1 /* 2 * fs/kernfs/file.c - kernfs file implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/poll.h> 15 #include <linux/pagemap.h> 16 #include <linux/sched.h> 17 18 #include "kernfs-internal.h" 19 20 /* 21 * There's one kernfs_open_file for each open file and one kernfs_open_node 22 * for each kernfs_node with one or more open files. 23 * 24 * kernfs_node->attr.open points to kernfs_open_node. attr.open is 25 * protected by kernfs_open_node_lock. 26 * 27 * filp->private_data points to seq_file whose ->private points to 28 * kernfs_open_file. kernfs_open_files are chained at 29 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex. 30 */ 31 static DEFINE_SPINLOCK(kernfs_open_node_lock); 32 static DEFINE_MUTEX(kernfs_open_file_mutex); 33 34 struct kernfs_open_node { 35 atomic_t refcnt; 36 atomic_t event; 37 wait_queue_head_t poll; 38 struct list_head files; /* goes through kernfs_open_file.list */ 39 }; 40 41 static struct kernfs_open_file *kernfs_of(struct file *file) 42 { 43 return ((struct seq_file *)file->private_data)->private; 44 } 45 46 /* 47 * Determine the kernfs_ops for the given kernfs_node. This function must 48 * be called while holding an active reference. 49 */ 50 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn) 51 { 52 if (kn->flags & KERNFS_LOCKDEP) 53 lockdep_assert_held(kn); 54 return kn->attr.ops; 55 } 56 57 /* 58 * As kernfs_seq_stop() is also called after kernfs_seq_start() or 59 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping 60 * a seq_file iteration which is fully initialized with an active reference 61 * or an aborted kernfs_seq_start() due to get_active failure. The 62 * position pointer is the only context for each seq_file iteration and 63 * thus the stop condition should be encoded in it. As the return value is 64 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable 65 * choice to indicate get_active failure. 66 * 67 * Unfortunately, this is complicated due to the optional custom seq_file 68 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop() 69 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or 70 * custom seq_file operations and thus can't decide whether put_active 71 * should be performed or not only on ERR_PTR(-ENODEV). 72 * 73 * This is worked around by factoring out the custom seq_stop() and 74 * put_active part into kernfs_seq_stop_active(), skipping it from 75 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after 76 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures 77 * that kernfs_seq_stop_active() is skipped only after get_active failure. 78 */ 79 static void kernfs_seq_stop_active(struct seq_file *sf, void *v) 80 { 81 struct kernfs_open_file *of = sf->private; 82 const struct kernfs_ops *ops = kernfs_ops(of->kn); 83 84 if (ops->seq_stop) 85 ops->seq_stop(sf, v); 86 kernfs_put_active(of->kn); 87 } 88 89 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos) 90 { 91 struct kernfs_open_file *of = sf->private; 92 const struct kernfs_ops *ops; 93 94 /* 95 * @of->mutex nests outside active ref and is just to ensure that 96 * the ops aren't called concurrently for the same open file. 97 */ 98 mutex_lock(&of->mutex); 99 if (!kernfs_get_active(of->kn)) 100 return ERR_PTR(-ENODEV); 101 102 ops = kernfs_ops(of->kn); 103 if (ops->seq_start) { 104 void *next = ops->seq_start(sf, ppos); 105 /* see the comment above kernfs_seq_stop_active() */ 106 if (next == ERR_PTR(-ENODEV)) 107 kernfs_seq_stop_active(sf, next); 108 return next; 109 } else { 110 /* 111 * The same behavior and code as single_open(). Returns 112 * !NULL if pos is at the beginning; otherwise, NULL. 113 */ 114 return NULL + !*ppos; 115 } 116 } 117 118 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos) 119 { 120 struct kernfs_open_file *of = sf->private; 121 const struct kernfs_ops *ops = kernfs_ops(of->kn); 122 123 if (ops->seq_next) { 124 void *next = ops->seq_next(sf, v, ppos); 125 /* see the comment above kernfs_seq_stop_active() */ 126 if (next == ERR_PTR(-ENODEV)) 127 kernfs_seq_stop_active(sf, next); 128 return next; 129 } else { 130 /* 131 * The same behavior and code as single_open(), always 132 * terminate after the initial read. 133 */ 134 ++*ppos; 135 return NULL; 136 } 137 } 138 139 static void kernfs_seq_stop(struct seq_file *sf, void *v) 140 { 141 struct kernfs_open_file *of = sf->private; 142 143 if (v != ERR_PTR(-ENODEV)) 144 kernfs_seq_stop_active(sf, v); 145 mutex_unlock(&of->mutex); 146 } 147 148 static int kernfs_seq_show(struct seq_file *sf, void *v) 149 { 150 struct kernfs_open_file *of = sf->private; 151 152 of->event = atomic_read(&of->kn->attr.open->event); 153 154 return of->kn->attr.ops->seq_show(sf, v); 155 } 156 157 static const struct seq_operations kernfs_seq_ops = { 158 .start = kernfs_seq_start, 159 .next = kernfs_seq_next, 160 .stop = kernfs_seq_stop, 161 .show = kernfs_seq_show, 162 }; 163 164 /* 165 * As reading a bin file can have side-effects, the exact offset and bytes 166 * specified in read(2) call should be passed to the read callback making 167 * it difficult to use seq_file. Implement simplistic custom buffering for 168 * bin files. 169 */ 170 static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of, 171 char __user *user_buf, size_t count, 172 loff_t *ppos) 173 { 174 ssize_t len = min_t(size_t, count, PAGE_SIZE); 175 const struct kernfs_ops *ops; 176 char *buf; 177 178 buf = kmalloc(len, GFP_KERNEL); 179 if (!buf) 180 return -ENOMEM; 181 182 /* 183 * @of->mutex nests outside active ref and is just to ensure that 184 * the ops aren't called concurrently for the same open file. 185 */ 186 mutex_lock(&of->mutex); 187 if (!kernfs_get_active(of->kn)) { 188 len = -ENODEV; 189 mutex_unlock(&of->mutex); 190 goto out_free; 191 } 192 193 ops = kernfs_ops(of->kn); 194 if (ops->read) 195 len = ops->read(of, buf, len, *ppos); 196 else 197 len = -EINVAL; 198 199 kernfs_put_active(of->kn); 200 mutex_unlock(&of->mutex); 201 202 if (len < 0) 203 goto out_free; 204 205 if (copy_to_user(user_buf, buf, len)) { 206 len = -EFAULT; 207 goto out_free; 208 } 209 210 *ppos += len; 211 212 out_free: 213 kfree(buf); 214 return len; 215 } 216 217 /** 218 * kernfs_fop_read - kernfs vfs read callback 219 * @file: file pointer 220 * @user_buf: data to write 221 * @count: number of bytes 222 * @ppos: starting offset 223 */ 224 static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf, 225 size_t count, loff_t *ppos) 226 { 227 struct kernfs_open_file *of = kernfs_of(file); 228 229 if (of->kn->flags & KERNFS_HAS_SEQ_SHOW) 230 return seq_read(file, user_buf, count, ppos); 231 else 232 return kernfs_file_direct_read(of, user_buf, count, ppos); 233 } 234 235 /** 236 * kernfs_fop_write - kernfs vfs write callback 237 * @file: file pointer 238 * @user_buf: data to write 239 * @count: number of bytes 240 * @ppos: starting offset 241 * 242 * Copy data in from userland and pass it to the matching kernfs write 243 * operation. 244 * 245 * There is no easy way for us to know if userspace is only doing a partial 246 * write, so we don't support them. We expect the entire buffer to come on 247 * the first write. Hint: if you're writing a value, first read the file, 248 * modify only the the value you're changing, then write entire buffer 249 * back. 250 */ 251 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf, 252 size_t count, loff_t *ppos) 253 { 254 struct kernfs_open_file *of = kernfs_of(file); 255 const struct kernfs_ops *ops; 256 size_t len; 257 char *buf; 258 259 if (of->atomic_write_len) { 260 len = count; 261 if (len > of->atomic_write_len) 262 return -E2BIG; 263 } else { 264 len = min_t(size_t, count, PAGE_SIZE); 265 } 266 267 buf = kmalloc(len + 1, GFP_KERNEL); 268 if (!buf) 269 return -ENOMEM; 270 271 if (copy_from_user(buf, user_buf, len)) { 272 len = -EFAULT; 273 goto out_free; 274 } 275 buf[len] = '\0'; /* guarantee string termination */ 276 277 /* 278 * @of->mutex nests outside active ref and is just to ensure that 279 * the ops aren't called concurrently for the same open file. 280 */ 281 mutex_lock(&of->mutex); 282 if (!kernfs_get_active(of->kn)) { 283 mutex_unlock(&of->mutex); 284 len = -ENODEV; 285 goto out_free; 286 } 287 288 ops = kernfs_ops(of->kn); 289 if (ops->write) 290 len = ops->write(of, buf, len, *ppos); 291 else 292 len = -EINVAL; 293 294 kernfs_put_active(of->kn); 295 mutex_unlock(&of->mutex); 296 297 if (len > 0) 298 *ppos += len; 299 out_free: 300 kfree(buf); 301 return len; 302 } 303 304 static void kernfs_vma_open(struct vm_area_struct *vma) 305 { 306 struct file *file = vma->vm_file; 307 struct kernfs_open_file *of = kernfs_of(file); 308 309 if (!of->vm_ops) 310 return; 311 312 if (!kernfs_get_active(of->kn)) 313 return; 314 315 if (of->vm_ops->open) 316 of->vm_ops->open(vma); 317 318 kernfs_put_active(of->kn); 319 } 320 321 static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 322 { 323 struct file *file = vma->vm_file; 324 struct kernfs_open_file *of = kernfs_of(file); 325 int ret; 326 327 if (!of->vm_ops) 328 return VM_FAULT_SIGBUS; 329 330 if (!kernfs_get_active(of->kn)) 331 return VM_FAULT_SIGBUS; 332 333 ret = VM_FAULT_SIGBUS; 334 if (of->vm_ops->fault) 335 ret = of->vm_ops->fault(vma, vmf); 336 337 kernfs_put_active(of->kn); 338 return ret; 339 } 340 341 static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma, 342 struct vm_fault *vmf) 343 { 344 struct file *file = vma->vm_file; 345 struct kernfs_open_file *of = kernfs_of(file); 346 int ret; 347 348 if (!of->vm_ops) 349 return VM_FAULT_SIGBUS; 350 351 if (!kernfs_get_active(of->kn)) 352 return VM_FAULT_SIGBUS; 353 354 ret = 0; 355 if (of->vm_ops->page_mkwrite) 356 ret = of->vm_ops->page_mkwrite(vma, vmf); 357 else 358 file_update_time(file); 359 360 kernfs_put_active(of->kn); 361 return ret; 362 } 363 364 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr, 365 void *buf, int len, int write) 366 { 367 struct file *file = vma->vm_file; 368 struct kernfs_open_file *of = kernfs_of(file); 369 int ret; 370 371 if (!of->vm_ops) 372 return -EINVAL; 373 374 if (!kernfs_get_active(of->kn)) 375 return -EINVAL; 376 377 ret = -EINVAL; 378 if (of->vm_ops->access) 379 ret = of->vm_ops->access(vma, addr, buf, len, write); 380 381 kernfs_put_active(of->kn); 382 return ret; 383 } 384 385 #ifdef CONFIG_NUMA 386 static int kernfs_vma_set_policy(struct vm_area_struct *vma, 387 struct mempolicy *new) 388 { 389 struct file *file = vma->vm_file; 390 struct kernfs_open_file *of = kernfs_of(file); 391 int ret; 392 393 if (!of->vm_ops) 394 return 0; 395 396 if (!kernfs_get_active(of->kn)) 397 return -EINVAL; 398 399 ret = 0; 400 if (of->vm_ops->set_policy) 401 ret = of->vm_ops->set_policy(vma, new); 402 403 kernfs_put_active(of->kn); 404 return ret; 405 } 406 407 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma, 408 unsigned long addr) 409 { 410 struct file *file = vma->vm_file; 411 struct kernfs_open_file *of = kernfs_of(file); 412 struct mempolicy *pol; 413 414 if (!of->vm_ops) 415 return vma->vm_policy; 416 417 if (!kernfs_get_active(of->kn)) 418 return vma->vm_policy; 419 420 pol = vma->vm_policy; 421 if (of->vm_ops->get_policy) 422 pol = of->vm_ops->get_policy(vma, addr); 423 424 kernfs_put_active(of->kn); 425 return pol; 426 } 427 428 static int kernfs_vma_migrate(struct vm_area_struct *vma, 429 const nodemask_t *from, const nodemask_t *to, 430 unsigned long flags) 431 { 432 struct file *file = vma->vm_file; 433 struct kernfs_open_file *of = kernfs_of(file); 434 int ret; 435 436 if (!of->vm_ops) 437 return 0; 438 439 if (!kernfs_get_active(of->kn)) 440 return 0; 441 442 ret = 0; 443 if (of->vm_ops->migrate) 444 ret = of->vm_ops->migrate(vma, from, to, flags); 445 446 kernfs_put_active(of->kn); 447 return ret; 448 } 449 #endif 450 451 static const struct vm_operations_struct kernfs_vm_ops = { 452 .open = kernfs_vma_open, 453 .fault = kernfs_vma_fault, 454 .page_mkwrite = kernfs_vma_page_mkwrite, 455 .access = kernfs_vma_access, 456 #ifdef CONFIG_NUMA 457 .set_policy = kernfs_vma_set_policy, 458 .get_policy = kernfs_vma_get_policy, 459 .migrate = kernfs_vma_migrate, 460 #endif 461 }; 462 463 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma) 464 { 465 struct kernfs_open_file *of = kernfs_of(file); 466 const struct kernfs_ops *ops; 467 int rc; 468 469 /* 470 * mmap path and of->mutex are prone to triggering spurious lockdep 471 * warnings and we don't want to add spurious locking dependency 472 * between the two. Check whether mmap is actually implemented 473 * without grabbing @of->mutex by testing HAS_MMAP flag. See the 474 * comment in kernfs_file_open() for more details. 475 */ 476 if (!(of->kn->flags & KERNFS_HAS_MMAP)) 477 return -ENODEV; 478 479 mutex_lock(&of->mutex); 480 481 rc = -ENODEV; 482 if (!kernfs_get_active(of->kn)) 483 goto out_unlock; 484 485 ops = kernfs_ops(of->kn); 486 rc = ops->mmap(of, vma); 487 488 /* 489 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup() 490 * to satisfy versions of X which crash if the mmap fails: that 491 * substitutes a new vm_file, and we don't then want bin_vm_ops. 492 */ 493 if (vma->vm_file != file) 494 goto out_put; 495 496 rc = -EINVAL; 497 if (of->mmapped && of->vm_ops != vma->vm_ops) 498 goto out_put; 499 500 /* 501 * It is not possible to successfully wrap close. 502 * So error if someone is trying to use close. 503 */ 504 rc = -EINVAL; 505 if (vma->vm_ops && vma->vm_ops->close) 506 goto out_put; 507 508 rc = 0; 509 of->mmapped = 1; 510 of->vm_ops = vma->vm_ops; 511 vma->vm_ops = &kernfs_vm_ops; 512 out_put: 513 kernfs_put_active(of->kn); 514 out_unlock: 515 mutex_unlock(&of->mutex); 516 517 return rc; 518 } 519 520 /** 521 * kernfs_get_open_node - get or create kernfs_open_node 522 * @kn: target kernfs_node 523 * @of: kernfs_open_file for this instance of open 524 * 525 * If @kn->attr.open exists, increment its reference count; otherwise, 526 * create one. @of is chained to the files list. 527 * 528 * LOCKING: 529 * Kernel thread context (may sleep). 530 * 531 * RETURNS: 532 * 0 on success, -errno on failure. 533 */ 534 static int kernfs_get_open_node(struct kernfs_node *kn, 535 struct kernfs_open_file *of) 536 { 537 struct kernfs_open_node *on, *new_on = NULL; 538 539 retry: 540 mutex_lock(&kernfs_open_file_mutex); 541 spin_lock_irq(&kernfs_open_node_lock); 542 543 if (!kn->attr.open && new_on) { 544 kn->attr.open = new_on; 545 new_on = NULL; 546 } 547 548 on = kn->attr.open; 549 if (on) { 550 atomic_inc(&on->refcnt); 551 list_add_tail(&of->list, &on->files); 552 } 553 554 spin_unlock_irq(&kernfs_open_node_lock); 555 mutex_unlock(&kernfs_open_file_mutex); 556 557 if (on) { 558 kfree(new_on); 559 return 0; 560 } 561 562 /* not there, initialize a new one and retry */ 563 new_on = kmalloc(sizeof(*new_on), GFP_KERNEL); 564 if (!new_on) 565 return -ENOMEM; 566 567 atomic_set(&new_on->refcnt, 0); 568 atomic_set(&new_on->event, 1); 569 init_waitqueue_head(&new_on->poll); 570 INIT_LIST_HEAD(&new_on->files); 571 goto retry; 572 } 573 574 /** 575 * kernfs_put_open_node - put kernfs_open_node 576 * @kn: target kernfs_nodet 577 * @of: associated kernfs_open_file 578 * 579 * Put @kn->attr.open and unlink @of from the files list. If 580 * reference count reaches zero, disassociate and free it. 581 * 582 * LOCKING: 583 * None. 584 */ 585 static void kernfs_put_open_node(struct kernfs_node *kn, 586 struct kernfs_open_file *of) 587 { 588 struct kernfs_open_node *on = kn->attr.open; 589 unsigned long flags; 590 591 mutex_lock(&kernfs_open_file_mutex); 592 spin_lock_irqsave(&kernfs_open_node_lock, flags); 593 594 if (of) 595 list_del(&of->list); 596 597 if (atomic_dec_and_test(&on->refcnt)) 598 kn->attr.open = NULL; 599 else 600 on = NULL; 601 602 spin_unlock_irqrestore(&kernfs_open_node_lock, flags); 603 mutex_unlock(&kernfs_open_file_mutex); 604 605 kfree(on); 606 } 607 608 static int kernfs_fop_open(struct inode *inode, struct file *file) 609 { 610 struct kernfs_node *kn = file->f_path.dentry->d_fsdata; 611 const struct kernfs_ops *ops; 612 struct kernfs_open_file *of; 613 bool has_read, has_write, has_mmap; 614 int error = -EACCES; 615 616 if (!kernfs_get_active(kn)) 617 return -ENODEV; 618 619 ops = kernfs_ops(kn); 620 621 has_read = ops->seq_show || ops->read || ops->mmap; 622 has_write = ops->write || ops->mmap; 623 has_mmap = ops->mmap; 624 625 /* check perms and supported operations */ 626 if ((file->f_mode & FMODE_WRITE) && 627 (!(inode->i_mode & S_IWUGO) || !has_write)) 628 goto err_out; 629 630 if ((file->f_mode & FMODE_READ) && 631 (!(inode->i_mode & S_IRUGO) || !has_read)) 632 goto err_out; 633 634 /* allocate a kernfs_open_file for the file */ 635 error = -ENOMEM; 636 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL); 637 if (!of) 638 goto err_out; 639 640 /* 641 * The following is done to give a different lockdep key to 642 * @of->mutex for files which implement mmap. This is a rather 643 * crude way to avoid false positive lockdep warning around 644 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and 645 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under 646 * which mm->mmap_sem nests, while holding @of->mutex. As each 647 * open file has a separate mutex, it's okay as long as those don't 648 * happen on the same file. At this point, we can't easily give 649 * each file a separate locking class. Let's differentiate on 650 * whether the file has mmap or not for now. 651 * 652 * Both paths of the branch look the same. They're supposed to 653 * look that way and give @of->mutex different static lockdep keys. 654 */ 655 if (has_mmap) 656 mutex_init(&of->mutex); 657 else 658 mutex_init(&of->mutex); 659 660 of->kn = kn; 661 of->file = file; 662 663 /* 664 * Write path needs to atomic_write_len outside active reference. 665 * Cache it in open_file. See kernfs_fop_write() for details. 666 */ 667 of->atomic_write_len = ops->atomic_write_len; 668 669 /* 670 * Always instantiate seq_file even if read access doesn't use 671 * seq_file or is not requested. This unifies private data access 672 * and readable regular files are the vast majority anyway. 673 */ 674 if (ops->seq_show) 675 error = seq_open(file, &kernfs_seq_ops); 676 else 677 error = seq_open(file, NULL); 678 if (error) 679 goto err_free; 680 681 ((struct seq_file *)file->private_data)->private = of; 682 683 /* seq_file clears PWRITE unconditionally, restore it if WRITE */ 684 if (file->f_mode & FMODE_WRITE) 685 file->f_mode |= FMODE_PWRITE; 686 687 /* make sure we have open node struct */ 688 error = kernfs_get_open_node(kn, of); 689 if (error) 690 goto err_close; 691 692 /* open succeeded, put active references */ 693 kernfs_put_active(kn); 694 return 0; 695 696 err_close: 697 seq_release(inode, file); 698 err_free: 699 kfree(of); 700 err_out: 701 kernfs_put_active(kn); 702 return error; 703 } 704 705 static int kernfs_fop_release(struct inode *inode, struct file *filp) 706 { 707 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata; 708 struct kernfs_open_file *of = kernfs_of(filp); 709 710 kernfs_put_open_node(kn, of); 711 seq_release(inode, filp); 712 kfree(of); 713 714 return 0; 715 } 716 717 void kernfs_unmap_bin_file(struct kernfs_node *kn) 718 { 719 struct kernfs_open_node *on; 720 struct kernfs_open_file *of; 721 722 if (!(kn->flags & KERNFS_HAS_MMAP)) 723 return; 724 725 spin_lock_irq(&kernfs_open_node_lock); 726 on = kn->attr.open; 727 if (on) 728 atomic_inc(&on->refcnt); 729 spin_unlock_irq(&kernfs_open_node_lock); 730 if (!on) 731 return; 732 733 mutex_lock(&kernfs_open_file_mutex); 734 list_for_each_entry(of, &on->files, list) { 735 struct inode *inode = file_inode(of->file); 736 unmap_mapping_range(inode->i_mapping, 0, 0, 1); 737 } 738 mutex_unlock(&kernfs_open_file_mutex); 739 740 kernfs_put_open_node(kn, NULL); 741 } 742 743 /* 744 * Kernfs attribute files are pollable. The idea is that you read 745 * the content and then you use 'poll' or 'select' to wait for 746 * the content to change. When the content changes (assuming the 747 * manager for the kobject supports notification), poll will 748 * return POLLERR|POLLPRI, and select will return the fd whether 749 * it is waiting for read, write, or exceptions. 750 * Once poll/select indicates that the value has changed, you 751 * need to close and re-open the file, or seek to 0 and read again. 752 * Reminder: this only works for attributes which actively support 753 * it, and it is not possible to test an attribute from userspace 754 * to see if it supports poll (Neither 'poll' nor 'select' return 755 * an appropriate error code). When in doubt, set a suitable timeout value. 756 */ 757 static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait) 758 { 759 struct kernfs_open_file *of = kernfs_of(filp); 760 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata; 761 struct kernfs_open_node *on = kn->attr.open; 762 763 /* need parent for the kobj, grab both */ 764 if (!kernfs_get_active(kn)) 765 goto trigger; 766 767 poll_wait(filp, &on->poll, wait); 768 769 kernfs_put_active(kn); 770 771 if (of->event != atomic_read(&on->event)) 772 goto trigger; 773 774 return DEFAULT_POLLMASK; 775 776 trigger: 777 return DEFAULT_POLLMASK|POLLERR|POLLPRI; 778 } 779 780 /** 781 * kernfs_notify - notify a kernfs file 782 * @kn: file to notify 783 * 784 * Notify @kn such that poll(2) on @kn wakes up. 785 */ 786 void kernfs_notify(struct kernfs_node *kn) 787 { 788 struct kernfs_open_node *on; 789 unsigned long flags; 790 791 spin_lock_irqsave(&kernfs_open_node_lock, flags); 792 793 if (!WARN_ON(kernfs_type(kn) != KERNFS_FILE)) { 794 on = kn->attr.open; 795 if (on) { 796 atomic_inc(&on->event); 797 wake_up_interruptible(&on->poll); 798 } 799 } 800 801 spin_unlock_irqrestore(&kernfs_open_node_lock, flags); 802 } 803 EXPORT_SYMBOL_GPL(kernfs_notify); 804 805 const struct file_operations kernfs_file_fops = { 806 .read = kernfs_fop_read, 807 .write = kernfs_fop_write, 808 .llseek = generic_file_llseek, 809 .mmap = kernfs_fop_mmap, 810 .open = kernfs_fop_open, 811 .release = kernfs_fop_release, 812 .poll = kernfs_fop_poll, 813 }; 814 815 /** 816 * __kernfs_create_file - kernfs internal function to create a file 817 * @parent: directory to create the file in 818 * @name: name of the file 819 * @mode: mode of the file 820 * @size: size of the file 821 * @ops: kernfs operations for the file 822 * @priv: private data for the file 823 * @ns: optional namespace tag of the file 824 * @static_name: don't copy file name 825 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep 826 * 827 * Returns the created node on success, ERR_PTR() value on error. 828 */ 829 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent, 830 const char *name, 831 umode_t mode, loff_t size, 832 const struct kernfs_ops *ops, 833 void *priv, const void *ns, 834 bool name_is_static, 835 struct lock_class_key *key) 836 { 837 struct kernfs_node *kn; 838 unsigned flags; 839 int rc; 840 841 flags = KERNFS_FILE; 842 if (name_is_static) 843 flags |= KERNFS_STATIC_NAME; 844 845 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags); 846 if (!kn) 847 return ERR_PTR(-ENOMEM); 848 849 kn->attr.ops = ops; 850 kn->attr.size = size; 851 kn->ns = ns; 852 kn->priv = priv; 853 854 #ifdef CONFIG_DEBUG_LOCK_ALLOC 855 if (key) { 856 lockdep_init_map(&kn->dep_map, "s_active", key, 0); 857 kn->flags |= KERNFS_LOCKDEP; 858 } 859 #endif 860 861 /* 862 * kn->attr.ops is accesible only while holding active ref. We 863 * need to know whether some ops are implemented outside active 864 * ref. Cache their existence in flags. 865 */ 866 if (ops->seq_show) 867 kn->flags |= KERNFS_HAS_SEQ_SHOW; 868 if (ops->mmap) 869 kn->flags |= KERNFS_HAS_MMAP; 870 871 rc = kernfs_add_one(kn); 872 if (rc) { 873 kernfs_put(kn); 874 return ERR_PTR(rc); 875 } 876 return kn; 877 } 878