1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/mount.c - kernfs mount implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/mount.h> 12 #include <linux/init.h> 13 #include <linux/magic.h> 14 #include <linux/slab.h> 15 #include <linux/pagemap.h> 16 #include <linux/namei.h> 17 #include <linux/seq_file.h> 18 #include <linux/exportfs.h> 19 #include <linux/uuid.h> 20 #include <linux/statfs.h> 21 22 #include "kernfs-internal.h" 23 24 struct kmem_cache *kernfs_node_cache, *kernfs_iattrs_cache; 25 struct kernfs_global_locks *kernfs_locks; 26 27 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry) 28 { 29 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry)); 30 struct kernfs_syscall_ops *scops = root->syscall_ops; 31 32 if (scops && scops->show_options) 33 return scops->show_options(sf, root); 34 return 0; 35 } 36 37 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry) 38 { 39 struct kernfs_node *node = kernfs_dentry_node(dentry); 40 struct kernfs_root *root = kernfs_root(node); 41 struct kernfs_syscall_ops *scops = root->syscall_ops; 42 43 if (scops && scops->show_path) 44 return scops->show_path(sf, node, root); 45 46 seq_dentry(sf, dentry, " \t\n\\"); 47 return 0; 48 } 49 50 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf) 51 { 52 simple_statfs(dentry, buf); 53 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b); 54 return 0; 55 } 56 57 const struct super_operations kernfs_sops = { 58 .statfs = kernfs_statfs, 59 .drop_inode = generic_delete_inode, 60 .evict_inode = kernfs_evict_inode, 61 62 .show_options = kernfs_sop_show_options, 63 .show_path = kernfs_sop_show_path, 64 }; 65 66 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len, 67 struct inode *parent) 68 { 69 struct kernfs_node *kn = inode->i_private; 70 71 if (*max_len < 2) { 72 *max_len = 2; 73 return FILEID_INVALID; 74 } 75 76 *max_len = 2; 77 *(u64 *)fh = kn->id; 78 return FILEID_KERNFS; 79 } 80 81 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb, 82 struct fid *fid, int fh_len, 83 int fh_type, bool get_parent) 84 { 85 struct kernfs_super_info *info = kernfs_info(sb); 86 struct kernfs_node *kn; 87 struct inode *inode; 88 u64 id; 89 90 if (fh_len < 2) 91 return NULL; 92 93 switch (fh_type) { 94 case FILEID_KERNFS: 95 id = *(u64 *)fid; 96 break; 97 case FILEID_INO32_GEN: 98 case FILEID_INO32_GEN_PARENT: 99 /* 100 * blk_log_action() exposes "LOW32,HIGH32" pair without 101 * type and userland can call us with generic fid 102 * constructed from them. Combine it back to ID. See 103 * blk_log_action(). 104 */ 105 id = ((u64)fid->i32.gen << 32) | fid->i32.ino; 106 break; 107 default: 108 return NULL; 109 } 110 111 kn = kernfs_find_and_get_node_by_id(info->root, id); 112 if (!kn) 113 return ERR_PTR(-ESTALE); 114 115 if (get_parent) { 116 struct kernfs_node *parent; 117 118 parent = kernfs_get_parent(kn); 119 kernfs_put(kn); 120 kn = parent; 121 if (!kn) 122 return ERR_PTR(-ESTALE); 123 } 124 125 inode = kernfs_get_inode(sb, kn); 126 kernfs_put(kn); 127 if (!inode) 128 return ERR_PTR(-ESTALE); 129 130 return d_obtain_alias(inode); 131 } 132 133 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, 134 struct fid *fid, int fh_len, 135 int fh_type) 136 { 137 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false); 138 } 139 140 static struct dentry *kernfs_fh_to_parent(struct super_block *sb, 141 struct fid *fid, int fh_len, 142 int fh_type) 143 { 144 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true); 145 } 146 147 static struct dentry *kernfs_get_parent_dentry(struct dentry *child) 148 { 149 struct kernfs_node *kn = kernfs_dentry_node(child); 150 151 return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent)); 152 } 153 154 static const struct export_operations kernfs_export_ops = { 155 .encode_fh = kernfs_encode_fh, 156 .fh_to_dentry = kernfs_fh_to_dentry, 157 .fh_to_parent = kernfs_fh_to_parent, 158 .get_parent = kernfs_get_parent_dentry, 159 }; 160 161 /** 162 * kernfs_root_from_sb - determine kernfs_root associated with a super_block 163 * @sb: the super_block in question 164 * 165 * Return: the kernfs_root associated with @sb. If @sb is not a kernfs one, 166 * %NULL is returned. 167 */ 168 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb) 169 { 170 if (sb->s_op == &kernfs_sops) 171 return kernfs_info(sb)->root; 172 return NULL; 173 } 174 175 /* 176 * find the next ancestor in the path down to @child, where @parent was the 177 * ancestor whose descendant we want to find. 178 * 179 * Say the path is /a/b/c/d. @child is d, @parent is %NULL. We return the root 180 * node. If @parent is b, then we return the node for c. 181 * Passing in d as @parent is not ok. 182 */ 183 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child, 184 struct kernfs_node *parent) 185 { 186 if (child == parent) { 187 pr_crit_once("BUG in find_next_ancestor: called with parent == child"); 188 return NULL; 189 } 190 191 while (child->parent != parent) { 192 if (!child->parent) 193 return NULL; 194 child = child->parent; 195 } 196 197 return child; 198 } 199 200 /** 201 * kernfs_node_dentry - get a dentry for the given kernfs_node 202 * @kn: kernfs_node for which a dentry is needed 203 * @sb: the kernfs super_block 204 * 205 * Return: the dentry pointer 206 */ 207 struct dentry *kernfs_node_dentry(struct kernfs_node *kn, 208 struct super_block *sb) 209 { 210 struct dentry *dentry; 211 struct kernfs_node *knparent = NULL; 212 213 BUG_ON(sb->s_op != &kernfs_sops); 214 215 dentry = dget(sb->s_root); 216 217 /* Check if this is the root kernfs_node */ 218 if (!kn->parent) 219 return dentry; 220 221 knparent = find_next_ancestor(kn, NULL); 222 if (WARN_ON(!knparent)) { 223 dput(dentry); 224 return ERR_PTR(-EINVAL); 225 } 226 227 do { 228 struct dentry *dtmp; 229 struct kernfs_node *kntmp; 230 231 if (kn == knparent) 232 return dentry; 233 kntmp = find_next_ancestor(kn, knparent); 234 if (WARN_ON(!kntmp)) { 235 dput(dentry); 236 return ERR_PTR(-EINVAL); 237 } 238 dtmp = lookup_positive_unlocked(kntmp->name, dentry, 239 strlen(kntmp->name)); 240 dput(dentry); 241 if (IS_ERR(dtmp)) 242 return dtmp; 243 knparent = kntmp; 244 dentry = dtmp; 245 } while (true); 246 } 247 248 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc) 249 { 250 struct kernfs_super_info *info = kernfs_info(sb); 251 struct kernfs_root *kf_root = kfc->root; 252 struct inode *inode; 253 struct dentry *root; 254 255 info->sb = sb; 256 /* Userspace would break if executables or devices appear on sysfs */ 257 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 258 sb->s_blocksize = PAGE_SIZE; 259 sb->s_blocksize_bits = PAGE_SHIFT; 260 sb->s_magic = kfc->magic; 261 sb->s_op = &kernfs_sops; 262 sb->s_xattr = kernfs_xattr_handlers; 263 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP) 264 sb->s_export_op = &kernfs_export_ops; 265 sb->s_time_gran = 1; 266 267 /* sysfs dentries and inodes don't require IO to create */ 268 sb->s_shrink.seeks = 0; 269 270 /* get root inode, initialize and unlock it */ 271 down_read(&kf_root->kernfs_rwsem); 272 inode = kernfs_get_inode(sb, info->root->kn); 273 up_read(&kf_root->kernfs_rwsem); 274 if (!inode) { 275 pr_debug("kernfs: could not get root inode\n"); 276 return -ENOMEM; 277 } 278 279 /* instantiate and link root dentry */ 280 root = d_make_root(inode); 281 if (!root) { 282 pr_debug("%s: could not get root dentry!\n", __func__); 283 return -ENOMEM; 284 } 285 sb->s_root = root; 286 sb->s_d_op = &kernfs_dops; 287 return 0; 288 } 289 290 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc) 291 { 292 struct kernfs_super_info *sb_info = kernfs_info(sb); 293 struct kernfs_super_info *info = fc->s_fs_info; 294 295 return sb_info->root == info->root && sb_info->ns == info->ns; 296 } 297 298 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc) 299 { 300 struct kernfs_fs_context *kfc = fc->fs_private; 301 302 kfc->ns_tag = NULL; 303 return set_anon_super_fc(sb, fc); 304 } 305 306 /** 307 * kernfs_super_ns - determine the namespace tag of a kernfs super_block 308 * @sb: super_block of interest 309 * 310 * Return: the namespace tag associated with kernfs super_block @sb. 311 */ 312 const void *kernfs_super_ns(struct super_block *sb) 313 { 314 struct kernfs_super_info *info = kernfs_info(sb); 315 316 return info->ns; 317 } 318 319 /** 320 * kernfs_get_tree - kernfs filesystem access/retrieval helper 321 * @fc: The filesystem context. 322 * 323 * This is to be called from each kernfs user's fs_context->ops->get_tree() 324 * implementation, which should set the specified ->@fs_type and ->@flags, and 325 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns, 326 * respectively. 327 * 328 * Return: %0 on success, -errno on failure. 329 */ 330 int kernfs_get_tree(struct fs_context *fc) 331 { 332 struct kernfs_fs_context *kfc = fc->fs_private; 333 struct super_block *sb; 334 struct kernfs_super_info *info; 335 int error; 336 337 info = kzalloc(sizeof(*info), GFP_KERNEL); 338 if (!info) 339 return -ENOMEM; 340 341 info->root = kfc->root; 342 info->ns = kfc->ns_tag; 343 INIT_LIST_HEAD(&info->node); 344 345 fc->s_fs_info = info; 346 sb = sget_fc(fc, kernfs_test_super, kernfs_set_super); 347 if (IS_ERR(sb)) 348 return PTR_ERR(sb); 349 350 if (!sb->s_root) { 351 struct kernfs_super_info *info = kernfs_info(sb); 352 struct kernfs_root *root = kfc->root; 353 354 kfc->new_sb_created = true; 355 356 error = kernfs_fill_super(sb, kfc); 357 if (error) { 358 deactivate_locked_super(sb); 359 return error; 360 } 361 sb->s_flags |= SB_ACTIVE; 362 363 uuid_gen(&sb->s_uuid); 364 365 down_write(&root->kernfs_supers_rwsem); 366 list_add(&info->node, &info->root->supers); 367 up_write(&root->kernfs_supers_rwsem); 368 } 369 370 fc->root = dget(sb->s_root); 371 return 0; 372 } 373 374 void kernfs_free_fs_context(struct fs_context *fc) 375 { 376 /* Note that we don't deal with kfc->ns_tag here. */ 377 kfree(fc->s_fs_info); 378 fc->s_fs_info = NULL; 379 } 380 381 /** 382 * kernfs_kill_sb - kill_sb for kernfs 383 * @sb: super_block being killed 384 * 385 * This can be used directly for file_system_type->kill_sb(). If a kernfs 386 * user needs extra cleanup, it can implement its own kill_sb() and call 387 * this function at the end. 388 */ 389 void kernfs_kill_sb(struct super_block *sb) 390 { 391 struct kernfs_super_info *info = kernfs_info(sb); 392 struct kernfs_root *root = info->root; 393 394 down_write(&root->kernfs_supers_rwsem); 395 list_del(&info->node); 396 up_write(&root->kernfs_supers_rwsem); 397 398 /* 399 * Remove the superblock from fs_supers/s_instances 400 * so we can't find it, before freeing kernfs_super_info. 401 */ 402 kill_anon_super(sb); 403 kfree(info); 404 } 405 406 static void __init kernfs_mutex_init(void) 407 { 408 int count; 409 410 for (count = 0; count < NR_KERNFS_LOCKS; count++) 411 mutex_init(&kernfs_locks->open_file_mutex[count]); 412 } 413 414 static void __init kernfs_lock_init(void) 415 { 416 kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL); 417 WARN_ON(!kernfs_locks); 418 419 kernfs_mutex_init(); 420 } 421 422 void __init kernfs_init(void) 423 { 424 kernfs_node_cache = kmem_cache_create("kernfs_node_cache", 425 sizeof(struct kernfs_node), 426 0, SLAB_PANIC, NULL); 427 428 /* Creates slab cache for kernfs inode attributes */ 429 kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache", 430 sizeof(struct kernfs_iattrs), 431 0, SLAB_PANIC, NULL); 432 433 kernfs_lock_init(); 434 } 435