xref: /openbmc/linux/fs/kernfs/mount.c (revision 779b8391)
1 /*
2  * fs/kernfs/mount.c - kernfs mount implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/mount.h>
13 #include <linux/init.h>
14 #include <linux/magic.h>
15 #include <linux/slab.h>
16 #include <linux/pagemap.h>
17 #include <linux/namei.h>
18 
19 #include "kernfs-internal.h"
20 
21 struct kmem_cache *kernfs_node_cache;
22 
23 static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data)
24 {
25 	struct kernfs_root *root = kernfs_info(sb)->root;
26 	struct kernfs_syscall_ops *scops = root->syscall_ops;
27 
28 	if (scops && scops->remount_fs)
29 		return scops->remount_fs(root, flags, data);
30 	return 0;
31 }
32 
33 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
34 {
35 	struct kernfs_root *root = kernfs_root(dentry->d_fsdata);
36 	struct kernfs_syscall_ops *scops = root->syscall_ops;
37 
38 	if (scops && scops->show_options)
39 		return scops->show_options(sf, root);
40 	return 0;
41 }
42 
43 const struct super_operations kernfs_sops = {
44 	.statfs		= simple_statfs,
45 	.drop_inode	= generic_delete_inode,
46 	.evict_inode	= kernfs_evict_inode,
47 
48 	.remount_fs	= kernfs_sop_remount_fs,
49 	.show_options	= kernfs_sop_show_options,
50 };
51 
52 /**
53  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
54  * @sb: the super_block in question
55  *
56  * Return the kernfs_root associated with @sb.  If @sb is not a kernfs one,
57  * %NULL is returned.
58  */
59 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
60 {
61 	if (sb->s_op == &kernfs_sops)
62 		return kernfs_info(sb)->root;
63 	return NULL;
64 }
65 
66 /*
67  * find the next ancestor in the path down to @child, where @parent was the
68  * ancestor whose descendant we want to find.
69  *
70  * Say the path is /a/b/c/d.  @child is d, @parent is NULL.  We return the root
71  * node.  If @parent is b, then we return the node for c.
72  * Passing in d as @parent is not ok.
73  */
74 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
75 					      struct kernfs_node *parent)
76 {
77 	if (child == parent) {
78 		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
79 		return NULL;
80 	}
81 
82 	while (child->parent != parent) {
83 		if (!child->parent)
84 			return NULL;
85 		child = child->parent;
86 	}
87 
88 	return child;
89 }
90 
91 /**
92  * kernfs_node_dentry - get a dentry for the given kernfs_node
93  * @kn: kernfs_node for which a dentry is needed
94  * @sb: the kernfs super_block
95  */
96 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
97 				  struct super_block *sb)
98 {
99 	struct dentry *dentry;
100 	struct kernfs_node *knparent = NULL;
101 
102 	BUG_ON(sb->s_op != &kernfs_sops);
103 
104 	dentry = dget(sb->s_root);
105 
106 	/* Check if this is the root kernfs_node */
107 	if (!kn->parent)
108 		return dentry;
109 
110 	knparent = find_next_ancestor(kn, NULL);
111 	if (WARN_ON(!knparent))
112 		return ERR_PTR(-EINVAL);
113 
114 	do {
115 		struct dentry *dtmp;
116 		struct kernfs_node *kntmp;
117 
118 		if (kn == knparent)
119 			return dentry;
120 		kntmp = find_next_ancestor(kn, knparent);
121 		if (WARN_ON(!kntmp))
122 			return ERR_PTR(-EINVAL);
123 		dtmp = lookup_one_len_unlocked(kntmp->name, dentry,
124 					       strlen(kntmp->name));
125 		dput(dentry);
126 		if (IS_ERR(dtmp))
127 			return dtmp;
128 		knparent = kntmp;
129 		dentry = dtmp;
130 	} while (true);
131 }
132 
133 static int kernfs_fill_super(struct super_block *sb, unsigned long magic)
134 {
135 	struct kernfs_super_info *info = kernfs_info(sb);
136 	struct inode *inode;
137 	struct dentry *root;
138 
139 	info->sb = sb;
140 	sb->s_blocksize = PAGE_SIZE;
141 	sb->s_blocksize_bits = PAGE_SHIFT;
142 	sb->s_magic = magic;
143 	sb->s_op = &kernfs_sops;
144 	sb->s_time_gran = 1;
145 
146 	/* get root inode, initialize and unlock it */
147 	mutex_lock(&kernfs_mutex);
148 	inode = kernfs_get_inode(sb, info->root->kn);
149 	mutex_unlock(&kernfs_mutex);
150 	if (!inode) {
151 		pr_debug("kernfs: could not get root inode\n");
152 		return -ENOMEM;
153 	}
154 
155 	/* instantiate and link root dentry */
156 	root = d_make_root(inode);
157 	if (!root) {
158 		pr_debug("%s: could not get root dentry!\n", __func__);
159 		return -ENOMEM;
160 	}
161 	kernfs_get(info->root->kn);
162 	root->d_fsdata = info->root->kn;
163 	sb->s_root = root;
164 	sb->s_d_op = &kernfs_dops;
165 	return 0;
166 }
167 
168 static int kernfs_test_super(struct super_block *sb, void *data)
169 {
170 	struct kernfs_super_info *sb_info = kernfs_info(sb);
171 	struct kernfs_super_info *info = data;
172 
173 	return sb_info->root == info->root && sb_info->ns == info->ns;
174 }
175 
176 static int kernfs_set_super(struct super_block *sb, void *data)
177 {
178 	int error;
179 	error = set_anon_super(sb, data);
180 	if (!error)
181 		sb->s_fs_info = data;
182 	return error;
183 }
184 
185 /**
186  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
187  * @sb: super_block of interest
188  *
189  * Return the namespace tag associated with kernfs super_block @sb.
190  */
191 const void *kernfs_super_ns(struct super_block *sb)
192 {
193 	struct kernfs_super_info *info = kernfs_info(sb);
194 
195 	return info->ns;
196 }
197 
198 /**
199  * kernfs_mount_ns - kernfs mount helper
200  * @fs_type: file_system_type of the fs being mounted
201  * @flags: mount flags specified for the mount
202  * @root: kernfs_root of the hierarchy being mounted
203  * @magic: file system specific magic number
204  * @new_sb_created: tell the caller if we allocated a new superblock
205  * @ns: optional namespace tag of the mount
206  *
207  * This is to be called from each kernfs user's file_system_type->mount()
208  * implementation, which should pass through the specified @fs_type and
209  * @flags, and specify the hierarchy and namespace tag to mount via @root
210  * and @ns, respectively.
211  *
212  * The return value can be passed to the vfs layer verbatim.
213  */
214 struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags,
215 				struct kernfs_root *root, unsigned long magic,
216 				bool *new_sb_created, const void *ns)
217 {
218 	struct super_block *sb;
219 	struct kernfs_super_info *info;
220 	int error;
221 
222 	info = kzalloc(sizeof(*info), GFP_KERNEL);
223 	if (!info)
224 		return ERR_PTR(-ENOMEM);
225 
226 	info->root = root;
227 	info->ns = ns;
228 
229 	sb = sget(fs_type, kernfs_test_super, kernfs_set_super, flags, info);
230 	if (IS_ERR(sb) || sb->s_fs_info != info)
231 		kfree(info);
232 	if (IS_ERR(sb))
233 		return ERR_CAST(sb);
234 
235 	if (new_sb_created)
236 		*new_sb_created = !sb->s_root;
237 
238 	if (!sb->s_root) {
239 		struct kernfs_super_info *info = kernfs_info(sb);
240 
241 		error = kernfs_fill_super(sb, magic);
242 		if (error) {
243 			deactivate_locked_super(sb);
244 			return ERR_PTR(error);
245 		}
246 		sb->s_flags |= MS_ACTIVE;
247 
248 		mutex_lock(&kernfs_mutex);
249 		list_add(&info->node, &root->supers);
250 		mutex_unlock(&kernfs_mutex);
251 	}
252 
253 	return dget(sb->s_root);
254 }
255 
256 /**
257  * kernfs_kill_sb - kill_sb for kernfs
258  * @sb: super_block being killed
259  *
260  * This can be used directly for file_system_type->kill_sb().  If a kernfs
261  * user needs extra cleanup, it can implement its own kill_sb() and call
262  * this function at the end.
263  */
264 void kernfs_kill_sb(struct super_block *sb)
265 {
266 	struct kernfs_super_info *info = kernfs_info(sb);
267 	struct kernfs_node *root_kn = sb->s_root->d_fsdata;
268 
269 	mutex_lock(&kernfs_mutex);
270 	list_del(&info->node);
271 	mutex_unlock(&kernfs_mutex);
272 
273 	/*
274 	 * Remove the superblock from fs_supers/s_instances
275 	 * so we can't find it, before freeing kernfs_super_info.
276 	 */
277 	kill_anon_super(sb);
278 	kfree(info);
279 	kernfs_put(root_kn);
280 }
281 
282 /**
283  * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root
284  * @kernfs_root: the kernfs_root in question
285  * @ns: the namespace tag
286  *
287  * Pin the superblock so the superblock won't be destroyed in subsequent
288  * operations.  This can be used to block ->kill_sb() which may be useful
289  * for kernfs users which dynamically manage superblocks.
290  *
291  * Returns NULL if there's no superblock associated to this kernfs_root, or
292  * -EINVAL if the superblock is being freed.
293  */
294 struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns)
295 {
296 	struct kernfs_super_info *info;
297 	struct super_block *sb = NULL;
298 
299 	mutex_lock(&kernfs_mutex);
300 	list_for_each_entry(info, &root->supers, node) {
301 		if (info->ns == ns) {
302 			sb = info->sb;
303 			if (!atomic_inc_not_zero(&info->sb->s_active))
304 				sb = ERR_PTR(-EINVAL);
305 			break;
306 		}
307 	}
308 	mutex_unlock(&kernfs_mutex);
309 	return sb;
310 }
311 
312 void __init kernfs_init(void)
313 {
314 	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
315 					      sizeof(struct kernfs_node),
316 					      0, SLAB_PANIC, NULL);
317 }
318