1 /* 2 * fs/kernfs/file.c - kernfs file implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/seq_file.h> 13 #include <linux/slab.h> 14 #include <linux/poll.h> 15 #include <linux/pagemap.h> 16 #include <linux/sched.h> 17 #include <linux/fsnotify.h> 18 19 #include "kernfs-internal.h" 20 21 /* 22 * There's one kernfs_open_file for each open file and one kernfs_open_node 23 * for each kernfs_node with one or more open files. 24 * 25 * kernfs_node->attr.open points to kernfs_open_node. attr.open is 26 * protected by kernfs_open_node_lock. 27 * 28 * filp->private_data points to seq_file whose ->private points to 29 * kernfs_open_file. kernfs_open_files are chained at 30 * kernfs_open_node->files, which is protected by kernfs_open_file_mutex. 31 */ 32 static DEFINE_SPINLOCK(kernfs_open_node_lock); 33 static DEFINE_MUTEX(kernfs_open_file_mutex); 34 35 struct kernfs_open_node { 36 atomic_t refcnt; 37 atomic_t event; 38 wait_queue_head_t poll; 39 struct list_head files; /* goes through kernfs_open_file.list */ 40 }; 41 42 /* 43 * kernfs_notify() may be called from any context and bounces notifications 44 * through a work item. To minimize space overhead in kernfs_node, the 45 * pending queue is implemented as a singly linked list of kernfs_nodes. 46 * The list is terminated with the self pointer so that whether a 47 * kernfs_node is on the list or not can be determined by testing the next 48 * pointer for NULL. 49 */ 50 #define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list) 51 52 static DEFINE_SPINLOCK(kernfs_notify_lock); 53 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL; 54 55 static struct kernfs_open_file *kernfs_of(struct file *file) 56 { 57 return ((struct seq_file *)file->private_data)->private; 58 } 59 60 /* 61 * Determine the kernfs_ops for the given kernfs_node. This function must 62 * be called while holding an active reference. 63 */ 64 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn) 65 { 66 if (kn->flags & KERNFS_LOCKDEP) 67 lockdep_assert_held(kn); 68 return kn->attr.ops; 69 } 70 71 /* 72 * As kernfs_seq_stop() is also called after kernfs_seq_start() or 73 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping 74 * a seq_file iteration which is fully initialized with an active reference 75 * or an aborted kernfs_seq_start() due to get_active failure. The 76 * position pointer is the only context for each seq_file iteration and 77 * thus the stop condition should be encoded in it. As the return value is 78 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable 79 * choice to indicate get_active failure. 80 * 81 * Unfortunately, this is complicated due to the optional custom seq_file 82 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop() 83 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or 84 * custom seq_file operations and thus can't decide whether put_active 85 * should be performed or not only on ERR_PTR(-ENODEV). 86 * 87 * This is worked around by factoring out the custom seq_stop() and 88 * put_active part into kernfs_seq_stop_active(), skipping it from 89 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after 90 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures 91 * that kernfs_seq_stop_active() is skipped only after get_active failure. 92 */ 93 static void kernfs_seq_stop_active(struct seq_file *sf, void *v) 94 { 95 struct kernfs_open_file *of = sf->private; 96 const struct kernfs_ops *ops = kernfs_ops(of->kn); 97 98 if (ops->seq_stop) 99 ops->seq_stop(sf, v); 100 kernfs_put_active(of->kn); 101 } 102 103 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos) 104 { 105 struct kernfs_open_file *of = sf->private; 106 const struct kernfs_ops *ops; 107 108 /* 109 * @of->mutex nests outside active ref and is just to ensure that 110 * the ops aren't called concurrently for the same open file. 111 */ 112 mutex_lock(&of->mutex); 113 if (!kernfs_get_active(of->kn)) 114 return ERR_PTR(-ENODEV); 115 116 ops = kernfs_ops(of->kn); 117 if (ops->seq_start) { 118 void *next = ops->seq_start(sf, ppos); 119 /* see the comment above kernfs_seq_stop_active() */ 120 if (next == ERR_PTR(-ENODEV)) 121 kernfs_seq_stop_active(sf, next); 122 return next; 123 } else { 124 /* 125 * The same behavior and code as single_open(). Returns 126 * !NULL if pos is at the beginning; otherwise, NULL. 127 */ 128 return NULL + !*ppos; 129 } 130 } 131 132 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos) 133 { 134 struct kernfs_open_file *of = sf->private; 135 const struct kernfs_ops *ops = kernfs_ops(of->kn); 136 137 if (ops->seq_next) { 138 void *next = ops->seq_next(sf, v, ppos); 139 /* see the comment above kernfs_seq_stop_active() */ 140 if (next == ERR_PTR(-ENODEV)) 141 kernfs_seq_stop_active(sf, next); 142 return next; 143 } else { 144 /* 145 * The same behavior and code as single_open(), always 146 * terminate after the initial read. 147 */ 148 ++*ppos; 149 return NULL; 150 } 151 } 152 153 static void kernfs_seq_stop(struct seq_file *sf, void *v) 154 { 155 struct kernfs_open_file *of = sf->private; 156 157 if (v != ERR_PTR(-ENODEV)) 158 kernfs_seq_stop_active(sf, v); 159 mutex_unlock(&of->mutex); 160 } 161 162 static int kernfs_seq_show(struct seq_file *sf, void *v) 163 { 164 struct kernfs_open_file *of = sf->private; 165 166 of->event = atomic_read(&of->kn->attr.open->event); 167 168 return of->kn->attr.ops->seq_show(sf, v); 169 } 170 171 static const struct seq_operations kernfs_seq_ops = { 172 .start = kernfs_seq_start, 173 .next = kernfs_seq_next, 174 .stop = kernfs_seq_stop, 175 .show = kernfs_seq_show, 176 }; 177 178 /* 179 * As reading a bin file can have side-effects, the exact offset and bytes 180 * specified in read(2) call should be passed to the read callback making 181 * it difficult to use seq_file. Implement simplistic custom buffering for 182 * bin files. 183 */ 184 static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of, 185 char __user *user_buf, size_t count, 186 loff_t *ppos) 187 { 188 ssize_t len = min_t(size_t, count, PAGE_SIZE); 189 const struct kernfs_ops *ops; 190 char *buf; 191 192 buf = kmalloc(len, GFP_KERNEL); 193 if (!buf) 194 return -ENOMEM; 195 196 /* 197 * @of->mutex nests outside active ref and is just to ensure that 198 * the ops aren't called concurrently for the same open file. 199 */ 200 mutex_lock(&of->mutex); 201 if (!kernfs_get_active(of->kn)) { 202 len = -ENODEV; 203 mutex_unlock(&of->mutex); 204 goto out_free; 205 } 206 207 ops = kernfs_ops(of->kn); 208 if (ops->read) 209 len = ops->read(of, buf, len, *ppos); 210 else 211 len = -EINVAL; 212 213 kernfs_put_active(of->kn); 214 mutex_unlock(&of->mutex); 215 216 if (len < 0) 217 goto out_free; 218 219 if (copy_to_user(user_buf, buf, len)) { 220 len = -EFAULT; 221 goto out_free; 222 } 223 224 *ppos += len; 225 226 out_free: 227 kfree(buf); 228 return len; 229 } 230 231 /** 232 * kernfs_fop_read - kernfs vfs read callback 233 * @file: file pointer 234 * @user_buf: data to write 235 * @count: number of bytes 236 * @ppos: starting offset 237 */ 238 static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf, 239 size_t count, loff_t *ppos) 240 { 241 struct kernfs_open_file *of = kernfs_of(file); 242 243 if (of->kn->flags & KERNFS_HAS_SEQ_SHOW) 244 return seq_read(file, user_buf, count, ppos); 245 else 246 return kernfs_file_direct_read(of, user_buf, count, ppos); 247 } 248 249 /** 250 * kernfs_fop_write - kernfs vfs write callback 251 * @file: file pointer 252 * @user_buf: data to write 253 * @count: number of bytes 254 * @ppos: starting offset 255 * 256 * Copy data in from userland and pass it to the matching kernfs write 257 * operation. 258 * 259 * There is no easy way for us to know if userspace is only doing a partial 260 * write, so we don't support them. We expect the entire buffer to come on 261 * the first write. Hint: if you're writing a value, first read the file, 262 * modify only the the value you're changing, then write entire buffer 263 * back. 264 */ 265 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf, 266 size_t count, loff_t *ppos) 267 { 268 struct kernfs_open_file *of = kernfs_of(file); 269 const struct kernfs_ops *ops; 270 size_t len; 271 char *buf; 272 273 if (of->atomic_write_len) { 274 len = count; 275 if (len > of->atomic_write_len) 276 return -E2BIG; 277 } else { 278 len = min_t(size_t, count, PAGE_SIZE); 279 } 280 281 buf = kmalloc(len + 1, GFP_KERNEL); 282 if (!buf) 283 return -ENOMEM; 284 285 if (copy_from_user(buf, user_buf, len)) { 286 len = -EFAULT; 287 goto out_free; 288 } 289 buf[len] = '\0'; /* guarantee string termination */ 290 291 /* 292 * @of->mutex nests outside active ref and is just to ensure that 293 * the ops aren't called concurrently for the same open file. 294 */ 295 mutex_lock(&of->mutex); 296 if (!kernfs_get_active(of->kn)) { 297 mutex_unlock(&of->mutex); 298 len = -ENODEV; 299 goto out_free; 300 } 301 302 ops = kernfs_ops(of->kn); 303 if (ops->write) 304 len = ops->write(of, buf, len, *ppos); 305 else 306 len = -EINVAL; 307 308 kernfs_put_active(of->kn); 309 mutex_unlock(&of->mutex); 310 311 if (len > 0) 312 *ppos += len; 313 out_free: 314 kfree(buf); 315 return len; 316 } 317 318 static void kernfs_vma_open(struct vm_area_struct *vma) 319 { 320 struct file *file = vma->vm_file; 321 struct kernfs_open_file *of = kernfs_of(file); 322 323 if (!of->vm_ops) 324 return; 325 326 if (!kernfs_get_active(of->kn)) 327 return; 328 329 if (of->vm_ops->open) 330 of->vm_ops->open(vma); 331 332 kernfs_put_active(of->kn); 333 } 334 335 static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 336 { 337 struct file *file = vma->vm_file; 338 struct kernfs_open_file *of = kernfs_of(file); 339 int ret; 340 341 if (!of->vm_ops) 342 return VM_FAULT_SIGBUS; 343 344 if (!kernfs_get_active(of->kn)) 345 return VM_FAULT_SIGBUS; 346 347 ret = VM_FAULT_SIGBUS; 348 if (of->vm_ops->fault) 349 ret = of->vm_ops->fault(vma, vmf); 350 351 kernfs_put_active(of->kn); 352 return ret; 353 } 354 355 static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma, 356 struct vm_fault *vmf) 357 { 358 struct file *file = vma->vm_file; 359 struct kernfs_open_file *of = kernfs_of(file); 360 int ret; 361 362 if (!of->vm_ops) 363 return VM_FAULT_SIGBUS; 364 365 if (!kernfs_get_active(of->kn)) 366 return VM_FAULT_SIGBUS; 367 368 ret = 0; 369 if (of->vm_ops->page_mkwrite) 370 ret = of->vm_ops->page_mkwrite(vma, vmf); 371 else 372 file_update_time(file); 373 374 kernfs_put_active(of->kn); 375 return ret; 376 } 377 378 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr, 379 void *buf, int len, int write) 380 { 381 struct file *file = vma->vm_file; 382 struct kernfs_open_file *of = kernfs_of(file); 383 int ret; 384 385 if (!of->vm_ops) 386 return -EINVAL; 387 388 if (!kernfs_get_active(of->kn)) 389 return -EINVAL; 390 391 ret = -EINVAL; 392 if (of->vm_ops->access) 393 ret = of->vm_ops->access(vma, addr, buf, len, write); 394 395 kernfs_put_active(of->kn); 396 return ret; 397 } 398 399 #ifdef CONFIG_NUMA 400 static int kernfs_vma_set_policy(struct vm_area_struct *vma, 401 struct mempolicy *new) 402 { 403 struct file *file = vma->vm_file; 404 struct kernfs_open_file *of = kernfs_of(file); 405 int ret; 406 407 if (!of->vm_ops) 408 return 0; 409 410 if (!kernfs_get_active(of->kn)) 411 return -EINVAL; 412 413 ret = 0; 414 if (of->vm_ops->set_policy) 415 ret = of->vm_ops->set_policy(vma, new); 416 417 kernfs_put_active(of->kn); 418 return ret; 419 } 420 421 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma, 422 unsigned long addr) 423 { 424 struct file *file = vma->vm_file; 425 struct kernfs_open_file *of = kernfs_of(file); 426 struct mempolicy *pol; 427 428 if (!of->vm_ops) 429 return vma->vm_policy; 430 431 if (!kernfs_get_active(of->kn)) 432 return vma->vm_policy; 433 434 pol = vma->vm_policy; 435 if (of->vm_ops->get_policy) 436 pol = of->vm_ops->get_policy(vma, addr); 437 438 kernfs_put_active(of->kn); 439 return pol; 440 } 441 442 static int kernfs_vma_migrate(struct vm_area_struct *vma, 443 const nodemask_t *from, const nodemask_t *to, 444 unsigned long flags) 445 { 446 struct file *file = vma->vm_file; 447 struct kernfs_open_file *of = kernfs_of(file); 448 int ret; 449 450 if (!of->vm_ops) 451 return 0; 452 453 if (!kernfs_get_active(of->kn)) 454 return 0; 455 456 ret = 0; 457 if (of->vm_ops->migrate) 458 ret = of->vm_ops->migrate(vma, from, to, flags); 459 460 kernfs_put_active(of->kn); 461 return ret; 462 } 463 #endif 464 465 static const struct vm_operations_struct kernfs_vm_ops = { 466 .open = kernfs_vma_open, 467 .fault = kernfs_vma_fault, 468 .page_mkwrite = kernfs_vma_page_mkwrite, 469 .access = kernfs_vma_access, 470 #ifdef CONFIG_NUMA 471 .set_policy = kernfs_vma_set_policy, 472 .get_policy = kernfs_vma_get_policy, 473 .migrate = kernfs_vma_migrate, 474 #endif 475 }; 476 477 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma) 478 { 479 struct kernfs_open_file *of = kernfs_of(file); 480 const struct kernfs_ops *ops; 481 int rc; 482 483 /* 484 * mmap path and of->mutex are prone to triggering spurious lockdep 485 * warnings and we don't want to add spurious locking dependency 486 * between the two. Check whether mmap is actually implemented 487 * without grabbing @of->mutex by testing HAS_MMAP flag. See the 488 * comment in kernfs_file_open() for more details. 489 */ 490 if (!(of->kn->flags & KERNFS_HAS_MMAP)) 491 return -ENODEV; 492 493 mutex_lock(&of->mutex); 494 495 rc = -ENODEV; 496 if (!kernfs_get_active(of->kn)) 497 goto out_unlock; 498 499 ops = kernfs_ops(of->kn); 500 rc = ops->mmap(of, vma); 501 if (rc) 502 goto out_put; 503 504 /* 505 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup() 506 * to satisfy versions of X which crash if the mmap fails: that 507 * substitutes a new vm_file, and we don't then want bin_vm_ops. 508 */ 509 if (vma->vm_file != file) 510 goto out_put; 511 512 rc = -EINVAL; 513 if (of->mmapped && of->vm_ops != vma->vm_ops) 514 goto out_put; 515 516 /* 517 * It is not possible to successfully wrap close. 518 * So error if someone is trying to use close. 519 */ 520 rc = -EINVAL; 521 if (vma->vm_ops && vma->vm_ops->close) 522 goto out_put; 523 524 rc = 0; 525 of->mmapped = 1; 526 of->vm_ops = vma->vm_ops; 527 vma->vm_ops = &kernfs_vm_ops; 528 out_put: 529 kernfs_put_active(of->kn); 530 out_unlock: 531 mutex_unlock(&of->mutex); 532 533 return rc; 534 } 535 536 /** 537 * kernfs_get_open_node - get or create kernfs_open_node 538 * @kn: target kernfs_node 539 * @of: kernfs_open_file for this instance of open 540 * 541 * If @kn->attr.open exists, increment its reference count; otherwise, 542 * create one. @of is chained to the files list. 543 * 544 * LOCKING: 545 * Kernel thread context (may sleep). 546 * 547 * RETURNS: 548 * 0 on success, -errno on failure. 549 */ 550 static int kernfs_get_open_node(struct kernfs_node *kn, 551 struct kernfs_open_file *of) 552 { 553 struct kernfs_open_node *on, *new_on = NULL; 554 555 retry: 556 mutex_lock(&kernfs_open_file_mutex); 557 spin_lock_irq(&kernfs_open_node_lock); 558 559 if (!kn->attr.open && new_on) { 560 kn->attr.open = new_on; 561 new_on = NULL; 562 } 563 564 on = kn->attr.open; 565 if (on) { 566 atomic_inc(&on->refcnt); 567 list_add_tail(&of->list, &on->files); 568 } 569 570 spin_unlock_irq(&kernfs_open_node_lock); 571 mutex_unlock(&kernfs_open_file_mutex); 572 573 if (on) { 574 kfree(new_on); 575 return 0; 576 } 577 578 /* not there, initialize a new one and retry */ 579 new_on = kmalloc(sizeof(*new_on), GFP_KERNEL); 580 if (!new_on) 581 return -ENOMEM; 582 583 atomic_set(&new_on->refcnt, 0); 584 atomic_set(&new_on->event, 1); 585 init_waitqueue_head(&new_on->poll); 586 INIT_LIST_HEAD(&new_on->files); 587 goto retry; 588 } 589 590 /** 591 * kernfs_put_open_node - put kernfs_open_node 592 * @kn: target kernfs_nodet 593 * @of: associated kernfs_open_file 594 * 595 * Put @kn->attr.open and unlink @of from the files list. If 596 * reference count reaches zero, disassociate and free it. 597 * 598 * LOCKING: 599 * None. 600 */ 601 static void kernfs_put_open_node(struct kernfs_node *kn, 602 struct kernfs_open_file *of) 603 { 604 struct kernfs_open_node *on = kn->attr.open; 605 unsigned long flags; 606 607 mutex_lock(&kernfs_open_file_mutex); 608 spin_lock_irqsave(&kernfs_open_node_lock, flags); 609 610 if (of) 611 list_del(&of->list); 612 613 if (atomic_dec_and_test(&on->refcnt)) 614 kn->attr.open = NULL; 615 else 616 on = NULL; 617 618 spin_unlock_irqrestore(&kernfs_open_node_lock, flags); 619 mutex_unlock(&kernfs_open_file_mutex); 620 621 kfree(on); 622 } 623 624 static int kernfs_fop_open(struct inode *inode, struct file *file) 625 { 626 struct kernfs_node *kn = file->f_path.dentry->d_fsdata; 627 struct kernfs_root *root = kernfs_root(kn); 628 const struct kernfs_ops *ops; 629 struct kernfs_open_file *of; 630 bool has_read, has_write, has_mmap; 631 int error = -EACCES; 632 633 if (!kernfs_get_active(kn)) 634 return -ENODEV; 635 636 ops = kernfs_ops(kn); 637 638 has_read = ops->seq_show || ops->read || ops->mmap; 639 has_write = ops->write || ops->mmap; 640 has_mmap = ops->mmap; 641 642 /* see the flag definition for details */ 643 if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) { 644 if ((file->f_mode & FMODE_WRITE) && 645 (!(inode->i_mode & S_IWUGO) || !has_write)) 646 goto err_out; 647 648 if ((file->f_mode & FMODE_READ) && 649 (!(inode->i_mode & S_IRUGO) || !has_read)) 650 goto err_out; 651 } 652 653 /* allocate a kernfs_open_file for the file */ 654 error = -ENOMEM; 655 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL); 656 if (!of) 657 goto err_out; 658 659 /* 660 * The following is done to give a different lockdep key to 661 * @of->mutex for files which implement mmap. This is a rather 662 * crude way to avoid false positive lockdep warning around 663 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and 664 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under 665 * which mm->mmap_sem nests, while holding @of->mutex. As each 666 * open file has a separate mutex, it's okay as long as those don't 667 * happen on the same file. At this point, we can't easily give 668 * each file a separate locking class. Let's differentiate on 669 * whether the file has mmap or not for now. 670 * 671 * Both paths of the branch look the same. They're supposed to 672 * look that way and give @of->mutex different static lockdep keys. 673 */ 674 if (has_mmap) 675 mutex_init(&of->mutex); 676 else 677 mutex_init(&of->mutex); 678 679 of->kn = kn; 680 of->file = file; 681 682 /* 683 * Write path needs to atomic_write_len outside active reference. 684 * Cache it in open_file. See kernfs_fop_write() for details. 685 */ 686 of->atomic_write_len = ops->atomic_write_len; 687 688 /* 689 * Always instantiate seq_file even if read access doesn't use 690 * seq_file or is not requested. This unifies private data access 691 * and readable regular files are the vast majority anyway. 692 */ 693 if (ops->seq_show) 694 error = seq_open(file, &kernfs_seq_ops); 695 else 696 error = seq_open(file, NULL); 697 if (error) 698 goto err_free; 699 700 ((struct seq_file *)file->private_data)->private = of; 701 702 /* seq_file clears PWRITE unconditionally, restore it if WRITE */ 703 if (file->f_mode & FMODE_WRITE) 704 file->f_mode |= FMODE_PWRITE; 705 706 /* make sure we have open node struct */ 707 error = kernfs_get_open_node(kn, of); 708 if (error) 709 goto err_close; 710 711 /* open succeeded, put active references */ 712 kernfs_put_active(kn); 713 return 0; 714 715 err_close: 716 seq_release(inode, file); 717 err_free: 718 kfree(of); 719 err_out: 720 kernfs_put_active(kn); 721 return error; 722 } 723 724 static int kernfs_fop_release(struct inode *inode, struct file *filp) 725 { 726 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata; 727 struct kernfs_open_file *of = kernfs_of(filp); 728 729 kernfs_put_open_node(kn, of); 730 seq_release(inode, filp); 731 kfree(of); 732 733 return 0; 734 } 735 736 void kernfs_unmap_bin_file(struct kernfs_node *kn) 737 { 738 struct kernfs_open_node *on; 739 struct kernfs_open_file *of; 740 741 if (!(kn->flags & KERNFS_HAS_MMAP)) 742 return; 743 744 spin_lock_irq(&kernfs_open_node_lock); 745 on = kn->attr.open; 746 if (on) 747 atomic_inc(&on->refcnt); 748 spin_unlock_irq(&kernfs_open_node_lock); 749 if (!on) 750 return; 751 752 mutex_lock(&kernfs_open_file_mutex); 753 list_for_each_entry(of, &on->files, list) { 754 struct inode *inode = file_inode(of->file); 755 unmap_mapping_range(inode->i_mapping, 0, 0, 1); 756 } 757 mutex_unlock(&kernfs_open_file_mutex); 758 759 kernfs_put_open_node(kn, NULL); 760 } 761 762 /* 763 * Kernfs attribute files are pollable. The idea is that you read 764 * the content and then you use 'poll' or 'select' to wait for 765 * the content to change. When the content changes (assuming the 766 * manager for the kobject supports notification), poll will 767 * return POLLERR|POLLPRI, and select will return the fd whether 768 * it is waiting for read, write, or exceptions. 769 * Once poll/select indicates that the value has changed, you 770 * need to close and re-open the file, or seek to 0 and read again. 771 * Reminder: this only works for attributes which actively support 772 * it, and it is not possible to test an attribute from userspace 773 * to see if it supports poll (Neither 'poll' nor 'select' return 774 * an appropriate error code). When in doubt, set a suitable timeout value. 775 */ 776 static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait) 777 { 778 struct kernfs_open_file *of = kernfs_of(filp); 779 struct kernfs_node *kn = filp->f_path.dentry->d_fsdata; 780 struct kernfs_open_node *on = kn->attr.open; 781 782 /* need parent for the kobj, grab both */ 783 if (!kernfs_get_active(kn)) 784 goto trigger; 785 786 poll_wait(filp, &on->poll, wait); 787 788 kernfs_put_active(kn); 789 790 if (of->event != atomic_read(&on->event)) 791 goto trigger; 792 793 return DEFAULT_POLLMASK; 794 795 trigger: 796 return DEFAULT_POLLMASK|POLLERR|POLLPRI; 797 } 798 799 static void kernfs_notify_workfn(struct work_struct *work) 800 { 801 struct kernfs_node *kn; 802 struct kernfs_open_node *on; 803 struct kernfs_super_info *info; 804 repeat: 805 /* pop one off the notify_list */ 806 spin_lock_irq(&kernfs_notify_lock); 807 kn = kernfs_notify_list; 808 if (kn == KERNFS_NOTIFY_EOL) { 809 spin_unlock_irq(&kernfs_notify_lock); 810 return; 811 } 812 kernfs_notify_list = kn->attr.notify_next; 813 kn->attr.notify_next = NULL; 814 spin_unlock_irq(&kernfs_notify_lock); 815 816 /* kick poll */ 817 spin_lock_irq(&kernfs_open_node_lock); 818 819 on = kn->attr.open; 820 if (on) { 821 atomic_inc(&on->event); 822 wake_up_interruptible(&on->poll); 823 } 824 825 spin_unlock_irq(&kernfs_open_node_lock); 826 827 /* kick fsnotify */ 828 mutex_lock(&kernfs_mutex); 829 830 list_for_each_entry(info, &kernfs_root(kn)->supers, node) { 831 struct inode *inode; 832 struct dentry *dentry; 833 834 inode = ilookup(info->sb, kn->ino); 835 if (!inode) 836 continue; 837 838 dentry = d_find_any_alias(inode); 839 if (dentry) { 840 fsnotify_parent(NULL, dentry, FS_MODIFY); 841 fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE, 842 NULL, 0); 843 dput(dentry); 844 } 845 846 iput(inode); 847 } 848 849 mutex_unlock(&kernfs_mutex); 850 kernfs_put(kn); 851 goto repeat; 852 } 853 854 /** 855 * kernfs_notify - notify a kernfs file 856 * @kn: file to notify 857 * 858 * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any 859 * context. 860 */ 861 void kernfs_notify(struct kernfs_node *kn) 862 { 863 static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn); 864 unsigned long flags; 865 866 if (WARN_ON(kernfs_type(kn) != KERNFS_FILE)) 867 return; 868 869 spin_lock_irqsave(&kernfs_notify_lock, flags); 870 if (!kn->attr.notify_next) { 871 kernfs_get(kn); 872 kn->attr.notify_next = kernfs_notify_list; 873 kernfs_notify_list = kn; 874 schedule_work(&kernfs_notify_work); 875 } 876 spin_unlock_irqrestore(&kernfs_notify_lock, flags); 877 } 878 EXPORT_SYMBOL_GPL(kernfs_notify); 879 880 const struct file_operations kernfs_file_fops = { 881 .read = kernfs_fop_read, 882 .write = kernfs_fop_write, 883 .llseek = generic_file_llseek, 884 .mmap = kernfs_fop_mmap, 885 .open = kernfs_fop_open, 886 .release = kernfs_fop_release, 887 .poll = kernfs_fop_poll, 888 }; 889 890 /** 891 * __kernfs_create_file - kernfs internal function to create a file 892 * @parent: directory to create the file in 893 * @name: name of the file 894 * @mode: mode of the file 895 * @size: size of the file 896 * @ops: kernfs operations for the file 897 * @priv: private data for the file 898 * @ns: optional namespace tag of the file 899 * @static_name: don't copy file name 900 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep 901 * 902 * Returns the created node on success, ERR_PTR() value on error. 903 */ 904 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent, 905 const char *name, 906 umode_t mode, loff_t size, 907 const struct kernfs_ops *ops, 908 void *priv, const void *ns, 909 bool name_is_static, 910 struct lock_class_key *key) 911 { 912 struct kernfs_node *kn; 913 unsigned flags; 914 int rc; 915 916 flags = KERNFS_FILE; 917 if (name_is_static) 918 flags |= KERNFS_STATIC_NAME; 919 920 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags); 921 if (!kn) 922 return ERR_PTR(-ENOMEM); 923 924 kn->attr.ops = ops; 925 kn->attr.size = size; 926 kn->ns = ns; 927 kn->priv = priv; 928 929 #ifdef CONFIG_DEBUG_LOCK_ALLOC 930 if (key) { 931 lockdep_init_map(&kn->dep_map, "s_active", key, 0); 932 kn->flags |= KERNFS_LOCKDEP; 933 } 934 #endif 935 936 /* 937 * kn->attr.ops is accesible only while holding active ref. We 938 * need to know whether some ops are implemented outside active 939 * ref. Cache their existence in flags. 940 */ 941 if (ops->seq_show) 942 kn->flags |= KERNFS_HAS_SEQ_SHOW; 943 if (ops->mmap) 944 kn->flags |= KERNFS_HAS_MMAP; 945 946 rc = kernfs_add_one(kn); 947 if (rc) { 948 kernfs_put(kn); 949 return ERR_PTR(rc); 950 } 951 return kn; 952 } 953