1 /* 2 * fs/kernfs/mount.c - kernfs mount implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/mount.h> 13 #include <linux/init.h> 14 #include <linux/magic.h> 15 #include <linux/slab.h> 16 #include <linux/pagemap.h> 17 #include <linux/namei.h> 18 #include <linux/seq_file.h> 19 #include <linux/exportfs.h> 20 21 #include "kernfs-internal.h" 22 23 struct kmem_cache *kernfs_node_cache; 24 25 static int kernfs_sop_remount_fs(struct super_block *sb, int *flags, char *data) 26 { 27 struct kernfs_root *root = kernfs_info(sb)->root; 28 struct kernfs_syscall_ops *scops = root->syscall_ops; 29 30 if (scops && scops->remount_fs) 31 return scops->remount_fs(root, flags, data); 32 return 0; 33 } 34 35 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry) 36 { 37 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry)); 38 struct kernfs_syscall_ops *scops = root->syscall_ops; 39 40 if (scops && scops->show_options) 41 return scops->show_options(sf, root); 42 return 0; 43 } 44 45 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry) 46 { 47 struct kernfs_node *node = kernfs_dentry_node(dentry); 48 struct kernfs_root *root = kernfs_root(node); 49 struct kernfs_syscall_ops *scops = root->syscall_ops; 50 51 if (scops && scops->show_path) 52 return scops->show_path(sf, node, root); 53 54 seq_dentry(sf, dentry, " \t\n\\"); 55 return 0; 56 } 57 58 const struct super_operations kernfs_sops = { 59 .statfs = simple_statfs, 60 .drop_inode = generic_delete_inode, 61 .evict_inode = kernfs_evict_inode, 62 63 .remount_fs = kernfs_sop_remount_fs, 64 .show_options = kernfs_sop_show_options, 65 .show_path = kernfs_sop_show_path, 66 }; 67 68 /* 69 * Similar to kernfs_fh_get_inode, this one gets kernfs node from inode 70 * number and generation 71 */ 72 struct kernfs_node *kernfs_get_node_by_id(struct kernfs_root *root, 73 const union kernfs_node_id *id) 74 { 75 struct kernfs_node *kn; 76 77 kn = kernfs_find_and_get_node_by_ino(root, id->ino); 78 if (!kn) 79 return NULL; 80 if (kn->id.generation != id->generation) { 81 kernfs_put(kn); 82 return NULL; 83 } 84 return kn; 85 } 86 87 static struct inode *kernfs_fh_get_inode(struct super_block *sb, 88 u64 ino, u32 generation) 89 { 90 struct kernfs_super_info *info = kernfs_info(sb); 91 struct inode *inode; 92 struct kernfs_node *kn; 93 94 if (ino == 0) 95 return ERR_PTR(-ESTALE); 96 97 kn = kernfs_find_and_get_node_by_ino(info->root, ino); 98 if (!kn) 99 return ERR_PTR(-ESTALE); 100 inode = kernfs_get_inode(sb, kn); 101 kernfs_put(kn); 102 if (!inode) 103 return ERR_PTR(-ESTALE); 104 105 if (generation && inode->i_generation != generation) { 106 /* we didn't find the right inode.. */ 107 iput(inode); 108 return ERR_PTR(-ESTALE); 109 } 110 return inode; 111 } 112 113 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb, struct fid *fid, 114 int fh_len, int fh_type) 115 { 116 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 117 kernfs_fh_get_inode); 118 } 119 120 static struct dentry *kernfs_fh_to_parent(struct super_block *sb, struct fid *fid, 121 int fh_len, int fh_type) 122 { 123 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 124 kernfs_fh_get_inode); 125 } 126 127 static struct dentry *kernfs_get_parent_dentry(struct dentry *child) 128 { 129 struct kernfs_node *kn = kernfs_dentry_node(child); 130 131 return d_obtain_alias(kernfs_get_inode(child->d_sb, kn->parent)); 132 } 133 134 static const struct export_operations kernfs_export_ops = { 135 .fh_to_dentry = kernfs_fh_to_dentry, 136 .fh_to_parent = kernfs_fh_to_parent, 137 .get_parent = kernfs_get_parent_dentry, 138 }; 139 140 /** 141 * kernfs_root_from_sb - determine kernfs_root associated with a super_block 142 * @sb: the super_block in question 143 * 144 * Return the kernfs_root associated with @sb. If @sb is not a kernfs one, 145 * %NULL is returned. 146 */ 147 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb) 148 { 149 if (sb->s_op == &kernfs_sops) 150 return kernfs_info(sb)->root; 151 return NULL; 152 } 153 154 /* 155 * find the next ancestor in the path down to @child, where @parent was the 156 * ancestor whose descendant we want to find. 157 * 158 * Say the path is /a/b/c/d. @child is d, @parent is NULL. We return the root 159 * node. If @parent is b, then we return the node for c. 160 * Passing in d as @parent is not ok. 161 */ 162 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child, 163 struct kernfs_node *parent) 164 { 165 if (child == parent) { 166 pr_crit_once("BUG in find_next_ancestor: called with parent == child"); 167 return NULL; 168 } 169 170 while (child->parent != parent) { 171 if (!child->parent) 172 return NULL; 173 child = child->parent; 174 } 175 176 return child; 177 } 178 179 /** 180 * kernfs_node_dentry - get a dentry for the given kernfs_node 181 * @kn: kernfs_node for which a dentry is needed 182 * @sb: the kernfs super_block 183 */ 184 struct dentry *kernfs_node_dentry(struct kernfs_node *kn, 185 struct super_block *sb) 186 { 187 struct dentry *dentry; 188 struct kernfs_node *knparent = NULL; 189 190 BUG_ON(sb->s_op != &kernfs_sops); 191 192 dentry = dget(sb->s_root); 193 194 /* Check if this is the root kernfs_node */ 195 if (!kn->parent) 196 return dentry; 197 198 knparent = find_next_ancestor(kn, NULL); 199 if (WARN_ON(!knparent)) 200 return ERR_PTR(-EINVAL); 201 202 do { 203 struct dentry *dtmp; 204 struct kernfs_node *kntmp; 205 206 if (kn == knparent) 207 return dentry; 208 kntmp = find_next_ancestor(kn, knparent); 209 if (WARN_ON(!kntmp)) 210 return ERR_PTR(-EINVAL); 211 dtmp = lookup_one_len_unlocked(kntmp->name, dentry, 212 strlen(kntmp->name)); 213 dput(dentry); 214 if (IS_ERR(dtmp)) 215 return dtmp; 216 knparent = kntmp; 217 dentry = dtmp; 218 } while (true); 219 } 220 221 static int kernfs_fill_super(struct super_block *sb, unsigned long magic) 222 { 223 struct kernfs_super_info *info = kernfs_info(sb); 224 struct inode *inode; 225 struct dentry *root; 226 227 info->sb = sb; 228 /* Userspace would break if executables or devices appear on sysfs */ 229 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV; 230 sb->s_blocksize = PAGE_SIZE; 231 sb->s_blocksize_bits = PAGE_SHIFT; 232 sb->s_magic = magic; 233 sb->s_op = &kernfs_sops; 234 sb->s_xattr = kernfs_xattr_handlers; 235 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP) 236 sb->s_export_op = &kernfs_export_ops; 237 sb->s_time_gran = 1; 238 239 /* get root inode, initialize and unlock it */ 240 mutex_lock(&kernfs_mutex); 241 inode = kernfs_get_inode(sb, info->root->kn); 242 mutex_unlock(&kernfs_mutex); 243 if (!inode) { 244 pr_debug("kernfs: could not get root inode\n"); 245 return -ENOMEM; 246 } 247 248 /* instantiate and link root dentry */ 249 root = d_make_root(inode); 250 if (!root) { 251 pr_debug("%s: could not get root dentry!\n", __func__); 252 return -ENOMEM; 253 } 254 sb->s_root = root; 255 sb->s_d_op = &kernfs_dops; 256 return 0; 257 } 258 259 static int kernfs_test_super(struct super_block *sb, void *data) 260 { 261 struct kernfs_super_info *sb_info = kernfs_info(sb); 262 struct kernfs_super_info *info = data; 263 264 return sb_info->root == info->root && sb_info->ns == info->ns; 265 } 266 267 static int kernfs_set_super(struct super_block *sb, void *data) 268 { 269 int error; 270 error = set_anon_super(sb, data); 271 if (!error) 272 sb->s_fs_info = data; 273 return error; 274 } 275 276 /** 277 * kernfs_super_ns - determine the namespace tag of a kernfs super_block 278 * @sb: super_block of interest 279 * 280 * Return the namespace tag associated with kernfs super_block @sb. 281 */ 282 const void *kernfs_super_ns(struct super_block *sb) 283 { 284 struct kernfs_super_info *info = kernfs_info(sb); 285 286 return info->ns; 287 } 288 289 /** 290 * kernfs_mount_ns - kernfs mount helper 291 * @fs_type: file_system_type of the fs being mounted 292 * @flags: mount flags specified for the mount 293 * @root: kernfs_root of the hierarchy being mounted 294 * @magic: file system specific magic number 295 * @new_sb_created: tell the caller if we allocated a new superblock 296 * @ns: optional namespace tag of the mount 297 * 298 * This is to be called from each kernfs user's file_system_type->mount() 299 * implementation, which should pass through the specified @fs_type and 300 * @flags, and specify the hierarchy and namespace tag to mount via @root 301 * and @ns, respectively. 302 * 303 * The return value can be passed to the vfs layer verbatim. 304 */ 305 struct dentry *kernfs_mount_ns(struct file_system_type *fs_type, int flags, 306 struct kernfs_root *root, unsigned long magic, 307 bool *new_sb_created, const void *ns) 308 { 309 struct super_block *sb; 310 struct kernfs_super_info *info; 311 int error; 312 313 info = kzalloc(sizeof(*info), GFP_KERNEL); 314 if (!info) 315 return ERR_PTR(-ENOMEM); 316 317 info->root = root; 318 info->ns = ns; 319 INIT_LIST_HEAD(&info->node); 320 321 sb = sget_userns(fs_type, kernfs_test_super, kernfs_set_super, flags, 322 &init_user_ns, info); 323 if (IS_ERR(sb) || sb->s_fs_info != info) 324 kfree(info); 325 if (IS_ERR(sb)) 326 return ERR_CAST(sb); 327 328 if (new_sb_created) 329 *new_sb_created = !sb->s_root; 330 331 if (!sb->s_root) { 332 struct kernfs_super_info *info = kernfs_info(sb); 333 334 error = kernfs_fill_super(sb, magic); 335 if (error) { 336 deactivate_locked_super(sb); 337 return ERR_PTR(error); 338 } 339 sb->s_flags |= SB_ACTIVE; 340 341 mutex_lock(&kernfs_mutex); 342 list_add(&info->node, &root->supers); 343 mutex_unlock(&kernfs_mutex); 344 } 345 346 return dget(sb->s_root); 347 } 348 349 /** 350 * kernfs_kill_sb - kill_sb for kernfs 351 * @sb: super_block being killed 352 * 353 * This can be used directly for file_system_type->kill_sb(). If a kernfs 354 * user needs extra cleanup, it can implement its own kill_sb() and call 355 * this function at the end. 356 */ 357 void kernfs_kill_sb(struct super_block *sb) 358 { 359 struct kernfs_super_info *info = kernfs_info(sb); 360 361 mutex_lock(&kernfs_mutex); 362 list_del(&info->node); 363 mutex_unlock(&kernfs_mutex); 364 365 /* 366 * Remove the superblock from fs_supers/s_instances 367 * so we can't find it, before freeing kernfs_super_info. 368 */ 369 kill_anon_super(sb); 370 kfree(info); 371 } 372 373 /** 374 * kernfs_pin_sb: try to pin the superblock associated with a kernfs_root 375 * @kernfs_root: the kernfs_root in question 376 * @ns: the namespace tag 377 * 378 * Pin the superblock so the superblock won't be destroyed in subsequent 379 * operations. This can be used to block ->kill_sb() which may be useful 380 * for kernfs users which dynamically manage superblocks. 381 * 382 * Returns NULL if there's no superblock associated to this kernfs_root, or 383 * -EINVAL if the superblock is being freed. 384 */ 385 struct super_block *kernfs_pin_sb(struct kernfs_root *root, const void *ns) 386 { 387 struct kernfs_super_info *info; 388 struct super_block *sb = NULL; 389 390 mutex_lock(&kernfs_mutex); 391 list_for_each_entry(info, &root->supers, node) { 392 if (info->ns == ns) { 393 sb = info->sb; 394 if (!atomic_inc_not_zero(&info->sb->s_active)) 395 sb = ERR_PTR(-EINVAL); 396 break; 397 } 398 } 399 mutex_unlock(&kernfs_mutex); 400 return sb; 401 } 402 403 void __init kernfs_init(void) 404 { 405 406 /* 407 * the slab is freed in RCU context, so kernfs_find_and_get_node_by_ino 408 * can access the slab lock free. This could introduce stale nodes, 409 * please see how kernfs_find_and_get_node_by_ino filters out stale 410 * nodes. 411 */ 412 kernfs_node_cache = kmem_cache_create("kernfs_node_cache", 413 sizeof(struct kernfs_node), 414 0, 415 SLAB_PANIC | SLAB_TYPESAFE_BY_RCU, 416 NULL); 417 } 418