1 /* 2 * fs/kernfs/file.c - kernfs file implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/poll.h> 15 #include <linux/pagemap.h> 16 #include <linux/sched.h> 17 #include <linux/fsnotify.h> 18 19 #include "kernfs-internal.h" 20 21 /* 22 * There's one kernfs_open_file for each open file and one kernfs_open_node 23 * for each kernfs_node with one or more open files. 24 * 25 * kernfs_node->attr.open points to kernfs_open_node. attr.open is 26 * protected by kernfs_open_node_lock. 27 * 28 * filp->private_data points to seq_file whose ->private points to 29 * kernfs_open_file. kernfs_open_files are chained at 30 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex. 31 */ 32 static DEFINE_SPINLOCK(kernfs_open_node_lock); 33 static DEFINE_MUTEX(kernfs_open_file_mutex); 34 35 struct kernfs_open_node { 36 atomic_t refcnt; 37 atomic_t event; 38 wait_queue_head_t poll; 39 struct list_head files; /* goes through kernfs_open_file.list */ 40 }; 41 42 /* 43 * kernfs_notify() may be called from any context and bounces notifications 44 * through a work item. To minimize space overhead in kernfs_node, the 45 * pending queue is implemented as a singly linked list of kernfs_nodes. 46 * The list is terminated with the self pointer so that whether a 47 * kernfs_node is on the list or not can be determined by testing the next 48 * pointer for NULL. 49 */ 50 #define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list) 51 52 static DEFINE_SPINLOCK(kernfs_notify_lock); 53 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL; 54 55 static struct kernfs_open_file *kernfs_of(struct file *file) 56 { 57 return ((struct seq_file *)file->private_data)->private; 58 } 59 60 /* 61 * Determine the kernfs_ops for the given kernfs_node. This function must 62 * be called while holding an active reference. 63 */ 64 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn) 65 { 66 if (kn->flags & KERNFS_LOCKDEP) 67 lockdep_assert_held(kn); 68 return kn->attr.ops; 69 } 70 71 /* 72 * As kernfs_seq_stop() is also called after kernfs_seq_start() or 73 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping 74 * a seq_file iteration which is fully initialized with an active reference 75 * or an aborted kernfs_seq_start() due to get_active failure. The 76 * position pointer is the only context for each seq_file iteration and 77 * thus the stop condition should be encoded in it. As the return value is 78 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable 79 * choice to indicate get_active failure. 80 * 81 * Unfortunately, this is complicated due to the optional custom seq_file 82 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop() 83 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or 84 * custom seq_file operations and thus can't decide whether put_active 85 * should be performed or not only on ERR_PTR(-ENODEV). 86 * 87 * This is worked around by factoring out the custom seq_stop() and 88 * put_active part into kernfs_seq_stop_active(), skipping it from 89 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after 90 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures 91 * that kernfs_seq_stop_active() is skipped only after get_active failure. 92 */ 93 static void kernfs_seq_stop_active(struct seq_file *sf, void *v) 94 { 95 struct kernfs_open_file *of = sf->private; 96 const struct kernfs_ops *ops = kernfs_ops(of->kn); 97 98 if (ops->seq_stop) 99 ops->seq_stop(sf, v); 100 kernfs_put_active(of->kn); 101 } 102 103 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos) 104 { 105 struct kernfs_open_file *of = sf->private; 106 const struct kernfs_ops *ops; 107 108 /* 109 * @of->mutex nests outside active ref and is primarily to ensure that 110 * the ops aren't called concurrently for the same open file. 111 */ 112 mutex_lock(&of->mutex); 113 if (!kernfs_get_active(of->kn)) 114 return ERR_PTR(-ENODEV); 115 116 ops = kernfs_ops(of->kn); 117 if (ops->seq_start) { 118 void *next = ops->seq_start(sf, ppos); 119 /* see the comment above kernfs_seq_stop_active() */ 120 if (next == ERR_PTR(-ENODEV)) 121 kernfs_seq_stop_active(sf, next); 122 return next; 123 } else { 124 /* 125 * The same behavior and code as single_open(). Returns 126 * !NULL if pos is at the beginning; otherwise, NULL. 127 */ 128 return NULL + !*ppos; 129 } 130 } 131 132 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos) 133 { 134 struct kernfs_open_file *of = sf->private; 135 const struct kernfs_ops *ops = kernfs_ops(of->kn); 136 137 if (ops->seq_next) { 138 void *next = ops->seq_next(sf, v, ppos); 139 /* see the comment above kernfs_seq_stop_active() */ 140 if (next == ERR_PTR(-ENODEV)) 141 kernfs_seq_stop_active(sf, next); 142 return next; 143 } else { 144 /* 145 * The same behavior and code as single_open(), always 146 * terminate after the initial read. 147 */ 148 ++*ppos; 149 return NULL; 150 } 151 } 152 153 static void kernfs_seq_stop(struct seq_file *sf, void *v) 154 { 155 struct kernfs_open_file *of = sf->private; 156 157 if (v != ERR_PTR(-ENODEV)) 158 kernfs_seq_stop_active(sf, v); 159 mutex_unlock(&of->mutex); 160 } 161 162 static int kernfs_seq_show(struct seq_file *sf, void *v) 163 { 164 struct kernfs_open_file *of = sf->private; 165 166 of->event = atomic_read(&of->kn->attr.open->event); 167 168 return of->kn->attr.ops->seq_show(sf, v); 169 } 170 171 static const struct seq_operations kernfs_seq_ops = { 172 .start = kernfs_seq_start, 173 .next = kernfs_seq_next, 174 .stop = kernfs_seq_stop, 175 .show = kernfs_seq_show, 176 }; 177 178 /* 179 * As reading a bin file can have side-effects, the exact offset and bytes 180 * specified in read(2) call should be passed to the read callback making 181 * it difficult to use seq_file. Implement simplistic custom buffering for 182 * bin files. 183 */ 184 static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of, 185 char __user *user_buf, size_t count, 186 loff_t *ppos) 187 { 188 ssize_t len = min_t(size_t, count, PAGE_SIZE); 189 const struct kernfs_ops *ops; 190 char *buf; 191 192 buf = of->prealloc_buf; 193 if (!buf) 194 buf = kmalloc(len, GFP_KERNEL); 195 if (!buf) 196 return -ENOMEM; 197 198 /* 199 * @of->mutex nests outside active ref and is used both to ensure that 200 * the ops aren't called concurrently for the same open file, and 201 * to provide exclusive access to ->prealloc_buf (when that exists). 202 */ 203 mutex_lock(&of->mutex); 204 if (!kernfs_get_active(of->kn)) { 205 len = -ENODEV; 206 mutex_unlock(&of->mutex); 207 goto out_free; 208 } 209 210 of->event = atomic_read(&of->kn->attr.open->event); 211 ops = kernfs_ops(of->kn); 212 if (ops->read) 213 len = ops->read(of, buf, len, *ppos); 214 else 215 len = -EINVAL; 216 217 if (len < 0) 218 goto out_unlock; 219 220 if (copy_to_user(user_buf, buf, len)) { 221 len = -EFAULT; 222 goto out_unlock; 223 } 224 225 *ppos += len; 226 227 out_unlock: 228 kernfs_put_active(of->kn); 229 mutex_unlock(&of->mutex); 230 out_free: 231 if (buf != of->prealloc_buf) 232 kfree(buf); 233 return len; 234 } 235 236 /** 237 * kernfs_fop_read - kernfs vfs read callback 238 * @file: file pointer 239 * @user_buf: data to write 240 * @count: number of bytes 241 * @ppos: starting offset 242 */ 243 static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf, 244 size_t count, loff_t *ppos) 245 { 246 struct kernfs_open_file *of = kernfs_of(file); 247 248 if (of->kn->flags & KERNFS_HAS_SEQ_SHOW) 249 return seq_read(file, user_buf, count, ppos); 250 else 251 return kernfs_file_direct_read(of, user_buf, count, ppos); 252 } 253 254 /** 255 * kernfs_fop_write - kernfs vfs write callback 256 * @file: file pointer 257 * @user_buf: data to write 258 * @count: number of bytes 259 * @ppos: starting offset 260 * 261 * Copy data in from userland and pass it to the matching kernfs write 262 * operation. 263 * 264 * There is no easy way for us to know if userspace is only doing a partial 265 * write, so we don't support them. We expect the entire buffer to come on 266 * the first write. Hint: if you're writing a value, first read the file, 267 * modify only the the value you're changing, then write entire buffer 268 * back. 269 */ 270 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf, 271 size_t count, loff_t *ppos) 272 { 273 struct kernfs_open_file *of = kernfs_of(file); 274 const struct kernfs_ops *ops; 275 size_t len; 276 char *buf; 277 278 if (of->atomic_write_len) { 279 len = count; 280 if (len > of->atomic_write_len) 281 return -E2BIG; 282 } else { 283 len = min_t(size_t, count, PAGE_SIZE); 284 } 285 286 buf = of->prealloc_buf; 287 if (!buf) 288 buf = kmalloc(len + 1, GFP_KERNEL); 289 if (!buf) 290 return -ENOMEM; 291 292 /* 293 * @of->mutex nests outside active ref and is used both to ensure that 294 * the ops aren't called concurrently for the same open file, and 295 * to provide exclusive access to ->prealloc_buf (when that exists). 296 */ 297 mutex_lock(&of->mutex); 298 if (!kernfs_get_active(of->kn)) { 299 mutex_unlock(&of->mutex); 300 len = -ENODEV; 301 goto out_free; 302 } 303 304 if (copy_from_user(buf, user_buf, len)) { 305 len = -EFAULT; 306 goto out_unlock; 307 } 308 buf[len] = '\0'; /* guarantee string termination */ 309 310 ops = kernfs_ops(of->kn); 311 if (ops->write) 312 len = ops->write(of, buf, len, *ppos); 313 else 314 len = -EINVAL; 315 316 if (len > 0) 317 *ppos += len; 318 319 out_unlock: 320 kernfs_put_active(of->kn); 321 mutex_unlock(&of->mutex); 322 out_free: 323 if (buf != of->prealloc_buf) 324 kfree(buf); 325 return len; 326 } 327 328 static void kernfs_vma_open(struct vm_area_struct *vma) 329 { 330 struct file *file = vma->vm_file; 331 struct kernfs_open_file *of = kernfs_of(file); 332 333 if (!of->vm_ops) 334 return; 335 336 if (!kernfs_get_active(of->kn)) 337 return; 338 339 if (of->vm_ops->open) 340 of->vm_ops->open(vma); 341 342 kernfs_put_active(of->kn); 343 } 344 345 static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 346 { 347 struct file *file = vma->vm_file; 348 struct kernfs_open_file *of = kernfs_of(file); 349 int ret; 350 351 if (!of->vm_ops) 352 return VM_FAULT_SIGBUS; 353 354 if (!kernfs_get_active(of->kn)) 355 return VM_FAULT_SIGBUS; 356 357 ret = VM_FAULT_SIGBUS; 358 if (of->vm_ops->fault) 359 ret = of->vm_ops->fault(vma, vmf); 360 361 kernfs_put_active(of->kn); 362 return ret; 363 } 364 365 static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma, 366 struct vm_fault *vmf) 367 { 368 struct file *file = vma->vm_file; 369 struct kernfs_open_file *of = kernfs_of(file); 370 int ret; 371 372 if (!of->vm_ops) 373 return VM_FAULT_SIGBUS; 374 375 if (!kernfs_get_active(of->kn)) 376 return VM_FAULT_SIGBUS; 377 378 ret = 0; 379 if (of->vm_ops->page_mkwrite) 380 ret = of->vm_ops->page_mkwrite(vma, vmf); 381 else 382 file_update_time(file); 383 384 kernfs_put_active(of->kn); 385 return ret; 386 } 387 388 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr, 389 void *buf, int len, int write) 390 { 391 struct file *file = vma->vm_file; 392 struct kernfs_open_file *of = kernfs_of(file); 393 int ret; 394 395 if (!of->vm_ops) 396 return -EINVAL; 397 398 if (!kernfs_get_active(of->kn)) 399 return -EINVAL; 400 401 ret = -EINVAL; 402 if (of->vm_ops->access) 403 ret = of->vm_ops->access(vma, addr, buf, len, write); 404 405 kernfs_put_active(of->kn); 406 return ret; 407 } 408 409 #ifdef CONFIG_NUMA 410 static int kernfs_vma_set_policy(struct vm_area_struct *vma, 411 struct mempolicy *new) 412 { 413 struct file *file = vma->vm_file; 414 struct kernfs_open_file *of = kernfs_of(file); 415 int ret; 416 417 if (!of->vm_ops) 418 return 0; 419 420 if (!kernfs_get_active(of->kn)) 421 return -EINVAL; 422 423 ret = 0; 424 if (of->vm_ops->set_policy) 425 ret = of->vm_ops->set_policy(vma, new); 426 427 kernfs_put_active(of->kn); 428 return ret; 429 } 430 431 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma, 432 unsigned long addr) 433 { 434 struct file *file = vma->vm_file; 435 struct kernfs_open_file *of = kernfs_of(file); 436 struct mempolicy *pol; 437 438 if (!of->vm_ops) 439 return vma->vm_policy; 440 441 if (!kernfs_get_active(of->kn)) 442 return vma->vm_policy; 443 444 pol = vma->vm_policy; 445 if (of->vm_ops->get_policy) 446 pol = of->vm_ops->get_policy(vma, addr); 447 448 kernfs_put_active(of->kn); 449 return pol; 450 } 451 452 #endif 453 454 static const struct vm_operations_struct kernfs_vm_ops = { 455 .open = kernfs_vma_open, 456 .fault = kernfs_vma_fault, 457 .page_mkwrite = kernfs_vma_page_mkwrite, 458 .access = kernfs_vma_access, 459 #ifdef CONFIG_NUMA 460 .set_policy = kernfs_vma_set_policy, 461 .get_policy = kernfs_vma_get_policy, 462 #endif 463 }; 464 465 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma) 466 { 467 struct kernfs_open_file *of = kernfs_of(file); 468 const struct kernfs_ops *ops; 469 int rc; 470 471 /* 472 * mmap path and of->mutex are prone to triggering spurious lockdep 473 * warnings and we don't want to add spurious locking dependency 474 * between the two. Check whether mmap is actually implemented 475 * without grabbing @of->mutex by testing HAS_MMAP flag. See the 476 * comment in kernfs_file_open() for more details. 477 */ 478 if (!(of->kn->flags & KERNFS_HAS_MMAP)) 479 return -ENODEV; 480 481 mutex_lock(&of->mutex); 482 483 rc = -ENODEV; 484 if (!kernfs_get_active(of->kn)) 485 goto out_unlock; 486 487 ops = kernfs_ops(of->kn); 488 rc = ops->mmap(of, vma); 489 if (rc) 490 goto out_put; 491 492 /* 493 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup() 494 * to satisfy versions of X which crash if the mmap fails: that 495 * substitutes a new vm_file, and we don't then want bin_vm_ops. 496 */ 497 if (vma->vm_file != file) 498 goto out_put; 499 500 rc = -EINVAL; 501 if (of->mmapped && of->vm_ops != vma->vm_ops) 502 goto out_put; 503 504 /* 505 * It is not possible to successfully wrap close. 506 * So error if someone is trying to use close. 507 */ 508 rc = -EINVAL; 509 if (vma->vm_ops && vma->vm_ops->close) 510 goto out_put; 511 512 rc = 0; 513 of->mmapped = 1; 514 of->vm_ops = vma->vm_ops; 515 vma->vm_ops = &kernfs_vm_ops; 516 out_put: 517 kernfs_put_active(of->kn); 518 out_unlock: 519 mutex_unlock(&of->mutex); 520 521 return rc; 522 } 523 524 /** 525 * kernfs_get_open_node - get or create kernfs_open_node 526 * @kn: target kernfs_node 527 * @of: kernfs_open_file for this instance of open 528 * 529 * If @kn->attr.open exists, increment its reference count; otherwise, 530 * create one. @of is chained to the files list. 531 * 532 * LOCKING: 533 * Kernel thread context (may sleep). 534 * 535 * RETURNS: 536 * 0 on success, -errno on failure. 537 */ 538 static int kernfs_get_open_node(struct kernfs_node *kn, 539 struct kernfs_open_file *of) 540 { 541 struct kernfs_open_node *on, *new_on = NULL; 542 543 retry: 544 mutex_lock(&kernfs_open_file_mutex); 545 spin_lock_irq(&kernfs_open_node_lock); 546 547 if (!kn->attr.open && new_on) { 548 kn->attr.open = new_on; 549 new_on = NULL; 550 } 551 552 on = kn->attr.open; 553 if (on) { 554 atomic_inc(&on->refcnt); 555 list_add_tail(&of->list, &on->files); 556 } 557 558 spin_unlock_irq(&kernfs_open_node_lock); 559 mutex_unlock(&kernfs_open_file_mutex); 560 561 if (on) { 562 kfree(new_on); 563 return 0; 564 } 565 566 /* not there, initialize a new one and retry */ 567 new_on = kmalloc(sizeof(*new_on), GFP_KERNEL); 568 if (!new_on) 569 return -ENOMEM; 570 571 atomic_set(&new_on->refcnt, 0); 572 atomic_set(&new_on->event, 1); 573 init_waitqueue_head(&new_on->poll); 574 INIT_LIST_HEAD(&new_on->files); 575 goto retry; 576 } 577 578 /** 579 * kernfs_put_open_node - put kernfs_open_node 580 * @kn: target kernfs_nodet 581 * @of: associated kernfs_open_file 582 * 583 * Put @kn->attr.open and unlink @of from the files list. If 584 * reference count reaches zero, disassociate and free it. 585 * 586 * LOCKING: 587 * None. 588 */ 589 static void kernfs_put_open_node(struct kernfs_node *kn, 590 struct kernfs_open_file *of) 591 { 592 struct kernfs_open_node *on = kn->attr.open; 593 unsigned long flags; 594 595 mutex_lock(&kernfs_open_file_mutex); 596 spin_lock_irqsave(&kernfs_open_node_lock, flags); 597 598 if (of) 599 list_del(&of->list); 600 601 if (atomic_dec_and_test(&on->refcnt)) 602 kn->attr.open = NULL; 603 else 604 on = NULL; 605 606 spin_unlock_irqrestore(&kernfs_open_node_lock, flags); 607 mutex_unlock(&kernfs_open_file_mutex); 608 609 kfree(on); 610 } 611 612 static int kernfs_fop_open(struct inode *inode, struct file *file) 613 { 614 struct kernfs_node *kn = file->f_path.dentry->d_fsdata; 615 struct kernfs_root *root = kernfs_root(kn); 616 const struct kernfs_ops *ops; 617 struct kernfs_open_file *of; 618 bool has_read, has_write, has_mmap; 619 int error = -EACCES; 620 621 if (!kernfs_get_active(kn)) 622 return -ENODEV; 623 624 ops = kernfs_ops(kn); 625 626 has_read = ops->seq_show || ops->read || ops->mmap; 627 has_write = ops->write || ops->mmap; 628 has_mmap = ops->mmap; 629 630 /* see the flag definition for details */ 631 if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) { 632 if ((file->f_mode & FMODE_WRITE) && 633 (!(inode->i_mode & S_IWUGO) || !has_write)) 634 goto err_out; 635 636 if ((file->f_mode & FMODE_READ) && 637 (!(inode->i_mode & S_IRUGO) || !has_read)) 638 goto err_out; 639 } 640 641 /* allocate a kernfs_open_file for the file */ 642 error = -ENOMEM; 643 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL); 644 if (!of) 645 goto err_out; 646 647 /* 648 * The following is done to give a different lockdep key to 649 * @of->mutex for files which implement mmap. This is a rather 650 * crude way to avoid false positive lockdep warning around 651 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and 652 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under 653 * which mm->mmap_sem nests, while holding @of->mutex. As each 654 * open file has a separate mutex, it's okay as long as those don't 655 * happen on the same file. At this point, we can't easily give 656 * each file a separate locking class. Let's differentiate on 657 * whether the file has mmap or not for now. 658 * 659 * Both paths of the branch look the same. They're supposed to 660 * look that way and give @of->mutex different static lockdep keys. 661 */ 662 if (has_mmap) 663 mutex_init(&of->mutex); 664 else 665 mutex_init(&of->mutex); 666 667 of->kn = kn; 668 of->file = file; 669 670 /* 671 * Write path needs to atomic_write_len outside active reference. 672 * Cache it in open_file. See kernfs_fop_write() for details. 673 */ 674 of->atomic_write_len = ops->atomic_write_len; 675 676 error = -EINVAL; 677 /* 678 * ->seq_show is incompatible with ->prealloc, 679 * as seq_read does its own allocation. 680 * ->read must be used instead. 681 */ 682 if (ops->prealloc && ops->seq_show) 683 goto err_free; 684 if (ops->prealloc) { 685 int len = of->atomic_write_len ?: PAGE_SIZE; 686 of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL); 687 error = -ENOMEM; 688 if (!of->prealloc_buf) 689 goto err_free; 690 } 691 692 /* 693 * Always instantiate seq_file even if read access doesn't use 694 * seq_file or is not requested. This unifies private data access 695 * and readable regular files are the vast majority anyway. 696 */ 697 if (ops->seq_show) 698 error = seq_open(file, &kernfs_seq_ops); 699 else 700 error = seq_open(file, NULL); 701 if (error) 702 goto err_free; 703 704 ((struct seq_file *)file->private_data)->private = of; 705 706 /* seq_file clears PWRITE unconditionally, restore it if WRITE */ 707 if (file->f_mode & FMODE_WRITE) 708 file->f_mode |= FMODE_PWRITE; 709 710 /* make sure we have open node struct */ 711 error = kernfs_get_open_node(kn, of); 712 if (error) 713 goto err_close; 714 715 /* open succeeded, put active references */ 716 kernfs_put_active(kn); 717 return 0; 718 719 err_close: 720 seq_release(inode, file); 721 err_free: 722 kfree(of->prealloc_buf); 723 kfree(of); 724 err_out: 725 kernfs_put_active(kn); 726 return error; 727 } 728 729 static int kernfs_fop_release(struct inode *inode, struct file *filp) 730 { 731 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata; 732 struct kernfs_open_file *of = kernfs_of(filp); 733 734 kernfs_put_open_node(kn, of); 735 seq_release(inode, filp); 736 kfree(of->prealloc_buf); 737 kfree(of); 738 739 return 0; 740 } 741 742 void kernfs_unmap_bin_file(struct kernfs_node *kn) 743 { 744 struct kernfs_open_node *on; 745 struct kernfs_open_file *of; 746 747 if (!(kn->flags & KERNFS_HAS_MMAP)) 748 return; 749 750 spin_lock_irq(&kernfs_open_node_lock); 751 on = kn->attr.open; 752 if (on) 753 atomic_inc(&on->refcnt); 754 spin_unlock_irq(&kernfs_open_node_lock); 755 if (!on) 756 return; 757 758 mutex_lock(&kernfs_open_file_mutex); 759 list_for_each_entry(of, &on->files, list) { 760 struct inode *inode = file_inode(of->file); 761 unmap_mapping_range(inode->i_mapping, 0, 0, 1); 762 } 763 mutex_unlock(&kernfs_open_file_mutex); 764 765 kernfs_put_open_node(kn, NULL); 766 } 767 768 /* 769 * Kernfs attribute files are pollable. The idea is that you read 770 * the content and then you use 'poll' or 'select' to wait for 771 * the content to change. When the content changes (assuming the 772 * manager for the kobject supports notification), poll will 773 * return POLLERR|POLLPRI, and select will return the fd whether 774 * it is waiting for read, write, or exceptions. 775 * Once poll/select indicates that the value has changed, you 776 * need to close and re-open the file, or seek to 0 and read again. 777 * Reminder: this only works for attributes which actively support 778 * it, and it is not possible to test an attribute from userspace 779 * to see if it supports poll (Neither 'poll' nor 'select' return 780 * an appropriate error code). When in doubt, set a suitable timeout value. 781 */ 782 static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait) 783 { 784 struct kernfs_open_file *of = kernfs_of(filp); 785 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata; 786 struct kernfs_open_node *on = kn->attr.open; 787 788 /* need parent for the kobj, grab both */ 789 if (!kernfs_get_active(kn)) 790 goto trigger; 791 792 poll_wait(filp, &on->poll, wait); 793 794 kernfs_put_active(kn); 795 796 if (of->event != atomic_read(&on->event)) 797 goto trigger; 798 799 return DEFAULT_POLLMASK; 800 801 trigger: 802 return DEFAULT_POLLMASK|POLLERR|POLLPRI; 803 } 804 805 static void kernfs_notify_workfn(struct work_struct *work) 806 { 807 struct kernfs_node *kn; 808 struct kernfs_open_node *on; 809 struct kernfs_super_info *info; 810 repeat: 811 /* pop one off the notify_list */ 812 spin_lock_irq(&kernfs_notify_lock); 813 kn = kernfs_notify_list; 814 if (kn == KERNFS_NOTIFY_EOL) { 815 spin_unlock_irq(&kernfs_notify_lock); 816 return; 817 } 818 kernfs_notify_list = kn->attr.notify_next; 819 kn->attr.notify_next = NULL; 820 spin_unlock_irq(&kernfs_notify_lock); 821 822 /* kick poll */ 823 spin_lock_irq(&kernfs_open_node_lock); 824 825 on = kn->attr.open; 826 if (on) { 827 atomic_inc(&on->event); 828 wake_up_interruptible(&on->poll); 829 } 830 831 spin_unlock_irq(&kernfs_open_node_lock); 832 833 /* kick fsnotify */ 834 mutex_lock(&kernfs_mutex); 835 836 list_for_each_entry(info, &kernfs_root(kn)->supers, node) { 837 struct inode *inode; 838 struct dentry *dentry; 839 840 inode = ilookup(info->sb, kn->ino); 841 if (!inode) 842 continue; 843 844 dentry = d_find_any_alias(inode); 845 if (dentry) { 846 fsnotify_parent(NULL, dentry, FS_MODIFY); 847 fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE, 848 NULL, 0); 849 dput(dentry); 850 } 851 852 iput(inode); 853 } 854 855 mutex_unlock(&kernfs_mutex); 856 kernfs_put(kn); 857 goto repeat; 858 } 859 860 /** 861 * kernfs_notify - notify a kernfs file 862 * @kn: file to notify 863 * 864 * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any 865 * context. 866 */ 867 void kernfs_notify(struct kernfs_node *kn) 868 { 869 static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn); 870 unsigned long flags; 871 872 if (WARN_ON(kernfs_type(kn) != KERNFS_FILE)) 873 return; 874 875 spin_lock_irqsave(&kernfs_notify_lock, flags); 876 if (!kn->attr.notify_next) { 877 kernfs_get(kn); 878 kn->attr.notify_next = kernfs_notify_list; 879 kernfs_notify_list = kn; 880 schedule_work(&kernfs_notify_work); 881 } 882 spin_unlock_irqrestore(&kernfs_notify_lock, flags); 883 } 884 EXPORT_SYMBOL_GPL(kernfs_notify); 885 886 const struct file_operations kernfs_file_fops = { 887 .read = kernfs_fop_read, 888 .write = kernfs_fop_write, 889 .llseek = generic_file_llseek, 890 .mmap = kernfs_fop_mmap, 891 .open = kernfs_fop_open, 892 .release = kernfs_fop_release, 893 .poll = kernfs_fop_poll, 894 }; 895 896 /** 897 * __kernfs_create_file - kernfs internal function to create a file 898 * @parent: directory to create the file in 899 * @name: name of the file 900 * @mode: mode of the file 901 * @size: size of the file 902 * @ops: kernfs operations for the file 903 * @priv: private data for the file 904 * @ns: optional namespace tag of the file 905 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep 906 * 907 * Returns the created node on success, ERR_PTR() value on error. 908 */ 909 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent, 910 const char *name, 911 umode_t mode, loff_t size, 912 const struct kernfs_ops *ops, 913 void *priv, const void *ns, 914 struct lock_class_key *key) 915 { 916 struct kernfs_node *kn; 917 unsigned flags; 918 int rc; 919 920 flags = KERNFS_FILE; 921 922 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags); 923 if (!kn) 924 return ERR_PTR(-ENOMEM); 925 926 kn->attr.ops = ops; 927 kn->attr.size = size; 928 kn->ns = ns; 929 kn->priv = priv; 930 931 #ifdef CONFIG_DEBUG_LOCK_ALLOC 932 if (key) { 933 lockdep_init_map(&kn->dep_map, "s_active", key, 0); 934 kn->flags |= KERNFS_LOCKDEP; 935 } 936 #endif 937 938 /* 939 * kn->attr.ops is accesible only while holding active ref. We 940 * need to know whether some ops are implemented outside active 941 * ref. Cache their existence in flags. 942 */ 943 if (ops->seq_show) 944 kn->flags |= KERNFS_HAS_SEQ_SHOW; 945 if (ops->mmap) 946 kn->flags |= KERNFS_HAS_MMAP; 947 948 rc = kernfs_add_one(kn); 949 if (rc) { 950 kernfs_put(kn); 951 return ERR_PTR(rc); 952 } 953 return kn; 954 } 955