xref: /openbmc/linux/fs/kernfs/file.c (revision f7af616c632ee2ac3af0876fe33bf9e0232e665a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/file.c - kernfs file implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/seq_file.h>
12 #include <linux/slab.h>
13 #include <linux/poll.h>
14 #include <linux/pagemap.h>
15 #include <linux/sched/mm.h>
16 #include <linux/fsnotify.h>
17 #include <linux/uio.h>
18 
19 #include "kernfs-internal.h"
20 
21 /*
22  * There's one kernfs_open_file for each open file and one kernfs_open_node
23  * for each kernfs_node with one or more open files.
24  *
25  * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
26  * protected by kernfs_open_node_lock.
27  *
28  * filp->private_data points to seq_file whose ->private points to
29  * kernfs_open_file.  kernfs_open_files are chained at
30  * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31  */
32 static DEFINE_SPINLOCK(kernfs_open_node_lock);
33 static DEFINE_MUTEX(kernfs_open_file_mutex);
34 
35 struct kernfs_open_node {
36 	atomic_t		refcnt;
37 	atomic_t		event;
38 	wait_queue_head_t	poll;
39 	struct list_head	files; /* goes through kernfs_open_file.list */
40 };
41 
42 /*
43  * kernfs_notify() may be called from any context and bounces notifications
44  * through a work item.  To minimize space overhead in kernfs_node, the
45  * pending queue is implemented as a singly linked list of kernfs_nodes.
46  * The list is terminated with the self pointer so that whether a
47  * kernfs_node is on the list or not can be determined by testing the next
48  * pointer for NULL.
49  */
50 #define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
51 
52 static DEFINE_SPINLOCK(kernfs_notify_lock);
53 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
54 
55 static struct kernfs_open_file *kernfs_of(struct file *file)
56 {
57 	return ((struct seq_file *)file->private_data)->private;
58 }
59 
60 /*
61  * Determine the kernfs_ops for the given kernfs_node.  This function must
62  * be called while holding an active reference.
63  */
64 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
65 {
66 	if (kn->flags & KERNFS_LOCKDEP)
67 		lockdep_assert_held(kn);
68 	return kn->attr.ops;
69 }
70 
71 /*
72  * As kernfs_seq_stop() is also called after kernfs_seq_start() or
73  * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
74  * a seq_file iteration which is fully initialized with an active reference
75  * or an aborted kernfs_seq_start() due to get_active failure.  The
76  * position pointer is the only context for each seq_file iteration and
77  * thus the stop condition should be encoded in it.  As the return value is
78  * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
79  * choice to indicate get_active failure.
80  *
81  * Unfortunately, this is complicated due to the optional custom seq_file
82  * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
83  * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
84  * custom seq_file operations and thus can't decide whether put_active
85  * should be performed or not only on ERR_PTR(-ENODEV).
86  *
87  * This is worked around by factoring out the custom seq_stop() and
88  * put_active part into kernfs_seq_stop_active(), skipping it from
89  * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
90  * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
91  * that kernfs_seq_stop_active() is skipped only after get_active failure.
92  */
93 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
94 {
95 	struct kernfs_open_file *of = sf->private;
96 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
97 
98 	if (ops->seq_stop)
99 		ops->seq_stop(sf, v);
100 	kernfs_put_active(of->kn);
101 }
102 
103 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104 {
105 	struct kernfs_open_file *of = sf->private;
106 	const struct kernfs_ops *ops;
107 
108 	/*
109 	 * @of->mutex nests outside active ref and is primarily to ensure that
110 	 * the ops aren't called concurrently for the same open file.
111 	 */
112 	mutex_lock(&of->mutex);
113 	if (!kernfs_get_active(of->kn))
114 		return ERR_PTR(-ENODEV);
115 
116 	ops = kernfs_ops(of->kn);
117 	if (ops->seq_start) {
118 		void *next = ops->seq_start(sf, ppos);
119 		/* see the comment above kernfs_seq_stop_active() */
120 		if (next == ERR_PTR(-ENODEV))
121 			kernfs_seq_stop_active(sf, next);
122 		return next;
123 	} else {
124 		/*
125 		 * The same behavior and code as single_open().  Returns
126 		 * !NULL if pos is at the beginning; otherwise, NULL.
127 		 */
128 		return NULL + !*ppos;
129 	}
130 }
131 
132 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133 {
134 	struct kernfs_open_file *of = sf->private;
135 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
136 
137 	if (ops->seq_next) {
138 		void *next = ops->seq_next(sf, v, ppos);
139 		/* see the comment above kernfs_seq_stop_active() */
140 		if (next == ERR_PTR(-ENODEV))
141 			kernfs_seq_stop_active(sf, next);
142 		return next;
143 	} else {
144 		/*
145 		 * The same behavior and code as single_open(), always
146 		 * terminate after the initial read.
147 		 */
148 		++*ppos;
149 		return NULL;
150 	}
151 }
152 
153 static void kernfs_seq_stop(struct seq_file *sf, void *v)
154 {
155 	struct kernfs_open_file *of = sf->private;
156 
157 	if (v != ERR_PTR(-ENODEV))
158 		kernfs_seq_stop_active(sf, v);
159 	mutex_unlock(&of->mutex);
160 }
161 
162 static int kernfs_seq_show(struct seq_file *sf, void *v)
163 {
164 	struct kernfs_open_file *of = sf->private;
165 
166 	of->event = atomic_read(&of->kn->attr.open->event);
167 
168 	return of->kn->attr.ops->seq_show(sf, v);
169 }
170 
171 static const struct seq_operations kernfs_seq_ops = {
172 	.start = kernfs_seq_start,
173 	.next = kernfs_seq_next,
174 	.stop = kernfs_seq_stop,
175 	.show = kernfs_seq_show,
176 };
177 
178 /*
179  * As reading a bin file can have side-effects, the exact offset and bytes
180  * specified in read(2) call should be passed to the read callback making
181  * it difficult to use seq_file.  Implement simplistic custom buffering for
182  * bin files.
183  */
184 static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
185 {
186 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
187 	ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE);
188 	const struct kernfs_ops *ops;
189 	char *buf;
190 
191 	buf = of->prealloc_buf;
192 	if (buf)
193 		mutex_lock(&of->prealloc_mutex);
194 	else
195 		buf = kmalloc(len, GFP_KERNEL);
196 	if (!buf)
197 		return -ENOMEM;
198 
199 	/*
200 	 * @of->mutex nests outside active ref and is used both to ensure that
201 	 * the ops aren't called concurrently for the same open file.
202 	 */
203 	mutex_lock(&of->mutex);
204 	if (!kernfs_get_active(of->kn)) {
205 		len = -ENODEV;
206 		mutex_unlock(&of->mutex);
207 		goto out_free;
208 	}
209 
210 	of->event = atomic_read(&of->kn->attr.open->event);
211 	ops = kernfs_ops(of->kn);
212 	if (ops->read)
213 		len = ops->read(of, buf, len, iocb->ki_pos);
214 	else
215 		len = -EINVAL;
216 
217 	kernfs_put_active(of->kn);
218 	mutex_unlock(&of->mutex);
219 
220 	if (len < 0)
221 		goto out_free;
222 
223 	if (copy_to_iter(buf, len, iter) != len) {
224 		len = -EFAULT;
225 		goto out_free;
226 	}
227 
228 	iocb->ki_pos += len;
229 
230  out_free:
231 	if (buf == of->prealloc_buf)
232 		mutex_unlock(&of->prealloc_mutex);
233 	else
234 		kfree(buf);
235 	return len;
236 }
237 
238 static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter)
239 {
240 	if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW)
241 		return seq_read_iter(iocb, iter);
242 	return kernfs_file_read_iter(iocb, iter);
243 }
244 
245 /*
246  * Copy data in from userland and pass it to the matching kernfs write
247  * operation.
248  *
249  * There is no easy way for us to know if userspace is only doing a partial
250  * write, so we don't support them. We expect the entire buffer to come on
251  * the first write.  Hint: if you're writing a value, first read the file,
252  * modify only the the value you're changing, then write entire buffer
253  * back.
254  */
255 static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter)
256 {
257 	struct kernfs_open_file *of = kernfs_of(iocb->ki_filp);
258 	ssize_t len = iov_iter_count(iter);
259 	const struct kernfs_ops *ops;
260 	char *buf;
261 
262 	if (of->atomic_write_len) {
263 		if (len > of->atomic_write_len)
264 			return -E2BIG;
265 	} else {
266 		len = min_t(size_t, len, PAGE_SIZE);
267 	}
268 
269 	buf = of->prealloc_buf;
270 	if (buf)
271 		mutex_lock(&of->prealloc_mutex);
272 	else
273 		buf = kmalloc(len + 1, GFP_KERNEL);
274 	if (!buf)
275 		return -ENOMEM;
276 
277 	if (copy_from_iter(buf, len, iter) != len) {
278 		len = -EFAULT;
279 		goto out_free;
280 	}
281 	buf[len] = '\0';	/* guarantee string termination */
282 
283 	/*
284 	 * @of->mutex nests outside active ref and is used both to ensure that
285 	 * the ops aren't called concurrently for the same open file.
286 	 */
287 	mutex_lock(&of->mutex);
288 	if (!kernfs_get_active(of->kn)) {
289 		mutex_unlock(&of->mutex);
290 		len = -ENODEV;
291 		goto out_free;
292 	}
293 
294 	ops = kernfs_ops(of->kn);
295 	if (ops->write)
296 		len = ops->write(of, buf, len, iocb->ki_pos);
297 	else
298 		len = -EINVAL;
299 
300 	kernfs_put_active(of->kn);
301 	mutex_unlock(&of->mutex);
302 
303 	if (len > 0)
304 		iocb->ki_pos += len;
305 
306 out_free:
307 	if (buf == of->prealloc_buf)
308 		mutex_unlock(&of->prealloc_mutex);
309 	else
310 		kfree(buf);
311 	return len;
312 }
313 
314 static void kernfs_vma_open(struct vm_area_struct *vma)
315 {
316 	struct file *file = vma->vm_file;
317 	struct kernfs_open_file *of = kernfs_of(file);
318 
319 	if (!of->vm_ops)
320 		return;
321 
322 	if (!kernfs_get_active(of->kn))
323 		return;
324 
325 	if (of->vm_ops->open)
326 		of->vm_ops->open(vma);
327 
328 	kernfs_put_active(of->kn);
329 }
330 
331 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf)
332 {
333 	struct file *file = vmf->vma->vm_file;
334 	struct kernfs_open_file *of = kernfs_of(file);
335 	vm_fault_t ret;
336 
337 	if (!of->vm_ops)
338 		return VM_FAULT_SIGBUS;
339 
340 	if (!kernfs_get_active(of->kn))
341 		return VM_FAULT_SIGBUS;
342 
343 	ret = VM_FAULT_SIGBUS;
344 	if (of->vm_ops->fault)
345 		ret = of->vm_ops->fault(vmf);
346 
347 	kernfs_put_active(of->kn);
348 	return ret;
349 }
350 
351 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf)
352 {
353 	struct file *file = vmf->vma->vm_file;
354 	struct kernfs_open_file *of = kernfs_of(file);
355 	vm_fault_t ret;
356 
357 	if (!of->vm_ops)
358 		return VM_FAULT_SIGBUS;
359 
360 	if (!kernfs_get_active(of->kn))
361 		return VM_FAULT_SIGBUS;
362 
363 	ret = 0;
364 	if (of->vm_ops->page_mkwrite)
365 		ret = of->vm_ops->page_mkwrite(vmf);
366 	else
367 		file_update_time(file);
368 
369 	kernfs_put_active(of->kn);
370 	return ret;
371 }
372 
373 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
374 			     void *buf, int len, int write)
375 {
376 	struct file *file = vma->vm_file;
377 	struct kernfs_open_file *of = kernfs_of(file);
378 	int ret;
379 
380 	if (!of->vm_ops)
381 		return -EINVAL;
382 
383 	if (!kernfs_get_active(of->kn))
384 		return -EINVAL;
385 
386 	ret = -EINVAL;
387 	if (of->vm_ops->access)
388 		ret = of->vm_ops->access(vma, addr, buf, len, write);
389 
390 	kernfs_put_active(of->kn);
391 	return ret;
392 }
393 
394 #ifdef CONFIG_NUMA
395 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
396 				 struct mempolicy *new)
397 {
398 	struct file *file = vma->vm_file;
399 	struct kernfs_open_file *of = kernfs_of(file);
400 	int ret;
401 
402 	if (!of->vm_ops)
403 		return 0;
404 
405 	if (!kernfs_get_active(of->kn))
406 		return -EINVAL;
407 
408 	ret = 0;
409 	if (of->vm_ops->set_policy)
410 		ret = of->vm_ops->set_policy(vma, new);
411 
412 	kernfs_put_active(of->kn);
413 	return ret;
414 }
415 
416 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
417 					       unsigned long addr)
418 {
419 	struct file *file = vma->vm_file;
420 	struct kernfs_open_file *of = kernfs_of(file);
421 	struct mempolicy *pol;
422 
423 	if (!of->vm_ops)
424 		return vma->vm_policy;
425 
426 	if (!kernfs_get_active(of->kn))
427 		return vma->vm_policy;
428 
429 	pol = vma->vm_policy;
430 	if (of->vm_ops->get_policy)
431 		pol = of->vm_ops->get_policy(vma, addr);
432 
433 	kernfs_put_active(of->kn);
434 	return pol;
435 }
436 
437 #endif
438 
439 static const struct vm_operations_struct kernfs_vm_ops = {
440 	.open		= kernfs_vma_open,
441 	.fault		= kernfs_vma_fault,
442 	.page_mkwrite	= kernfs_vma_page_mkwrite,
443 	.access		= kernfs_vma_access,
444 #ifdef CONFIG_NUMA
445 	.set_policy	= kernfs_vma_set_policy,
446 	.get_policy	= kernfs_vma_get_policy,
447 #endif
448 };
449 
450 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
451 {
452 	struct kernfs_open_file *of = kernfs_of(file);
453 	const struct kernfs_ops *ops;
454 	int rc;
455 
456 	/*
457 	 * mmap path and of->mutex are prone to triggering spurious lockdep
458 	 * warnings and we don't want to add spurious locking dependency
459 	 * between the two.  Check whether mmap is actually implemented
460 	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
461 	 * comment in kernfs_file_open() for more details.
462 	 */
463 	if (!(of->kn->flags & KERNFS_HAS_MMAP))
464 		return -ENODEV;
465 
466 	mutex_lock(&of->mutex);
467 
468 	rc = -ENODEV;
469 	if (!kernfs_get_active(of->kn))
470 		goto out_unlock;
471 
472 	ops = kernfs_ops(of->kn);
473 	rc = ops->mmap(of, vma);
474 	if (rc)
475 		goto out_put;
476 
477 	/*
478 	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
479 	 * to satisfy versions of X which crash if the mmap fails: that
480 	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
481 	 */
482 	if (vma->vm_file != file)
483 		goto out_put;
484 
485 	rc = -EINVAL;
486 	if (of->mmapped && of->vm_ops != vma->vm_ops)
487 		goto out_put;
488 
489 	/*
490 	 * It is not possible to successfully wrap close.
491 	 * So error if someone is trying to use close.
492 	 */
493 	rc = -EINVAL;
494 	if (vma->vm_ops && vma->vm_ops->close)
495 		goto out_put;
496 
497 	rc = 0;
498 	of->mmapped = true;
499 	of->vm_ops = vma->vm_ops;
500 	vma->vm_ops = &kernfs_vm_ops;
501 out_put:
502 	kernfs_put_active(of->kn);
503 out_unlock:
504 	mutex_unlock(&of->mutex);
505 
506 	return rc;
507 }
508 
509 /**
510  *	kernfs_get_open_node - get or create kernfs_open_node
511  *	@kn: target kernfs_node
512  *	@of: kernfs_open_file for this instance of open
513  *
514  *	If @kn->attr.open exists, increment its reference count; otherwise,
515  *	create one.  @of is chained to the files list.
516  *
517  *	LOCKING:
518  *	Kernel thread context (may sleep).
519  *
520  *	RETURNS:
521  *	0 on success, -errno on failure.
522  */
523 static int kernfs_get_open_node(struct kernfs_node *kn,
524 				struct kernfs_open_file *of)
525 {
526 	struct kernfs_open_node *on, *new_on = NULL;
527 
528  retry:
529 	mutex_lock(&kernfs_open_file_mutex);
530 	spin_lock_irq(&kernfs_open_node_lock);
531 
532 	if (!kn->attr.open && new_on) {
533 		kn->attr.open = new_on;
534 		new_on = NULL;
535 	}
536 
537 	on = kn->attr.open;
538 	if (on) {
539 		atomic_inc(&on->refcnt);
540 		list_add_tail(&of->list, &on->files);
541 	}
542 
543 	spin_unlock_irq(&kernfs_open_node_lock);
544 	mutex_unlock(&kernfs_open_file_mutex);
545 
546 	if (on) {
547 		kfree(new_on);
548 		return 0;
549 	}
550 
551 	/* not there, initialize a new one and retry */
552 	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
553 	if (!new_on)
554 		return -ENOMEM;
555 
556 	atomic_set(&new_on->refcnt, 0);
557 	atomic_set(&new_on->event, 1);
558 	init_waitqueue_head(&new_on->poll);
559 	INIT_LIST_HEAD(&new_on->files);
560 	goto retry;
561 }
562 
563 /**
564  *	kernfs_put_open_node - put kernfs_open_node
565  *	@kn: target kernfs_nodet
566  *	@of: associated kernfs_open_file
567  *
568  *	Put @kn->attr.open and unlink @of from the files list.  If
569  *	reference count reaches zero, disassociate and free it.
570  *
571  *	LOCKING:
572  *	None.
573  */
574 static void kernfs_put_open_node(struct kernfs_node *kn,
575 				 struct kernfs_open_file *of)
576 {
577 	struct kernfs_open_node *on = kn->attr.open;
578 	unsigned long flags;
579 
580 	mutex_lock(&kernfs_open_file_mutex);
581 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
582 
583 	if (of)
584 		list_del(&of->list);
585 
586 	if (atomic_dec_and_test(&on->refcnt))
587 		kn->attr.open = NULL;
588 	else
589 		on = NULL;
590 
591 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
592 	mutex_unlock(&kernfs_open_file_mutex);
593 
594 	kfree(on);
595 }
596 
597 static int kernfs_fop_open(struct inode *inode, struct file *file)
598 {
599 	struct kernfs_node *kn = inode->i_private;
600 	struct kernfs_root *root = kernfs_root(kn);
601 	const struct kernfs_ops *ops;
602 	struct kernfs_open_file *of;
603 	bool has_read, has_write, has_mmap;
604 	int error = -EACCES;
605 
606 	if (!kernfs_get_active(kn))
607 		return -ENODEV;
608 
609 	ops = kernfs_ops(kn);
610 
611 	has_read = ops->seq_show || ops->read || ops->mmap;
612 	has_write = ops->write || ops->mmap;
613 	has_mmap = ops->mmap;
614 
615 	/* see the flag definition for details */
616 	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
617 		if ((file->f_mode & FMODE_WRITE) &&
618 		    (!(inode->i_mode & S_IWUGO) || !has_write))
619 			goto err_out;
620 
621 		if ((file->f_mode & FMODE_READ) &&
622 		    (!(inode->i_mode & S_IRUGO) || !has_read))
623 			goto err_out;
624 	}
625 
626 	/* allocate a kernfs_open_file for the file */
627 	error = -ENOMEM;
628 	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
629 	if (!of)
630 		goto err_out;
631 
632 	/*
633 	 * The following is done to give a different lockdep key to
634 	 * @of->mutex for files which implement mmap.  This is a rather
635 	 * crude way to avoid false positive lockdep warning around
636 	 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and
637 	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
638 	 * which mm->mmap_lock nests, while holding @of->mutex.  As each
639 	 * open file has a separate mutex, it's okay as long as those don't
640 	 * happen on the same file.  At this point, we can't easily give
641 	 * each file a separate locking class.  Let's differentiate on
642 	 * whether the file has mmap or not for now.
643 	 *
644 	 * Both paths of the branch look the same.  They're supposed to
645 	 * look that way and give @of->mutex different static lockdep keys.
646 	 */
647 	if (has_mmap)
648 		mutex_init(&of->mutex);
649 	else
650 		mutex_init(&of->mutex);
651 
652 	of->kn = kn;
653 	of->file = file;
654 
655 	/*
656 	 * Write path needs to atomic_write_len outside active reference.
657 	 * Cache it in open_file.  See kernfs_fop_write_iter() for details.
658 	 */
659 	of->atomic_write_len = ops->atomic_write_len;
660 
661 	error = -EINVAL;
662 	/*
663 	 * ->seq_show is incompatible with ->prealloc,
664 	 * as seq_read does its own allocation.
665 	 * ->read must be used instead.
666 	 */
667 	if (ops->prealloc && ops->seq_show)
668 		goto err_free;
669 	if (ops->prealloc) {
670 		int len = of->atomic_write_len ?: PAGE_SIZE;
671 		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
672 		error = -ENOMEM;
673 		if (!of->prealloc_buf)
674 			goto err_free;
675 		mutex_init(&of->prealloc_mutex);
676 	}
677 
678 	/*
679 	 * Always instantiate seq_file even if read access doesn't use
680 	 * seq_file or is not requested.  This unifies private data access
681 	 * and readable regular files are the vast majority anyway.
682 	 */
683 	if (ops->seq_show)
684 		error = seq_open(file, &kernfs_seq_ops);
685 	else
686 		error = seq_open(file, NULL);
687 	if (error)
688 		goto err_free;
689 
690 	of->seq_file = file->private_data;
691 	of->seq_file->private = of;
692 
693 	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
694 	if (file->f_mode & FMODE_WRITE)
695 		file->f_mode |= FMODE_PWRITE;
696 
697 	/* make sure we have open node struct */
698 	error = kernfs_get_open_node(kn, of);
699 	if (error)
700 		goto err_seq_release;
701 
702 	if (ops->open) {
703 		/* nobody has access to @of yet, skip @of->mutex */
704 		error = ops->open(of);
705 		if (error)
706 			goto err_put_node;
707 	}
708 
709 	/* open succeeded, put active references */
710 	kernfs_put_active(kn);
711 	return 0;
712 
713 err_put_node:
714 	kernfs_put_open_node(kn, of);
715 err_seq_release:
716 	seq_release(inode, file);
717 err_free:
718 	kfree(of->prealloc_buf);
719 	kfree(of);
720 err_out:
721 	kernfs_put_active(kn);
722 	return error;
723 }
724 
725 /* used from release/drain to ensure that ->release() is called exactly once */
726 static void kernfs_release_file(struct kernfs_node *kn,
727 				struct kernfs_open_file *of)
728 {
729 	/*
730 	 * @of is guaranteed to have no other file operations in flight and
731 	 * we just want to synchronize release and drain paths.
732 	 * @kernfs_open_file_mutex is enough.  @of->mutex can't be used
733 	 * here because drain path may be called from places which can
734 	 * cause circular dependency.
735 	 */
736 	lockdep_assert_held(&kernfs_open_file_mutex);
737 
738 	if (!of->released) {
739 		/*
740 		 * A file is never detached without being released and we
741 		 * need to be able to release files which are deactivated
742 		 * and being drained.  Don't use kernfs_ops().
743 		 */
744 		kn->attr.ops->release(of);
745 		of->released = true;
746 	}
747 }
748 
749 static int kernfs_fop_release(struct inode *inode, struct file *filp)
750 {
751 	struct kernfs_node *kn = inode->i_private;
752 	struct kernfs_open_file *of = kernfs_of(filp);
753 
754 	if (kn->flags & KERNFS_HAS_RELEASE) {
755 		mutex_lock(&kernfs_open_file_mutex);
756 		kernfs_release_file(kn, of);
757 		mutex_unlock(&kernfs_open_file_mutex);
758 	}
759 
760 	kernfs_put_open_node(kn, of);
761 	seq_release(inode, filp);
762 	kfree(of->prealloc_buf);
763 	kfree(of);
764 
765 	return 0;
766 }
767 
768 void kernfs_drain_open_files(struct kernfs_node *kn)
769 {
770 	struct kernfs_open_node *on;
771 	struct kernfs_open_file *of;
772 
773 	if (!(kn->flags & (KERNFS_HAS_MMAP | KERNFS_HAS_RELEASE)))
774 		return;
775 
776 	spin_lock_irq(&kernfs_open_node_lock);
777 	on = kn->attr.open;
778 	if (on)
779 		atomic_inc(&on->refcnt);
780 	spin_unlock_irq(&kernfs_open_node_lock);
781 	if (!on)
782 		return;
783 
784 	mutex_lock(&kernfs_open_file_mutex);
785 
786 	list_for_each_entry(of, &on->files, list) {
787 		struct inode *inode = file_inode(of->file);
788 
789 		if (kn->flags & KERNFS_HAS_MMAP)
790 			unmap_mapping_range(inode->i_mapping, 0, 0, 1);
791 
792 		if (kn->flags & KERNFS_HAS_RELEASE)
793 			kernfs_release_file(kn, of);
794 	}
795 
796 	mutex_unlock(&kernfs_open_file_mutex);
797 
798 	kernfs_put_open_node(kn, NULL);
799 }
800 
801 /*
802  * Kernfs attribute files are pollable.  The idea is that you read
803  * the content and then you use 'poll' or 'select' to wait for
804  * the content to change.  When the content changes (assuming the
805  * manager for the kobject supports notification), poll will
806  * return EPOLLERR|EPOLLPRI, and select will return the fd whether
807  * it is waiting for read, write, or exceptions.
808  * Once poll/select indicates that the value has changed, you
809  * need to close and re-open the file, or seek to 0 and read again.
810  * Reminder: this only works for attributes which actively support
811  * it, and it is not possible to test an attribute from userspace
812  * to see if it supports poll (Neither 'poll' nor 'select' return
813  * an appropriate error code).  When in doubt, set a suitable timeout value.
814  */
815 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait)
816 {
817 	struct kernfs_node *kn = kernfs_dentry_node(of->file->f_path.dentry);
818 	struct kernfs_open_node *on = kn->attr.open;
819 
820 	poll_wait(of->file, &on->poll, wait);
821 
822 	if (of->event != atomic_read(&on->event))
823 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
824 
825 	return DEFAULT_POLLMASK;
826 }
827 
828 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait)
829 {
830 	struct kernfs_open_file *of = kernfs_of(filp);
831 	struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry);
832 	__poll_t ret;
833 
834 	if (!kernfs_get_active(kn))
835 		return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI;
836 
837 	if (kn->attr.ops->poll)
838 		ret = kn->attr.ops->poll(of, wait);
839 	else
840 		ret = kernfs_generic_poll(of, wait);
841 
842 	kernfs_put_active(kn);
843 	return ret;
844 }
845 
846 static void kernfs_notify_workfn(struct work_struct *work)
847 {
848 	struct kernfs_node *kn;
849 	struct kernfs_super_info *info;
850 repeat:
851 	/* pop one off the notify_list */
852 	spin_lock_irq(&kernfs_notify_lock);
853 	kn = kernfs_notify_list;
854 	if (kn == KERNFS_NOTIFY_EOL) {
855 		spin_unlock_irq(&kernfs_notify_lock);
856 		return;
857 	}
858 	kernfs_notify_list = kn->attr.notify_next;
859 	kn->attr.notify_next = NULL;
860 	spin_unlock_irq(&kernfs_notify_lock);
861 
862 	/* kick fsnotify */
863 	mutex_lock(&kernfs_mutex);
864 
865 	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
866 		struct kernfs_node *parent;
867 		struct inode *p_inode = NULL;
868 		struct inode *inode;
869 		struct qstr name;
870 
871 		/*
872 		 * We want fsnotify_modify() on @kn but as the
873 		 * modifications aren't originating from userland don't
874 		 * have the matching @file available.  Look up the inodes
875 		 * and generate the events manually.
876 		 */
877 		inode = ilookup(info->sb, kernfs_ino(kn));
878 		if (!inode)
879 			continue;
880 
881 		name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name));
882 		parent = kernfs_get_parent(kn);
883 		if (parent) {
884 			p_inode = ilookup(info->sb, kernfs_ino(parent));
885 			if (p_inode) {
886 				fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD,
887 					 inode, FSNOTIFY_EVENT_INODE,
888 					 p_inode, &name, inode, 0);
889 				iput(p_inode);
890 			}
891 
892 			kernfs_put(parent);
893 		}
894 
895 		if (!p_inode)
896 			fsnotify_inode(inode, FS_MODIFY);
897 
898 		iput(inode);
899 	}
900 
901 	mutex_unlock(&kernfs_mutex);
902 	kernfs_put(kn);
903 	goto repeat;
904 }
905 
906 /**
907  * kernfs_notify - notify a kernfs file
908  * @kn: file to notify
909  *
910  * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
911  * context.
912  */
913 void kernfs_notify(struct kernfs_node *kn)
914 {
915 	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
916 	unsigned long flags;
917 	struct kernfs_open_node *on;
918 
919 	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
920 		return;
921 
922 	/* kick poll immediately */
923 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
924 	on = kn->attr.open;
925 	if (on) {
926 		atomic_inc(&on->event);
927 		wake_up_interruptible(&on->poll);
928 	}
929 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
930 
931 	/* schedule work to kick fsnotify */
932 	spin_lock_irqsave(&kernfs_notify_lock, flags);
933 	if (!kn->attr.notify_next) {
934 		kernfs_get(kn);
935 		kn->attr.notify_next = kernfs_notify_list;
936 		kernfs_notify_list = kn;
937 		schedule_work(&kernfs_notify_work);
938 	}
939 	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
940 }
941 EXPORT_SYMBOL_GPL(kernfs_notify);
942 
943 const struct file_operations kernfs_file_fops = {
944 	.read_iter	= kernfs_fop_read_iter,
945 	.write_iter	= kernfs_fop_write_iter,
946 	.llseek		= generic_file_llseek,
947 	.mmap		= kernfs_fop_mmap,
948 	.open		= kernfs_fop_open,
949 	.release	= kernfs_fop_release,
950 	.poll		= kernfs_fop_poll,
951 	.fsync		= noop_fsync,
952 	.splice_read	= generic_file_splice_read,
953 	.splice_write	= iter_file_splice_write,
954 };
955 
956 /**
957  * __kernfs_create_file - kernfs internal function to create a file
958  * @parent: directory to create the file in
959  * @name: name of the file
960  * @mode: mode of the file
961  * @uid: uid of the file
962  * @gid: gid of the file
963  * @size: size of the file
964  * @ops: kernfs operations for the file
965  * @priv: private data for the file
966  * @ns: optional namespace tag of the file
967  * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
968  *
969  * Returns the created node on success, ERR_PTR() value on error.
970  */
971 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
972 					 const char *name,
973 					 umode_t mode, kuid_t uid, kgid_t gid,
974 					 loff_t size,
975 					 const struct kernfs_ops *ops,
976 					 void *priv, const void *ns,
977 					 struct lock_class_key *key)
978 {
979 	struct kernfs_node *kn;
980 	unsigned flags;
981 	int rc;
982 
983 	flags = KERNFS_FILE;
984 
985 	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG,
986 			     uid, gid, flags);
987 	if (!kn)
988 		return ERR_PTR(-ENOMEM);
989 
990 	kn->attr.ops = ops;
991 	kn->attr.size = size;
992 	kn->ns = ns;
993 	kn->priv = priv;
994 
995 #ifdef CONFIG_DEBUG_LOCK_ALLOC
996 	if (key) {
997 		lockdep_init_map(&kn->dep_map, "kn->active", key, 0);
998 		kn->flags |= KERNFS_LOCKDEP;
999 	}
1000 #endif
1001 
1002 	/*
1003 	 * kn->attr.ops is accesible only while holding active ref.  We
1004 	 * need to know whether some ops are implemented outside active
1005 	 * ref.  Cache their existence in flags.
1006 	 */
1007 	if (ops->seq_show)
1008 		kn->flags |= KERNFS_HAS_SEQ_SHOW;
1009 	if (ops->mmap)
1010 		kn->flags |= KERNFS_HAS_MMAP;
1011 	if (ops->release)
1012 		kn->flags |= KERNFS_HAS_RELEASE;
1013 
1014 	rc = kernfs_add_one(kn);
1015 	if (rc) {
1016 		kernfs_put(kn);
1017 		return ERR_PTR(rc);
1018 	}
1019 	return kn;
1020 }
1021