xref: /openbmc/linux/fs/kernfs/file.c (revision 3932b9ca)
1 /*
2  * fs/kernfs/file.c - kernfs file implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/poll.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/fsnotify.h>
18 
19 #include "kernfs-internal.h"
20 
21 /*
22  * There's one kernfs_open_file for each open file and one kernfs_open_node
23  * for each kernfs_node with one or more open files.
24  *
25  * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
26  * protected by kernfs_open_node_lock.
27  *
28  * filp->private_data points to seq_file whose ->private points to
29  * kernfs_open_file.  kernfs_open_files are chained at
30  * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31  */
32 static DEFINE_SPINLOCK(kernfs_open_node_lock);
33 static DEFINE_MUTEX(kernfs_open_file_mutex);
34 
35 struct kernfs_open_node {
36 	atomic_t		refcnt;
37 	atomic_t		event;
38 	wait_queue_head_t	poll;
39 	struct list_head	files; /* goes through kernfs_open_file.list */
40 };
41 
42 /*
43  * kernfs_notify() may be called from any context and bounces notifications
44  * through a work item.  To minimize space overhead in kernfs_node, the
45  * pending queue is implemented as a singly linked list of kernfs_nodes.
46  * The list is terminated with the self pointer so that whether a
47  * kernfs_node is on the list or not can be determined by testing the next
48  * pointer for NULL.
49  */
50 #define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
51 
52 static DEFINE_SPINLOCK(kernfs_notify_lock);
53 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
54 
55 static struct kernfs_open_file *kernfs_of(struct file *file)
56 {
57 	return ((struct seq_file *)file->private_data)->private;
58 }
59 
60 /*
61  * Determine the kernfs_ops for the given kernfs_node.  This function must
62  * be called while holding an active reference.
63  */
64 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
65 {
66 	if (kn->flags & KERNFS_LOCKDEP)
67 		lockdep_assert_held(kn);
68 	return kn->attr.ops;
69 }
70 
71 /*
72  * As kernfs_seq_stop() is also called after kernfs_seq_start() or
73  * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
74  * a seq_file iteration which is fully initialized with an active reference
75  * or an aborted kernfs_seq_start() due to get_active failure.  The
76  * position pointer is the only context for each seq_file iteration and
77  * thus the stop condition should be encoded in it.  As the return value is
78  * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
79  * choice to indicate get_active failure.
80  *
81  * Unfortunately, this is complicated due to the optional custom seq_file
82  * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
83  * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
84  * custom seq_file operations and thus can't decide whether put_active
85  * should be performed or not only on ERR_PTR(-ENODEV).
86  *
87  * This is worked around by factoring out the custom seq_stop() and
88  * put_active part into kernfs_seq_stop_active(), skipping it from
89  * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
90  * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
91  * that kernfs_seq_stop_active() is skipped only after get_active failure.
92  */
93 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
94 {
95 	struct kernfs_open_file *of = sf->private;
96 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
97 
98 	if (ops->seq_stop)
99 		ops->seq_stop(sf, v);
100 	kernfs_put_active(of->kn);
101 }
102 
103 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104 {
105 	struct kernfs_open_file *of = sf->private;
106 	const struct kernfs_ops *ops;
107 
108 	/*
109 	 * @of->mutex nests outside active ref and is just to ensure that
110 	 * the ops aren't called concurrently for the same open file.
111 	 */
112 	mutex_lock(&of->mutex);
113 	if (!kernfs_get_active(of->kn))
114 		return ERR_PTR(-ENODEV);
115 
116 	ops = kernfs_ops(of->kn);
117 	if (ops->seq_start) {
118 		void *next = ops->seq_start(sf, ppos);
119 		/* see the comment above kernfs_seq_stop_active() */
120 		if (next == ERR_PTR(-ENODEV))
121 			kernfs_seq_stop_active(sf, next);
122 		return next;
123 	} else {
124 		/*
125 		 * The same behavior and code as single_open().  Returns
126 		 * !NULL if pos is at the beginning; otherwise, NULL.
127 		 */
128 		return NULL + !*ppos;
129 	}
130 }
131 
132 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133 {
134 	struct kernfs_open_file *of = sf->private;
135 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
136 
137 	if (ops->seq_next) {
138 		void *next = ops->seq_next(sf, v, ppos);
139 		/* see the comment above kernfs_seq_stop_active() */
140 		if (next == ERR_PTR(-ENODEV))
141 			kernfs_seq_stop_active(sf, next);
142 		return next;
143 	} else {
144 		/*
145 		 * The same behavior and code as single_open(), always
146 		 * terminate after the initial read.
147 		 */
148 		++*ppos;
149 		return NULL;
150 	}
151 }
152 
153 static void kernfs_seq_stop(struct seq_file *sf, void *v)
154 {
155 	struct kernfs_open_file *of = sf->private;
156 
157 	if (v != ERR_PTR(-ENODEV))
158 		kernfs_seq_stop_active(sf, v);
159 	mutex_unlock(&of->mutex);
160 }
161 
162 static int kernfs_seq_show(struct seq_file *sf, void *v)
163 {
164 	struct kernfs_open_file *of = sf->private;
165 
166 	of->event = atomic_read(&of->kn->attr.open->event);
167 
168 	return of->kn->attr.ops->seq_show(sf, v);
169 }
170 
171 static const struct seq_operations kernfs_seq_ops = {
172 	.start = kernfs_seq_start,
173 	.next = kernfs_seq_next,
174 	.stop = kernfs_seq_stop,
175 	.show = kernfs_seq_show,
176 };
177 
178 /*
179  * As reading a bin file can have side-effects, the exact offset and bytes
180  * specified in read(2) call should be passed to the read callback making
181  * it difficult to use seq_file.  Implement simplistic custom buffering for
182  * bin files.
183  */
184 static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
185 				       char __user *user_buf, size_t count,
186 				       loff_t *ppos)
187 {
188 	ssize_t len = min_t(size_t, count, PAGE_SIZE);
189 	const struct kernfs_ops *ops;
190 	char *buf;
191 
192 	buf = kmalloc(len, GFP_KERNEL);
193 	if (!buf)
194 		return -ENOMEM;
195 
196 	/*
197 	 * @of->mutex nests outside active ref and is just to ensure that
198 	 * the ops aren't called concurrently for the same open file.
199 	 */
200 	mutex_lock(&of->mutex);
201 	if (!kernfs_get_active(of->kn)) {
202 		len = -ENODEV;
203 		mutex_unlock(&of->mutex);
204 		goto out_free;
205 	}
206 
207 	ops = kernfs_ops(of->kn);
208 	if (ops->read)
209 		len = ops->read(of, buf, len, *ppos);
210 	else
211 		len = -EINVAL;
212 
213 	kernfs_put_active(of->kn);
214 	mutex_unlock(&of->mutex);
215 
216 	if (len < 0)
217 		goto out_free;
218 
219 	if (copy_to_user(user_buf, buf, len)) {
220 		len = -EFAULT;
221 		goto out_free;
222 	}
223 
224 	*ppos += len;
225 
226  out_free:
227 	kfree(buf);
228 	return len;
229 }
230 
231 /**
232  * kernfs_fop_read - kernfs vfs read callback
233  * @file: file pointer
234  * @user_buf: data to write
235  * @count: number of bytes
236  * @ppos: starting offset
237  */
238 static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
239 			       size_t count, loff_t *ppos)
240 {
241 	struct kernfs_open_file *of = kernfs_of(file);
242 
243 	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
244 		return seq_read(file, user_buf, count, ppos);
245 	else
246 		return kernfs_file_direct_read(of, user_buf, count, ppos);
247 }
248 
249 /**
250  * kernfs_fop_write - kernfs vfs write callback
251  * @file: file pointer
252  * @user_buf: data to write
253  * @count: number of bytes
254  * @ppos: starting offset
255  *
256  * Copy data in from userland and pass it to the matching kernfs write
257  * operation.
258  *
259  * There is no easy way for us to know if userspace is only doing a partial
260  * write, so we don't support them. We expect the entire buffer to come on
261  * the first write.  Hint: if you're writing a value, first read the file,
262  * modify only the the value you're changing, then write entire buffer
263  * back.
264  */
265 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
266 				size_t count, loff_t *ppos)
267 {
268 	struct kernfs_open_file *of = kernfs_of(file);
269 	const struct kernfs_ops *ops;
270 	size_t len;
271 	char *buf;
272 
273 	if (of->atomic_write_len) {
274 		len = count;
275 		if (len > of->atomic_write_len)
276 			return -E2BIG;
277 	} else {
278 		len = min_t(size_t, count, PAGE_SIZE);
279 	}
280 
281 	buf = kmalloc(len + 1, GFP_KERNEL);
282 	if (!buf)
283 		return -ENOMEM;
284 
285 	if (copy_from_user(buf, user_buf, len)) {
286 		len = -EFAULT;
287 		goto out_free;
288 	}
289 	buf[len] = '\0';	/* guarantee string termination */
290 
291 	/*
292 	 * @of->mutex nests outside active ref and is just to ensure that
293 	 * the ops aren't called concurrently for the same open file.
294 	 */
295 	mutex_lock(&of->mutex);
296 	if (!kernfs_get_active(of->kn)) {
297 		mutex_unlock(&of->mutex);
298 		len = -ENODEV;
299 		goto out_free;
300 	}
301 
302 	ops = kernfs_ops(of->kn);
303 	if (ops->write)
304 		len = ops->write(of, buf, len, *ppos);
305 	else
306 		len = -EINVAL;
307 
308 	kernfs_put_active(of->kn);
309 	mutex_unlock(&of->mutex);
310 
311 	if (len > 0)
312 		*ppos += len;
313 out_free:
314 	kfree(buf);
315 	return len;
316 }
317 
318 static void kernfs_vma_open(struct vm_area_struct *vma)
319 {
320 	struct file *file = vma->vm_file;
321 	struct kernfs_open_file *of = kernfs_of(file);
322 
323 	if (!of->vm_ops)
324 		return;
325 
326 	if (!kernfs_get_active(of->kn))
327 		return;
328 
329 	if (of->vm_ops->open)
330 		of->vm_ops->open(vma);
331 
332 	kernfs_put_active(of->kn);
333 }
334 
335 static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
336 {
337 	struct file *file = vma->vm_file;
338 	struct kernfs_open_file *of = kernfs_of(file);
339 	int ret;
340 
341 	if (!of->vm_ops)
342 		return VM_FAULT_SIGBUS;
343 
344 	if (!kernfs_get_active(of->kn))
345 		return VM_FAULT_SIGBUS;
346 
347 	ret = VM_FAULT_SIGBUS;
348 	if (of->vm_ops->fault)
349 		ret = of->vm_ops->fault(vma, vmf);
350 
351 	kernfs_put_active(of->kn);
352 	return ret;
353 }
354 
355 static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma,
356 				   struct vm_fault *vmf)
357 {
358 	struct file *file = vma->vm_file;
359 	struct kernfs_open_file *of = kernfs_of(file);
360 	int ret;
361 
362 	if (!of->vm_ops)
363 		return VM_FAULT_SIGBUS;
364 
365 	if (!kernfs_get_active(of->kn))
366 		return VM_FAULT_SIGBUS;
367 
368 	ret = 0;
369 	if (of->vm_ops->page_mkwrite)
370 		ret = of->vm_ops->page_mkwrite(vma, vmf);
371 	else
372 		file_update_time(file);
373 
374 	kernfs_put_active(of->kn);
375 	return ret;
376 }
377 
378 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
379 			     void *buf, int len, int write)
380 {
381 	struct file *file = vma->vm_file;
382 	struct kernfs_open_file *of = kernfs_of(file);
383 	int ret;
384 
385 	if (!of->vm_ops)
386 		return -EINVAL;
387 
388 	if (!kernfs_get_active(of->kn))
389 		return -EINVAL;
390 
391 	ret = -EINVAL;
392 	if (of->vm_ops->access)
393 		ret = of->vm_ops->access(vma, addr, buf, len, write);
394 
395 	kernfs_put_active(of->kn);
396 	return ret;
397 }
398 
399 #ifdef CONFIG_NUMA
400 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
401 				 struct mempolicy *new)
402 {
403 	struct file *file = vma->vm_file;
404 	struct kernfs_open_file *of = kernfs_of(file);
405 	int ret;
406 
407 	if (!of->vm_ops)
408 		return 0;
409 
410 	if (!kernfs_get_active(of->kn))
411 		return -EINVAL;
412 
413 	ret = 0;
414 	if (of->vm_ops->set_policy)
415 		ret = of->vm_ops->set_policy(vma, new);
416 
417 	kernfs_put_active(of->kn);
418 	return ret;
419 }
420 
421 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
422 					       unsigned long addr)
423 {
424 	struct file *file = vma->vm_file;
425 	struct kernfs_open_file *of = kernfs_of(file);
426 	struct mempolicy *pol;
427 
428 	if (!of->vm_ops)
429 		return vma->vm_policy;
430 
431 	if (!kernfs_get_active(of->kn))
432 		return vma->vm_policy;
433 
434 	pol = vma->vm_policy;
435 	if (of->vm_ops->get_policy)
436 		pol = of->vm_ops->get_policy(vma, addr);
437 
438 	kernfs_put_active(of->kn);
439 	return pol;
440 }
441 
442 static int kernfs_vma_migrate(struct vm_area_struct *vma,
443 			      const nodemask_t *from, const nodemask_t *to,
444 			      unsigned long flags)
445 {
446 	struct file *file = vma->vm_file;
447 	struct kernfs_open_file *of = kernfs_of(file);
448 	int ret;
449 
450 	if (!of->vm_ops)
451 		return 0;
452 
453 	if (!kernfs_get_active(of->kn))
454 		return 0;
455 
456 	ret = 0;
457 	if (of->vm_ops->migrate)
458 		ret = of->vm_ops->migrate(vma, from, to, flags);
459 
460 	kernfs_put_active(of->kn);
461 	return ret;
462 }
463 #endif
464 
465 static const struct vm_operations_struct kernfs_vm_ops = {
466 	.open		= kernfs_vma_open,
467 	.fault		= kernfs_vma_fault,
468 	.page_mkwrite	= kernfs_vma_page_mkwrite,
469 	.access		= kernfs_vma_access,
470 #ifdef CONFIG_NUMA
471 	.set_policy	= kernfs_vma_set_policy,
472 	.get_policy	= kernfs_vma_get_policy,
473 	.migrate	= kernfs_vma_migrate,
474 #endif
475 };
476 
477 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
478 {
479 	struct kernfs_open_file *of = kernfs_of(file);
480 	const struct kernfs_ops *ops;
481 	int rc;
482 
483 	/*
484 	 * mmap path and of->mutex are prone to triggering spurious lockdep
485 	 * warnings and we don't want to add spurious locking dependency
486 	 * between the two.  Check whether mmap is actually implemented
487 	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
488 	 * comment in kernfs_file_open() for more details.
489 	 */
490 	if (!(of->kn->flags & KERNFS_HAS_MMAP))
491 		return -ENODEV;
492 
493 	mutex_lock(&of->mutex);
494 
495 	rc = -ENODEV;
496 	if (!kernfs_get_active(of->kn))
497 		goto out_unlock;
498 
499 	ops = kernfs_ops(of->kn);
500 	rc = ops->mmap(of, vma);
501 	if (rc)
502 		goto out_put;
503 
504 	/*
505 	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
506 	 * to satisfy versions of X which crash if the mmap fails: that
507 	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
508 	 */
509 	if (vma->vm_file != file)
510 		goto out_put;
511 
512 	rc = -EINVAL;
513 	if (of->mmapped && of->vm_ops != vma->vm_ops)
514 		goto out_put;
515 
516 	/*
517 	 * It is not possible to successfully wrap close.
518 	 * So error if someone is trying to use close.
519 	 */
520 	rc = -EINVAL;
521 	if (vma->vm_ops && vma->vm_ops->close)
522 		goto out_put;
523 
524 	rc = 0;
525 	of->mmapped = 1;
526 	of->vm_ops = vma->vm_ops;
527 	vma->vm_ops = &kernfs_vm_ops;
528 out_put:
529 	kernfs_put_active(of->kn);
530 out_unlock:
531 	mutex_unlock(&of->mutex);
532 
533 	return rc;
534 }
535 
536 /**
537  *	kernfs_get_open_node - get or create kernfs_open_node
538  *	@kn: target kernfs_node
539  *	@of: kernfs_open_file for this instance of open
540  *
541  *	If @kn->attr.open exists, increment its reference count; otherwise,
542  *	create one.  @of is chained to the files list.
543  *
544  *	LOCKING:
545  *	Kernel thread context (may sleep).
546  *
547  *	RETURNS:
548  *	0 on success, -errno on failure.
549  */
550 static int kernfs_get_open_node(struct kernfs_node *kn,
551 				struct kernfs_open_file *of)
552 {
553 	struct kernfs_open_node *on, *new_on = NULL;
554 
555  retry:
556 	mutex_lock(&kernfs_open_file_mutex);
557 	spin_lock_irq(&kernfs_open_node_lock);
558 
559 	if (!kn->attr.open && new_on) {
560 		kn->attr.open = new_on;
561 		new_on = NULL;
562 	}
563 
564 	on = kn->attr.open;
565 	if (on) {
566 		atomic_inc(&on->refcnt);
567 		list_add_tail(&of->list, &on->files);
568 	}
569 
570 	spin_unlock_irq(&kernfs_open_node_lock);
571 	mutex_unlock(&kernfs_open_file_mutex);
572 
573 	if (on) {
574 		kfree(new_on);
575 		return 0;
576 	}
577 
578 	/* not there, initialize a new one and retry */
579 	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
580 	if (!new_on)
581 		return -ENOMEM;
582 
583 	atomic_set(&new_on->refcnt, 0);
584 	atomic_set(&new_on->event, 1);
585 	init_waitqueue_head(&new_on->poll);
586 	INIT_LIST_HEAD(&new_on->files);
587 	goto retry;
588 }
589 
590 /**
591  *	kernfs_put_open_node - put kernfs_open_node
592  *	@kn: target kernfs_nodet
593  *	@of: associated kernfs_open_file
594  *
595  *	Put @kn->attr.open and unlink @of from the files list.  If
596  *	reference count reaches zero, disassociate and free it.
597  *
598  *	LOCKING:
599  *	None.
600  */
601 static void kernfs_put_open_node(struct kernfs_node *kn,
602 				 struct kernfs_open_file *of)
603 {
604 	struct kernfs_open_node *on = kn->attr.open;
605 	unsigned long flags;
606 
607 	mutex_lock(&kernfs_open_file_mutex);
608 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
609 
610 	if (of)
611 		list_del(&of->list);
612 
613 	if (atomic_dec_and_test(&on->refcnt))
614 		kn->attr.open = NULL;
615 	else
616 		on = NULL;
617 
618 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
619 	mutex_unlock(&kernfs_open_file_mutex);
620 
621 	kfree(on);
622 }
623 
624 static int kernfs_fop_open(struct inode *inode, struct file *file)
625 {
626 	struct kernfs_node *kn = file->f_path.dentry->d_fsdata;
627 	struct kernfs_root *root = kernfs_root(kn);
628 	const struct kernfs_ops *ops;
629 	struct kernfs_open_file *of;
630 	bool has_read, has_write, has_mmap;
631 	int error = -EACCES;
632 
633 	if (!kernfs_get_active(kn))
634 		return -ENODEV;
635 
636 	ops = kernfs_ops(kn);
637 
638 	has_read = ops->seq_show || ops->read || ops->mmap;
639 	has_write = ops->write || ops->mmap;
640 	has_mmap = ops->mmap;
641 
642 	/* see the flag definition for details */
643 	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
644 		if ((file->f_mode & FMODE_WRITE) &&
645 		    (!(inode->i_mode & S_IWUGO) || !has_write))
646 			goto err_out;
647 
648 		if ((file->f_mode & FMODE_READ) &&
649 		    (!(inode->i_mode & S_IRUGO) || !has_read))
650 			goto err_out;
651 	}
652 
653 	/* allocate a kernfs_open_file for the file */
654 	error = -ENOMEM;
655 	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
656 	if (!of)
657 		goto err_out;
658 
659 	/*
660 	 * The following is done to give a different lockdep key to
661 	 * @of->mutex for files which implement mmap.  This is a rather
662 	 * crude way to avoid false positive lockdep warning around
663 	 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
664 	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
665 	 * which mm->mmap_sem nests, while holding @of->mutex.  As each
666 	 * open file has a separate mutex, it's okay as long as those don't
667 	 * happen on the same file.  At this point, we can't easily give
668 	 * each file a separate locking class.  Let's differentiate on
669 	 * whether the file has mmap or not for now.
670 	 *
671 	 * Both paths of the branch look the same.  They're supposed to
672 	 * look that way and give @of->mutex different static lockdep keys.
673 	 */
674 	if (has_mmap)
675 		mutex_init(&of->mutex);
676 	else
677 		mutex_init(&of->mutex);
678 
679 	of->kn = kn;
680 	of->file = file;
681 
682 	/*
683 	 * Write path needs to atomic_write_len outside active reference.
684 	 * Cache it in open_file.  See kernfs_fop_write() for details.
685 	 */
686 	of->atomic_write_len = ops->atomic_write_len;
687 
688 	/*
689 	 * Always instantiate seq_file even if read access doesn't use
690 	 * seq_file or is not requested.  This unifies private data access
691 	 * and readable regular files are the vast majority anyway.
692 	 */
693 	if (ops->seq_show)
694 		error = seq_open(file, &kernfs_seq_ops);
695 	else
696 		error = seq_open(file, NULL);
697 	if (error)
698 		goto err_free;
699 
700 	((struct seq_file *)file->private_data)->private = of;
701 
702 	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
703 	if (file->f_mode & FMODE_WRITE)
704 		file->f_mode |= FMODE_PWRITE;
705 
706 	/* make sure we have open node struct */
707 	error = kernfs_get_open_node(kn, of);
708 	if (error)
709 		goto err_close;
710 
711 	/* open succeeded, put active references */
712 	kernfs_put_active(kn);
713 	return 0;
714 
715 err_close:
716 	seq_release(inode, file);
717 err_free:
718 	kfree(of);
719 err_out:
720 	kernfs_put_active(kn);
721 	return error;
722 }
723 
724 static int kernfs_fop_release(struct inode *inode, struct file *filp)
725 {
726 	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
727 	struct kernfs_open_file *of = kernfs_of(filp);
728 
729 	kernfs_put_open_node(kn, of);
730 	seq_release(inode, filp);
731 	kfree(of);
732 
733 	return 0;
734 }
735 
736 void kernfs_unmap_bin_file(struct kernfs_node *kn)
737 {
738 	struct kernfs_open_node *on;
739 	struct kernfs_open_file *of;
740 
741 	if (!(kn->flags & KERNFS_HAS_MMAP))
742 		return;
743 
744 	spin_lock_irq(&kernfs_open_node_lock);
745 	on = kn->attr.open;
746 	if (on)
747 		atomic_inc(&on->refcnt);
748 	spin_unlock_irq(&kernfs_open_node_lock);
749 	if (!on)
750 		return;
751 
752 	mutex_lock(&kernfs_open_file_mutex);
753 	list_for_each_entry(of, &on->files, list) {
754 		struct inode *inode = file_inode(of->file);
755 		unmap_mapping_range(inode->i_mapping, 0, 0, 1);
756 	}
757 	mutex_unlock(&kernfs_open_file_mutex);
758 
759 	kernfs_put_open_node(kn, NULL);
760 }
761 
762 /*
763  * Kernfs attribute files are pollable.  The idea is that you read
764  * the content and then you use 'poll' or 'select' to wait for
765  * the content to change.  When the content changes (assuming the
766  * manager for the kobject supports notification), poll will
767  * return POLLERR|POLLPRI, and select will return the fd whether
768  * it is waiting for read, write, or exceptions.
769  * Once poll/select indicates that the value has changed, you
770  * need to close and re-open the file, or seek to 0 and read again.
771  * Reminder: this only works for attributes which actively support
772  * it, and it is not possible to test an attribute from userspace
773  * to see if it supports poll (Neither 'poll' nor 'select' return
774  * an appropriate error code).  When in doubt, set a suitable timeout value.
775  */
776 static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
777 {
778 	struct kernfs_open_file *of = kernfs_of(filp);
779 	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
780 	struct kernfs_open_node *on = kn->attr.open;
781 
782 	/* need parent for the kobj, grab both */
783 	if (!kernfs_get_active(kn))
784 		goto trigger;
785 
786 	poll_wait(filp, &on->poll, wait);
787 
788 	kernfs_put_active(kn);
789 
790 	if (of->event != atomic_read(&on->event))
791 		goto trigger;
792 
793 	return DEFAULT_POLLMASK;
794 
795  trigger:
796 	return DEFAULT_POLLMASK|POLLERR|POLLPRI;
797 }
798 
799 static void kernfs_notify_workfn(struct work_struct *work)
800 {
801 	struct kernfs_node *kn;
802 	struct kernfs_open_node *on;
803 	struct kernfs_super_info *info;
804 repeat:
805 	/* pop one off the notify_list */
806 	spin_lock_irq(&kernfs_notify_lock);
807 	kn = kernfs_notify_list;
808 	if (kn == KERNFS_NOTIFY_EOL) {
809 		spin_unlock_irq(&kernfs_notify_lock);
810 		return;
811 	}
812 	kernfs_notify_list = kn->attr.notify_next;
813 	kn->attr.notify_next = NULL;
814 	spin_unlock_irq(&kernfs_notify_lock);
815 
816 	/* kick poll */
817 	spin_lock_irq(&kernfs_open_node_lock);
818 
819 	on = kn->attr.open;
820 	if (on) {
821 		atomic_inc(&on->event);
822 		wake_up_interruptible(&on->poll);
823 	}
824 
825 	spin_unlock_irq(&kernfs_open_node_lock);
826 
827 	/* kick fsnotify */
828 	mutex_lock(&kernfs_mutex);
829 
830 	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
831 		struct inode *inode;
832 		struct dentry *dentry;
833 
834 		inode = ilookup(info->sb, kn->ino);
835 		if (!inode)
836 			continue;
837 
838 		dentry = d_find_any_alias(inode);
839 		if (dentry) {
840 			fsnotify_parent(NULL, dentry, FS_MODIFY);
841 			fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
842 				 NULL, 0);
843 			dput(dentry);
844 		}
845 
846 		iput(inode);
847 	}
848 
849 	mutex_unlock(&kernfs_mutex);
850 	kernfs_put(kn);
851 	goto repeat;
852 }
853 
854 /**
855  * kernfs_notify - notify a kernfs file
856  * @kn: file to notify
857  *
858  * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
859  * context.
860  */
861 void kernfs_notify(struct kernfs_node *kn)
862 {
863 	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
864 	unsigned long flags;
865 
866 	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
867 		return;
868 
869 	spin_lock_irqsave(&kernfs_notify_lock, flags);
870 	if (!kn->attr.notify_next) {
871 		kernfs_get(kn);
872 		kn->attr.notify_next = kernfs_notify_list;
873 		kernfs_notify_list = kn;
874 		schedule_work(&kernfs_notify_work);
875 	}
876 	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
877 }
878 EXPORT_SYMBOL_GPL(kernfs_notify);
879 
880 const struct file_operations kernfs_file_fops = {
881 	.read		= kernfs_fop_read,
882 	.write		= kernfs_fop_write,
883 	.llseek		= generic_file_llseek,
884 	.mmap		= kernfs_fop_mmap,
885 	.open		= kernfs_fop_open,
886 	.release	= kernfs_fop_release,
887 	.poll		= kernfs_fop_poll,
888 };
889 
890 /**
891  * __kernfs_create_file - kernfs internal function to create a file
892  * @parent: directory to create the file in
893  * @name: name of the file
894  * @mode: mode of the file
895  * @size: size of the file
896  * @ops: kernfs operations for the file
897  * @priv: private data for the file
898  * @ns: optional namespace tag of the file
899  * @name_is_static: don't copy file name
900  * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
901  *
902  * Returns the created node on success, ERR_PTR() value on error.
903  */
904 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
905 					 const char *name,
906 					 umode_t mode, loff_t size,
907 					 const struct kernfs_ops *ops,
908 					 void *priv, const void *ns,
909 					 bool name_is_static,
910 					 struct lock_class_key *key)
911 {
912 	struct kernfs_node *kn;
913 	unsigned flags;
914 	int rc;
915 
916 	flags = KERNFS_FILE;
917 	if (name_is_static)
918 		flags |= KERNFS_STATIC_NAME;
919 
920 	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
921 	if (!kn)
922 		return ERR_PTR(-ENOMEM);
923 
924 	kn->attr.ops = ops;
925 	kn->attr.size = size;
926 	kn->ns = ns;
927 	kn->priv = priv;
928 
929 #ifdef CONFIG_DEBUG_LOCK_ALLOC
930 	if (key) {
931 		lockdep_init_map(&kn->dep_map, "s_active", key, 0);
932 		kn->flags |= KERNFS_LOCKDEP;
933 	}
934 #endif
935 
936 	/*
937 	 * kn->attr.ops is accesible only while holding active ref.  We
938 	 * need to know whether some ops are implemented outside active
939 	 * ref.  Cache their existence in flags.
940 	 */
941 	if (ops->seq_show)
942 		kn->flags |= KERNFS_HAS_SEQ_SHOW;
943 	if (ops->mmap)
944 		kn->flags |= KERNFS_HAS_MMAP;
945 
946 	rc = kernfs_add_one(kn);
947 	if (rc) {
948 		kernfs_put(kn);
949 		return ERR_PTR(rc);
950 	}
951 	return kn;
952 }
953