xref: /openbmc/linux/fs/kernfs/mount.c (revision 92a76f6d)
1 /*
2  * fs/kernfs/mount.c - kernfs mount implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mount.h>
13 #include <linux/init.h>
14 #include <linux/magic.h>
15 #include <linux/slab.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 
19 #include "kernfs-internal.h"
20 
21 struct kmem_cache *kernfs_node_cache;
22 
23 static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
24 {
25 	struct kernfs_root *root = kernfs_info(sb)->root;
26 	struct kernfs_syscall_ops *scops = root->syscall_ops;
27 
28 	if (scops && scops->remount_fs)
29 		return scops->remount_fs(root, flags, data);
30 	return 0;
31 }
32 
33 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
34 {
35 	struct kernfs_root *root = kernfs_root(dentry->d_fsdata);
36 	struct kernfs_syscall_ops *scops = root->syscall_ops;
37 
38 	if (scops && scops->show_options)
39 		return scops->show_options(sf, root);
40 	return 0;
41 }
42 
43 const struct super_operations kernfs_sops = {
44 	.statfs		= simple_statfs,
45 	.drop_inode	= generic_delete_inode,
46 	.evict_inode	= kernfs_evict_inode,
47 
48 	.remount_fs	= kernfs_sop_remount_fs,
49 	.show_options	= kernfs_sop_show_options,
50 };
51 
52 /**
53  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
54  * @sb: the super_block in question
55  *
56  * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
57  * %NULL is returned.
58  */
59 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
60 {
61 	if (sb->s_op == &kernfs_sops)
62 		return kernfs_info(sb)->root;
63 	return NULL;
64 }
65 
66 /*
67  * find the next ancestor in the path down to @child, where @parent was the
68  * ancestor whose descendant we want to find.
69  *
70  * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
71  * node.  If @parent is b, then we return the node for c.
72  * Passing in d as @parent is not ok.
73  */
74 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
75 					      struct kernfs_node *parent)
76 {
77 	if (child == parent) {
78 		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
79 		return NULL;
80 	}
81 
82 	while (child->parent != parent) {
83 		if (!child->parent)
84 			return NULL;
85 		child = child->parent;
86 	}
87 
88 	return child;
89 }
90 
91 /**
92  * kernfs_node_dentry - get a dentry for the given kernfs_node
93  * @kn: kernfs_node for which a dentry is needed
94  * @sb: the kernfs super_block
95  */
96 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
97 				  struct super_block *sb)
98 {
99 	struct dentry *dentry;
100 	struct kernfs_node *knparent = NULL;
101 
102 	BUG_ON(sb->s_op != &kernfs_sops);
103 
104 	dentry = dget(sb->s_root);
105 
106 	/* Check if this is the root kernfs_node */
107 	if (!kn->parent)
108 		return dentry;
109 
110 	knparent = find_next_ancestor(kn, NULL);
111 	if (WARN_ON(!knparent))
112 		return ERR_PTR(-EINVAL);
113 
114 	do {
115 		struct dentry *dtmp;
116 		struct kernfs_node *kntmp;
117 
118 		if (kn == knparent)
119 			return dentry;
120 		kntmp = find_next_ancestor(kn, knparent);
121 		if (WARN_ON(!kntmp))
122 			return ERR_PTR(-EINVAL);
123 		mutex_lock(&d_inode(dentry)->i_mutex);
124 		dtmp = lookup_one_len(kntmp->name, dentry, strlen(kntmp->name));
125 		mutex_unlock(&d_inode(dentry)->i_mutex);
126 		dput(dentry);
127 		if (IS_ERR(dtmp))
128 			return dtmp;
129 		knparent = kntmp;
130 		dentry = dtmp;
131 	} while (true);
132 }
133 
134 static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
135 {
136 	struct kernfs_super_info *info = kernfs_info(sb);
137 	struct inode *inode;
138 	struct dentry *root;
139 
140 	info->sb = sb;
141 	sb->s_blocksize = PAGE_CACHE_SIZE;
142 	sb->s_blocksize_bits = PAGE_CACHE_SHIFT;
143 	sb->s_magic = magic;
144 	sb->s_op = &kernfs_sops;
145 	sb->s_time_gran = 1;
146 
147 	/* get root inode, initialize and unlock it */
148 	mutex_lock(&kernfs_mutex);
149 	inode = kernfs_get_inode(sb, info->root->kn);
150 	mutex_unlock(&kernfs_mutex);
151 	if (!inode) {
152 		pr_debug("kernfs: could not get root inode\n");
153 		return -ENOMEM;
154 	}
155 
156 	/* instantiate and link root dentry */
157 	root = d_make_root(inode);
158 	if (!root) {
159 		pr_debug("%s: could not get root dentry!\n", __func__);
160 		return -ENOMEM;
161 	}
162 	kernfs_get(info->root->kn);
163 	root->d_fsdata = info->root->kn;
164 	sb->s_root = root;
165 	sb->s_d_op = &kernfs_dops;
166 	return 0;
167 }
168 
169 static int kernfs_test_super(struct super_block *sb, void *data)
170 {
171 	struct kernfs_super_info *sb_info = kernfs_info(sb);
172 	struct kernfs_super_info *info = data;
173 
174 	return sb_info->root == info->root && sb_info->ns == info->ns;
175 }
176 
177 static int kernfs_set_super(struct super_block *sb, void *data)
178 {
179 	int error;
180 	error = set_anon_super(sb, data);
181 	if (!error)
182 		sb->s_fs_info = data;
183 	return error;
184 }
185 
186 /**
187  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
188  * @sb: super_block of interest
189  *
190  * Return the namespace tag associated with kernfs super_block @sb.
191  */
192 const void *kernfs_super_ns(struct super_block *sb)
193 {
194 	struct kernfs_super_info *info = kernfs_info(sb);
195 
196 	return info->ns;
197 }
198 
199 /**
200  * kernfs_mount_ns - kernfs mount helper
201  * @fs_type: file_system_type of the fs being mounted
202  * @flags: mount flags specified for the mount
203  * @root: kernfs_root of the hierarchy being mounted
204  * @magic: file system specific magic number
205  * @new_sb_created: tell the caller if we allocated a new superblock
206  * @ns: optional namespace tag of the mount
207  *
208  * This is to be called from each kernfs user's file_system_type->mount()
209  * implementation, which should pass through the specified @fs_type and
210  * @flags, and specify the hierarchy and namespace tag to mount via @root
211  * and @ns, respectively.
212  *
213  * The return value can be passed to the vfs layer verbatim.
214  */
215 struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
216 				struct kernfs_root *root, unsigned long magic,
217 				bool *new_sb_created, const void *ns)
218 {
219 	struct super_block *sb;
220 	struct kernfs_super_info *info;
221 	int error;
222 
223 	info = kzalloc(sizeof(*info), GFP_KERNEL);
224 	if (!info)
225 		return ERR_PTR(-ENOMEM);
226 
227 	info->root = root;
228 	info->ns = ns;
229 
230 	sb = sget(fs_type, kernfs_test_super, kernfs_set_super, flags, info);
231 	if (IS_ERR(sb) || sb->s_fs_info != info)
232 		kfree(info);
233 	if (IS_ERR(sb))
234 		return ERR_CAST(sb);
235 
236 	if (new_sb_created)
237 		*new_sb_created = !sb->s_root;
238 
239 	if (!sb->s_root) {
240 		struct kernfs_super_info *info = kernfs_info(sb);
241 
242 		error = kernfs_fill_super(sb, magic);
243 		if (error) {
244 			deactivate_locked_super(sb);
245 			return ERR_PTR(error);
246 		}
247 		sb->s_flags |= MS_ACTIVE;
248 
249 		mutex_lock(&kernfs_mutex);
250 		list_add(&info->node, &root->supers);
251 		mutex_unlock(&kernfs_mutex);
252 	}
253 
254 	return dget(sb->s_root);
255 }
256 
257 /**
258  * kernfs_kill_sb - kill_sb for kernfs
259  * @sb: super_block being killed
260  *
261  * This can be used directly for file_system_type->kill_sb().  If a kernfs
262  * user needs extra cleanup, it can implement its own kill_sb() and call
263  * this function at the end.
264  */
265 void kernfs_kill_sb(struct super_block *sb)
266 {
267 	struct kernfs_super_info *info = kernfs_info(sb);
268 	struct kernfs_node *root_kn = sb->s_root->d_fsdata;
269 
270 	mutex_lock(&kernfs_mutex);
271 	list_del(&info->node);
272 	mutex_unlock(&kernfs_mutex);
273 
274 	/*
275 	 * Remove the superblock from fs_supers/s_instances
276 	 * so we can't find it, before freeing kernfs_super_info.
277 	 */
278 	kill_anon_super(sb);
279 	kfree(info);
280 	kernfs_put(root_kn);
281 }
282 
283 /**
284  * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
285  * @kernfs_root: the kernfs_root in question
286  * @ns: the namespace tag
287  *
288  * Pin the superblock so the superblock won't be destroyed in subsequent
289  * operations.  This can be used to block ->kill_sb() which may be useful
290  * for kernfs users which dynamically manage superblocks.
291  *
292  * Returns NULL if there's no superblock associated to this kernfs_root, or
293  * -EINVAL if the superblock is being freed.
294  */
295 struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
296 {
297 	struct kernfs_super_info *info;
298 	struct super_block *sb = NULL;
299 
300 	mutex_lock(&kernfs_mutex);
301 	list_for_each_entry(info, &root->supers, node) {
302 		if (info->ns == ns) {
303 			sb = info->sb;
304 			if (!atomic_inc_not_zero(&info->sb->s_active))
305 				sb = ERR_PTR(-EINVAL);
306 			break;
307 		}
308 	}
309 	mutex_unlock(&kernfs_mutex);
310 	return sb;
311 }
312 
313 void __init kernfs_init(void)
314 {
315 	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
316 					      sizeof(struct kernfs_node),
317 					      0, SLAB_PANIC, NULL);
318 }
319