xref: /openbmc/linux/fs/kernfs/file.c (revision 0edbfea5)
1 /*
2  * fs/kernfs/file.c - kernfs file implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/fs.h>
12 #include <linux/seq_file.h>
13 #include <linux/slab.h>
14 #include <linux/poll.h>
15 #include <linux/pagemap.h>
16 #include <linux/sched.h>
17 #include <linux/fsnotify.h>
18 
19 #include "kernfs-internal.h"
20 
21 /*
22  * There's one kernfs_open_file for each open file and one kernfs_open_node
23  * for each kernfs_node with one or more open files.
24  *
25  * kernfs_node->attr.open points to kernfs_open_node.  attr.open is
26  * protected by kernfs_open_node_lock.
27  *
28  * filp->private_data points to seq_file whose ->private points to
29  * kernfs_open_file.  kernfs_open_files are chained at
30  * kernfs_open_node->files, which is protected by kernfs_open_file_mutex.
31  */
32 static DEFINE_SPINLOCK(kernfs_open_node_lock);
33 static DEFINE_MUTEX(kernfs_open_file_mutex);
34 
35 struct kernfs_open_node {
36 	atomic_t		refcnt;
37 	atomic_t		event;
38 	wait_queue_head_t	poll;
39 	struct list_head	files; /* goes through kernfs_open_file.list */
40 };
41 
42 /*
43  * kernfs_notify() may be called from any context and bounces notifications
44  * through a work item.  To minimize space overhead in kernfs_node, the
45  * pending queue is implemented as a singly linked list of kernfs_nodes.
46  * The list is terminated with the self pointer so that whether a
47  * kernfs_node is on the list or not can be determined by testing the next
48  * pointer for NULL.
49  */
50 #define KERNFS_NOTIFY_EOL			((void *)&kernfs_notify_list)
51 
52 static DEFINE_SPINLOCK(kernfs_notify_lock);
53 static struct kernfs_node *kernfs_notify_list = KERNFS_NOTIFY_EOL;
54 
55 static struct kernfs_open_file *kernfs_of(struct file *file)
56 {
57 	return ((struct seq_file *)file->private_data)->private;
58 }
59 
60 /*
61  * Determine the kernfs_ops for the given kernfs_node.  This function must
62  * be called while holding an active reference.
63  */
64 static const struct kernfs_ops *kernfs_ops(struct kernfs_node *kn)
65 {
66 	if (kn->flags & KERNFS_LOCKDEP)
67 		lockdep_assert_held(kn);
68 	return kn->attr.ops;
69 }
70 
71 /*
72  * As kernfs_seq_stop() is also called after kernfs_seq_start() or
73  * kernfs_seq_next() failure, it needs to distinguish whether it's stopping
74  * a seq_file iteration which is fully initialized with an active reference
75  * or an aborted kernfs_seq_start() due to get_active failure.  The
76  * position pointer is the only context for each seq_file iteration and
77  * thus the stop condition should be encoded in it.  As the return value is
78  * directly visible to userland, ERR_PTR(-ENODEV) is the only acceptable
79  * choice to indicate get_active failure.
80  *
81  * Unfortunately, this is complicated due to the optional custom seq_file
82  * operations which may return ERR_PTR(-ENODEV) too.  kernfs_seq_stop()
83  * can't distinguish whether ERR_PTR(-ENODEV) is from get_active failure or
84  * custom seq_file operations and thus can't decide whether put_active
85  * should be performed or not only on ERR_PTR(-ENODEV).
86  *
87  * This is worked around by factoring out the custom seq_stop() and
88  * put_active part into kernfs_seq_stop_active(), skipping it from
89  * kernfs_seq_stop() if ERR_PTR(-ENODEV) while invoking it directly after
90  * custom seq_file operations fail with ERR_PTR(-ENODEV) - this ensures
91  * that kernfs_seq_stop_active() is skipped only after get_active failure.
92  */
93 static void kernfs_seq_stop_active(struct seq_file *sf, void *v)
94 {
95 	struct kernfs_open_file *of = sf->private;
96 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
97 
98 	if (ops->seq_stop)
99 		ops->seq_stop(sf, v);
100 	kernfs_put_active(of->kn);
101 }
102 
103 static void *kernfs_seq_start(struct seq_file *sf, loff_t *ppos)
104 {
105 	struct kernfs_open_file *of = sf->private;
106 	const struct kernfs_ops *ops;
107 
108 	/*
109 	 * @of->mutex nests outside active ref and is primarily to ensure that
110 	 * the ops aren't called concurrently for the same open file.
111 	 */
112 	mutex_lock(&of->mutex);
113 	if (!kernfs_get_active(of->kn))
114 		return ERR_PTR(-ENODEV);
115 
116 	ops = kernfs_ops(of->kn);
117 	if (ops->seq_start) {
118 		void *next = ops->seq_start(sf, ppos);
119 		/* see the comment above kernfs_seq_stop_active() */
120 		if (next == ERR_PTR(-ENODEV))
121 			kernfs_seq_stop_active(sf, next);
122 		return next;
123 	} else {
124 		/*
125 		 * The same behavior and code as single_open().  Returns
126 		 * !NULL if pos is at the beginning; otherwise, NULL.
127 		 */
128 		return NULL + !*ppos;
129 	}
130 }
131 
132 static void *kernfs_seq_next(struct seq_file *sf, void *v, loff_t *ppos)
133 {
134 	struct kernfs_open_file *of = sf->private;
135 	const struct kernfs_ops *ops = kernfs_ops(of->kn);
136 
137 	if (ops->seq_next) {
138 		void *next = ops->seq_next(sf, v, ppos);
139 		/* see the comment above kernfs_seq_stop_active() */
140 		if (next == ERR_PTR(-ENODEV))
141 			kernfs_seq_stop_active(sf, next);
142 		return next;
143 	} else {
144 		/*
145 		 * The same behavior and code as single_open(), always
146 		 * terminate after the initial read.
147 		 */
148 		++*ppos;
149 		return NULL;
150 	}
151 }
152 
153 static void kernfs_seq_stop(struct seq_file *sf, void *v)
154 {
155 	struct kernfs_open_file *of = sf->private;
156 
157 	if (v != ERR_PTR(-ENODEV))
158 		kernfs_seq_stop_active(sf, v);
159 	mutex_unlock(&of->mutex);
160 }
161 
162 static int kernfs_seq_show(struct seq_file *sf, void *v)
163 {
164 	struct kernfs_open_file *of = sf->private;
165 
166 	of->event = atomic_read(&of->kn->attr.open->event);
167 
168 	return of->kn->attr.ops->seq_show(sf, v);
169 }
170 
171 static const struct seq_operations kernfs_seq_ops = {
172 	.start = kernfs_seq_start,
173 	.next = kernfs_seq_next,
174 	.stop = kernfs_seq_stop,
175 	.show = kernfs_seq_show,
176 };
177 
178 /*
179  * As reading a bin file can have side-effects, the exact offset and bytes
180  * specified in read(2) call should be passed to the read callback making
181  * it difficult to use seq_file.  Implement simplistic custom buffering for
182  * bin files.
183  */
184 static ssize_t kernfs_file_direct_read(struct kernfs_open_file *of,
185 				       char __user *user_buf, size_t count,
186 				       loff_t *ppos)
187 {
188 	ssize_t len = min_t(size_t, count, PAGE_SIZE);
189 	const struct kernfs_ops *ops;
190 	char *buf;
191 
192 	buf = of->prealloc_buf;
193 	if (buf)
194 		mutex_lock(&of->prealloc_mutex);
195 	else
196 		buf = kmalloc(len, GFP_KERNEL);
197 	if (!buf)
198 		return -ENOMEM;
199 
200 	/*
201 	 * @of->mutex nests outside active ref and is used both to ensure that
202 	 * the ops aren't called concurrently for the same open file.
203 	 */
204 	mutex_lock(&of->mutex);
205 	if (!kernfs_get_active(of->kn)) {
206 		len = -ENODEV;
207 		mutex_unlock(&of->mutex);
208 		goto out_free;
209 	}
210 
211 	of->event = atomic_read(&of->kn->attr.open->event);
212 	ops = kernfs_ops(of->kn);
213 	if (ops->read)
214 		len = ops->read(of, buf, len, *ppos);
215 	else
216 		len = -EINVAL;
217 
218 	kernfs_put_active(of->kn);
219 	mutex_unlock(&of->mutex);
220 
221 	if (len < 0)
222 		goto out_free;
223 
224 	if (copy_to_user(user_buf, buf, len)) {
225 		len = -EFAULT;
226 		goto out_free;
227 	}
228 
229 	*ppos += len;
230 
231  out_free:
232 	if (buf == of->prealloc_buf)
233 		mutex_unlock(&of->prealloc_mutex);
234 	else
235 		kfree(buf);
236 	return len;
237 }
238 
239 /**
240  * kernfs_fop_read - kernfs vfs read callback
241  * @file: file pointer
242  * @user_buf: data to write
243  * @count: number of bytes
244  * @ppos: starting offset
245  */
246 static ssize_t kernfs_fop_read(struct file *file, char __user *user_buf,
247 			       size_t count, loff_t *ppos)
248 {
249 	struct kernfs_open_file *of = kernfs_of(file);
250 
251 	if (of->kn->flags & KERNFS_HAS_SEQ_SHOW)
252 		return seq_read(file, user_buf, count, ppos);
253 	else
254 		return kernfs_file_direct_read(of, user_buf, count, ppos);
255 }
256 
257 /**
258  * kernfs_fop_write - kernfs vfs write callback
259  * @file: file pointer
260  * @user_buf: data to write
261  * @count: number of bytes
262  * @ppos: starting offset
263  *
264  * Copy data in from userland and pass it to the matching kernfs write
265  * operation.
266  *
267  * There is no easy way for us to know if userspace is only doing a partial
268  * write, so we don't support them. We expect the entire buffer to come on
269  * the first write.  Hint: if you're writing a value, first read the file,
270  * modify only the the value you're changing, then write entire buffer
271  * back.
272  */
273 static ssize_t kernfs_fop_write(struct file *file, const char __user *user_buf,
274 				size_t count, loff_t *ppos)
275 {
276 	struct kernfs_open_file *of = kernfs_of(file);
277 	const struct kernfs_ops *ops;
278 	size_t len;
279 	char *buf;
280 
281 	if (of->atomic_write_len) {
282 		len = count;
283 		if (len > of->atomic_write_len)
284 			return -E2BIG;
285 	} else {
286 		len = min_t(size_t, count, PAGE_SIZE);
287 	}
288 
289 	buf = of->prealloc_buf;
290 	if (buf)
291 		mutex_lock(&of->prealloc_mutex);
292 	else
293 		buf = kmalloc(len + 1, GFP_KERNEL);
294 	if (!buf)
295 		return -ENOMEM;
296 
297 	if (copy_from_user(buf, user_buf, len)) {
298 		len = -EFAULT;
299 		goto out_free;
300 	}
301 	buf[len] = '\0';	/* guarantee string termination */
302 
303 	/*
304 	 * @of->mutex nests outside active ref and is used both to ensure that
305 	 * the ops aren't called concurrently for the same open file.
306 	 */
307 	mutex_lock(&of->mutex);
308 	if (!kernfs_get_active(of->kn)) {
309 		mutex_unlock(&of->mutex);
310 		len = -ENODEV;
311 		goto out_free;
312 	}
313 
314 	ops = kernfs_ops(of->kn);
315 	if (ops->write)
316 		len = ops->write(of, buf, len, *ppos);
317 	else
318 		len = -EINVAL;
319 
320 	kernfs_put_active(of->kn);
321 	mutex_unlock(&of->mutex);
322 
323 	if (len > 0)
324 		*ppos += len;
325 
326 out_free:
327 	if (buf == of->prealloc_buf)
328 		mutex_unlock(&of->prealloc_mutex);
329 	else
330 		kfree(buf);
331 	return len;
332 }
333 
334 static void kernfs_vma_open(struct vm_area_struct *vma)
335 {
336 	struct file *file = vma->vm_file;
337 	struct kernfs_open_file *of = kernfs_of(file);
338 
339 	if (!of->vm_ops)
340 		return;
341 
342 	if (!kernfs_get_active(of->kn))
343 		return;
344 
345 	if (of->vm_ops->open)
346 		of->vm_ops->open(vma);
347 
348 	kernfs_put_active(of->kn);
349 }
350 
351 static int kernfs_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
352 {
353 	struct file *file = vma->vm_file;
354 	struct kernfs_open_file *of = kernfs_of(file);
355 	int ret;
356 
357 	if (!of->vm_ops)
358 		return VM_FAULT_SIGBUS;
359 
360 	if (!kernfs_get_active(of->kn))
361 		return VM_FAULT_SIGBUS;
362 
363 	ret = VM_FAULT_SIGBUS;
364 	if (of->vm_ops->fault)
365 		ret = of->vm_ops->fault(vma, vmf);
366 
367 	kernfs_put_active(of->kn);
368 	return ret;
369 }
370 
371 static int kernfs_vma_page_mkwrite(struct vm_area_struct *vma,
372 				   struct vm_fault *vmf)
373 {
374 	struct file *file = vma->vm_file;
375 	struct kernfs_open_file *of = kernfs_of(file);
376 	int ret;
377 
378 	if (!of->vm_ops)
379 		return VM_FAULT_SIGBUS;
380 
381 	if (!kernfs_get_active(of->kn))
382 		return VM_FAULT_SIGBUS;
383 
384 	ret = 0;
385 	if (of->vm_ops->page_mkwrite)
386 		ret = of->vm_ops->page_mkwrite(vma, vmf);
387 	else
388 		file_update_time(file);
389 
390 	kernfs_put_active(of->kn);
391 	return ret;
392 }
393 
394 static int kernfs_vma_access(struct vm_area_struct *vma, unsigned long addr,
395 			     void *buf, int len, int write)
396 {
397 	struct file *file = vma->vm_file;
398 	struct kernfs_open_file *of = kernfs_of(file);
399 	int ret;
400 
401 	if (!of->vm_ops)
402 		return -EINVAL;
403 
404 	if (!kernfs_get_active(of->kn))
405 		return -EINVAL;
406 
407 	ret = -EINVAL;
408 	if (of->vm_ops->access)
409 		ret = of->vm_ops->access(vma, addr, buf, len, write);
410 
411 	kernfs_put_active(of->kn);
412 	return ret;
413 }
414 
415 #ifdef CONFIG_NUMA
416 static int kernfs_vma_set_policy(struct vm_area_struct *vma,
417 				 struct mempolicy *new)
418 {
419 	struct file *file = vma->vm_file;
420 	struct kernfs_open_file *of = kernfs_of(file);
421 	int ret;
422 
423 	if (!of->vm_ops)
424 		return 0;
425 
426 	if (!kernfs_get_active(of->kn))
427 		return -EINVAL;
428 
429 	ret = 0;
430 	if (of->vm_ops->set_policy)
431 		ret = of->vm_ops->set_policy(vma, new);
432 
433 	kernfs_put_active(of->kn);
434 	return ret;
435 }
436 
437 static struct mempolicy *kernfs_vma_get_policy(struct vm_area_struct *vma,
438 					       unsigned long addr)
439 {
440 	struct file *file = vma->vm_file;
441 	struct kernfs_open_file *of = kernfs_of(file);
442 	struct mempolicy *pol;
443 
444 	if (!of->vm_ops)
445 		return vma->vm_policy;
446 
447 	if (!kernfs_get_active(of->kn))
448 		return vma->vm_policy;
449 
450 	pol = vma->vm_policy;
451 	if (of->vm_ops->get_policy)
452 		pol = of->vm_ops->get_policy(vma, addr);
453 
454 	kernfs_put_active(of->kn);
455 	return pol;
456 }
457 
458 #endif
459 
460 static const struct vm_operations_struct kernfs_vm_ops = {
461 	.open		= kernfs_vma_open,
462 	.fault		= kernfs_vma_fault,
463 	.page_mkwrite	= kernfs_vma_page_mkwrite,
464 	.access		= kernfs_vma_access,
465 #ifdef CONFIG_NUMA
466 	.set_policy	= kernfs_vma_set_policy,
467 	.get_policy	= kernfs_vma_get_policy,
468 #endif
469 };
470 
471 static int kernfs_fop_mmap(struct file *file, struct vm_area_struct *vma)
472 {
473 	struct kernfs_open_file *of = kernfs_of(file);
474 	const struct kernfs_ops *ops;
475 	int rc;
476 
477 	/*
478 	 * mmap path and of->mutex are prone to triggering spurious lockdep
479 	 * warnings and we don't want to add spurious locking dependency
480 	 * between the two.  Check whether mmap is actually implemented
481 	 * without grabbing @of->mutex by testing HAS_MMAP flag.  See the
482 	 * comment in kernfs_file_open() for more details.
483 	 */
484 	if (!(of->kn->flags & KERNFS_HAS_MMAP))
485 		return -ENODEV;
486 
487 	mutex_lock(&of->mutex);
488 
489 	rc = -ENODEV;
490 	if (!kernfs_get_active(of->kn))
491 		goto out_unlock;
492 
493 	ops = kernfs_ops(of->kn);
494 	rc = ops->mmap(of, vma);
495 	if (rc)
496 		goto out_put;
497 
498 	/*
499 	 * PowerPC's pci_mmap of legacy_mem uses shmem_zero_setup()
500 	 * to satisfy versions of X which crash if the mmap fails: that
501 	 * substitutes a new vm_file, and we don't then want bin_vm_ops.
502 	 */
503 	if (vma->vm_file != file)
504 		goto out_put;
505 
506 	rc = -EINVAL;
507 	if (of->mmapped && of->vm_ops != vma->vm_ops)
508 		goto out_put;
509 
510 	/*
511 	 * It is not possible to successfully wrap close.
512 	 * So error if someone is trying to use close.
513 	 */
514 	rc = -EINVAL;
515 	if (vma->vm_ops && vma->vm_ops->close)
516 		goto out_put;
517 
518 	rc = 0;
519 	of->mmapped = 1;
520 	of->vm_ops = vma->vm_ops;
521 	vma->vm_ops = &kernfs_vm_ops;
522 out_put:
523 	kernfs_put_active(of->kn);
524 out_unlock:
525 	mutex_unlock(&of->mutex);
526 
527 	return rc;
528 }
529 
530 /**
531  *	kernfs_get_open_node - get or create kernfs_open_node
532  *	@kn: target kernfs_node
533  *	@of: kernfs_open_file for this instance of open
534  *
535  *	If @kn->attr.open exists, increment its reference count; otherwise,
536  *	create one.  @of is chained to the files list.
537  *
538  *	LOCKING:
539  *	Kernel thread context (may sleep).
540  *
541  *	RETURNS:
542  *	0 on success, -errno on failure.
543  */
544 static int kernfs_get_open_node(struct kernfs_node *kn,
545 				struct kernfs_open_file *of)
546 {
547 	struct kernfs_open_node *on, *new_on = NULL;
548 
549  retry:
550 	mutex_lock(&kernfs_open_file_mutex);
551 	spin_lock_irq(&kernfs_open_node_lock);
552 
553 	if (!kn->attr.open && new_on) {
554 		kn->attr.open = new_on;
555 		new_on = NULL;
556 	}
557 
558 	on = kn->attr.open;
559 	if (on) {
560 		atomic_inc(&on->refcnt);
561 		list_add_tail(&of->list, &on->files);
562 	}
563 
564 	spin_unlock_irq(&kernfs_open_node_lock);
565 	mutex_unlock(&kernfs_open_file_mutex);
566 
567 	if (on) {
568 		kfree(new_on);
569 		return 0;
570 	}
571 
572 	/* not there, initialize a new one and retry */
573 	new_on = kmalloc(sizeof(*new_on), GFP_KERNEL);
574 	if (!new_on)
575 		return -ENOMEM;
576 
577 	atomic_set(&new_on->refcnt, 0);
578 	atomic_set(&new_on->event, 1);
579 	init_waitqueue_head(&new_on->poll);
580 	INIT_LIST_HEAD(&new_on->files);
581 	goto retry;
582 }
583 
584 /**
585  *	kernfs_put_open_node - put kernfs_open_node
586  *	@kn: target kernfs_nodet
587  *	@of: associated kernfs_open_file
588  *
589  *	Put @kn->attr.open and unlink @of from the files list.  If
590  *	reference count reaches zero, disassociate and free it.
591  *
592  *	LOCKING:
593  *	None.
594  */
595 static void kernfs_put_open_node(struct kernfs_node *kn,
596 				 struct kernfs_open_file *of)
597 {
598 	struct kernfs_open_node *on = kn->attr.open;
599 	unsigned long flags;
600 
601 	mutex_lock(&kernfs_open_file_mutex);
602 	spin_lock_irqsave(&kernfs_open_node_lock, flags);
603 
604 	if (of)
605 		list_del(&of->list);
606 
607 	if (atomic_dec_and_test(&on->refcnt))
608 		kn->attr.open = NULL;
609 	else
610 		on = NULL;
611 
612 	spin_unlock_irqrestore(&kernfs_open_node_lock, flags);
613 	mutex_unlock(&kernfs_open_file_mutex);
614 
615 	kfree(on);
616 }
617 
618 static int kernfs_fop_open(struct inode *inode, struct file *file)
619 {
620 	struct kernfs_node *kn = file->f_path.dentry->d_fsdata;
621 	struct kernfs_root *root = kernfs_root(kn);
622 	const struct kernfs_ops *ops;
623 	struct kernfs_open_file *of;
624 	bool has_read, has_write, has_mmap;
625 	int error = -EACCES;
626 
627 	if (!kernfs_get_active(kn))
628 		return -ENODEV;
629 
630 	ops = kernfs_ops(kn);
631 
632 	has_read = ops->seq_show || ops->read || ops->mmap;
633 	has_write = ops->write || ops->mmap;
634 	has_mmap = ops->mmap;
635 
636 	/* see the flag definition for details */
637 	if (root->flags & KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK) {
638 		if ((file->f_mode & FMODE_WRITE) &&
639 		    (!(inode->i_mode & S_IWUGO) || !has_write))
640 			goto err_out;
641 
642 		if ((file->f_mode & FMODE_READ) &&
643 		    (!(inode->i_mode & S_IRUGO) || !has_read))
644 			goto err_out;
645 	}
646 
647 	/* allocate a kernfs_open_file for the file */
648 	error = -ENOMEM;
649 	of = kzalloc(sizeof(struct kernfs_open_file), GFP_KERNEL);
650 	if (!of)
651 		goto err_out;
652 
653 	/*
654 	 * The following is done to give a different lockdep key to
655 	 * @of->mutex for files which implement mmap.  This is a rather
656 	 * crude way to avoid false positive lockdep warning around
657 	 * mm->mmap_sem - mmap nests @of->mutex under mm->mmap_sem and
658 	 * reading /sys/block/sda/trace/act_mask grabs sr_mutex, under
659 	 * which mm->mmap_sem nests, while holding @of->mutex.  As each
660 	 * open file has a separate mutex, it's okay as long as those don't
661 	 * happen on the same file.  At this point, we can't easily give
662 	 * each file a separate locking class.  Let's differentiate on
663 	 * whether the file has mmap or not for now.
664 	 *
665 	 * Both paths of the branch look the same.  They're supposed to
666 	 * look that way and give @of->mutex different static lockdep keys.
667 	 */
668 	if (has_mmap)
669 		mutex_init(&of->mutex);
670 	else
671 		mutex_init(&of->mutex);
672 
673 	of->kn = kn;
674 	of->file = file;
675 
676 	/*
677 	 * Write path needs to atomic_write_len outside active reference.
678 	 * Cache it in open_file.  See kernfs_fop_write() for details.
679 	 */
680 	of->atomic_write_len = ops->atomic_write_len;
681 
682 	error = -EINVAL;
683 	/*
684 	 * ->seq_show is incompatible with ->prealloc,
685 	 * as seq_read does its own allocation.
686 	 * ->read must be used instead.
687 	 */
688 	if (ops->prealloc && ops->seq_show)
689 		goto err_free;
690 	if (ops->prealloc) {
691 		int len = of->atomic_write_len ?: PAGE_SIZE;
692 		of->prealloc_buf = kmalloc(len + 1, GFP_KERNEL);
693 		error = -ENOMEM;
694 		if (!of->prealloc_buf)
695 			goto err_free;
696 		mutex_init(&of->prealloc_mutex);
697 	}
698 
699 	/*
700 	 * Always instantiate seq_file even if read access doesn't use
701 	 * seq_file or is not requested.  This unifies private data access
702 	 * and readable regular files are the vast majority anyway.
703 	 */
704 	if (ops->seq_show)
705 		error = seq_open(file, &kernfs_seq_ops);
706 	else
707 		error = seq_open(file, NULL);
708 	if (error)
709 		goto err_free;
710 
711 	((struct seq_file *)file->private_data)->private = of;
712 
713 	/* seq_file clears PWRITE unconditionally, restore it if WRITE */
714 	if (file->f_mode & FMODE_WRITE)
715 		file->f_mode |= FMODE_PWRITE;
716 
717 	/* make sure we have open node struct */
718 	error = kernfs_get_open_node(kn, of);
719 	if (error)
720 		goto err_close;
721 
722 	/* open succeeded, put active references */
723 	kernfs_put_active(kn);
724 	return 0;
725 
726 err_close:
727 	seq_release(inode, file);
728 err_free:
729 	kfree(of->prealloc_buf);
730 	kfree(of);
731 err_out:
732 	kernfs_put_active(kn);
733 	return error;
734 }
735 
736 static int kernfs_fop_release(struct inode *inode, struct file *filp)
737 {
738 	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
739 	struct kernfs_open_file *of = kernfs_of(filp);
740 
741 	kernfs_put_open_node(kn, of);
742 	seq_release(inode, filp);
743 	kfree(of->prealloc_buf);
744 	kfree(of);
745 
746 	return 0;
747 }
748 
749 void kernfs_unmap_bin_file(struct kernfs_node *kn)
750 {
751 	struct kernfs_open_node *on;
752 	struct kernfs_open_file *of;
753 
754 	if (!(kn->flags & KERNFS_HAS_MMAP))
755 		return;
756 
757 	spin_lock_irq(&kernfs_open_node_lock);
758 	on = kn->attr.open;
759 	if (on)
760 		atomic_inc(&on->refcnt);
761 	spin_unlock_irq(&kernfs_open_node_lock);
762 	if (!on)
763 		return;
764 
765 	mutex_lock(&kernfs_open_file_mutex);
766 	list_for_each_entry(of, &on->files, list) {
767 		struct inode *inode = file_inode(of->file);
768 		unmap_mapping_range(inode->i_mapping, 0, 0, 1);
769 	}
770 	mutex_unlock(&kernfs_open_file_mutex);
771 
772 	kernfs_put_open_node(kn, NULL);
773 }
774 
775 /*
776  * Kernfs attribute files are pollable.  The idea is that you read
777  * the content and then you use 'poll' or 'select' to wait for
778  * the content to change.  When the content changes (assuming the
779  * manager for the kobject supports notification), poll will
780  * return POLLERR|POLLPRI, and select will return the fd whether
781  * it is waiting for read, write, or exceptions.
782  * Once poll/select indicates that the value has changed, you
783  * need to close and re-open the file, or seek to 0 and read again.
784  * Reminder: this only works for attributes which actively support
785  * it, and it is not possible to test an attribute from userspace
786  * to see if it supports poll (Neither 'poll' nor 'select' return
787  * an appropriate error code).  When in doubt, set a suitable timeout value.
788  */
789 static unsigned int kernfs_fop_poll(struct file *filp, poll_table *wait)
790 {
791 	struct kernfs_open_file *of = kernfs_of(filp);
792 	struct kernfs_node *kn = filp->f_path.dentry->d_fsdata;
793 	struct kernfs_open_node *on = kn->attr.open;
794 
795 	if (!kernfs_get_active(kn))
796 		goto trigger;
797 
798 	poll_wait(filp, &on->poll, wait);
799 
800 	kernfs_put_active(kn);
801 
802 	if (of->event != atomic_read(&on->event))
803 		goto trigger;
804 
805 	return DEFAULT_POLLMASK;
806 
807  trigger:
808 	return DEFAULT_POLLMASK|POLLERR|POLLPRI;
809 }
810 
811 static void kernfs_notify_workfn(struct work_struct *work)
812 {
813 	struct kernfs_node *kn;
814 	struct kernfs_open_node *on;
815 	struct kernfs_super_info *info;
816 repeat:
817 	/* pop one off the notify_list */
818 	spin_lock_irq(&kernfs_notify_lock);
819 	kn = kernfs_notify_list;
820 	if (kn == KERNFS_NOTIFY_EOL) {
821 		spin_unlock_irq(&kernfs_notify_lock);
822 		return;
823 	}
824 	kernfs_notify_list = kn->attr.notify_next;
825 	kn->attr.notify_next = NULL;
826 	spin_unlock_irq(&kernfs_notify_lock);
827 
828 	/* kick poll */
829 	spin_lock_irq(&kernfs_open_node_lock);
830 
831 	on = kn->attr.open;
832 	if (on) {
833 		atomic_inc(&on->event);
834 		wake_up_interruptible(&on->poll);
835 	}
836 
837 	spin_unlock_irq(&kernfs_open_node_lock);
838 
839 	/* kick fsnotify */
840 	mutex_lock(&kernfs_mutex);
841 
842 	list_for_each_entry(info, &kernfs_root(kn)->supers, node) {
843 		struct inode *inode;
844 		struct dentry *dentry;
845 
846 		inode = ilookup(info->sb, kn->ino);
847 		if (!inode)
848 			continue;
849 
850 		dentry = d_find_any_alias(inode);
851 		if (dentry) {
852 			fsnotify_parent(NULL, dentry, FS_MODIFY);
853 			fsnotify(inode, FS_MODIFY, inode, FSNOTIFY_EVENT_INODE,
854 				 NULL, 0);
855 			dput(dentry);
856 		}
857 
858 		iput(inode);
859 	}
860 
861 	mutex_unlock(&kernfs_mutex);
862 	kernfs_put(kn);
863 	goto repeat;
864 }
865 
866 /**
867  * kernfs_notify - notify a kernfs file
868  * @kn: file to notify
869  *
870  * Notify @kn such that poll(2) on @kn wakes up.  Maybe be called from any
871  * context.
872  */
873 void kernfs_notify(struct kernfs_node *kn)
874 {
875 	static DECLARE_WORK(kernfs_notify_work, kernfs_notify_workfn);
876 	unsigned long flags;
877 
878 	if (WARN_ON(kernfs_type(kn) != KERNFS_FILE))
879 		return;
880 
881 	spin_lock_irqsave(&kernfs_notify_lock, flags);
882 	if (!kn->attr.notify_next) {
883 		kernfs_get(kn);
884 		kn->attr.notify_next = kernfs_notify_list;
885 		kernfs_notify_list = kn;
886 		schedule_work(&kernfs_notify_work);
887 	}
888 	spin_unlock_irqrestore(&kernfs_notify_lock, flags);
889 }
890 EXPORT_SYMBOL_GPL(kernfs_notify);
891 
892 const struct file_operations kernfs_file_fops = {
893 	.read		= kernfs_fop_read,
894 	.write		= kernfs_fop_write,
895 	.llseek		= generic_file_llseek,
896 	.mmap		= kernfs_fop_mmap,
897 	.open		= kernfs_fop_open,
898 	.release	= kernfs_fop_release,
899 	.poll		= kernfs_fop_poll,
900 };
901 
902 /**
903  * __kernfs_create_file - kernfs internal function to create a file
904  * @parent: directory to create the file in
905  * @name: name of the file
906  * @mode: mode of the file
907  * @size: size of the file
908  * @ops: kernfs operations for the file
909  * @priv: private data for the file
910  * @ns: optional namespace tag of the file
911  * @key: lockdep key for the file's active_ref, %NULL to disable lockdep
912  *
913  * Returns the created node on success, ERR_PTR() value on error.
914  */
915 struct kernfs_node *__kernfs_create_file(struct kernfs_node *parent,
916 					 const char *name,
917 					 umode_t mode, loff_t size,
918 					 const struct kernfs_ops *ops,
919 					 void *priv, const void *ns,
920 					 struct lock_class_key *key)
921 {
922 	struct kernfs_node *kn;
923 	unsigned flags;
924 	int rc;
925 
926 	flags = KERNFS_FILE;
927 
928 	kn = kernfs_new_node(parent, name, (mode & S_IALLUGO) | S_IFREG, flags);
929 	if (!kn)
930 		return ERR_PTR(-ENOMEM);
931 
932 	kn->attr.ops = ops;
933 	kn->attr.size = size;
934 	kn->ns = ns;
935 	kn->priv = priv;
936 
937 #ifdef CONFIG_DEBUG_LOCK_ALLOC
938 	if (key) {
939 		lockdep_init_map(&kn->dep_map, "s_active", key, 0);
940 		kn->flags |= KERNFS_LOCKDEP;
941 	}
942 #endif
943 
944 	/*
945 	 * kn->attr.ops is accesible only while holding active ref.  We
946 	 * need to know whether some ops are implemented outside active
947 	 * ref.  Cache their existence in flags.
948 	 */
949 	if (ops->seq_show)
950 		kn->flags |= KERNFS_HAS_SEQ_SHOW;
951 	if (ops->mmap)
952 		kn->flags |= KERNFS_HAS_MMAP;
953 
954 	rc = kernfs_add_one(kn);
955 	if (rc) {
956 		kernfs_put(kn);
957 		return ERR_PTR(rc);
958 	}
959 	return kn;
960 }
961