1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/file.c - kernfs file implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/fs.h> 11 #include <linux/seq_file.h> 12 #include <linux/slab.h> 13 #include <linux/poll.h> 14 #include <linux/pagemap.h> 15 #include <linux/sched/mm.h> 16 #include <linux/fsnotify.h> 17 #include <linux/uio.h> 18 19 #include "kernfs-internal.h" 20 21 struct kernfs_open_node { 22 struct rcu_head rcu_head; 23 atomic_t event; 24 wait_queue_head_t poll; 25 struct list_head files; /* goes through kernfs_open_file.list */ 26 unsigned int nr_mmapped; 27 unsigned int nr_to_release; 28 }; 29 30 /* 31 * kernfs_notify() may be called from any context and bounces notifications 32 * through a work item. To minimize space overhead in kernfs_node, the 33 * pending queue is implemented as a singly linked list of kernfs_nodes. 34 * The list is terminated with the self pointer so that whether a 35 * kernfs_node is on the list or not can be determined by testing the next 36 * pointer for NULL. 37 */ 38 #define KERNFS_NOTIFY_EOL ((void *)&kernfs_notify_list) 39 40 static DEFINE_SPINLOCK(kernfs_notify_lock); 41 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL; 42 43 static inline struct mutex *kernfs_open_file_mutex_ptr(struct kernfs_node *kn) 44 { 45 int idx = hash_ptr(kn, NR_KERNFS_LOCK_BITS); 46 47 return &kernfs_locks->open_file_mutex[idx]; 48 } 49 50 static inline struct mutex *kernfs_open_file_mutex_lock(struct kernfs_node *kn) 51 { 52 struct mutex *lock; 53 54 lock = kernfs_open_file_mutex_ptr(kn); 55 56 mutex_lock(lock); 57 58 return lock; 59 } 60 61 /** 62 * of_on - Return the kernfs_open_node of the specified kernfs_open_file 63 * @of: taret kernfs_open_file 64 */ 65 static struct kernfs_open_node *of_on(struct kernfs_open_file *of) 66 { 67 return rcu_dereference_protected(of->kn->attr.open, 68 !list_empty(&of->list)); 69 } 70 71 /** 72 * kernfs_deref_open_node_locked - Get kernfs_open_node corresponding to @kn 73 * 74 * @kn: target kernfs_node. 75 * 76 * Fetch and return ->attr.open of @kn when caller holds the 77 * kernfs_open_file_mutex_ptr(kn). 78 * 79 * Update of ->attr.open happens under kernfs_open_file_mutex_ptr(kn). So when 80 * the caller guarantees that this mutex is being held, other updaters can't 81 * change ->attr.open and this means that we can safely deref ->attr.open 82 * outside RCU read-side critical section. 83 * 84 * The caller needs to make sure that kernfs_open_file_mutex is held. 85 */ 86 static struct kernfs_open_node * 87 kernfs_deref_open_node_locked(struct kernfs_node *kn) 88 { 89 return rcu_dereference_protected(kn->attr.open, 90 lockdep_is_held(kernfs_open_file_mutex_ptr(kn))); 91 } 92 93 static struct kernfs_open_file *kernfs_of(struct file *file) 94 { 95 return ((struct seq_file *)file->private_data)->private; 96 } 97 98 /* 99 * Determine the kernfs_ops for the given kernfs_node. This function must 100 * be called while holding an active reference. 101 */ 102 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn) 103 { 104 if (kn->flags & KERNFS_LOCKDEP) 105 lockdep_assert_held(kn); 106 return kn->attr.ops; 107 } 108 109 /* 110 * As kernfs_seq_stop() is also called after kernfs_seq_start() or 111 * kernfs_seq_next() failure, it needs to distinguish whether it's stopping 112 * a seq_file iteration which is fully initialized with an active reference 113 * or an aborted kernfs_seq_start() due to get_active failure. The 114 * position pointer is the only context for each seq_file iteration and 115 * thus the stop condition should be encoded in it. As the return value is 116 * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable 117 * choice to indicate get_active failure. 118 * 119 * Unfortunately, this is complicated due to the optional custom seq_file 120 * operations which may return ERR_PTR(-ENODEV) too. kernfs_seq_stop() 121 * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or 122 * custom seq_file operations and thus can't decide whether put_active 123 * should be performed or not only on ERR_PTR(-ENODEV). 124 * 125 * This is worked around by factoring out the custom seq_stop() and 126 * put_active part into kernfs_seq_stop_active(), skipping it from 127 * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after 128 * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures 129 * that kernfs_seq_stop_active() is skipped only after get_active failure. 130 */ 131 static void kernfs_seq_stop_active(struct seq_file *sf, void *v) 132 { 133 struct kernfs_open_file *of = sf->private; 134 const struct kernfs_ops *ops = kernfs_ops(of->kn); 135 136 if (ops->seq_stop) 137 ops->seq_stop(sf, v); 138 kernfs_put_active(of->kn); 139 } 140 141 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos) 142 { 143 struct kernfs_open_file *of = sf->private; 144 const struct kernfs_ops *ops; 145 146 /* 147 * @of->mutex nests outside active ref and is primarily to ensure that 148 * the ops aren't called concurrently for the same open file. 149 */ 150 mutex_lock(&of->mutex); 151 if (!kernfs_get_active(of->kn)) 152 return ERR_PTR(-ENODEV); 153 154 ops = kernfs_ops(of->kn); 155 if (ops->seq_start) { 156 void *next = ops->seq_start(sf, ppos); 157 /* see the comment above kernfs_seq_stop_active() */ 158 if (next == ERR_PTR(-ENODEV)) 159 kernfs_seq_stop_active(sf, next); 160 return next; 161 } 162 return single_start(sf, ppos); 163 } 164 165 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos) 166 { 167 struct kernfs_open_file *of = sf->private; 168 const struct kernfs_ops *ops = kernfs_ops(of->kn); 169 170 if (ops->seq_next) { 171 void *next = ops->seq_next(sf, v, ppos); 172 /* see the comment above kernfs_seq_stop_active() */ 173 if (next == ERR_PTR(-ENODEV)) 174 kernfs_seq_stop_active(sf, next); 175 return next; 176 } else { 177 /* 178 * The same behavior and code as single_open(), always 179 * terminate after the initial read. 180 */ 181 ++*ppos; 182 return NULL; 183 } 184 } 185 186 static void kernfs_seq_stop(struct seq_file *sf, void *v) 187 { 188 struct kernfs_open_file *of = sf->private; 189 190 if (v != ERR_PTR(-ENODEV)) 191 kernfs_seq_stop_active(sf, v); 192 mutex_unlock(&of->mutex); 193 } 194 195 static int kernfs_seq_show(struct seq_file *sf, void *v) 196 { 197 struct kernfs_open_file *of = sf->private; 198 199 of->event = atomic_read(&of_on(of)->event); 200 201 return of->kn->attr.ops->seq_show(sf, v); 202 } 203 204 static const struct seq_operations kernfs_seq_ops = { 205 .start = kernfs_seq_start, 206 .next = kernfs_seq_next, 207 .stop = kernfs_seq_stop, 208 .show = kernfs_seq_show, 209 }; 210 211 /* 212 * As reading a bin file can have side-effects, the exact offset and bytes 213 * specified in read(2) call should be passed to the read callback making 214 * it difficult to use seq_file. Implement simplistic custom buffering for 215 * bin files. 216 */ 217 static ssize_t kernfs_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 218 { 219 struct kernfs_open_file *of = kernfs_of(iocb->ki_filp); 220 ssize_t len = min_t(size_t, iov_iter_count(iter), PAGE_SIZE); 221 const struct kernfs_ops *ops; 222 char *buf; 223 224 buf = of->prealloc_buf; 225 if (buf) 226 mutex_lock(&of->prealloc_mutex); 227 else 228 buf = kmalloc(len, GFP_KERNEL); 229 if (!buf) 230 return -ENOMEM; 231 232 /* 233 * @of->mutex nests outside active ref and is used both to ensure that 234 * the ops aren't called concurrently for the same open file. 235 */ 236 mutex_lock(&of->mutex); 237 if (!kernfs_get_active(of->kn)) { 238 len = -ENODEV; 239 mutex_unlock(&of->mutex); 240 goto out_free; 241 } 242 243 of->event = atomic_read(&of_on(of)->event); 244 245 ops = kernfs_ops(of->kn); 246 if (ops->read) 247 len = ops->read(of, buf, len, iocb->ki_pos); 248 else 249 len = -EINVAL; 250 251 kernfs_put_active(of->kn); 252 mutex_unlock(&of->mutex); 253 254 if (len < 0) 255 goto out_free; 256 257 if (copy_to_iter(buf, len, iter) != len) { 258 len = -EFAULT; 259 goto out_free; 260 } 261 262 iocb->ki_pos += len; 263 264 out_free: 265 if (buf == of->prealloc_buf) 266 mutex_unlock(&of->prealloc_mutex); 267 else 268 kfree(buf); 269 return len; 270 } 271 272 static ssize_t kernfs_fop_read_iter(struct kiocb *iocb, struct iov_iter *iter) 273 { 274 if (kernfs_of(iocb->ki_filp)->kn->flags & KERNFS_HAS_SEQ_SHOW) 275 return seq_read_iter(iocb, iter); 276 return kernfs_file_read_iter(iocb, iter); 277 } 278 279 /* 280 * Copy data in from userland and pass it to the matching kernfs write 281 * operation. 282 * 283 * There is no easy way for us to know if userspace is only doing a partial 284 * write, so we don't support them. We expect the entire buffer to come on 285 * the first write. Hint: if you're writing a value, first read the file, 286 * modify only the value you're changing, then write entire buffer 287 * back. 288 */ 289 static ssize_t kernfs_fop_write_iter(struct kiocb *iocb, struct iov_iter *iter) 290 { 291 struct kernfs_open_file *of = kernfs_of(iocb->ki_filp); 292 ssize_t len = iov_iter_count(iter); 293 const struct kernfs_ops *ops; 294 char *buf; 295 296 if (of->atomic_write_len) { 297 if (len > of->atomic_write_len) 298 return -E2BIG; 299 } else { 300 len = min_t(size_t, len, PAGE_SIZE); 301 } 302 303 buf = of->prealloc_buf; 304 if (buf) 305 mutex_lock(&of->prealloc_mutex); 306 else 307 buf = kmalloc(len + 1, GFP_KERNEL); 308 if (!buf) 309 return -ENOMEM; 310 311 if (copy_from_iter(buf, len, iter) != len) { 312 len = -EFAULT; 313 goto out_free; 314 } 315 buf[len] = '\0'; /* guarantee string termination */ 316 317 /* 318 * @of->mutex nests outside active ref and is used both to ensure that 319 * the ops aren't called concurrently for the same open file. 320 */ 321 mutex_lock(&of->mutex); 322 if (!kernfs_get_active(of->kn)) { 323 mutex_unlock(&of->mutex); 324 len = -ENODEV; 325 goto out_free; 326 } 327 328 ops = kernfs_ops(of->kn); 329 if (ops->write) 330 len = ops->write(of, buf, len, iocb->ki_pos); 331 else 332 len = -EINVAL; 333 334 kernfs_put_active(of->kn); 335 mutex_unlock(&of->mutex); 336 337 if (len > 0) 338 iocb->ki_pos += len; 339 340 out_free: 341 if (buf == of->prealloc_buf) 342 mutex_unlock(&of->prealloc_mutex); 343 else 344 kfree(buf); 345 return len; 346 } 347 348 static void kernfs_vma_open(struct vm_area_struct *vma) 349 { 350 struct file *file = vma->vm_file; 351 struct kernfs_open_file *of = kernfs_of(file); 352 353 if (!of->vm_ops) 354 return; 355 356 if (!kernfs_get_active(of->kn)) 357 return; 358 359 if (of->vm_ops->open) 360 of->vm_ops->open(vma); 361 362 kernfs_put_active(of->kn); 363 } 364 365 static vm_fault_t kernfs_vma_fault(struct vm_fault *vmf) 366 { 367 struct file *file = vmf->vma->vm_file; 368 struct kernfs_open_file *of = kernfs_of(file); 369 vm_fault_t ret; 370 371 if (!of->vm_ops) 372 return VM_FAULT_SIGBUS; 373 374 if (!kernfs_get_active(of->kn)) 375 return VM_FAULT_SIGBUS; 376 377 ret = VM_FAULT_SIGBUS; 378 if (of->vm_ops->fault) 379 ret = of->vm_ops->fault(vmf); 380 381 kernfs_put_active(of->kn); 382 return ret; 383 } 384 385 static vm_fault_t kernfs_vma_page_mkwrite(struct vm_fault *vmf) 386 { 387 struct file *file = vmf->vma->vm_file; 388 struct kernfs_open_file *of = kernfs_of(file); 389 vm_fault_t ret; 390 391 if (!of->vm_ops) 392 return VM_FAULT_SIGBUS; 393 394 if (!kernfs_get_active(of->kn)) 395 return VM_FAULT_SIGBUS; 396 397 ret = 0; 398 if (of->vm_ops->page_mkwrite) 399 ret = of->vm_ops->page_mkwrite(vmf); 400 else 401 file_update_time(file); 402 403 kernfs_put_active(of->kn); 404 return ret; 405 } 406 407 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr, 408 void *buf, int len, int write) 409 { 410 struct file *file = vma->vm_file; 411 struct kernfs_open_file *of = kernfs_of(file); 412 int ret; 413 414 if (!of->vm_ops) 415 return -EINVAL; 416 417 if (!kernfs_get_active(of->kn)) 418 return -EINVAL; 419 420 ret = -EINVAL; 421 if (of->vm_ops->access) 422 ret = of->vm_ops->access(vma, addr, buf, len, write); 423 424 kernfs_put_active(of->kn); 425 return ret; 426 } 427 428 #ifdef CONFIG_NUMA 429 static int kernfs_vma_set_policy(struct vm_area_struct *vma, 430 struct mempolicy *new) 431 { 432 struct file *file = vma->vm_file; 433 struct kernfs_open_file *of = kernfs_of(file); 434 int ret; 435 436 if (!of->vm_ops) 437 return 0; 438 439 if (!kernfs_get_active(of->kn)) 440 return -EINVAL; 441 442 ret = 0; 443 if (of->vm_ops->set_policy) 444 ret = of->vm_ops->set_policy(vma, new); 445 446 kernfs_put_active(of->kn); 447 return ret; 448 } 449 450 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma, 451 unsigned long addr) 452 { 453 struct file *file = vma->vm_file; 454 struct kernfs_open_file *of = kernfs_of(file); 455 struct mempolicy *pol; 456 457 if (!of->vm_ops) 458 return vma->vm_policy; 459 460 if (!kernfs_get_active(of->kn)) 461 return vma->vm_policy; 462 463 pol = vma->vm_policy; 464 if (of->vm_ops->get_policy) 465 pol = of->vm_ops->get_policy(vma, addr); 466 467 kernfs_put_active(of->kn); 468 return pol; 469 } 470 471 #endif 472 473 static const struct vm_operations_struct kernfs_vm_ops = { 474 .open = kernfs_vma_open, 475 .fault = kernfs_vma_fault, 476 .page_mkwrite = kernfs_vma_page_mkwrite, 477 .access = kernfs_vma_access, 478 #ifdef CONFIG_NUMA 479 .set_policy = kernfs_vma_set_policy, 480 .get_policy = kernfs_vma_get_policy, 481 #endif 482 }; 483 484 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma) 485 { 486 struct kernfs_open_file *of = kernfs_of(file); 487 const struct kernfs_ops *ops; 488 int rc; 489 490 /* 491 * mmap path and of->mutex are prone to triggering spurious lockdep 492 * warnings and we don't want to add spurious locking dependency 493 * between the two. Check whether mmap is actually implemented 494 * without grabbing @of->mutex by testing HAS_MMAP flag. See the 495 * comment in kernfs_file_open() for more details. 496 */ 497 if (!(of->kn->flags & KERNFS_HAS_MMAP)) 498 return -ENODEV; 499 500 mutex_lock(&of->mutex); 501 502 rc = -ENODEV; 503 if (!kernfs_get_active(of->kn)) 504 goto out_unlock; 505 506 ops = kernfs_ops(of->kn); 507 rc = ops->mmap(of, vma); 508 if (rc) 509 goto out_put; 510 511 /* 512 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup() 513 * to satisfy versions of X which crash if the mmap fails: that 514 * substitutes a new vm_file, and we don't then want bin_vm_ops. 515 */ 516 if (vma->vm_file != file) 517 goto out_put; 518 519 rc = -EINVAL; 520 if (of->mmapped && of->vm_ops != vma->vm_ops) 521 goto out_put; 522 523 /* 524 * It is not possible to successfully wrap close. 525 * So error if someone is trying to use close. 526 */ 527 if (vma->vm_ops && vma->vm_ops->close) 528 goto out_put; 529 530 rc = 0; 531 of->mmapped = true; 532 of_on(of)->nr_mmapped++; 533 of->vm_ops = vma->vm_ops; 534 vma->vm_ops = &kernfs_vm_ops; 535 out_put: 536 kernfs_put_active(of->kn); 537 out_unlock: 538 mutex_unlock(&of->mutex); 539 540 return rc; 541 } 542 543 /** 544 * kernfs_get_open_node - get or create kernfs_open_node 545 * @kn: target kernfs_node 546 * @of: kernfs_open_file for this instance of open 547 * 548 * If @kn->attr.open exists, increment its reference count; otherwise, 549 * create one. @of is chained to the files list. 550 * 551 * LOCKING: 552 * Kernel thread context (may sleep). 553 * 554 * RETURNS: 555 * 0 on success, -errno on failure. 556 */ 557 static int kernfs_get_open_node(struct kernfs_node *kn, 558 struct kernfs_open_file *of) 559 { 560 struct kernfs_open_node *on; 561 struct mutex *mutex; 562 563 mutex = kernfs_open_file_mutex_lock(kn); 564 on = kernfs_deref_open_node_locked(kn); 565 566 if (!on) { 567 /* not there, initialize a new one */ 568 on = kzalloc(sizeof(*on), GFP_KERNEL); 569 if (!on) { 570 mutex_unlock(mutex); 571 return -ENOMEM; 572 } 573 atomic_set(&on->event, 1); 574 init_waitqueue_head(&on->poll); 575 INIT_LIST_HEAD(&on->files); 576 rcu_assign_pointer(kn->attr.open, on); 577 } 578 579 list_add_tail(&of->list, &on->files); 580 if (kn->flags & KERNFS_HAS_RELEASE) 581 on->nr_to_release++; 582 583 mutex_unlock(mutex); 584 return 0; 585 } 586 587 /** 588 * kernfs_unlink_open_file - Unlink @of from @kn. 589 * 590 * @kn: target kernfs_node 591 * @of: associated kernfs_open_file 592 * @open_failed: ->open() failed, cancel ->release() 593 * 594 * Unlink @of from list of @kn's associated open files. If list of 595 * associated open files becomes empty, disassociate and free 596 * kernfs_open_node. 597 * 598 * LOCKING: 599 * None. 600 */ 601 static void kernfs_unlink_open_file(struct kernfs_node *kn, 602 struct kernfs_open_file *of, 603 bool open_failed) 604 { 605 struct kernfs_open_node *on; 606 struct mutex *mutex; 607 608 mutex = kernfs_open_file_mutex_lock(kn); 609 610 on = kernfs_deref_open_node_locked(kn); 611 if (!on) { 612 mutex_unlock(mutex); 613 return; 614 } 615 616 if (of) { 617 if (kn->flags & KERNFS_HAS_RELEASE) { 618 WARN_ON_ONCE(of->released == open_failed); 619 if (open_failed) 620 on->nr_to_release--; 621 } 622 if (of->mmapped) 623 on->nr_mmapped--; 624 list_del(&of->list); 625 } 626 627 if (list_empty(&on->files)) { 628 rcu_assign_pointer(kn->attr.open, NULL); 629 kfree_rcu(on, rcu_head); 630 } 631 632 mutex_unlock(mutex); 633 } 634 635 static int kernfs_fop_open(struct inode *inode, struct file *file) 636 { 637 struct kernfs_node *kn = inode->i_private; 638 struct kernfs_root *root = kernfs_root(kn); 639 const struct kernfs_ops *ops; 640 struct kernfs_open_file *of; 641 bool has_read, has_write, has_mmap; 642 int error = -EACCES; 643 644 if (!kernfs_get_active(kn)) 645 return -ENODEV; 646 647 ops = kernfs_ops(kn); 648 649 has_read = ops->seq_show || ops->read || ops->mmap; 650 has_write = ops->write || ops->mmap; 651 has_mmap = ops->mmap; 652 653 /* see the flag definition for details */ 654 if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) { 655 if ((file->f_mode & FMODE_WRITE) && 656 (!(inode->i_mode & S_IWUGO) || !has_write)) 657 goto err_out; 658 659 if ((file->f_mode & FMODE_READ) && 660 (!(inode->i_mode & S_IRUGO) || !has_read)) 661 goto err_out; 662 } 663 664 /* allocate a kernfs_open_file for the file */ 665 error = -ENOMEM; 666 of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL); 667 if (!of) 668 goto err_out; 669 670 /* 671 * The following is done to give a different lockdep key to 672 * @of->mutex for files which implement mmap. This is a rather 673 * crude way to avoid false positive lockdep warning around 674 * mm->mmap_lock - mmap nests @of->mutex under mm->mmap_lock and 675 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under 676 * which mm->mmap_lock nests, while holding @of->mutex. As each 677 * open file has a separate mutex, it's okay as long as those don't 678 * happen on the same file. At this point, we can't easily give 679 * each file a separate locking class. Let's differentiate on 680 * whether the file has mmap or not for now. 681 * 682 * Both paths of the branch look the same. They're supposed to 683 * look that way and give @of->mutex different static lockdep keys. 684 */ 685 if (has_mmap) 686 mutex_init(&of->mutex); 687 else 688 mutex_init(&of->mutex); 689 690 of->kn = kn; 691 of->file = file; 692 693 /* 694 * Write path needs to atomic_write_len outside active reference. 695 * Cache it in open_file. See kernfs_fop_write_iter() for details. 696 */ 697 of->atomic_write_len = ops->atomic_write_len; 698 699 error = -EINVAL; 700 /* 701 * ->seq_show is incompatible with ->prealloc, 702 * as seq_read does its own allocation. 703 * ->read must be used instead. 704 */ 705 if (ops->prealloc && ops->seq_show) 706 goto err_free; 707 if (ops->prealloc) { 708 int len = of->atomic_write_len ?: PAGE_SIZE; 709 of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL); 710 error = -ENOMEM; 711 if (!of->prealloc_buf) 712 goto err_free; 713 mutex_init(&of->prealloc_mutex); 714 } 715 716 /* 717 * Always instantiate seq_file even if read access doesn't use 718 * seq_file or is not requested. This unifies private data access 719 * and readable regular files are the vast majority anyway. 720 */ 721 if (ops->seq_show) 722 error = seq_open(file, &kernfs_seq_ops); 723 else 724 error = seq_open(file, NULL); 725 if (error) 726 goto err_free; 727 728 of->seq_file = file->private_data; 729 of->seq_file->private = of; 730 731 /* seq_file clears PWRITE unconditionally, restore it if WRITE */ 732 if (file->f_mode & FMODE_WRITE) 733 file->f_mode |= FMODE_PWRITE; 734 735 /* make sure we have open node struct */ 736 error = kernfs_get_open_node(kn, of); 737 if (error) 738 goto err_seq_release; 739 740 if (ops->open) { 741 /* nobody has access to @of yet, skip @of->mutex */ 742 error = ops->open(of); 743 if (error) 744 goto err_put_node; 745 } 746 747 /* open succeeded, put active references */ 748 kernfs_put_active(kn); 749 return 0; 750 751 err_put_node: 752 kernfs_unlink_open_file(kn, of, true); 753 err_seq_release: 754 seq_release(inode, file); 755 err_free: 756 kfree(of->prealloc_buf); 757 kfree(of); 758 err_out: 759 kernfs_put_active(kn); 760 return error; 761 } 762 763 /* used from release/drain to ensure that ->release() is called exactly once */ 764 static void kernfs_release_file(struct kernfs_node *kn, 765 struct kernfs_open_file *of) 766 { 767 /* 768 * @of is guaranteed to have no other file operations in flight and 769 * we just want to synchronize release and drain paths. 770 * @kernfs_open_file_mutex_ptr(kn) is enough. @of->mutex can't be used 771 * here because drain path may be called from places which can 772 * cause circular dependency. 773 */ 774 lockdep_assert_held(kernfs_open_file_mutex_ptr(kn)); 775 776 if (!of->released) { 777 /* 778 * A file is never detached without being released and we 779 * need to be able to release files which are deactivated 780 * and being drained. Don't use kernfs_ops(). 781 */ 782 kn->attr.ops->release(of); 783 of->released = true; 784 of_on(of)->nr_to_release--; 785 } 786 } 787 788 static int kernfs_fop_release(struct inode *inode, struct file *filp) 789 { 790 struct kernfs_node *kn = inode->i_private; 791 struct kernfs_open_file *of = kernfs_of(filp); 792 793 if (kn->flags & KERNFS_HAS_RELEASE) { 794 struct mutex *mutex; 795 796 mutex = kernfs_open_file_mutex_lock(kn); 797 kernfs_release_file(kn, of); 798 mutex_unlock(mutex); 799 } 800 801 kernfs_unlink_open_file(kn, of, false); 802 seq_release(inode, filp); 803 kfree(of->prealloc_buf); 804 kfree(of); 805 806 return 0; 807 } 808 809 bool kernfs_should_drain_open_files(struct kernfs_node *kn) 810 { 811 struct kernfs_open_node *on; 812 bool ret; 813 814 /* 815 * @kn being deactivated guarantees that @kn->attr.open can't change 816 * beneath us making the lockless test below safe. 817 */ 818 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 819 820 rcu_read_lock(); 821 on = rcu_dereference(kn->attr.open); 822 ret = on && (on->nr_mmapped || on->nr_to_release); 823 rcu_read_unlock(); 824 825 return ret; 826 } 827 828 void kernfs_drain_open_files(struct kernfs_node *kn) 829 { 830 struct kernfs_open_node *on; 831 struct kernfs_open_file *of; 832 struct mutex *mutex; 833 834 mutex = kernfs_open_file_mutex_lock(kn); 835 on = kernfs_deref_open_node_locked(kn); 836 if (!on) { 837 mutex_unlock(mutex); 838 return; 839 } 840 841 list_for_each_entry(of, &on->files, list) { 842 struct inode *inode = file_inode(of->file); 843 844 if (of->mmapped) { 845 unmap_mapping_range(inode->i_mapping, 0, 0, 1); 846 of->mmapped = false; 847 on->nr_mmapped--; 848 } 849 850 if (kn->flags & KERNFS_HAS_RELEASE) 851 kernfs_release_file(kn, of); 852 } 853 854 WARN_ON_ONCE(on->nr_mmapped || on->nr_to_release); 855 mutex_unlock(mutex); 856 } 857 858 /* 859 * Kernfs attribute files are pollable. The idea is that you read 860 * the content and then you use 'poll' or 'select' to wait for 861 * the content to change. When the content changes (assuming the 862 * manager for the kobject supports notification), poll will 863 * return EPOLLERR|EPOLLPRI, and select will return the fd whether 864 * it is waiting for read, write, or exceptions. 865 * Once poll/select indicates that the value has changed, you 866 * need to close and re-open the file, or seek to 0 and read again. 867 * Reminder: this only works for attributes which actively support 868 * it, and it is not possible to test an attribute from userspace 869 * to see if it supports poll (Neither 'poll' nor 'select' return 870 * an appropriate error code). When in doubt, set a suitable timeout value. 871 */ 872 __poll_t kernfs_generic_poll(struct kernfs_open_file *of, poll_table *wait) 873 { 874 struct kernfs_open_node *on = of_on(of); 875 876 poll_wait(of->file, &on->poll, wait); 877 878 if (of->event != atomic_read(&on->event)) 879 return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI; 880 881 return DEFAULT_POLLMASK; 882 } 883 884 static __poll_t kernfs_fop_poll(struct file *filp, poll_table *wait) 885 { 886 struct kernfs_open_file *of = kernfs_of(filp); 887 struct kernfs_node *kn = kernfs_dentry_node(filp->f_path.dentry); 888 __poll_t ret; 889 890 if (!kernfs_get_active(kn)) 891 return DEFAULT_POLLMASK|EPOLLERR|EPOLLPRI; 892 893 if (kn->attr.ops->poll) 894 ret = kn->attr.ops->poll(of, wait); 895 else 896 ret = kernfs_generic_poll(of, wait); 897 898 kernfs_put_active(kn); 899 return ret; 900 } 901 902 static void kernfs_notify_workfn(struct work_struct *work) 903 { 904 struct kernfs_node *kn; 905 struct kernfs_super_info *info; 906 struct kernfs_root *root; 907 repeat: 908 /* pop one off the notify_list */ 909 spin_lock_irq(&kernfs_notify_lock); 910 kn = kernfs_notify_list; 911 if (kn == KERNFS_NOTIFY_EOL) { 912 spin_unlock_irq(&kernfs_notify_lock); 913 return; 914 } 915 kernfs_notify_list = kn->attr.notify_next; 916 kn->attr.notify_next = NULL; 917 spin_unlock_irq(&kernfs_notify_lock); 918 919 root = kernfs_root(kn); 920 /* kick fsnotify */ 921 down_write(&root->kernfs_rwsem); 922 923 list_for_each_entry(info, &kernfs_root(kn)->supers, node) { 924 struct kernfs_node *parent; 925 struct inode *p_inode = NULL; 926 struct inode *inode; 927 struct qstr name; 928 929 /* 930 * We want fsnotify_modify() on @kn but as the 931 * modifications aren't originating from userland don't 932 * have the matching @file available. Look up the inodes 933 * and generate the events manually. 934 */ 935 inode = ilookup(info->sb, kernfs_ino(kn)); 936 if (!inode) 937 continue; 938 939 name = (struct qstr)QSTR_INIT(kn->name, strlen(kn->name)); 940 parent = kernfs_get_parent(kn); 941 if (parent) { 942 p_inode = ilookup(info->sb, kernfs_ino(parent)); 943 if (p_inode) { 944 fsnotify(FS_MODIFY | FS_EVENT_ON_CHILD, 945 inode, FSNOTIFY_EVENT_INODE, 946 p_inode, &name, inode, 0); 947 iput(p_inode); 948 } 949 950 kernfs_put(parent); 951 } 952 953 if (!p_inode) 954 fsnotify_inode(inode, FS_MODIFY); 955 956 iput(inode); 957 } 958 959 up_write(&root->kernfs_rwsem); 960 kernfs_put(kn); 961 goto repeat; 962 } 963 964 /** 965 * kernfs_notify - notify a kernfs file 966 * @kn: file to notify 967 * 968 * Notify @kn such that poll(2) on @kn wakes up. Maybe be called from any 969 * context. 970 */ 971 void kernfs_notify(struct kernfs_node *kn) 972 { 973 static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn); 974 unsigned long flags; 975 struct kernfs_open_node *on; 976 977 if (WARN_ON(kernfs_type(kn) != KERNFS_FILE)) 978 return; 979 980 /* kick poll immediately */ 981 rcu_read_lock(); 982 on = rcu_dereference(kn->attr.open); 983 if (on) { 984 atomic_inc(&on->event); 985 wake_up_interruptible(&on->poll); 986 } 987 rcu_read_unlock(); 988 989 /* schedule work to kick fsnotify */ 990 spin_lock_irqsave(&kernfs_notify_lock, flags); 991 if (!kn->attr.notify_next) { 992 kernfs_get(kn); 993 kn->attr.notify_next = kernfs_notify_list; 994 kernfs_notify_list = kn; 995 schedule_work(&kernfs_notify_work); 996 } 997 spin_unlock_irqrestore(&kernfs_notify_lock, flags); 998 } 999 EXPORT_SYMBOL_GPL(kernfs_notify); 1000 1001 const struct file_operations kernfs_file_fops = { 1002 .read_iter = kernfs_fop_read_iter, 1003 .write_iter = kernfs_fop_write_iter, 1004 .llseek = generic_file_llseek, 1005 .mmap = kernfs_fop_mmap, 1006 .open = kernfs_fop_open, 1007 .release = kernfs_fop_release, 1008 .poll = kernfs_fop_poll, 1009 .fsync = noop_fsync, 1010 .splice_read = generic_file_splice_read, 1011 .splice_write = iter_file_splice_write, 1012 }; 1013 1014 /** 1015 * __kernfs_create_file - kernfs internal function to create a file 1016 * @parent: directory to create the file in 1017 * @name: name of the file 1018 * @mode: mode of the file 1019 * @uid: uid of the file 1020 * @gid: gid of the file 1021 * @size: size of the file 1022 * @ops: kernfs operations for the file 1023 * @priv: private data for the file 1024 * @ns: optional namespace tag of the file 1025 * @key: lockdep key for the file's active_ref, %NULL to disable lockdep 1026 * 1027 * Returns the created node on success, ERR_PTR() value on error. 1028 */ 1029 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent, 1030 const char *name, 1031 umode_t mode, kuid_t uid, kgid_t gid, 1032 loff_t size, 1033 const struct kernfs_ops *ops, 1034 void *priv, const void *ns, 1035 struct lock_class_key *key) 1036 { 1037 struct kernfs_node *kn; 1038 unsigned flags; 1039 int rc; 1040 1041 flags = KERNFS_FILE; 1042 1043 kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, 1044 uid, gid, flags); 1045 if (!kn) 1046 return ERR_PTR(-ENOMEM); 1047 1048 kn->attr.ops = ops; 1049 kn->attr.size = size; 1050 kn->ns = ns; 1051 kn->priv = priv; 1052 1053 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1054 if (key) { 1055 lockdep_init_map(&kn->dep_map, "kn->active", key, 0); 1056 kn->flags |= KERNFS_LOCKDEP; 1057 } 1058 #endif 1059 1060 /* 1061 * kn->attr.ops is accessible only while holding active ref. We 1062 * need to know whether some ops are implemented outside active 1063 * ref. Cache their existence in flags. 1064 */ 1065 if (ops->seq_show) 1066 kn->flags |= KERNFS_HAS_SEQ_SHOW; 1067 if (ops->mmap) 1068 kn->flags |= KERNFS_HAS_MMAP; 1069 if (ops->release) 1070 kn->flags |= KERNFS_HAS_RELEASE; 1071 1072 rc = kernfs_add_one(kn); 1073 if (rc) { 1074 kernfs_put(kn); 1075 return ERR_PTR(rc); 1076 } 1077 return kn; 1078 } 1079