1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 21 /* 22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to 23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont() 24 * will perform wakeups when releasing console_sem. Holding rename_lock 25 * will introduce deadlock if the scheduler reads the kernfs_name in the 26 * wakeup path. 27 */ 28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock); 29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ 30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 31 32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 33 34 static bool __kernfs_active(struct kernfs_node *kn) 35 { 36 return atomic_read(&kn->active) >= 0; 37 } 38 39 static bool kernfs_active(struct kernfs_node *kn) 40 { 41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); 42 return __kernfs_active(kn); 43 } 44 45 static bool kernfs_lockdep(struct kernfs_node *kn) 46 { 47 #ifdef CONFIG_DEBUG_LOCK_ALLOC 48 return kn->flags & KERNFS_LOCKDEP; 49 #else 50 return false; 51 #endif 52 } 53 54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 55 { 56 if (!kn) 57 return strlcpy(buf, "(null)", buflen); 58 59 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 60 } 61 62 /* kernfs_node_depth - compute depth from @from to @to */ 63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 64 { 65 size_t depth = 0; 66 67 while (to->parent && to != from) { 68 depth++; 69 to = to->parent; 70 } 71 return depth; 72 } 73 74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 75 struct kernfs_node *b) 76 { 77 size_t da, db; 78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 79 80 if (ra != rb) 81 return NULL; 82 83 da = kernfs_depth(ra->kn, a); 84 db = kernfs_depth(rb->kn, b); 85 86 while (da > db) { 87 a = a->parent; 88 da--; 89 } 90 while (db > da) { 91 b = b->parent; 92 db--; 93 } 94 95 /* worst case b and a will be the same at root */ 96 while (b != a) { 97 b = b->parent; 98 a = a->parent; 99 } 100 101 return a; 102 } 103 104 /** 105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 106 * where kn_from is treated as root of the path. 107 * @kn_from: kernfs node which should be treated as root for the path 108 * @kn_to: kernfs node to which path is needed 109 * @buf: buffer to copy the path into 110 * @buflen: size of @buf 111 * 112 * We need to handle couple of scenarios here: 113 * [1] when @kn_from is an ancestor of @kn_to at some level 114 * kn_from: /n1/n2/n3 115 * kn_to: /n1/n2/n3/n4/n5 116 * result: /n4/n5 117 * 118 * [2] when @kn_from is on a different hierarchy and we need to find common 119 * ancestor between @kn_from and @kn_to. 120 * kn_from: /n1/n2/n3/n4 121 * kn_to: /n1/n2/n5 122 * result: /../../n5 123 * OR 124 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 125 * kn_to: /n1/n2/n3 [depth=3] 126 * result: /../.. 127 * 128 * [3] when @kn_to is %NULL result will be "(null)" 129 * 130 * Return: the length of the full path. If the full length is equal to or 131 * greater than @buflen, @buf contains the truncated path with the trailing 132 * '\0'. On error, -errno is returned. 133 */ 134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 135 struct kernfs_node *kn_from, 136 char *buf, size_t buflen) 137 { 138 struct kernfs_node *kn, *common; 139 const char parent_str[] = "/.."; 140 size_t depth_from, depth_to, len = 0; 141 int i, j; 142 143 if (!kn_to) 144 return strlcpy(buf, "(null)", buflen); 145 146 if (!kn_from) 147 kn_from = kernfs_root(kn_to)->kn; 148 149 if (kn_from == kn_to) 150 return strlcpy(buf, "/", buflen); 151 152 if (!buf) 153 return -EINVAL; 154 155 common = kernfs_common_ancestor(kn_from, kn_to); 156 if (WARN_ON(!common)) 157 return -EINVAL; 158 159 depth_to = kernfs_depth(common, kn_to); 160 depth_from = kernfs_depth(common, kn_from); 161 162 buf[0] = '\0'; 163 164 for (i = 0; i < depth_from; i++) 165 len += strlcpy(buf + len, parent_str, 166 len < buflen ? buflen - len : 0); 167 168 /* Calculate how many bytes we need for the rest */ 169 for (i = depth_to - 1; i >= 0; i--) { 170 for (kn = kn_to, j = 0; j < i; j++) 171 kn = kn->parent; 172 len += strlcpy(buf + len, "/", 173 len < buflen ? buflen - len : 0); 174 len += strlcpy(buf + len, kn->name, 175 len < buflen ? buflen - len : 0); 176 } 177 178 return len; 179 } 180 181 /** 182 * kernfs_name - obtain the name of a given node 183 * @kn: kernfs_node of interest 184 * @buf: buffer to copy @kn's name into 185 * @buflen: size of @buf 186 * 187 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 188 * similar to strlcpy(). 189 * 190 * Fills buffer with "(null)" if @kn is %NULL. 191 * 192 * Return: the length of @kn's name and if @buf isn't long enough, 193 * it's filled up to @buflen-1 and nul terminated. 194 * 195 * This function can be called from any context. 196 */ 197 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 198 { 199 unsigned long flags; 200 int ret; 201 202 spin_lock_irqsave(&kernfs_rename_lock, flags); 203 ret = kernfs_name_locked(kn, buf, buflen); 204 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 205 return ret; 206 } 207 208 /** 209 * kernfs_path_from_node - build path of node @to relative to @from. 210 * @from: parent kernfs_node relative to which we need to build the path 211 * @to: kernfs_node of interest 212 * @buf: buffer to copy @to's path into 213 * @buflen: size of @buf 214 * 215 * Builds @to's path relative to @from in @buf. @from and @to must 216 * be on the same kernfs-root. If @from is not parent of @to, then a relative 217 * path (which includes '..'s) as needed to reach from @from to @to is 218 * returned. 219 * 220 * Return: the length of the full path. If the full length is equal to or 221 * greater than @buflen, @buf contains the truncated path with the trailing 222 * '\0'. On error, -errno is returned. 223 */ 224 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 225 char *buf, size_t buflen) 226 { 227 unsigned long flags; 228 int ret; 229 230 spin_lock_irqsave(&kernfs_rename_lock, flags); 231 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 232 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 233 return ret; 234 } 235 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 236 237 /** 238 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 239 * @kn: kernfs_node of interest 240 * 241 * This function can be called from any context. 242 */ 243 void pr_cont_kernfs_name(struct kernfs_node *kn) 244 { 245 unsigned long flags; 246 247 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 248 249 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 250 pr_cont("%s", kernfs_pr_cont_buf); 251 252 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 253 } 254 255 /** 256 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 257 * @kn: kernfs_node of interest 258 * 259 * This function can be called from any context. 260 */ 261 void pr_cont_kernfs_path(struct kernfs_node *kn) 262 { 263 unsigned long flags; 264 int sz; 265 266 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 267 268 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, 269 sizeof(kernfs_pr_cont_buf)); 270 if (sz < 0) { 271 pr_cont("(error)"); 272 goto out; 273 } 274 275 if (sz >= sizeof(kernfs_pr_cont_buf)) { 276 pr_cont("(name too long)"); 277 goto out; 278 } 279 280 pr_cont("%s", kernfs_pr_cont_buf); 281 282 out: 283 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 284 } 285 286 /** 287 * kernfs_get_parent - determine the parent node and pin it 288 * @kn: kernfs_node of interest 289 * 290 * Determines @kn's parent, pins and returns it. This function can be 291 * called from any context. 292 * 293 * Return: parent node of @kn 294 */ 295 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 296 { 297 struct kernfs_node *parent; 298 unsigned long flags; 299 300 spin_lock_irqsave(&kernfs_rename_lock, flags); 301 parent = kn->parent; 302 kernfs_get(parent); 303 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 304 305 return parent; 306 } 307 308 /** 309 * kernfs_name_hash - calculate hash of @ns + @name 310 * @name: Null terminated string to hash 311 * @ns: Namespace tag to hash 312 * 313 * Return: 31-bit hash of ns + name (so it fits in an off_t) 314 */ 315 static unsigned int kernfs_name_hash(const char *name, const void *ns) 316 { 317 unsigned long hash = init_name_hash(ns); 318 unsigned int len = strlen(name); 319 while (len--) 320 hash = partial_name_hash(*name++, hash); 321 hash = end_name_hash(hash); 322 hash &= 0x7fffffffU; 323 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 324 if (hash < 2) 325 hash += 2; 326 if (hash >= INT_MAX) 327 hash = INT_MAX - 1; 328 return hash; 329 } 330 331 static int kernfs_name_compare(unsigned int hash, const char *name, 332 const void *ns, const struct kernfs_node *kn) 333 { 334 if (hash < kn->hash) 335 return -1; 336 if (hash > kn->hash) 337 return 1; 338 if (ns < kn->ns) 339 return -1; 340 if (ns > kn->ns) 341 return 1; 342 return strcmp(name, kn->name); 343 } 344 345 static int kernfs_sd_compare(const struct kernfs_node *left, 346 const struct kernfs_node *right) 347 { 348 return kernfs_name_compare(left->hash, left->name, left->ns, right); 349 } 350 351 /** 352 * kernfs_link_sibling - link kernfs_node into sibling rbtree 353 * @kn: kernfs_node of interest 354 * 355 * Link @kn into its sibling rbtree which starts from 356 * @kn->parent->dir.children. 357 * 358 * Locking: 359 * kernfs_rwsem held exclusive 360 * 361 * Return: 362 * %0 on success, -EEXIST on failure. 363 */ 364 static int kernfs_link_sibling(struct kernfs_node *kn) 365 { 366 struct rb_node **node = &kn->parent->dir.children.rb_node; 367 struct rb_node *parent = NULL; 368 369 while (*node) { 370 struct kernfs_node *pos; 371 int result; 372 373 pos = rb_to_kn(*node); 374 parent = *node; 375 result = kernfs_sd_compare(kn, pos); 376 if (result < 0) 377 node = &pos->rb.rb_left; 378 else if (result > 0) 379 node = &pos->rb.rb_right; 380 else 381 return -EEXIST; 382 } 383 384 /* add new node and rebalance the tree */ 385 rb_link_node(&kn->rb, parent, node); 386 rb_insert_color(&kn->rb, &kn->parent->dir.children); 387 388 /* successfully added, account subdir number */ 389 if (kernfs_type(kn) == KERNFS_DIR) 390 kn->parent->dir.subdirs++; 391 kernfs_inc_rev(kn->parent); 392 393 return 0; 394 } 395 396 /** 397 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 398 * @kn: kernfs_node of interest 399 * 400 * Try to unlink @kn from its sibling rbtree which starts from 401 * kn->parent->dir.children. 402 * 403 * Return: %true if @kn was actually removed, 404 * %false if @kn wasn't on the rbtree. 405 * 406 * Locking: 407 * kernfs_rwsem held exclusive 408 */ 409 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 410 { 411 if (RB_EMPTY_NODE(&kn->rb)) 412 return false; 413 414 if (kernfs_type(kn) == KERNFS_DIR) 415 kn->parent->dir.subdirs--; 416 kernfs_inc_rev(kn->parent); 417 418 rb_erase(&kn->rb, &kn->parent->dir.children); 419 RB_CLEAR_NODE(&kn->rb); 420 return true; 421 } 422 423 /** 424 * kernfs_get_active - get an active reference to kernfs_node 425 * @kn: kernfs_node to get an active reference to 426 * 427 * Get an active reference of @kn. This function is noop if @kn 428 * is %NULL. 429 * 430 * Return: 431 * Pointer to @kn on success, %NULL on failure. 432 */ 433 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 434 { 435 if (unlikely(!kn)) 436 return NULL; 437 438 if (!atomic_inc_unless_negative(&kn->active)) 439 return NULL; 440 441 if (kernfs_lockdep(kn)) 442 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 443 return kn; 444 } 445 446 /** 447 * kernfs_put_active - put an active reference to kernfs_node 448 * @kn: kernfs_node to put an active reference to 449 * 450 * Put an active reference to @kn. This function is noop if @kn 451 * is %NULL. 452 */ 453 void kernfs_put_active(struct kernfs_node *kn) 454 { 455 int v; 456 457 if (unlikely(!kn)) 458 return; 459 460 if (kernfs_lockdep(kn)) 461 rwsem_release(&kn->dep_map, _RET_IP_); 462 v = atomic_dec_return(&kn->active); 463 if (likely(v != KN_DEACTIVATED_BIAS)) 464 return; 465 466 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 467 } 468 469 /** 470 * kernfs_drain - drain kernfs_node 471 * @kn: kernfs_node to drain 472 * 473 * Drain existing usages and nuke all existing mmaps of @kn. Multiple 474 * removers may invoke this function concurrently on @kn and all will 475 * return after draining is complete. 476 */ 477 static void kernfs_drain(struct kernfs_node *kn) 478 __releases(&kernfs_root(kn)->kernfs_rwsem) 479 __acquires(&kernfs_root(kn)->kernfs_rwsem) 480 { 481 struct kernfs_root *root = kernfs_root(kn); 482 483 lockdep_assert_held_write(&root->kernfs_rwsem); 484 WARN_ON_ONCE(kernfs_active(kn)); 485 486 /* 487 * Skip draining if already fully drained. This avoids draining and its 488 * lockdep annotations for nodes which have never been activated 489 * allowing embedding kernfs_remove() in create error paths without 490 * worrying about draining. 491 */ 492 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS && 493 !kernfs_should_drain_open_files(kn)) 494 return; 495 496 up_write(&root->kernfs_rwsem); 497 498 if (kernfs_lockdep(kn)) { 499 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 500 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 501 lock_contended(&kn->dep_map, _RET_IP_); 502 } 503 504 wait_event(root->deactivate_waitq, 505 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 506 507 if (kernfs_lockdep(kn)) { 508 lock_acquired(&kn->dep_map, _RET_IP_); 509 rwsem_release(&kn->dep_map, _RET_IP_); 510 } 511 512 if (kernfs_should_drain_open_files(kn)) 513 kernfs_drain_open_files(kn); 514 515 down_write(&root->kernfs_rwsem); 516 } 517 518 /** 519 * kernfs_get - get a reference count on a kernfs_node 520 * @kn: the target kernfs_node 521 */ 522 void kernfs_get(struct kernfs_node *kn) 523 { 524 if (kn) { 525 WARN_ON(!atomic_read(&kn->count)); 526 atomic_inc(&kn->count); 527 } 528 } 529 EXPORT_SYMBOL_GPL(kernfs_get); 530 531 /** 532 * kernfs_put - put a reference count on a kernfs_node 533 * @kn: the target kernfs_node 534 * 535 * Put a reference count of @kn and destroy it if it reached zero. 536 */ 537 void kernfs_put(struct kernfs_node *kn) 538 { 539 struct kernfs_node *parent; 540 struct kernfs_root *root; 541 542 if (!kn || !atomic_dec_and_test(&kn->count)) 543 return; 544 root = kernfs_root(kn); 545 repeat: 546 /* 547 * Moving/renaming is always done while holding reference. 548 * kn->parent won't change beneath us. 549 */ 550 parent = kn->parent; 551 552 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 553 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 554 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 555 556 if (kernfs_type(kn) == KERNFS_LINK) 557 kernfs_put(kn->symlink.target_kn); 558 559 kfree_const(kn->name); 560 561 if (kn->iattr) { 562 simple_xattrs_free(&kn->iattr->xattrs); 563 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 564 } 565 spin_lock(&kernfs_idr_lock); 566 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 567 spin_unlock(&kernfs_idr_lock); 568 kmem_cache_free(kernfs_node_cache, kn); 569 570 kn = parent; 571 if (kn) { 572 if (atomic_dec_and_test(&kn->count)) 573 goto repeat; 574 } else { 575 /* just released the root kn, free @root too */ 576 idr_destroy(&root->ino_idr); 577 kfree(root); 578 } 579 } 580 EXPORT_SYMBOL_GPL(kernfs_put); 581 582 /** 583 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 584 * @dentry: the dentry in question 585 * 586 * Return: the kernfs_node associated with @dentry. If @dentry is not a 587 * kernfs one, %NULL is returned. 588 * 589 * While the returned kernfs_node will stay accessible as long as @dentry 590 * is accessible, the returned node can be in any state and the caller is 591 * fully responsible for determining what's accessible. 592 */ 593 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 594 { 595 if (dentry->d_sb->s_op == &kernfs_sops) 596 return kernfs_dentry_node(dentry); 597 return NULL; 598 } 599 600 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 601 struct kernfs_node *parent, 602 const char *name, umode_t mode, 603 kuid_t uid, kgid_t gid, 604 unsigned flags) 605 { 606 struct kernfs_node *kn; 607 u32 id_highbits; 608 int ret; 609 610 name = kstrdup_const(name, GFP_KERNEL); 611 if (!name) 612 return NULL; 613 614 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 615 if (!kn) 616 goto err_out1; 617 618 idr_preload(GFP_KERNEL); 619 spin_lock(&kernfs_idr_lock); 620 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 621 if (ret >= 0 && ret < root->last_id_lowbits) 622 root->id_highbits++; 623 id_highbits = root->id_highbits; 624 root->last_id_lowbits = ret; 625 spin_unlock(&kernfs_idr_lock); 626 idr_preload_end(); 627 if (ret < 0) 628 goto err_out2; 629 630 kn->id = (u64)id_highbits << 32 | ret; 631 632 atomic_set(&kn->count, 1); 633 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 634 RB_CLEAR_NODE(&kn->rb); 635 636 kn->name = name; 637 kn->mode = mode; 638 kn->flags = flags; 639 640 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 641 struct iattr iattr = { 642 .ia_valid = ATTR_UID | ATTR_GID, 643 .ia_uid = uid, 644 .ia_gid = gid, 645 }; 646 647 ret = __kernfs_setattr(kn, &iattr); 648 if (ret < 0) 649 goto err_out3; 650 } 651 652 if (parent) { 653 ret = security_kernfs_init_security(parent, kn); 654 if (ret) 655 goto err_out3; 656 } 657 658 return kn; 659 660 err_out3: 661 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 662 err_out2: 663 kmem_cache_free(kernfs_node_cache, kn); 664 err_out1: 665 kfree_const(name); 666 return NULL; 667 } 668 669 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 670 const char *name, umode_t mode, 671 kuid_t uid, kgid_t gid, 672 unsigned flags) 673 { 674 struct kernfs_node *kn; 675 676 kn = __kernfs_new_node(kernfs_root(parent), parent, 677 name, mode, uid, gid, flags); 678 if (kn) { 679 kernfs_get(parent); 680 kn->parent = parent; 681 } 682 return kn; 683 } 684 685 /* 686 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 687 * @root: the kernfs root 688 * @id: the target node id 689 * 690 * @id's lower 32bits encode ino and upper gen. If the gen portion is 691 * zero, all generations are matched. 692 * 693 * Return: %NULL on failure, 694 * otherwise a kernfs node with reference counter incremented. 695 */ 696 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 697 u64 id) 698 { 699 struct kernfs_node *kn; 700 ino_t ino = kernfs_id_ino(id); 701 u32 gen = kernfs_id_gen(id); 702 703 spin_lock(&kernfs_idr_lock); 704 705 kn = idr_find(&root->ino_idr, (u32)ino); 706 if (!kn) 707 goto err_unlock; 708 709 if (sizeof(ino_t) >= sizeof(u64)) { 710 /* we looked up with the low 32bits, compare the whole */ 711 if (kernfs_ino(kn) != ino) 712 goto err_unlock; 713 } else { 714 /* 0 matches all generations */ 715 if (unlikely(gen && kernfs_gen(kn) != gen)) 716 goto err_unlock; 717 } 718 719 /* 720 * We should fail if @kn has never been activated and guarantee success 721 * if the caller knows that @kn is active. Both can be achieved by 722 * __kernfs_active() which tests @kn->active without kernfs_rwsem. 723 */ 724 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count))) 725 goto err_unlock; 726 727 spin_unlock(&kernfs_idr_lock); 728 return kn; 729 err_unlock: 730 spin_unlock(&kernfs_idr_lock); 731 return NULL; 732 } 733 734 /** 735 * kernfs_add_one - add kernfs_node to parent without warning 736 * @kn: kernfs_node to be added 737 * 738 * The caller must already have initialized @kn->parent. This 739 * function increments nlink of the parent's inode if @kn is a 740 * directory and link into the children list of the parent. 741 * 742 * Return: 743 * %0 on success, -EEXIST if entry with the given name already 744 * exists. 745 */ 746 int kernfs_add_one(struct kernfs_node *kn) 747 { 748 struct kernfs_node *parent = kn->parent; 749 struct kernfs_root *root = kernfs_root(parent); 750 struct kernfs_iattrs *ps_iattr; 751 bool has_ns; 752 int ret; 753 754 down_write(&root->kernfs_rwsem); 755 756 ret = -EINVAL; 757 has_ns = kernfs_ns_enabled(parent); 758 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 759 has_ns ? "required" : "invalid", parent->name, kn->name)) 760 goto out_unlock; 761 762 if (kernfs_type(parent) != KERNFS_DIR) 763 goto out_unlock; 764 765 ret = -ENOENT; 766 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR)) 767 goto out_unlock; 768 769 kn->hash = kernfs_name_hash(kn->name, kn->ns); 770 771 ret = kernfs_link_sibling(kn); 772 if (ret) 773 goto out_unlock; 774 775 /* Update timestamps on the parent */ 776 ps_iattr = parent->iattr; 777 if (ps_iattr) { 778 ktime_get_real_ts64(&ps_iattr->ia_ctime); 779 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 780 } 781 782 up_write(&root->kernfs_rwsem); 783 784 /* 785 * Activate the new node unless CREATE_DEACTIVATED is requested. 786 * If not activated here, the kernfs user is responsible for 787 * activating the node with kernfs_activate(). A node which hasn't 788 * been activated is not visible to userland and its removal won't 789 * trigger deactivation. 790 */ 791 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 792 kernfs_activate(kn); 793 return 0; 794 795 out_unlock: 796 up_write(&root->kernfs_rwsem); 797 return ret; 798 } 799 800 /** 801 * kernfs_find_ns - find kernfs_node with the given name 802 * @parent: kernfs_node to search under 803 * @name: name to look for 804 * @ns: the namespace tag to use 805 * 806 * Look for kernfs_node with name @name under @parent. 807 * 808 * Return: pointer to the found kernfs_node on success, %NULL on failure. 809 */ 810 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 811 const unsigned char *name, 812 const void *ns) 813 { 814 struct rb_node *node = parent->dir.children.rb_node; 815 bool has_ns = kernfs_ns_enabled(parent); 816 unsigned int hash; 817 818 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); 819 820 if (has_ns != (bool)ns) { 821 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 822 has_ns ? "required" : "invalid", parent->name, name); 823 return NULL; 824 } 825 826 hash = kernfs_name_hash(name, ns); 827 while (node) { 828 struct kernfs_node *kn; 829 int result; 830 831 kn = rb_to_kn(node); 832 result = kernfs_name_compare(hash, name, ns, kn); 833 if (result < 0) 834 node = node->rb_left; 835 else if (result > 0) 836 node = node->rb_right; 837 else 838 return kn; 839 } 840 return NULL; 841 } 842 843 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 844 const unsigned char *path, 845 const void *ns) 846 { 847 size_t len; 848 char *p, *name; 849 850 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); 851 852 spin_lock_irq(&kernfs_pr_cont_lock); 853 854 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 855 856 if (len >= sizeof(kernfs_pr_cont_buf)) { 857 spin_unlock_irq(&kernfs_pr_cont_lock); 858 return NULL; 859 } 860 861 p = kernfs_pr_cont_buf; 862 863 while ((name = strsep(&p, "/")) && parent) { 864 if (*name == '\0') 865 continue; 866 parent = kernfs_find_ns(parent, name, ns); 867 } 868 869 spin_unlock_irq(&kernfs_pr_cont_lock); 870 871 return parent; 872 } 873 874 /** 875 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 876 * @parent: kernfs_node to search under 877 * @name: name to look for 878 * @ns: the namespace tag to use 879 * 880 * Look for kernfs_node with name @name under @parent and get a reference 881 * if found. This function may sleep. 882 * 883 * Return: pointer to the found kernfs_node on success, %NULL on failure. 884 */ 885 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 886 const char *name, const void *ns) 887 { 888 struct kernfs_node *kn; 889 struct kernfs_root *root = kernfs_root(parent); 890 891 down_read(&root->kernfs_rwsem); 892 kn = kernfs_find_ns(parent, name, ns); 893 kernfs_get(kn); 894 up_read(&root->kernfs_rwsem); 895 896 return kn; 897 } 898 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 899 900 /** 901 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 902 * @parent: kernfs_node to search under 903 * @path: path to look for 904 * @ns: the namespace tag to use 905 * 906 * Look for kernfs_node with path @path under @parent and get a reference 907 * if found. This function may sleep. 908 * 909 * Return: pointer to the found kernfs_node on success, %NULL on failure. 910 */ 911 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 912 const char *path, const void *ns) 913 { 914 struct kernfs_node *kn; 915 struct kernfs_root *root = kernfs_root(parent); 916 917 down_read(&root->kernfs_rwsem); 918 kn = kernfs_walk_ns(parent, path, ns); 919 kernfs_get(kn); 920 up_read(&root->kernfs_rwsem); 921 922 return kn; 923 } 924 925 /** 926 * kernfs_create_root - create a new kernfs hierarchy 927 * @scops: optional syscall operations for the hierarchy 928 * @flags: KERNFS_ROOT_* flags 929 * @priv: opaque data associated with the new directory 930 * 931 * Return: the root of the new hierarchy on success, ERR_PTR() value on 932 * failure. 933 */ 934 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 935 unsigned int flags, void *priv) 936 { 937 struct kernfs_root *root; 938 struct kernfs_node *kn; 939 940 root = kzalloc(sizeof(*root), GFP_KERNEL); 941 if (!root) 942 return ERR_PTR(-ENOMEM); 943 944 idr_init(&root->ino_idr); 945 init_rwsem(&root->kernfs_rwsem); 946 INIT_LIST_HEAD(&root->supers); 947 948 /* 949 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 950 * High bits generation. The starting value for both ino and 951 * genenration is 1. Initialize upper 32bit allocation 952 * accordingly. 953 */ 954 if (sizeof(ino_t) >= sizeof(u64)) 955 root->id_highbits = 0; 956 else 957 root->id_highbits = 1; 958 959 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 960 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 961 KERNFS_DIR); 962 if (!kn) { 963 idr_destroy(&root->ino_idr); 964 kfree(root); 965 return ERR_PTR(-ENOMEM); 966 } 967 968 kn->priv = priv; 969 kn->dir.root = root; 970 971 root->syscall_ops = scops; 972 root->flags = flags; 973 root->kn = kn; 974 init_waitqueue_head(&root->deactivate_waitq); 975 976 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 977 kernfs_activate(kn); 978 979 return root; 980 } 981 982 /** 983 * kernfs_destroy_root - destroy a kernfs hierarchy 984 * @root: root of the hierarchy to destroy 985 * 986 * Destroy the hierarchy anchored at @root by removing all existing 987 * directories and destroying @root. 988 */ 989 void kernfs_destroy_root(struct kernfs_root *root) 990 { 991 /* 992 * kernfs_remove holds kernfs_rwsem from the root so the root 993 * shouldn't be freed during the operation. 994 */ 995 kernfs_get(root->kn); 996 kernfs_remove(root->kn); 997 kernfs_put(root->kn); /* will also free @root */ 998 } 999 1000 /** 1001 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root 1002 * @root: root to use to lookup 1003 * 1004 * Return: @root's kernfs_node 1005 */ 1006 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root) 1007 { 1008 return root->kn; 1009 } 1010 1011 /** 1012 * kernfs_create_dir_ns - create a directory 1013 * @parent: parent in which to create a new directory 1014 * @name: name of the new directory 1015 * @mode: mode of the new directory 1016 * @uid: uid of the new directory 1017 * @gid: gid of the new directory 1018 * @priv: opaque data associated with the new directory 1019 * @ns: optional namespace tag of the directory 1020 * 1021 * Return: the created node on success, ERR_PTR() value on failure. 1022 */ 1023 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1024 const char *name, umode_t mode, 1025 kuid_t uid, kgid_t gid, 1026 void *priv, const void *ns) 1027 { 1028 struct kernfs_node *kn; 1029 int rc; 1030 1031 /* allocate */ 1032 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1033 uid, gid, KERNFS_DIR); 1034 if (!kn) 1035 return ERR_PTR(-ENOMEM); 1036 1037 kn->dir.root = parent->dir.root; 1038 kn->ns = ns; 1039 kn->priv = priv; 1040 1041 /* link in */ 1042 rc = kernfs_add_one(kn); 1043 if (!rc) 1044 return kn; 1045 1046 kernfs_put(kn); 1047 return ERR_PTR(rc); 1048 } 1049 1050 /** 1051 * kernfs_create_empty_dir - create an always empty directory 1052 * @parent: parent in which to create a new directory 1053 * @name: name of the new directory 1054 * 1055 * Return: the created node on success, ERR_PTR() value on failure. 1056 */ 1057 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1058 const char *name) 1059 { 1060 struct kernfs_node *kn; 1061 int rc; 1062 1063 /* allocate */ 1064 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1065 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1066 if (!kn) 1067 return ERR_PTR(-ENOMEM); 1068 1069 kn->flags |= KERNFS_EMPTY_DIR; 1070 kn->dir.root = parent->dir.root; 1071 kn->ns = NULL; 1072 kn->priv = NULL; 1073 1074 /* link in */ 1075 rc = kernfs_add_one(kn); 1076 if (!rc) 1077 return kn; 1078 1079 kernfs_put(kn); 1080 return ERR_PTR(rc); 1081 } 1082 1083 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 1084 { 1085 struct kernfs_node *kn; 1086 struct kernfs_root *root; 1087 1088 if (flags & LOOKUP_RCU) 1089 return -ECHILD; 1090 1091 /* Negative hashed dentry? */ 1092 if (d_really_is_negative(dentry)) { 1093 struct kernfs_node *parent; 1094 1095 /* If the kernfs parent node has changed discard and 1096 * proceed to ->lookup. 1097 * 1098 * There's nothing special needed here when getting the 1099 * dentry parent, even if a concurrent rename is in 1100 * progress. That's because the dentry is negative so 1101 * it can only be the target of the rename and it will 1102 * be doing a d_move() not a replace. Consequently the 1103 * dentry d_parent won't change over the d_move(). 1104 * 1105 * Also kernfs negative dentries transitioning from 1106 * negative to positive during revalidate won't happen 1107 * because they are invalidated on containing directory 1108 * changes and the lookup re-done so that a new positive 1109 * dentry can be properly created. 1110 */ 1111 root = kernfs_root_from_sb(dentry->d_sb); 1112 down_read(&root->kernfs_rwsem); 1113 parent = kernfs_dentry_node(dentry->d_parent); 1114 if (parent) { 1115 if (kernfs_dir_changed(parent, dentry)) { 1116 up_read(&root->kernfs_rwsem); 1117 return 0; 1118 } 1119 } 1120 up_read(&root->kernfs_rwsem); 1121 1122 /* The kernfs parent node hasn't changed, leave the 1123 * dentry negative and return success. 1124 */ 1125 return 1; 1126 } 1127 1128 kn = kernfs_dentry_node(dentry); 1129 root = kernfs_root(kn); 1130 down_read(&root->kernfs_rwsem); 1131 1132 /* The kernfs node has been deactivated */ 1133 if (!kernfs_active(kn)) 1134 goto out_bad; 1135 1136 /* The kernfs node has been moved? */ 1137 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 1138 goto out_bad; 1139 1140 /* The kernfs node has been renamed */ 1141 if (strcmp(dentry->d_name.name, kn->name) != 0) 1142 goto out_bad; 1143 1144 /* The kernfs node has been moved to a different namespace */ 1145 if (kn->parent && kernfs_ns_enabled(kn->parent) && 1146 kernfs_info(dentry->d_sb)->ns != kn->ns) 1147 goto out_bad; 1148 1149 up_read(&root->kernfs_rwsem); 1150 return 1; 1151 out_bad: 1152 up_read(&root->kernfs_rwsem); 1153 return 0; 1154 } 1155 1156 const struct dentry_operations kernfs_dops = { 1157 .d_revalidate = kernfs_dop_revalidate, 1158 }; 1159 1160 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1161 struct dentry *dentry, 1162 unsigned int flags) 1163 { 1164 struct kernfs_node *parent = dir->i_private; 1165 struct kernfs_node *kn; 1166 struct kernfs_root *root; 1167 struct inode *inode = NULL; 1168 const void *ns = NULL; 1169 1170 root = kernfs_root(parent); 1171 down_read(&root->kernfs_rwsem); 1172 if (kernfs_ns_enabled(parent)) 1173 ns = kernfs_info(dir->i_sb)->ns; 1174 1175 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1176 /* attach dentry and inode */ 1177 if (kn) { 1178 /* Inactive nodes are invisible to the VFS so don't 1179 * create a negative. 1180 */ 1181 if (!kernfs_active(kn)) { 1182 up_read(&root->kernfs_rwsem); 1183 return NULL; 1184 } 1185 inode = kernfs_get_inode(dir->i_sb, kn); 1186 if (!inode) 1187 inode = ERR_PTR(-ENOMEM); 1188 } 1189 /* 1190 * Needed for negative dentry validation. 1191 * The negative dentry can be created in kernfs_iop_lookup() 1192 * or transforms from positive dentry in dentry_unlink_inode() 1193 * called from vfs_rmdir(). 1194 */ 1195 if (!IS_ERR(inode)) 1196 kernfs_set_rev(parent, dentry); 1197 up_read(&root->kernfs_rwsem); 1198 1199 /* instantiate and hash (possibly negative) dentry */ 1200 return d_splice_alias(inode, dentry); 1201 } 1202 1203 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns, 1204 struct inode *dir, struct dentry *dentry, 1205 umode_t mode) 1206 { 1207 struct kernfs_node *parent = dir->i_private; 1208 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1209 int ret; 1210 1211 if (!scops || !scops->mkdir) 1212 return -EPERM; 1213 1214 if (!kernfs_get_active(parent)) 1215 return -ENODEV; 1216 1217 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1218 1219 kernfs_put_active(parent); 1220 return ret; 1221 } 1222 1223 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1224 { 1225 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1226 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1227 int ret; 1228 1229 if (!scops || !scops->rmdir) 1230 return -EPERM; 1231 1232 if (!kernfs_get_active(kn)) 1233 return -ENODEV; 1234 1235 ret = scops->rmdir(kn); 1236 1237 kernfs_put_active(kn); 1238 return ret; 1239 } 1240 1241 static int kernfs_iop_rename(struct user_namespace *mnt_userns, 1242 struct inode *old_dir, struct dentry *old_dentry, 1243 struct inode *new_dir, struct dentry *new_dentry, 1244 unsigned int flags) 1245 { 1246 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1247 struct kernfs_node *new_parent = new_dir->i_private; 1248 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1249 int ret; 1250 1251 if (flags) 1252 return -EINVAL; 1253 1254 if (!scops || !scops->rename) 1255 return -EPERM; 1256 1257 if (!kernfs_get_active(kn)) 1258 return -ENODEV; 1259 1260 if (!kernfs_get_active(new_parent)) { 1261 kernfs_put_active(kn); 1262 return -ENODEV; 1263 } 1264 1265 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1266 1267 kernfs_put_active(new_parent); 1268 kernfs_put_active(kn); 1269 return ret; 1270 } 1271 1272 const struct inode_operations kernfs_dir_iops = { 1273 .lookup = kernfs_iop_lookup, 1274 .permission = kernfs_iop_permission, 1275 .setattr = kernfs_iop_setattr, 1276 .getattr = kernfs_iop_getattr, 1277 .listxattr = kernfs_iop_listxattr, 1278 1279 .mkdir = kernfs_iop_mkdir, 1280 .rmdir = kernfs_iop_rmdir, 1281 .rename = kernfs_iop_rename, 1282 }; 1283 1284 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1285 { 1286 struct kernfs_node *last; 1287 1288 while (true) { 1289 struct rb_node *rbn; 1290 1291 last = pos; 1292 1293 if (kernfs_type(pos) != KERNFS_DIR) 1294 break; 1295 1296 rbn = rb_first(&pos->dir.children); 1297 if (!rbn) 1298 break; 1299 1300 pos = rb_to_kn(rbn); 1301 } 1302 1303 return last; 1304 } 1305 1306 /** 1307 * kernfs_next_descendant_post - find the next descendant for post-order walk 1308 * @pos: the current position (%NULL to initiate traversal) 1309 * @root: kernfs_node whose descendants to walk 1310 * 1311 * Find the next descendant to visit for post-order traversal of @root's 1312 * descendants. @root is included in the iteration and the last node to be 1313 * visited. 1314 * 1315 * Return: the next descendant to visit or %NULL when done. 1316 */ 1317 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1318 struct kernfs_node *root) 1319 { 1320 struct rb_node *rbn; 1321 1322 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); 1323 1324 /* if first iteration, visit leftmost descendant which may be root */ 1325 if (!pos) 1326 return kernfs_leftmost_descendant(root); 1327 1328 /* if we visited @root, we're done */ 1329 if (pos == root) 1330 return NULL; 1331 1332 /* if there's an unvisited sibling, visit its leftmost descendant */ 1333 rbn = rb_next(&pos->rb); 1334 if (rbn) 1335 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1336 1337 /* no sibling left, visit parent */ 1338 return pos->parent; 1339 } 1340 1341 static void kernfs_activate_one(struct kernfs_node *kn) 1342 { 1343 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1344 1345 kn->flags |= KERNFS_ACTIVATED; 1346 1347 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING))) 1348 return; 1349 1350 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb)); 1351 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1352 1353 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active); 1354 } 1355 1356 /** 1357 * kernfs_activate - activate a node which started deactivated 1358 * @kn: kernfs_node whose subtree is to be activated 1359 * 1360 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1361 * needs to be explicitly activated. A node which hasn't been activated 1362 * isn't visible to userland and deactivation is skipped during its 1363 * removal. This is useful to construct atomic init sequences where 1364 * creation of multiple nodes should either succeed or fail atomically. 1365 * 1366 * The caller is responsible for ensuring that this function is not called 1367 * after kernfs_remove*() is invoked on @kn. 1368 */ 1369 void kernfs_activate(struct kernfs_node *kn) 1370 { 1371 struct kernfs_node *pos; 1372 struct kernfs_root *root = kernfs_root(kn); 1373 1374 down_write(&root->kernfs_rwsem); 1375 1376 pos = NULL; 1377 while ((pos = kernfs_next_descendant_post(pos, kn))) 1378 kernfs_activate_one(pos); 1379 1380 up_write(&root->kernfs_rwsem); 1381 } 1382 1383 /** 1384 * kernfs_show - show or hide a node 1385 * @kn: kernfs_node to show or hide 1386 * @show: whether to show or hide 1387 * 1388 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is 1389 * ignored in future activaitons. If %true, the mark is removed and activation 1390 * state is restored. This function won't implicitly activate a new node in a 1391 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet. 1392 * 1393 * To avoid recursion complexities, directories aren't supported for now. 1394 */ 1395 void kernfs_show(struct kernfs_node *kn, bool show) 1396 { 1397 struct kernfs_root *root = kernfs_root(kn); 1398 1399 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR)) 1400 return; 1401 1402 down_write(&root->kernfs_rwsem); 1403 1404 if (show) { 1405 kn->flags &= ~KERNFS_HIDDEN; 1406 if (kn->flags & KERNFS_ACTIVATED) 1407 kernfs_activate_one(kn); 1408 } else { 1409 kn->flags |= KERNFS_HIDDEN; 1410 if (kernfs_active(kn)) 1411 atomic_add(KN_DEACTIVATED_BIAS, &kn->active); 1412 kernfs_drain(kn); 1413 } 1414 1415 up_write(&root->kernfs_rwsem); 1416 } 1417 1418 static void __kernfs_remove(struct kernfs_node *kn) 1419 { 1420 struct kernfs_node *pos; 1421 1422 /* Short-circuit if non-root @kn has already finished removal. */ 1423 if (!kn) 1424 return; 1425 1426 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1427 1428 /* 1429 * This is for kernfs_remove_self() which plays with active ref 1430 * after removal. 1431 */ 1432 if (kn->parent && RB_EMPTY_NODE(&kn->rb)) 1433 return; 1434 1435 pr_debug("kernfs %s: removing\n", kn->name); 1436 1437 /* prevent new usage by marking all nodes removing and deactivating */ 1438 pos = NULL; 1439 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1440 pos->flags |= KERNFS_REMOVING; 1441 if (kernfs_active(pos)) 1442 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1443 } 1444 1445 /* deactivate and unlink the subtree node-by-node */ 1446 do { 1447 pos = kernfs_leftmost_descendant(kn); 1448 1449 /* 1450 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's 1451 * base ref could have been put by someone else by the time 1452 * the function returns. Make sure it doesn't go away 1453 * underneath us. 1454 */ 1455 kernfs_get(pos); 1456 1457 kernfs_drain(pos); 1458 1459 /* 1460 * kernfs_unlink_sibling() succeeds once per node. Use it 1461 * to decide who's responsible for cleanups. 1462 */ 1463 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1464 struct kernfs_iattrs *ps_iattr = 1465 pos->parent ? pos->parent->iattr : NULL; 1466 1467 /* update timestamps on the parent */ 1468 if (ps_iattr) { 1469 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1470 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1471 } 1472 1473 kernfs_put(pos); 1474 } 1475 1476 kernfs_put(pos); 1477 } while (pos != kn); 1478 } 1479 1480 /** 1481 * kernfs_remove - remove a kernfs_node recursively 1482 * @kn: the kernfs_node to remove 1483 * 1484 * Remove @kn along with all its subdirectories and files. 1485 */ 1486 void kernfs_remove(struct kernfs_node *kn) 1487 { 1488 struct kernfs_root *root; 1489 1490 if (!kn) 1491 return; 1492 1493 root = kernfs_root(kn); 1494 1495 down_write(&root->kernfs_rwsem); 1496 __kernfs_remove(kn); 1497 up_write(&root->kernfs_rwsem); 1498 } 1499 1500 /** 1501 * kernfs_break_active_protection - break out of active protection 1502 * @kn: the self kernfs_node 1503 * 1504 * The caller must be running off of a kernfs operation which is invoked 1505 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1506 * this function must also be matched with an invocation of 1507 * kernfs_unbreak_active_protection(). 1508 * 1509 * This function releases the active reference of @kn the caller is 1510 * holding. Once this function is called, @kn may be removed at any point 1511 * and the caller is solely responsible for ensuring that the objects it 1512 * dereferences are accessible. 1513 */ 1514 void kernfs_break_active_protection(struct kernfs_node *kn) 1515 { 1516 /* 1517 * Take out ourself out of the active ref dependency chain. If 1518 * we're called without an active ref, lockdep will complain. 1519 */ 1520 kernfs_put_active(kn); 1521 } 1522 1523 /** 1524 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1525 * @kn: the self kernfs_node 1526 * 1527 * If kernfs_break_active_protection() was called, this function must be 1528 * invoked before finishing the kernfs operation. Note that while this 1529 * function restores the active reference, it doesn't and can't actually 1530 * restore the active protection - @kn may already or be in the process of 1531 * being removed. Once kernfs_break_active_protection() is invoked, that 1532 * protection is irreversibly gone for the kernfs operation instance. 1533 * 1534 * While this function may be called at any point after 1535 * kernfs_break_active_protection() is invoked, its most useful location 1536 * would be right before the enclosing kernfs operation returns. 1537 */ 1538 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1539 { 1540 /* 1541 * @kn->active could be in any state; however, the increment we do 1542 * here will be undone as soon as the enclosing kernfs operation 1543 * finishes and this temporary bump can't break anything. If @kn 1544 * is alive, nothing changes. If @kn is being deactivated, the 1545 * soon-to-follow put will either finish deactivation or restore 1546 * deactivated state. If @kn is already removed, the temporary 1547 * bump is guaranteed to be gone before @kn is released. 1548 */ 1549 atomic_inc(&kn->active); 1550 if (kernfs_lockdep(kn)) 1551 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1552 } 1553 1554 /** 1555 * kernfs_remove_self - remove a kernfs_node from its own method 1556 * @kn: the self kernfs_node to remove 1557 * 1558 * The caller must be running off of a kernfs operation which is invoked 1559 * with an active reference - e.g. one of kernfs_ops. This can be used to 1560 * implement a file operation which deletes itself. 1561 * 1562 * For example, the "delete" file for a sysfs device directory can be 1563 * implemented by invoking kernfs_remove_self() on the "delete" file 1564 * itself. This function breaks the circular dependency of trying to 1565 * deactivate self while holding an active ref itself. It isn't necessary 1566 * to modify the usual removal path to use kernfs_remove_self(). The 1567 * "delete" implementation can simply invoke kernfs_remove_self() on self 1568 * before proceeding with the usual removal path. kernfs will ignore later 1569 * kernfs_remove() on self. 1570 * 1571 * kernfs_remove_self() can be called multiple times concurrently on the 1572 * same kernfs_node. Only the first one actually performs removal and 1573 * returns %true. All others will wait until the kernfs operation which 1574 * won self-removal finishes and return %false. Note that the losers wait 1575 * for the completion of not only the winning kernfs_remove_self() but also 1576 * the whole kernfs_ops which won the arbitration. This can be used to 1577 * guarantee, for example, all concurrent writes to a "delete" file to 1578 * finish only after the whole operation is complete. 1579 * 1580 * Return: %true if @kn is removed by this call, otherwise %false. 1581 */ 1582 bool kernfs_remove_self(struct kernfs_node *kn) 1583 { 1584 bool ret; 1585 struct kernfs_root *root = kernfs_root(kn); 1586 1587 down_write(&root->kernfs_rwsem); 1588 kernfs_break_active_protection(kn); 1589 1590 /* 1591 * SUICIDAL is used to arbitrate among competing invocations. Only 1592 * the first one will actually perform removal. When the removal 1593 * is complete, SUICIDED is set and the active ref is restored 1594 * while kernfs_rwsem for held exclusive. The ones which lost 1595 * arbitration waits for SUICIDED && drained which can happen only 1596 * after the enclosing kernfs operation which executed the winning 1597 * instance of kernfs_remove_self() finished. 1598 */ 1599 if (!(kn->flags & KERNFS_SUICIDAL)) { 1600 kn->flags |= KERNFS_SUICIDAL; 1601 __kernfs_remove(kn); 1602 kn->flags |= KERNFS_SUICIDED; 1603 ret = true; 1604 } else { 1605 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1606 DEFINE_WAIT(wait); 1607 1608 while (true) { 1609 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1610 1611 if ((kn->flags & KERNFS_SUICIDED) && 1612 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1613 break; 1614 1615 up_write(&root->kernfs_rwsem); 1616 schedule(); 1617 down_write(&root->kernfs_rwsem); 1618 } 1619 finish_wait(waitq, &wait); 1620 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1621 ret = false; 1622 } 1623 1624 /* 1625 * This must be done while kernfs_rwsem held exclusive; otherwise, 1626 * waiting for SUICIDED && deactivated could finish prematurely. 1627 */ 1628 kernfs_unbreak_active_protection(kn); 1629 1630 up_write(&root->kernfs_rwsem); 1631 return ret; 1632 } 1633 1634 /** 1635 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1636 * @parent: parent of the target 1637 * @name: name of the kernfs_node to remove 1638 * @ns: namespace tag of the kernfs_node to remove 1639 * 1640 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1641 * 1642 * Return: %0 on success, -ENOENT if such entry doesn't exist. 1643 */ 1644 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1645 const void *ns) 1646 { 1647 struct kernfs_node *kn; 1648 struct kernfs_root *root; 1649 1650 if (!parent) { 1651 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1652 name); 1653 return -ENOENT; 1654 } 1655 1656 root = kernfs_root(parent); 1657 down_write(&root->kernfs_rwsem); 1658 1659 kn = kernfs_find_ns(parent, name, ns); 1660 if (kn) { 1661 kernfs_get(kn); 1662 __kernfs_remove(kn); 1663 kernfs_put(kn); 1664 } 1665 1666 up_write(&root->kernfs_rwsem); 1667 1668 if (kn) 1669 return 0; 1670 else 1671 return -ENOENT; 1672 } 1673 1674 /** 1675 * kernfs_rename_ns - move and rename a kernfs_node 1676 * @kn: target node 1677 * @new_parent: new parent to put @sd under 1678 * @new_name: new name 1679 * @new_ns: new namespace tag 1680 * 1681 * Return: %0 on success, -errno on failure. 1682 */ 1683 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1684 const char *new_name, const void *new_ns) 1685 { 1686 struct kernfs_node *old_parent; 1687 struct kernfs_root *root; 1688 const char *old_name = NULL; 1689 int error; 1690 1691 /* can't move or rename root */ 1692 if (!kn->parent) 1693 return -EINVAL; 1694 1695 root = kernfs_root(kn); 1696 down_write(&root->kernfs_rwsem); 1697 1698 error = -ENOENT; 1699 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1700 (new_parent->flags & KERNFS_EMPTY_DIR)) 1701 goto out; 1702 1703 error = 0; 1704 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1705 (strcmp(kn->name, new_name) == 0)) 1706 goto out; /* nothing to rename */ 1707 1708 error = -EEXIST; 1709 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1710 goto out; 1711 1712 /* rename kernfs_node */ 1713 if (strcmp(kn->name, new_name) != 0) { 1714 error = -ENOMEM; 1715 new_name = kstrdup_const(new_name, GFP_KERNEL); 1716 if (!new_name) 1717 goto out; 1718 } else { 1719 new_name = NULL; 1720 } 1721 1722 /* 1723 * Move to the appropriate place in the appropriate directories rbtree. 1724 */ 1725 kernfs_unlink_sibling(kn); 1726 kernfs_get(new_parent); 1727 1728 /* rename_lock protects ->parent and ->name accessors */ 1729 spin_lock_irq(&kernfs_rename_lock); 1730 1731 old_parent = kn->parent; 1732 kn->parent = new_parent; 1733 1734 kn->ns = new_ns; 1735 if (new_name) { 1736 old_name = kn->name; 1737 kn->name = new_name; 1738 } 1739 1740 spin_unlock_irq(&kernfs_rename_lock); 1741 1742 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1743 kernfs_link_sibling(kn); 1744 1745 kernfs_put(old_parent); 1746 kfree_const(old_name); 1747 1748 error = 0; 1749 out: 1750 up_write(&root->kernfs_rwsem); 1751 return error; 1752 } 1753 1754 /* Relationship between mode and the DT_xxx types */ 1755 static inline unsigned char dt_type(struct kernfs_node *kn) 1756 { 1757 return (kn->mode >> 12) & 15; 1758 } 1759 1760 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1761 { 1762 kernfs_put(filp->private_data); 1763 return 0; 1764 } 1765 1766 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1767 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1768 { 1769 if (pos) { 1770 int valid = kernfs_active(pos) && 1771 pos->parent == parent && hash == pos->hash; 1772 kernfs_put(pos); 1773 if (!valid) 1774 pos = NULL; 1775 } 1776 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1777 struct rb_node *node = parent->dir.children.rb_node; 1778 while (node) { 1779 pos = rb_to_kn(node); 1780 1781 if (hash < pos->hash) 1782 node = node->rb_left; 1783 else if (hash > pos->hash) 1784 node = node->rb_right; 1785 else 1786 break; 1787 } 1788 } 1789 /* Skip over entries which are dying/dead or in the wrong namespace */ 1790 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1791 struct rb_node *node = rb_next(&pos->rb); 1792 if (!node) 1793 pos = NULL; 1794 else 1795 pos = rb_to_kn(node); 1796 } 1797 return pos; 1798 } 1799 1800 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1801 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1802 { 1803 pos = kernfs_dir_pos(ns, parent, ino, pos); 1804 if (pos) { 1805 do { 1806 struct rb_node *node = rb_next(&pos->rb); 1807 if (!node) 1808 pos = NULL; 1809 else 1810 pos = rb_to_kn(node); 1811 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1812 } 1813 return pos; 1814 } 1815 1816 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1817 { 1818 struct dentry *dentry = file->f_path.dentry; 1819 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1820 struct kernfs_node *pos = file->private_data; 1821 struct kernfs_root *root; 1822 const void *ns = NULL; 1823 1824 if (!dir_emit_dots(file, ctx)) 1825 return 0; 1826 1827 root = kernfs_root(parent); 1828 down_read(&root->kernfs_rwsem); 1829 1830 if (kernfs_ns_enabled(parent)) 1831 ns = kernfs_info(dentry->d_sb)->ns; 1832 1833 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1834 pos; 1835 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1836 const char *name = pos->name; 1837 unsigned int type = dt_type(pos); 1838 int len = strlen(name); 1839 ino_t ino = kernfs_ino(pos); 1840 1841 ctx->pos = pos->hash; 1842 file->private_data = pos; 1843 kernfs_get(pos); 1844 1845 up_read(&root->kernfs_rwsem); 1846 if (!dir_emit(ctx, name, len, ino, type)) 1847 return 0; 1848 down_read(&root->kernfs_rwsem); 1849 } 1850 up_read(&root->kernfs_rwsem); 1851 file->private_data = NULL; 1852 ctx->pos = INT_MAX; 1853 return 0; 1854 } 1855 1856 const struct file_operations kernfs_dir_fops = { 1857 .read = generic_read_dir, 1858 .iterate_shared = kernfs_fop_readdir, 1859 .release = kernfs_dir_fop_release, 1860 .llseek = generic_file_llseek, 1861 }; 1862