1 /* 2 * fs/kernfs/mount.c - kernfs mount implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mount.h> 13 #include <linux/init.h> 14 #include <linux/magic.h> 15 #include <linux/slab.h> 16 #include <linux/pagemap.h> 17 #include <linux/namei.h> 18 19 #include "kernfs-internal.h" 20 21 struct kmem_cache *kernfs_node_cache; 22 23 static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data) 24 { 25 struct kernfs_root *root = kernfs_info(sb)->root; 26 struct kernfs_syscall_ops *scops = root->syscall_ops; 27 28 if (scops && scops->remount_fs) 29 return scops->remount_fs(root, flags, data); 30 return 0; 31 } 32 33 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry) 34 { 35 struct kernfs_root *root = kernfs_root(dentry->d_fsdata); 36 struct kernfs_syscall_ops *scops = root->syscall_ops; 37 38 if (scops && scops->show_options) 39 return scops->show_options(sf, root); 40 return 0; 41 } 42 43 const struct super_operations kernfs_sops = { 44 .statfs = simple_statfs, 45 .drop_inode = generic_delete_inode, 46 .evict_inode = kernfs_evict_inode, 47 48 .remount_fs = kernfs_sop_remount_fs, 49 .show_options = kernfs_sop_show_options, 50 }; 51 52 /** 53 * kernfs_root_from_sb - determine kernfs_root associated with a super_block 54 * @sb: the super_block in question 55 * 56 * Return the kernfs_root associated with @sb. If @sb is not a kernfs one, 57 * %NULL is returned. 58 */ 59 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb) 60 { 61 if (sb->s_op == &kernfs_sops) 62 return kernfs_info(sb)->root; 63 return NULL; 64 } 65 66 /* 67 * find the next ancestor in the path down to @child, where @parent was the 68 * ancestor whose descendant we want to find. 69 * 70 * Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root 71 * node. If @parent is b, then we return the node for c. 72 * Passing in d as @parent is not ok. 73 */ 74 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child, 75 struct kernfs_node *parent) 76 { 77 if (child == parent) { 78 pr_crit_once("BUG in find_next_ancestor: called with parent == child"); 79 return NULL; 80 } 81 82 while (child->parent != parent) { 83 if (!child->parent) 84 return NULL; 85 child = child->parent; 86 } 87 88 return child; 89 } 90 91 /** 92 * kernfs_node_dentry - get a dentry for the given kernfs_node 93 * @kn: kernfs_node for which a dentry is needed 94 * @sb: the kernfs super_block 95 */ 96 struct dentry *kernfs_node_dentry(struct kernfs_node *kn, 97 struct super_block *sb) 98 { 99 struct dentry *dentry; 100 struct kernfs_node *knparent = NULL; 101 102 BUG_ON(sb->s_op != &kernfs_sops); 103 104 dentry = dget(sb->s_root); 105 106 /* Check if this is the root kernfs_node */ 107 if (!kn->parent) 108 return dentry; 109 110 knparent = find_next_ancestor(kn, NULL); 111 if (WARN_ON(!knparent)) 112 return ERR_PTR(-EINVAL); 113 114 do { 115 struct dentry *dtmp; 116 struct kernfs_node *kntmp; 117 118 if (kn == knparent) 119 return dentry; 120 kntmp = find_next_ancestor(kn, knparent); 121 if (WARN_ON(!kntmp)) 122 return ERR_PTR(-EINVAL); 123 mutex_lock(&d_inode(dentry)->i_mutex); 124 dtmp = lookup_one_len(kntmp->name, dentry, strlen(kntmp->name)); 125 mutex_unlock(&d_inode(dentry)->i_mutex); 126 dput(dentry); 127 if (IS_ERR(dtmp)) 128 return dtmp; 129 knparent = kntmp; 130 dentry = dtmp; 131 } while (true); 132 } 133 134 static int kernfs_fill_super(struct super_block *sb, unsigned long magic) 135 { 136 struct kernfs_super_info *info = kernfs_info(sb); 137 struct inode *inode; 138 struct dentry *root; 139 140 info->sb = sb; 141 sb->s_blocksize = PAGE_CACHE_SIZE; 142 sb->s_blocksize_bits = PAGE_CACHE_SHIFT; 143 sb->s_magic = magic; 144 sb->s_op = &kernfs_sops; 145 sb->s_time_gran = 1; 146 147 /* get root inode, initialize and unlock it */ 148 mutex_lock(&kernfs_mutex); 149 inode = kernfs_get_inode(sb, info->root->kn); 150 mutex_unlock(&kernfs_mutex); 151 if (!inode) { 152 pr_debug("kernfs: could not get root inode\n"); 153 return -ENOMEM; 154 } 155 156 /* instantiate and link root dentry */ 157 root = d_make_root(inode); 158 if (!root) { 159 pr_debug("%s: could not get root dentry!\n", __func__); 160 return -ENOMEM; 161 } 162 kernfs_get(info->root->kn); 163 root->d_fsdata = info->root->kn; 164 sb->s_root = root; 165 sb->s_d_op = &kernfs_dops; 166 return 0; 167 } 168 169 static int kernfs_test_super(struct super_block *sb, void *data) 170 { 171 struct kernfs_super_info *sb_info = kernfs_info(sb); 172 struct kernfs_super_info *info = data; 173 174 return sb_info->root == info->root && sb_info->ns == info->ns; 175 } 176 177 static int kernfs_set_super(struct super_block *sb, void *data) 178 { 179 int error; 180 error = set_anon_super(sb, data); 181 if (!error) 182 sb->s_fs_info = data; 183 return error; 184 } 185 186 /** 187 * kernfs_super_ns - determine the namespace tag of a kernfs super_block 188 * @sb: super_block of interest 189 * 190 * Return the namespace tag associated with kernfs super_block @sb. 191 */ 192 const void *kernfs_super_ns(struct super_block *sb) 193 { 194 struct kernfs_super_info *info = kernfs_info(sb); 195 196 return info->ns; 197 } 198 199 /** 200 * kernfs_mount_ns - kernfs mount helper 201 * @fs_type: file_system_type of the fs being mounted 202 * @flags: mount flags specified for the mount 203 * @root: kernfs_root of the hierarchy being mounted 204 * @magic: file system specific magic number 205 * @new_sb_created: tell the caller if we allocated a new superblock 206 * @ns: optional namespace tag of the mount 207 * 208 * This is to be called from each kernfs user's file_system_type->mount() 209 * implementation, which should pass through the specified @fs_type and 210 * @flags, and specify the hierarchy and namespace tag to mount via @root 211 * and @ns, respectively. 212 * 213 * The return value can be passed to the vfs layer verbatim. 214 */ 215 struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags, 216 struct kernfs_root *root, unsigned long magic, 217 bool *new_sb_created, const void *ns) 218 { 219 struct super_block *sb; 220 struct kernfs_super_info *info; 221 int error; 222 223 info = kzalloc(sizeof(*info), GFP_KERNEL); 224 if (!info) 225 return ERR_PTR(-ENOMEM); 226 227 info->root = root; 228 info->ns = ns; 229 230 sb = sget(fs_type, kernfs_test_super, kernfs_set_super, flags, info); 231 if (IS_ERR(sb) || sb->s_fs_info != info) 232 kfree(info); 233 if (IS_ERR(sb)) 234 return ERR_CAST(sb); 235 236 if (new_sb_created) 237 *new_sb_created = !sb->s_root; 238 239 if (!sb->s_root) { 240 struct kernfs_super_info *info = kernfs_info(sb); 241 242 error = kernfs_fill_super(sb, magic); 243 if (error) { 244 deactivate_locked_super(sb); 245 return ERR_PTR(error); 246 } 247 sb->s_flags |= MS_ACTIVE; 248 249 mutex_lock(&kernfs_mutex); 250 list_add(&info->node, &root->supers); 251 mutex_unlock(&kernfs_mutex); 252 } 253 254 return dget(sb->s_root); 255 } 256 257 /** 258 * kernfs_kill_sb - kill_sb for kernfs 259 * @sb: super_block being killed 260 * 261 * This can be used directly for file_system_type->kill_sb(). If a kernfs 262 * user needs extra cleanup, it can implement its own kill_sb() and call 263 * this function at the end. 264 */ 265 void kernfs_kill_sb(struct super_block *sb) 266 { 267 struct kernfs_super_info *info = kernfs_info(sb); 268 struct kernfs_node *root_kn = sb->s_root->d_fsdata; 269 270 mutex_lock(&kernfs_mutex); 271 list_del(&info->node); 272 mutex_unlock(&kernfs_mutex); 273 274 /* 275 * Remove the superblock from fs_supers/s_instances 276 * so we can't find it, before freeing kernfs_super_info. 277 */ 278 kill_anon_super(sb); 279 kfree(info); 280 kernfs_put(root_kn); 281 } 282 283 /** 284 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root 285 * @kernfs_root: the kernfs_root in question 286 * @ns: the namespace tag 287 * 288 * Pin the superblock so the superblock won't be destroyed in subsequent 289 * operations. This can be used to block ->kill_sb() which may be useful 290 * for kernfs users which dynamically manage superblocks. 291 * 292 * Returns NULL if there's no superblock associated to this kernfs_root, or 293 * -EINVAL if the superblock is being freed. 294 */ 295 struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns) 296 { 297 struct kernfs_super_info *info; 298 struct super_block *sb = NULL; 299 300 mutex_lock(&kernfs_mutex); 301 list_for_each_entry(info, &root->supers, node) { 302 if (info->ns == ns) { 303 sb = info->sb; 304 if (!atomic_inc_not_zero(&info->sb->s_active)) 305 sb = ERR_PTR(-EINVAL); 306 break; 307 } 308 } 309 mutex_unlock(&kernfs_mutex); 310 return sb; 311 } 312 313 void __init kernfs_init(void) 314 { 315 kernfs_node_cache = kmem_cache_create("kernfs_node_cache", 316 sizeof(struct kernfs_node), 317 0, SLAB_PANIC, NULL); 318 } 319