SYMBOL_GPL(direct_write_fallback); 1915