1 /* 2 * fs/kernfs/mount.c - kernfs mount implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mount.h> 13 #include <linux/init.h> 14 #include <linux/magic.h> 15 #include <linux/slab.h> 16 #include <linux/pagemap.h> 17 #include <linux/namei.h> 18 #include <linux/seq_file.h> 19 #include <linux/exportfs.h> 20 21 #include "kernfs-internal.h" 22 23 struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache; 24 25 static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data) 26 { 27 struct kernfs_root *root = kernfs_info(sb)->root; 28 struct kernfs_syscall_ops *scops = root->syscall_ops; 29 30 if (scops && scops->remount_fs) 31 return scops->remount_fs(root, flags, data); 32 return 0; 33 } 34 35 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry) 36 { 37 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry)); 38 struct kernfs_syscall_ops *scops = root->syscall_ops; 39 40 if (scops && scops->show_options) 41 return scops->show_options(sf, root); 42 return 0; 43 } 44 45 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry) 46 { 47 struct kernfs_node *node = kernfs_dentry_node(dentry); 48 struct kernfs_root *root = kernfs_root(node); 49 struct kernfs_syscall_ops *scops = root->syscall_ops; 50 51 if (scops && scops->show_path) 52 return scops->show_path(sf, node, root); 53 54 seq_dentry(sf, dentry, " \t\n\\"); 55 return 0; 56 } 57 58 const struct super_operations kernfs_sops = { 59 .statfs = simple_statfs, 60 .drop_inode = generic_delete_inode, 61 .evict_inode = kernfs_evict_inode, 62 63 .remount_fs = kernfs_sop_remount_fs, 64 .show_options = kernfs_sop_show_options, 65 .show_path = kernfs_sop_show_path, 66 }; 67 68 /* 69 * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode 70 * number and generation 71 */ 72 struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root, 73 const union kernfs_node_id *id) 74 { 75 struct kernfs_node *kn; 76 77 kn = kernfs_find_and_get_node_by_ino(root, id->ino); 78 if (!kn) 79 return NULL; 80 if (kn->id.generation != id->generation) { 81 kernfs_put(kn); 82 return NULL; 83 } 84 return kn; 85 } 86 87 static struct inode *kernfs_fh_get_inode(struct super_block *sb, 88 u64 ino, u32 generation) 89 { 90 struct kernfs_super_info *info = kernfs_info(sb); 91 struct inode *inode; 92 struct kernfs_node *kn; 93 94 if (ino == 0) 95 return ERR_PTR(-ESTALE); 96 97 kn = kernfs_find_and_get_node_by_ino(info->root, ino); 98 if (!kn) 99 return ERR_PTR(-ESTALE); 100 inode = kernfs_get_inode(sb, kn); 101 kernfs_put(kn); 102 if (!inode) 103 return ERR_PTR(-ESTALE); 104 105 if (generation && inode->i_generation != generation) { 106 /* we didn't find the right inode.. */ 107 iput(inode); 108 return ERR_PTR(-ESTALE); 109 } 110 return inode; 111 } 112 113 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 114 int fh_len, int fh_type) 115 { 116 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 117 kernfs_fh_get_inode); 118 } 119 120 static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid, 121 int fh_len, int fh_type) 122 { 123 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 124 kernfs_fh_get_inode); 125 } 126 127 static struct dentry *kernfs_get_parent_dentry(struct dentry *child) 128 { 129 struct kernfs_node *kn = kernfs_dentry_node(child); 130 131 return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent)); 132 } 133 134 static const struct export_operations kernfs_export_ops = { 135 .fh_to_dentry = kernfs_fh_to_dentry, 136 .fh_to_parent = kernfs_fh_to_parent, 137 .get_parent = kernfs_get_parent_dentry, 138 }; 139 140 /** 141 * kernfs_root_from_sb - determine kernfs_root associated with a super_block 142 * @sb: the super_block in question 143 * 144 * Return the kernfs_root associated with @sb. If @sb is not a kernfs one, 145 * %NULL is returned. 146 */ 147 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb) 148 { 149 if (sb->s_op == &kernfs_sops) 150 return kernfs_info(sb)->root; 151 return NULL; 152 } 153 154 /* 155 * find the next ancestor in the path down to @child, where @parent was the 156 * ancestor whose descendant we want to find. 157 * 158 * Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root 159 * node. If @parent is b, then we return the node for c. 160 * Passing in d as @parent is not ok. 161 */ 162 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child, 163 struct kernfs_node *parent) 164 { 165 if (child == parent) { 166 pr_crit_once("BUG in find_next_ancestor: called with parent == child"); 167 return NULL; 168 } 169 170 while (child->parent != parent) { 171 if (!child->parent) 172 return NULL; 173 child = child->parent; 174 } 175 176 return child; 177 } 178 179 /** 180 * kernfs_node_dentry - get a dentry for the given kernfs_node 181 * @kn: kernfs_node for which a dentry is needed 182 * @sb: the kernfs super_block 183 */ 184 struct dentry *kernfs_node_dentry(struct kernfs_node *kn, 185 struct super_block *sb) 186 { 187 struct dentry *dentry; 188 struct kernfs_node *knparent = NULL; 189 190 BUG_ON(sb->s_op != &kernfs_sops); 191 192 dentry = dget(sb->s_root); 193 194 /* Check if this is the root kernfs_node */ 195 if (!kn->parent) 196 return dentry; 197 198 knparent = find_next_ancestor(kn, NULL); 199 if (WARN_ON(!knparent)) { 200 dput(dentry); 201 return ERR_PTR(-EINVAL); 202 } 203 204 do { 205 struct dentry *dtmp; 206 struct kernfs_node *kntmp; 207 208 if (kn == knparent) 209 return dentry; 210 kntmp = find_next_ancestor(kn, knparent); 211 if (WARN_ON(!kntmp)) { 212 dput(dentry); 213 return ERR_PTR(-EINVAL); 214 } 215 dtmp = lookup_one_len_unlocked(kntmp->name, dentry, 216 strlen(kntmp->name)); 217 dput(dentry); 218 if (IS_ERR(dtmp)) 219 return dtmp; 220 knparent = kntmp; 221 dentry = dtmp; 222 } while (true); 223 } 224 225 static int kernfs_fill_super(struct super_block *sb, unsigned long magic) 226 { 227 struct kernfs_super_info *info = kernfs_info(sb); 228 struct inode *inode; 229 struct dentry *root; 230 231 info->sb = sb; 232 /* Userspace would break if executables or devices appear on sysfs */ 233 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 234 sb->s_blocksize = PAGE_SIZE; 235 sb->s_blocksize_bits = PAGE_SHIFT; 236 sb->s_magic = magic; 237 sb->s_op = &kernfs_sops; 238 sb->s_xattr = kernfs_xattr_handlers; 239 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP) 240 sb->s_export_op = &kernfs_export_ops; 241 sb->s_time_gran = 1; 242 243 /* sysfs dentries and inodes don't require IO to create */ 244 sb->s_shrink.seeks = 0; 245 246 /* get root inode, initialize and unlock it */ 247 mutex_lock(&kernfs_mutex); 248 inode = kernfs_get_inode(sb, info->root->kn); 249 mutex_unlock(&kernfs_mutex); 250 if (!inode) { 251 pr_debug("kernfs: could not get root inode\n"); 252 return -ENOMEM; 253 } 254 255 /* instantiate and link root dentry */ 256 root = d_make_root(inode); 257 if (!root) { 258 pr_debug("%s: could not get root dentry!\n", __func__); 259 return -ENOMEM; 260 } 261 sb->s_root = root; 262 sb->s_d_op = &kernfs_dops; 263 return 0; 264 } 265 266 static int kernfs_test_super(struct super_block *sb, void *data) 267 { 268 struct kernfs_super_info *sb_info = kernfs_info(sb); 269 struct kernfs_super_info *info = data; 270 271 return sb_info->root == info->root && sb_info->ns == info->ns; 272 } 273 274 static int kernfs_set_super(struct super_block *sb, void *data) 275 { 276 int error; 277 error = set_anon_super(sb, data); 278 if (!error) 279 sb->s_fs_info = data; 280 return error; 281 } 282 283 /** 284 * kernfs_super_ns - determine the namespace tag of a kernfs super_block 285 * @sb: super_block of interest 286 * 287 * Return the namespace tag associated with kernfs super_block @sb. 288 */ 289 const void *kernfs_super_ns(struct super_block *sb) 290 { 291 struct kernfs_super_info *info = kernfs_info(sb); 292 293 return info->ns; 294 } 295 296 /** 297 * kernfs_mount_ns - kernfs mount helper 298 * @fs_type: file_system_type of the fs being mounted 299 * @flags: mount flags specified for the mount 300 * @root: kernfs_root of the hierarchy being mounted 301 * @magic: file system specific magic number 302 * @new_sb_created: tell the caller if we allocated a new superblock 303 * @ns: optional namespace tag of the mount 304 * 305 * This is to be called from each kernfs user's file_system_type->mount() 306 * implementation, which should pass through the specified @fs_type and 307 * @flags, and specify the hierarchy and namespace tag to mount via @root 308 * and @ns, respectively. 309 * 310 * The return value can be passed to the vfs layer verbatim. 311 */ 312 struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags, 313 struct kernfs_root *root, unsigned long magic, 314 bool *new_sb_created, const void *ns) 315 { 316 struct super_block *sb; 317 struct kernfs_super_info *info; 318 int error; 319 320 info = kzalloc(sizeof(*info), GFP_KERNEL); 321 if (!info) 322 return ERR_PTR(-ENOMEM); 323 324 info->root = root; 325 info->ns = ns; 326 INIT_LIST_HEAD(&info->node); 327 328 sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags, 329 &init_user_ns, info); 330 if (IS_ERR(sb) || sb->s_fs_info != info) 331 kfree(info); 332 if (IS_ERR(sb)) 333 return ERR_CAST(sb); 334 335 if (new_sb_created) 336 *new_sb_created = !sb->s_root; 337 338 if (!sb->s_root) { 339 struct kernfs_super_info *info = kernfs_info(sb); 340 341 error = kernfs_fill_super(sb, magic); 342 if (error) { 343 deactivate_locked_super(sb); 344 return ERR_PTR(error); 345 } 346 sb->s_flags |= SB_ACTIVE; 347 348 mutex_lock(&kernfs_mutex); 349 list_add(&info->node, &root->supers); 350 mutex_unlock(&kernfs_mutex); 351 } 352 353 return dget(sb->s_root); 354 } 355 356 /** 357 * kernfs_kill_sb - kill_sb for kernfs 358 * @sb: super_block being killed 359 * 360 * This can be used directly for file_system_type->kill_sb(). If a kernfs 361 * user needs extra cleanup, it can implement its own kill_sb() and call 362 * this function at the end. 363 */ 364 void kernfs_kill_sb(struct super_block *sb) 365 { 366 struct kernfs_super_info *info = kernfs_info(sb); 367 368 mutex_lock(&kernfs_mutex); 369 list_del(&info->node); 370 mutex_unlock(&kernfs_mutex); 371 372 /* 373 * Remove the superblock from fs_supers/s_instances 374 * so we can't find it, before freeing kernfs_super_info. 375 */ 376 kill_anon_super(sb); 377 kfree(info); 378 } 379 380 /** 381 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root 382 * @kernfs_root: the kernfs_root in question 383 * @ns: the namespace tag 384 * 385 * Pin the superblock so the superblock won't be destroyed in subsequent 386 * operations. This can be used to block ->kill_sb() which may be useful 387 * for kernfs users which dynamically manage superblocks. 388 * 389 * Returns NULL if there's no superblock associated to this kernfs_root, or 390 * -EINVAL if the superblock is being freed. 391 */ 392 struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns) 393 { 394 struct kernfs_super_info *info; 395 struct super_block *sb = NULL; 396 397 mutex_lock(&kernfs_mutex); 398 list_for_each_entry(info, &root->supers, node) { 399 if (info->ns == ns) { 400 sb = info->sb; 401 if (!atomic_inc_not_zero(&info->sb->s_active)) 402 sb = ERR_PTR(-EINVAL); 403 break; 404 } 405 } 406 mutex_unlock(&kernfs_mutex); 407 return sb; 408 } 409 410 void __init kernfs_init(void) 411 { 412 413 /* 414 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino 415 * can access the slab lock free. This could introduce stale nodes, 416 * please see how kernfs_find_and_get_node_by_ino filters out stale 417 * nodes. 418 */ 419 kernfs_node_cache = kmem_cache_create("kernfs_node_cache", 420 sizeof(struct kernfs_node), 421 0, 422 SLAB_PANIC | SLAB_TYPESAFE_BY_RCU, 423 NULL); 424 425 /* Creates slab cache for kernfs inode attributes */ 426 kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache", 427 sizeof(struct kernfs_iattrs), 428 0, SLAB_PANIC, NULL); 429 } 430