1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 DEFINE_MUTEX(kernfs_mutex); 21 22 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 23 24 /** 25 * kernfs_name_hash 26 * @name: Null terminated string to hash 27 * @ns: Namespace tag to hash 28 * 29 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 30 */ 31 static unsigned int kernfs_name_hash(const char *name, const void *ns) 32 { 33 unsigned long hash = init_name_hash(); 34 unsigned int len = strlen(name); 35 while (len--) 36 hash = partial_name_hash(*name++, hash); 37 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31)); 38 hash &= 0x7fffffffU; 39 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 40 if (hash < 1) 41 hash += 2; 42 if (hash >= INT_MAX) 43 hash = INT_MAX - 1; 44 return hash; 45 } 46 47 static int kernfs_name_compare(unsigned int hash, const char *name, 48 const void *ns, const struct kernfs_node *kn) 49 { 50 if (hash != kn->hash) 51 return hash - kn->hash; 52 if (ns != kn->ns) 53 return ns - kn->ns; 54 return strcmp(name, kn->name); 55 } 56 57 static int kernfs_sd_compare(const struct kernfs_node *left, 58 const struct kernfs_node *right) 59 { 60 return kernfs_name_compare(left->hash, left->name, left->ns, right); 61 } 62 63 /** 64 * kernfs_link_sibling - link kernfs_node into sibling rbtree 65 * @kn: kernfs_node of interest 66 * 67 * Link @kn into its sibling rbtree which starts from 68 * @kn->parent->dir.children. 69 * 70 * Locking: 71 * mutex_lock(kernfs_mutex) 72 * 73 * RETURNS: 74 * 0 on susccess -EEXIST on failure. 75 */ 76 static int kernfs_link_sibling(struct kernfs_node *kn) 77 { 78 struct rb_node **node = &kn->parent->dir.children.rb_node; 79 struct rb_node *parent = NULL; 80 81 if (kernfs_type(kn) == KERNFS_DIR) 82 kn->parent->dir.subdirs++; 83 84 while (*node) { 85 struct kernfs_node *pos; 86 int result; 87 88 pos = rb_to_kn(*node); 89 parent = *node; 90 result = kernfs_sd_compare(kn, pos); 91 if (result < 0) 92 node = &pos->rb.rb_left; 93 else if (result > 0) 94 node = &pos->rb.rb_right; 95 else 96 return -EEXIST; 97 } 98 /* add new node and rebalance the tree */ 99 rb_link_node(&kn->rb, parent, node); 100 rb_insert_color(&kn->rb, &kn->parent->dir.children); 101 return 0; 102 } 103 104 /** 105 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 106 * @kn: kernfs_node of interest 107 * 108 * Unlink @kn from its sibling rbtree which starts from 109 * kn->parent->dir.children. 110 * 111 * Locking: 112 * mutex_lock(kernfs_mutex) 113 */ 114 static void kernfs_unlink_sibling(struct kernfs_node *kn) 115 { 116 if (kernfs_type(kn) == KERNFS_DIR) 117 kn->parent->dir.subdirs--; 118 119 rb_erase(&kn->rb, &kn->parent->dir.children); 120 } 121 122 /** 123 * kernfs_get_active - get an active reference to kernfs_node 124 * @kn: kernfs_node to get an active reference to 125 * 126 * Get an active reference of @kn. This function is noop if @kn 127 * is NULL. 128 * 129 * RETURNS: 130 * Pointer to @kn on success, NULL on failure. 131 */ 132 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 133 { 134 if (unlikely(!kn)) 135 return NULL; 136 137 if (!atomic_inc_unless_negative(&kn->active)) 138 return NULL; 139 140 if (kn->flags & KERNFS_LOCKDEP) 141 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 142 return kn; 143 } 144 145 /** 146 * kernfs_put_active - put an active reference to kernfs_node 147 * @kn: kernfs_node to put an active reference to 148 * 149 * Put an active reference to @kn. This function is noop if @kn 150 * is NULL. 151 */ 152 void kernfs_put_active(struct kernfs_node *kn) 153 { 154 int v; 155 156 if (unlikely(!kn)) 157 return; 158 159 if (kn->flags & KERNFS_LOCKDEP) 160 rwsem_release(&kn->dep_map, 1, _RET_IP_); 161 v = atomic_dec_return(&kn->active); 162 if (likely(v != KN_DEACTIVATED_BIAS)) 163 return; 164 165 /* 166 * atomic_dec_return() is a mb(), we'll always see the updated 167 * kn->u.completion. 168 */ 169 complete(kn->u.completion); 170 } 171 172 /** 173 * kernfs_deactivate - deactivate kernfs_node 174 * @kn: kernfs_node to deactivate 175 * 176 * Deny new active references and drain existing ones. 177 */ 178 static void kernfs_deactivate(struct kernfs_node *kn) 179 { 180 DECLARE_COMPLETION_ONSTACK(wait); 181 int v; 182 183 BUG_ON(!(kn->flags & KERNFS_REMOVED)); 184 185 if (!(kernfs_type(kn) & KERNFS_ACTIVE_REF)) 186 return; 187 188 kn->u.completion = (void *)&wait; 189 190 if (kn->flags & KERNFS_LOCKDEP) 191 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 192 /* atomic_add_return() is a mb(), put_active() will always see 193 * the updated kn->u.completion. 194 */ 195 v = atomic_add_return(KN_DEACTIVATED_BIAS, &kn->active); 196 197 if (v != KN_DEACTIVATED_BIAS) { 198 if (kn->flags & KERNFS_LOCKDEP) 199 lock_contended(&kn->dep_map, _RET_IP_); 200 wait_for_completion(&wait); 201 } 202 203 if (kn->flags & KERNFS_LOCKDEP) { 204 lock_acquired(&kn->dep_map, _RET_IP_); 205 rwsem_release(&kn->dep_map, 1, _RET_IP_); 206 } 207 } 208 209 /** 210 * kernfs_get - get a reference count on a kernfs_node 211 * @kn: the target kernfs_node 212 */ 213 void kernfs_get(struct kernfs_node *kn) 214 { 215 if (kn) { 216 WARN_ON(!atomic_read(&kn->count)); 217 atomic_inc(&kn->count); 218 } 219 } 220 EXPORT_SYMBOL_GPL(kernfs_get); 221 222 /** 223 * kernfs_put - put a reference count on a kernfs_node 224 * @kn: the target kernfs_node 225 * 226 * Put a reference count of @kn and destroy it if it reached zero. 227 */ 228 void kernfs_put(struct kernfs_node *kn) 229 { 230 struct kernfs_node *parent; 231 struct kernfs_root *root; 232 233 if (!kn || !atomic_dec_and_test(&kn->count)) 234 return; 235 root = kernfs_root(kn); 236 repeat: 237 /* Moving/renaming is always done while holding reference. 238 * kn->parent won't change beneath us. 239 */ 240 parent = kn->parent; 241 242 WARN(!(kn->flags & KERNFS_REMOVED), "kernfs: free using entry: %s/%s\n", 243 parent ? parent->name : "", kn->name); 244 245 if (kernfs_type(kn) == KERNFS_LINK) 246 kernfs_put(kn->symlink.target_kn); 247 if (!(kn->flags & KERNFS_STATIC_NAME)) 248 kfree(kn->name); 249 if (kn->iattr) { 250 if (kn->iattr->ia_secdata) 251 security_release_secctx(kn->iattr->ia_secdata, 252 kn->iattr->ia_secdata_len); 253 simple_xattrs_free(&kn->iattr->xattrs); 254 } 255 kfree(kn->iattr); 256 ida_simple_remove(&root->ino_ida, kn->ino); 257 kmem_cache_free(kernfs_node_cache, kn); 258 259 kn = parent; 260 if (kn) { 261 if (atomic_dec_and_test(&kn->count)) 262 goto repeat; 263 } else { 264 /* just released the root kn, free @root too */ 265 ida_destroy(&root->ino_ida); 266 kfree(root); 267 } 268 } 269 EXPORT_SYMBOL_GPL(kernfs_put); 270 271 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 272 { 273 struct kernfs_node *kn; 274 275 if (flags & LOOKUP_RCU) 276 return -ECHILD; 277 278 /* Always perform fresh lookup for negatives */ 279 if (!dentry->d_inode) 280 goto out_bad_unlocked; 281 282 kn = dentry->d_fsdata; 283 mutex_lock(&kernfs_mutex); 284 285 /* The kernfs node has been deleted */ 286 if (kn->flags & KERNFS_REMOVED) 287 goto out_bad; 288 289 /* The kernfs node has been moved? */ 290 if (dentry->d_parent->d_fsdata != kn->parent) 291 goto out_bad; 292 293 /* The kernfs node has been renamed */ 294 if (strcmp(dentry->d_name.name, kn->name) != 0) 295 goto out_bad; 296 297 /* The kernfs node has been moved to a different namespace */ 298 if (kn->parent && kernfs_ns_enabled(kn->parent) && 299 kernfs_info(dentry->d_sb)->ns != kn->ns) 300 goto out_bad; 301 302 mutex_unlock(&kernfs_mutex); 303 out_valid: 304 return 1; 305 out_bad: 306 mutex_unlock(&kernfs_mutex); 307 out_bad_unlocked: 308 /* 309 * @dentry doesn't match the underlying kernfs node, drop the 310 * dentry and force lookup. If we have submounts we must allow the 311 * vfs caches to lie about the state of the filesystem to prevent 312 * leaks and other nasty things, so use check_submounts_and_drop() 313 * instead of d_drop(). 314 */ 315 if (check_submounts_and_drop(dentry) != 0) 316 goto out_valid; 317 318 return 0; 319 } 320 321 static void kernfs_dop_release(struct dentry *dentry) 322 { 323 kernfs_put(dentry->d_fsdata); 324 } 325 326 const struct dentry_operations kernfs_dops = { 327 .d_revalidate = kernfs_dop_revalidate, 328 .d_release = kernfs_dop_release, 329 }; 330 331 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 332 const char *name, umode_t mode, 333 unsigned flags) 334 { 335 char *dup_name = NULL; 336 struct kernfs_node *kn; 337 int ret; 338 339 if (!(flags & KERNFS_STATIC_NAME)) { 340 name = dup_name = kstrdup(name, GFP_KERNEL); 341 if (!name) 342 return NULL; 343 } 344 345 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 346 if (!kn) 347 goto err_out1; 348 349 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL); 350 if (ret < 0) 351 goto err_out2; 352 kn->ino = ret; 353 354 atomic_set(&kn->count, 1); 355 atomic_set(&kn->active, 0); 356 357 kn->name = name; 358 kn->mode = mode; 359 kn->flags = flags | KERNFS_REMOVED; 360 361 return kn; 362 363 err_out2: 364 kmem_cache_free(kernfs_node_cache, kn); 365 err_out1: 366 kfree(dup_name); 367 return NULL; 368 } 369 370 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 371 const char *name, umode_t mode, 372 unsigned flags) 373 { 374 struct kernfs_node *kn; 375 376 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags); 377 if (kn) { 378 kernfs_get(parent); 379 kn->parent = parent; 380 } 381 return kn; 382 } 383 384 /** 385 * kernfs_addrm_start - prepare for kernfs_node add/remove 386 * @acxt: pointer to kernfs_addrm_cxt to be used 387 * 388 * This function is called when the caller is about to add or remove 389 * kernfs_node. This function acquires kernfs_mutex. @acxt is used 390 * to keep and pass context to other addrm functions. 391 * 392 * LOCKING: 393 * Kernel thread context (may sleep). kernfs_mutex is locked on 394 * return. 395 */ 396 void kernfs_addrm_start(struct kernfs_addrm_cxt *acxt) 397 __acquires(kernfs_mutex) 398 { 399 memset(acxt, 0, sizeof(*acxt)); 400 401 mutex_lock(&kernfs_mutex); 402 } 403 404 /** 405 * kernfs_add_one - add kernfs_node to parent without warning 406 * @acxt: addrm context to use 407 * @kn: kernfs_node to be added 408 * 409 * The caller must already have initialized @kn->parent. This 410 * function increments nlink of the parent's inode if @kn is a 411 * directory and link into the children list of the parent. 412 * 413 * This function should be called between calls to 414 * kernfs_addrm_start() and kernfs_addrm_finish() and should be passed 415 * the same @acxt as passed to kernfs_addrm_start(). 416 * 417 * LOCKING: 418 * Determined by kernfs_addrm_start(). 419 * 420 * RETURNS: 421 * 0 on success, -EEXIST if entry with the given name already 422 * exists. 423 */ 424 int kernfs_add_one(struct kernfs_addrm_cxt *acxt, struct kernfs_node *kn) 425 { 426 struct kernfs_node *parent = kn->parent; 427 bool has_ns = kernfs_ns_enabled(parent); 428 struct kernfs_iattrs *ps_iattr; 429 int ret; 430 431 if (has_ns != (bool)kn->ns) { 432 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 433 has_ns ? "required" : "invalid", parent->name, kn->name); 434 return -EINVAL; 435 } 436 437 if (kernfs_type(parent) != KERNFS_DIR) 438 return -EINVAL; 439 440 if (parent->flags & KERNFS_REMOVED) 441 return -ENOENT; 442 443 kn->hash = kernfs_name_hash(kn->name, kn->ns); 444 445 ret = kernfs_link_sibling(kn); 446 if (ret) 447 return ret; 448 449 /* Update timestamps on the parent */ 450 ps_iattr = parent->iattr; 451 if (ps_iattr) { 452 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 453 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME; 454 } 455 456 /* Mark the entry added into directory tree */ 457 kn->flags &= ~KERNFS_REMOVED; 458 459 return 0; 460 } 461 462 /** 463 * kernfs_remove_one - remove kernfs_node from parent 464 * @acxt: addrm context to use 465 * @kn: kernfs_node to be removed 466 * 467 * Mark @kn removed and drop nlink of parent inode if @kn is a 468 * directory. @kn is unlinked from the children list. 469 * 470 * This function should be called between calls to 471 * kernfs_addrm_start() and kernfs_addrm_finish() and should be 472 * passed the same @acxt as passed to kernfs_addrm_start(). 473 * 474 * LOCKING: 475 * Determined by kernfs_addrm_start(). 476 */ 477 static void kernfs_remove_one(struct kernfs_addrm_cxt *acxt, 478 struct kernfs_node *kn) 479 { 480 struct kernfs_iattrs *ps_iattr; 481 482 /* 483 * Removal can be called multiple times on the same node. Only the 484 * first invocation is effective and puts the base ref. 485 */ 486 if (kn->flags & KERNFS_REMOVED) 487 return; 488 489 if (kn->parent) { 490 kernfs_unlink_sibling(kn); 491 492 /* Update timestamps on the parent */ 493 ps_iattr = kn->parent->iattr; 494 if (ps_iattr) { 495 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME; 496 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME; 497 } 498 } 499 500 kn->flags |= KERNFS_REMOVED; 501 kn->u.removed_list = acxt->removed; 502 acxt->removed = kn; 503 } 504 505 /** 506 * kernfs_addrm_finish - finish up kernfs_node add/remove 507 * @acxt: addrm context to finish up 508 * 509 * Finish up kernfs_node add/remove. Resources acquired by 510 * kernfs_addrm_start() are released and removed kernfs_nodes are 511 * cleaned up. 512 * 513 * LOCKING: 514 * kernfs_mutex is released. 515 */ 516 void kernfs_addrm_finish(struct kernfs_addrm_cxt *acxt) 517 __releases(kernfs_mutex) 518 { 519 /* release resources acquired by kernfs_addrm_start() */ 520 mutex_unlock(&kernfs_mutex); 521 522 /* kill removed kernfs_nodes */ 523 while (acxt->removed) { 524 struct kernfs_node *kn = acxt->removed; 525 526 acxt->removed = kn->u.removed_list; 527 528 kernfs_deactivate(kn); 529 kernfs_unmap_bin_file(kn); 530 kernfs_put(kn); 531 } 532 } 533 534 /** 535 * kernfs_find_ns - find kernfs_node with the given name 536 * @parent: kernfs_node to search under 537 * @name: name to look for 538 * @ns: the namespace tag to use 539 * 540 * Look for kernfs_node with name @name under @parent. Returns pointer to 541 * the found kernfs_node on success, %NULL on failure. 542 */ 543 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 544 const unsigned char *name, 545 const void *ns) 546 { 547 struct rb_node *node = parent->dir.children.rb_node; 548 bool has_ns = kernfs_ns_enabled(parent); 549 unsigned int hash; 550 551 lockdep_assert_held(&kernfs_mutex); 552 553 if (has_ns != (bool)ns) { 554 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 555 has_ns ? "required" : "invalid", parent->name, name); 556 return NULL; 557 } 558 559 hash = kernfs_name_hash(name, ns); 560 while (node) { 561 struct kernfs_node *kn; 562 int result; 563 564 kn = rb_to_kn(node); 565 result = kernfs_name_compare(hash, name, ns, kn); 566 if (result < 0) 567 node = node->rb_left; 568 else if (result > 0) 569 node = node->rb_right; 570 else 571 return kn; 572 } 573 return NULL; 574 } 575 576 /** 577 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 578 * @parent: kernfs_node to search under 579 * @name: name to look for 580 * @ns: the namespace tag to use 581 * 582 * Look for kernfs_node with name @name under @parent and get a reference 583 * if found. This function may sleep and returns pointer to the found 584 * kernfs_node on success, %NULL on failure. 585 */ 586 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 587 const char *name, const void *ns) 588 { 589 struct kernfs_node *kn; 590 591 mutex_lock(&kernfs_mutex); 592 kn = kernfs_find_ns(parent, name, ns); 593 kernfs_get(kn); 594 mutex_unlock(&kernfs_mutex); 595 596 return kn; 597 } 598 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 599 600 /** 601 * kernfs_create_root - create a new kernfs hierarchy 602 * @kdops: optional directory syscall operations for the hierarchy 603 * @priv: opaque data associated with the new directory 604 * 605 * Returns the root of the new hierarchy on success, ERR_PTR() value on 606 * failure. 607 */ 608 struct kernfs_root *kernfs_create_root(struct kernfs_dir_ops *kdops, void *priv) 609 { 610 struct kernfs_root *root; 611 struct kernfs_node *kn; 612 613 root = kzalloc(sizeof(*root), GFP_KERNEL); 614 if (!root) 615 return ERR_PTR(-ENOMEM); 616 617 ida_init(&root->ino_ida); 618 619 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 620 KERNFS_DIR); 621 if (!kn) { 622 ida_destroy(&root->ino_ida); 623 kfree(root); 624 return ERR_PTR(-ENOMEM); 625 } 626 627 kn->flags &= ~KERNFS_REMOVED; 628 kn->priv = priv; 629 kn->dir.root = root; 630 631 root->dir_ops = kdops; 632 root->kn = kn; 633 634 return root; 635 } 636 637 /** 638 * kernfs_destroy_root - destroy a kernfs hierarchy 639 * @root: root of the hierarchy to destroy 640 * 641 * Destroy the hierarchy anchored at @root by removing all existing 642 * directories and destroying @root. 643 */ 644 void kernfs_destroy_root(struct kernfs_root *root) 645 { 646 kernfs_remove(root->kn); /* will also free @root */ 647 } 648 649 /** 650 * kernfs_create_dir_ns - create a directory 651 * @parent: parent in which to create a new directory 652 * @name: name of the new directory 653 * @mode: mode of the new directory 654 * @priv: opaque data associated with the new directory 655 * @ns: optional namespace tag of the directory 656 * 657 * Returns the created node on success, ERR_PTR() value on failure. 658 */ 659 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 660 const char *name, umode_t mode, 661 void *priv, const void *ns) 662 { 663 struct kernfs_addrm_cxt acxt; 664 struct kernfs_node *kn; 665 int rc; 666 667 /* allocate */ 668 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR); 669 if (!kn) 670 return ERR_PTR(-ENOMEM); 671 672 kn->dir.root = parent->dir.root; 673 kn->ns = ns; 674 kn->priv = priv; 675 676 /* link in */ 677 kernfs_addrm_start(&acxt); 678 rc = kernfs_add_one(&acxt, kn); 679 kernfs_addrm_finish(&acxt); 680 681 if (!rc) 682 return kn; 683 684 kernfs_put(kn); 685 return ERR_PTR(rc); 686 } 687 688 static struct dentry *kernfs_iop_lookup(struct inode *dir, 689 struct dentry *dentry, 690 unsigned int flags) 691 { 692 struct dentry *ret; 693 struct kernfs_node *parent = dentry->d_parent->d_fsdata; 694 struct kernfs_node *kn; 695 struct inode *inode; 696 const void *ns = NULL; 697 698 mutex_lock(&kernfs_mutex); 699 700 if (kernfs_ns_enabled(parent)) 701 ns = kernfs_info(dir->i_sb)->ns; 702 703 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 704 705 /* no such entry */ 706 if (!kn) { 707 ret = NULL; 708 goto out_unlock; 709 } 710 kernfs_get(kn); 711 dentry->d_fsdata = kn; 712 713 /* attach dentry and inode */ 714 inode = kernfs_get_inode(dir->i_sb, kn); 715 if (!inode) { 716 ret = ERR_PTR(-ENOMEM); 717 goto out_unlock; 718 } 719 720 /* instantiate and hash dentry */ 721 ret = d_materialise_unique(dentry, inode); 722 out_unlock: 723 mutex_unlock(&kernfs_mutex); 724 return ret; 725 } 726 727 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 728 umode_t mode) 729 { 730 struct kernfs_node *parent = dir->i_private; 731 struct kernfs_dir_ops *kdops = kernfs_root(parent)->dir_ops; 732 733 if (!kdops || !kdops->mkdir) 734 return -EPERM; 735 736 return kdops->mkdir(parent, dentry->d_name.name, mode); 737 } 738 739 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 740 { 741 struct kernfs_node *kn = dentry->d_fsdata; 742 struct kernfs_dir_ops *kdops = kernfs_root(kn)->dir_ops; 743 744 if (!kdops || !kdops->rmdir) 745 return -EPERM; 746 747 return kdops->rmdir(kn); 748 } 749 750 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 751 struct inode *new_dir, struct dentry *new_dentry) 752 { 753 struct kernfs_node *kn = old_dentry->d_fsdata; 754 struct kernfs_node *new_parent = new_dir->i_private; 755 struct kernfs_dir_ops *kdops = kernfs_root(kn)->dir_ops; 756 757 if (!kdops || !kdops->rename) 758 return -EPERM; 759 760 return kdops->rename(kn, new_parent, new_dentry->d_name.name); 761 } 762 763 const struct inode_operations kernfs_dir_iops = { 764 .lookup = kernfs_iop_lookup, 765 .permission = kernfs_iop_permission, 766 .setattr = kernfs_iop_setattr, 767 .getattr = kernfs_iop_getattr, 768 .setxattr = kernfs_iop_setxattr, 769 .removexattr = kernfs_iop_removexattr, 770 .getxattr = kernfs_iop_getxattr, 771 .listxattr = kernfs_iop_listxattr, 772 773 .mkdir = kernfs_iop_mkdir, 774 .rmdir = kernfs_iop_rmdir, 775 .rename = kernfs_iop_rename, 776 }; 777 778 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 779 { 780 struct kernfs_node *last; 781 782 while (true) { 783 struct rb_node *rbn; 784 785 last = pos; 786 787 if (kernfs_type(pos) != KERNFS_DIR) 788 break; 789 790 rbn = rb_first(&pos->dir.children); 791 if (!rbn) 792 break; 793 794 pos = rb_to_kn(rbn); 795 } 796 797 return last; 798 } 799 800 /** 801 * kernfs_next_descendant_post - find the next descendant for post-order walk 802 * @pos: the current position (%NULL to initiate traversal) 803 * @root: kernfs_node whose descendants to walk 804 * 805 * Find the next descendant to visit for post-order traversal of @root's 806 * descendants. @root is included in the iteration and the last node to be 807 * visited. 808 */ 809 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 810 struct kernfs_node *root) 811 { 812 struct rb_node *rbn; 813 814 lockdep_assert_held(&kernfs_mutex); 815 816 /* if first iteration, visit leftmost descendant which may be root */ 817 if (!pos) 818 return kernfs_leftmost_descendant(root); 819 820 /* if we visited @root, we're done */ 821 if (pos == root) 822 return NULL; 823 824 /* if there's an unvisited sibling, visit its leftmost descendant */ 825 rbn = rb_next(&pos->rb); 826 if (rbn) 827 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 828 829 /* no sibling left, visit parent */ 830 return pos->parent; 831 } 832 833 static void __kernfs_remove(struct kernfs_addrm_cxt *acxt, 834 struct kernfs_node *kn) 835 { 836 struct kernfs_node *pos, *next; 837 838 if (!kn) 839 return; 840 841 pr_debug("kernfs %s: removing\n", kn->name); 842 843 next = NULL; 844 do { 845 pos = next; 846 next = kernfs_next_descendant_post(pos, kn); 847 if (pos) 848 kernfs_remove_one(acxt, pos); 849 } while (next); 850 } 851 852 /** 853 * kernfs_remove - remove a kernfs_node recursively 854 * @kn: the kernfs_node to remove 855 * 856 * Remove @kn along with all its subdirectories and files. 857 */ 858 void kernfs_remove(struct kernfs_node *kn) 859 { 860 struct kernfs_addrm_cxt acxt; 861 862 kernfs_addrm_start(&acxt); 863 __kernfs_remove(&acxt, kn); 864 kernfs_addrm_finish(&acxt); 865 } 866 867 /** 868 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 869 * @parent: parent of the target 870 * @name: name of the kernfs_node to remove 871 * @ns: namespace tag of the kernfs_node to remove 872 * 873 * Look for the kernfs_node with @name and @ns under @parent and remove it. 874 * Returns 0 on success, -ENOENT if such entry doesn't exist. 875 */ 876 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 877 const void *ns) 878 { 879 struct kernfs_addrm_cxt acxt; 880 struct kernfs_node *kn; 881 882 if (!parent) { 883 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 884 name); 885 return -ENOENT; 886 } 887 888 kernfs_addrm_start(&acxt); 889 890 kn = kernfs_find_ns(parent, name, ns); 891 if (kn) 892 __kernfs_remove(&acxt, kn); 893 894 kernfs_addrm_finish(&acxt); 895 896 if (kn) 897 return 0; 898 else 899 return -ENOENT; 900 } 901 902 /** 903 * kernfs_rename_ns - move and rename a kernfs_node 904 * @kn: target node 905 * @new_parent: new parent to put @sd under 906 * @new_name: new name 907 * @new_ns: new namespace tag 908 */ 909 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 910 const char *new_name, const void *new_ns) 911 { 912 int error; 913 914 mutex_lock(&kernfs_mutex); 915 916 error = -ENOENT; 917 if ((kn->flags | new_parent->flags) & KERNFS_REMOVED) 918 goto out; 919 920 error = 0; 921 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 922 (strcmp(kn->name, new_name) == 0)) 923 goto out; /* nothing to rename */ 924 925 error = -EEXIST; 926 if (kernfs_find_ns(new_parent, new_name, new_ns)) 927 goto out; 928 929 /* rename kernfs_node */ 930 if (strcmp(kn->name, new_name) != 0) { 931 error = -ENOMEM; 932 new_name = kstrdup(new_name, GFP_KERNEL); 933 if (!new_name) 934 goto out; 935 936 if (kn->flags & KERNFS_STATIC_NAME) 937 kn->flags &= ~KERNFS_STATIC_NAME; 938 else 939 kfree(kn->name); 940 941 kn->name = new_name; 942 } 943 944 /* 945 * Move to the appropriate place in the appropriate directories rbtree. 946 */ 947 kernfs_unlink_sibling(kn); 948 kernfs_get(new_parent); 949 kernfs_put(kn->parent); 950 kn->ns = new_ns; 951 kn->hash = kernfs_name_hash(kn->name, kn->ns); 952 kn->parent = new_parent; 953 kernfs_link_sibling(kn); 954 955 error = 0; 956 out: 957 mutex_unlock(&kernfs_mutex); 958 return error; 959 } 960 961 /* Relationship between s_mode and the DT_xxx types */ 962 static inline unsigned char dt_type(struct kernfs_node *kn) 963 { 964 return (kn->mode >> 12) & 15; 965 } 966 967 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 968 { 969 kernfs_put(filp->private_data); 970 return 0; 971 } 972 973 static struct kernfs_node *kernfs_dir_pos(const void *ns, 974 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 975 { 976 if (pos) { 977 int valid = !(pos->flags & KERNFS_REMOVED) && 978 pos->parent == parent && hash == pos->hash; 979 kernfs_put(pos); 980 if (!valid) 981 pos = NULL; 982 } 983 if (!pos && (hash > 1) && (hash < INT_MAX)) { 984 struct rb_node *node = parent->dir.children.rb_node; 985 while (node) { 986 pos = rb_to_kn(node); 987 988 if (hash < pos->hash) 989 node = node->rb_left; 990 else if (hash > pos->hash) 991 node = node->rb_right; 992 else 993 break; 994 } 995 } 996 /* Skip over entries in the wrong namespace */ 997 while (pos && pos->ns != ns) { 998 struct rb_node *node = rb_next(&pos->rb); 999 if (!node) 1000 pos = NULL; 1001 else 1002 pos = rb_to_kn(node); 1003 } 1004 return pos; 1005 } 1006 1007 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1008 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1009 { 1010 pos = kernfs_dir_pos(ns, parent, ino, pos); 1011 if (pos) 1012 do { 1013 struct rb_node *node = rb_next(&pos->rb); 1014 if (!node) 1015 pos = NULL; 1016 else 1017 pos = rb_to_kn(node); 1018 } while (pos && pos->ns != ns); 1019 return pos; 1020 } 1021 1022 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1023 { 1024 struct dentry *dentry = file->f_path.dentry; 1025 struct kernfs_node *parent = dentry->d_fsdata; 1026 struct kernfs_node *pos = file->private_data; 1027 const void *ns = NULL; 1028 1029 if (!dir_emit_dots(file, ctx)) 1030 return 0; 1031 mutex_lock(&kernfs_mutex); 1032 1033 if (kernfs_ns_enabled(parent)) 1034 ns = kernfs_info(dentry->d_sb)->ns; 1035 1036 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1037 pos; 1038 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1039 const char *name = pos->name; 1040 unsigned int type = dt_type(pos); 1041 int len = strlen(name); 1042 ino_t ino = pos->ino; 1043 1044 ctx->pos = pos->hash; 1045 file->private_data = pos; 1046 kernfs_get(pos); 1047 1048 mutex_unlock(&kernfs_mutex); 1049 if (!dir_emit(ctx, name, len, ino, type)) 1050 return 0; 1051 mutex_lock(&kernfs_mutex); 1052 } 1053 mutex_unlock(&kernfs_mutex); 1054 file->private_data = NULL; 1055 ctx->pos = INT_MAX; 1056 return 0; 1057 } 1058 1059 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset, 1060 int whence) 1061 { 1062 struct inode *inode = file_inode(file); 1063 loff_t ret; 1064 1065 mutex_lock(&inode->i_mutex); 1066 ret = generic_file_llseek(file, offset, whence); 1067 mutex_unlock(&inode->i_mutex); 1068 1069 return ret; 1070 } 1071 1072 const struct file_operations kernfs_dir_fops = { 1073 .read = generic_read_dir, 1074 .iterate = kernfs_fop_readdir, 1075 .release = kernfs_dir_fop_release, 1076 .llseek = kernfs_dir_fop_llseek, 1077 }; 1078