xref: /openbmc/linux/fs/kernfs/dir.c (revision e6dec923)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	if (!kn)
45 		return strlcpy(buf, "(null)", buflen);
46 
47 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
48 }
49 
50 /* kernfs_node_depth - compute depth from @from to @to */
51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
52 {
53 	size_t depth = 0;
54 
55 	while (to->parent && to != from) {
56 		depth++;
57 		to = to->parent;
58 	}
59 	return depth;
60 }
61 
62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 						  struct kernfs_node *b)
64 {
65 	size_t da, db;
66 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
67 
68 	if (ra != rb)
69 		return NULL;
70 
71 	da = kernfs_depth(ra->kn, a);
72 	db = kernfs_depth(rb->kn, b);
73 
74 	while (da > db) {
75 		a = a->parent;
76 		da--;
77 	}
78 	while (db > da) {
79 		b = b->parent;
80 		db--;
81 	}
82 
83 	/* worst case b and a will be the same at root */
84 	while (b != a) {
85 		b = b->parent;
86 		a = a->parent;
87 	}
88 
89 	return a;
90 }
91 
92 /**
93  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94  * where kn_from is treated as root of the path.
95  * @kn_from: kernfs node which should be treated as root for the path
96  * @kn_to: kernfs node to which path is needed
97  * @buf: buffer to copy the path into
98  * @buflen: size of @buf
99  *
100  * We need to handle couple of scenarios here:
101  * [1] when @kn_from is an ancestor of @kn_to at some level
102  * kn_from: /n1/n2/n3
103  * kn_to:   /n1/n2/n3/n4/n5
104  * result:  /n4/n5
105  *
106  * [2] when @kn_from is on a different hierarchy and we need to find common
107  * ancestor between @kn_from and @kn_to.
108  * kn_from: /n1/n2/n3/n4
109  * kn_to:   /n1/n2/n5
110  * result:  /../../n5
111  * OR
112  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
113  * kn_to:   /n1/n2/n3         [depth=3]
114  * result:  /../..
115  *
116  * [3] when @kn_to is NULL result will be "(null)"
117  *
118  * Returns the length of the full path.  If the full length is equal to or
119  * greater than @buflen, @buf contains the truncated path with the trailing
120  * '\0'.  On error, -errno is returned.
121  */
122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 					struct kernfs_node *kn_from,
124 					char *buf, size_t buflen)
125 {
126 	struct kernfs_node *kn, *common;
127 	const char parent_str[] = "/..";
128 	size_t depth_from, depth_to, len = 0;
129 	int i, j;
130 
131 	if (!kn_to)
132 		return strlcpy(buf, "(null)", buflen);
133 
134 	if (!kn_from)
135 		kn_from = kernfs_root(kn_to)->kn;
136 
137 	if (kn_from == kn_to)
138 		return strlcpy(buf, "/", buflen);
139 
140 	common = kernfs_common_ancestor(kn_from, kn_to);
141 	if (WARN_ON(!common))
142 		return -EINVAL;
143 
144 	depth_to = kernfs_depth(common, kn_to);
145 	depth_from = kernfs_depth(common, kn_from);
146 
147 	if (buf)
148 		buf[0] = '\0';
149 
150 	for (i = 0; i < depth_from; i++)
151 		len += strlcpy(buf + len, parent_str,
152 			       len < buflen ? buflen - len : 0);
153 
154 	/* Calculate how many bytes we need for the rest */
155 	for (i = depth_to - 1; i >= 0; i--) {
156 		for (kn = kn_to, j = 0; j < i; j++)
157 			kn = kn->parent;
158 		len += strlcpy(buf + len, "/",
159 			       len < buflen ? buflen - len : 0);
160 		len += strlcpy(buf + len, kn->name,
161 			       len < buflen ? buflen - len : 0);
162 	}
163 
164 	return len;
165 }
166 
167 /**
168  * kernfs_name - obtain the name of a given node
169  * @kn: kernfs_node of interest
170  * @buf: buffer to copy @kn's name into
171  * @buflen: size of @buf
172  *
173  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
174  * similar to strlcpy().  It returns the length of @kn's name and if @buf
175  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
176  *
177  * Fills buffer with "(null)" if @kn is NULL.
178  *
179  * This function can be called from any context.
180  */
181 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
182 {
183 	unsigned long flags;
184 	int ret;
185 
186 	spin_lock_irqsave(&kernfs_rename_lock, flags);
187 	ret = kernfs_name_locked(kn, buf, buflen);
188 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
189 	return ret;
190 }
191 
192 /**
193  * kernfs_path_from_node - build path of node @to relative to @from.
194  * @from: parent kernfs_node relative to which we need to build the path
195  * @to: kernfs_node of interest
196  * @buf: buffer to copy @to's path into
197  * @buflen: size of @buf
198  *
199  * Builds @to's path relative to @from in @buf. @from and @to must
200  * be on the same kernfs-root. If @from is not parent of @to, then a relative
201  * path (which includes '..'s) as needed to reach from @from to @to is
202  * returned.
203  *
204  * Returns the length of the full path.  If the full length is equal to or
205  * greater than @buflen, @buf contains the truncated path with the trailing
206  * '\0'.  On error, -errno is returned.
207  */
208 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
209 			  char *buf, size_t buflen)
210 {
211 	unsigned long flags;
212 	int ret;
213 
214 	spin_lock_irqsave(&kernfs_rename_lock, flags);
215 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
216 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
217 	return ret;
218 }
219 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
220 
221 /**
222  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
223  * @kn: kernfs_node of interest
224  *
225  * This function can be called from any context.
226  */
227 void pr_cont_kernfs_name(struct kernfs_node *kn)
228 {
229 	unsigned long flags;
230 
231 	spin_lock_irqsave(&kernfs_rename_lock, flags);
232 
233 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
234 	pr_cont("%s", kernfs_pr_cont_buf);
235 
236 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
237 }
238 
239 /**
240  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
241  * @kn: kernfs_node of interest
242  *
243  * This function can be called from any context.
244  */
245 void pr_cont_kernfs_path(struct kernfs_node *kn)
246 {
247 	unsigned long flags;
248 	int sz;
249 
250 	spin_lock_irqsave(&kernfs_rename_lock, flags);
251 
252 	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
253 					  sizeof(kernfs_pr_cont_buf));
254 	if (sz < 0) {
255 		pr_cont("(error)");
256 		goto out;
257 	}
258 
259 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
260 		pr_cont("(name too long)");
261 		goto out;
262 	}
263 
264 	pr_cont("%s", kernfs_pr_cont_buf);
265 
266 out:
267 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
268 }
269 
270 /**
271  * kernfs_get_parent - determine the parent node and pin it
272  * @kn: kernfs_node of interest
273  *
274  * Determines @kn's parent, pins and returns it.  This function can be
275  * called from any context.
276  */
277 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
278 {
279 	struct kernfs_node *parent;
280 	unsigned long flags;
281 
282 	spin_lock_irqsave(&kernfs_rename_lock, flags);
283 	parent = kn->parent;
284 	kernfs_get(parent);
285 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
286 
287 	return parent;
288 }
289 
290 /**
291  *	kernfs_name_hash
292  *	@name: Null terminated string to hash
293  *	@ns:   Namespace tag to hash
294  *
295  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
296  */
297 static unsigned int kernfs_name_hash(const char *name, const void *ns)
298 {
299 	unsigned long hash = init_name_hash(ns);
300 	unsigned int len = strlen(name);
301 	while (len--)
302 		hash = partial_name_hash(*name++, hash);
303 	hash = end_name_hash(hash);
304 	hash &= 0x7fffffffU;
305 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
306 	if (hash < 2)
307 		hash += 2;
308 	if (hash >= INT_MAX)
309 		hash = INT_MAX - 1;
310 	return hash;
311 }
312 
313 static int kernfs_name_compare(unsigned int hash, const char *name,
314 			       const void *ns, const struct kernfs_node *kn)
315 {
316 	if (hash < kn->hash)
317 		return -1;
318 	if (hash > kn->hash)
319 		return 1;
320 	if (ns < kn->ns)
321 		return -1;
322 	if (ns > kn->ns)
323 		return 1;
324 	return strcmp(name, kn->name);
325 }
326 
327 static int kernfs_sd_compare(const struct kernfs_node *left,
328 			     const struct kernfs_node *right)
329 {
330 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
331 }
332 
333 /**
334  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
335  *	@kn: kernfs_node of interest
336  *
337  *	Link @kn into its sibling rbtree which starts from
338  *	@kn->parent->dir.children.
339  *
340  *	Locking:
341  *	mutex_lock(kernfs_mutex)
342  *
343  *	RETURNS:
344  *	0 on susccess -EEXIST on failure.
345  */
346 static int kernfs_link_sibling(struct kernfs_node *kn)
347 {
348 	struct rb_node **node = &kn->parent->dir.children.rb_node;
349 	struct rb_node *parent = NULL;
350 
351 	while (*node) {
352 		struct kernfs_node *pos;
353 		int result;
354 
355 		pos = rb_to_kn(*node);
356 		parent = *node;
357 		result = kernfs_sd_compare(kn, pos);
358 		if (result < 0)
359 			node = &pos->rb.rb_left;
360 		else if (result > 0)
361 			node = &pos->rb.rb_right;
362 		else
363 			return -EEXIST;
364 	}
365 
366 	/* add new node and rebalance the tree */
367 	rb_link_node(&kn->rb, parent, node);
368 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
369 
370 	/* successfully added, account subdir number */
371 	if (kernfs_type(kn) == KERNFS_DIR)
372 		kn->parent->dir.subdirs++;
373 
374 	return 0;
375 }
376 
377 /**
378  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
379  *	@kn: kernfs_node of interest
380  *
381  *	Try to unlink @kn from its sibling rbtree which starts from
382  *	kn->parent->dir.children.  Returns %true if @kn was actually
383  *	removed, %false if @kn wasn't on the rbtree.
384  *
385  *	Locking:
386  *	mutex_lock(kernfs_mutex)
387  */
388 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
389 {
390 	if (RB_EMPTY_NODE(&kn->rb))
391 		return false;
392 
393 	if (kernfs_type(kn) == KERNFS_DIR)
394 		kn->parent->dir.subdirs--;
395 
396 	rb_erase(&kn->rb, &kn->parent->dir.children);
397 	RB_CLEAR_NODE(&kn->rb);
398 	return true;
399 }
400 
401 /**
402  *	kernfs_get_active - get an active reference to kernfs_node
403  *	@kn: kernfs_node to get an active reference to
404  *
405  *	Get an active reference of @kn.  This function is noop if @kn
406  *	is NULL.
407  *
408  *	RETURNS:
409  *	Pointer to @kn on success, NULL on failure.
410  */
411 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
412 {
413 	if (unlikely(!kn))
414 		return NULL;
415 
416 	if (!atomic_inc_unless_negative(&kn->active))
417 		return NULL;
418 
419 	if (kernfs_lockdep(kn))
420 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
421 	return kn;
422 }
423 
424 /**
425  *	kernfs_put_active - put an active reference to kernfs_node
426  *	@kn: kernfs_node to put an active reference to
427  *
428  *	Put an active reference to @kn.  This function is noop if @kn
429  *	is NULL.
430  */
431 void kernfs_put_active(struct kernfs_node *kn)
432 {
433 	struct kernfs_root *root = kernfs_root(kn);
434 	int v;
435 
436 	if (unlikely(!kn))
437 		return;
438 
439 	if (kernfs_lockdep(kn))
440 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
441 	v = atomic_dec_return(&kn->active);
442 	if (likely(v != KN_DEACTIVATED_BIAS))
443 		return;
444 
445 	wake_up_all(&root->deactivate_waitq);
446 }
447 
448 /**
449  * kernfs_drain - drain kernfs_node
450  * @kn: kernfs_node to drain
451  *
452  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
453  * removers may invoke this function concurrently on @kn and all will
454  * return after draining is complete.
455  */
456 static void kernfs_drain(struct kernfs_node *kn)
457 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
458 {
459 	struct kernfs_root *root = kernfs_root(kn);
460 
461 	lockdep_assert_held(&kernfs_mutex);
462 	WARN_ON_ONCE(kernfs_active(kn));
463 
464 	mutex_unlock(&kernfs_mutex);
465 
466 	if (kernfs_lockdep(kn)) {
467 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
468 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
469 			lock_contended(&kn->dep_map, _RET_IP_);
470 	}
471 
472 	/* but everyone should wait for draining */
473 	wait_event(root->deactivate_waitq,
474 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
475 
476 	if (kernfs_lockdep(kn)) {
477 		lock_acquired(&kn->dep_map, _RET_IP_);
478 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
479 	}
480 
481 	kernfs_drain_open_files(kn);
482 
483 	mutex_lock(&kernfs_mutex);
484 }
485 
486 /**
487  * kernfs_get - get a reference count on a kernfs_node
488  * @kn: the target kernfs_node
489  */
490 void kernfs_get(struct kernfs_node *kn)
491 {
492 	if (kn) {
493 		WARN_ON(!atomic_read(&kn->count));
494 		atomic_inc(&kn->count);
495 	}
496 }
497 EXPORT_SYMBOL_GPL(kernfs_get);
498 
499 /**
500  * kernfs_put - put a reference count on a kernfs_node
501  * @kn: the target kernfs_node
502  *
503  * Put a reference count of @kn and destroy it if it reached zero.
504  */
505 void kernfs_put(struct kernfs_node *kn)
506 {
507 	struct kernfs_node *parent;
508 	struct kernfs_root *root;
509 
510 	if (!kn || !atomic_dec_and_test(&kn->count))
511 		return;
512 	root = kernfs_root(kn);
513  repeat:
514 	/*
515 	 * Moving/renaming is always done while holding reference.
516 	 * kn->parent won't change beneath us.
517 	 */
518 	parent = kn->parent;
519 
520 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
521 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
522 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
523 
524 	if (kernfs_type(kn) == KERNFS_LINK)
525 		kernfs_put(kn->symlink.target_kn);
526 
527 	kfree_const(kn->name);
528 
529 	if (kn->iattr) {
530 		if (kn->iattr->ia_secdata)
531 			security_release_secctx(kn->iattr->ia_secdata,
532 						kn->iattr->ia_secdata_len);
533 		simple_xattrs_free(&kn->iattr->xattrs);
534 	}
535 	kfree(kn->iattr);
536 	ida_simple_remove(&root->ino_ida, kn->ino);
537 	kmem_cache_free(kernfs_node_cache, kn);
538 
539 	kn = parent;
540 	if (kn) {
541 		if (atomic_dec_and_test(&kn->count))
542 			goto repeat;
543 	} else {
544 		/* just released the root kn, free @root too */
545 		ida_destroy(&root->ino_ida);
546 		kfree(root);
547 	}
548 }
549 EXPORT_SYMBOL_GPL(kernfs_put);
550 
551 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
552 {
553 	struct kernfs_node *kn;
554 
555 	if (flags & LOOKUP_RCU)
556 		return -ECHILD;
557 
558 	/* Always perform fresh lookup for negatives */
559 	if (d_really_is_negative(dentry))
560 		goto out_bad_unlocked;
561 
562 	kn = dentry->d_fsdata;
563 	mutex_lock(&kernfs_mutex);
564 
565 	/* The kernfs node has been deactivated */
566 	if (!kernfs_active(kn))
567 		goto out_bad;
568 
569 	/* The kernfs node has been moved? */
570 	if (dentry->d_parent->d_fsdata != kn->parent)
571 		goto out_bad;
572 
573 	/* The kernfs node has been renamed */
574 	if (strcmp(dentry->d_name.name, kn->name) != 0)
575 		goto out_bad;
576 
577 	/* The kernfs node has been moved to a different namespace */
578 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
579 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
580 		goto out_bad;
581 
582 	mutex_unlock(&kernfs_mutex);
583 	return 1;
584 out_bad:
585 	mutex_unlock(&kernfs_mutex);
586 out_bad_unlocked:
587 	return 0;
588 }
589 
590 static void kernfs_dop_release(struct dentry *dentry)
591 {
592 	kernfs_put(dentry->d_fsdata);
593 }
594 
595 const struct dentry_operations kernfs_dops = {
596 	.d_revalidate	= kernfs_dop_revalidate,
597 	.d_release	= kernfs_dop_release,
598 };
599 
600 /**
601  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
602  * @dentry: the dentry in question
603  *
604  * Return the kernfs_node associated with @dentry.  If @dentry is not a
605  * kernfs one, %NULL is returned.
606  *
607  * While the returned kernfs_node will stay accessible as long as @dentry
608  * is accessible, the returned node can be in any state and the caller is
609  * fully responsible for determining what's accessible.
610  */
611 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
612 {
613 	if (dentry->d_sb->s_op == &kernfs_sops)
614 		return dentry->d_fsdata;
615 	return NULL;
616 }
617 
618 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
619 					     const char *name, umode_t mode,
620 					     unsigned flags)
621 {
622 	struct kernfs_node *kn;
623 	int ret;
624 
625 	name = kstrdup_const(name, GFP_KERNEL);
626 	if (!name)
627 		return NULL;
628 
629 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
630 	if (!kn)
631 		goto err_out1;
632 
633 	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
634 	if (ret < 0)
635 		goto err_out2;
636 	kn->ino = ret;
637 
638 	atomic_set(&kn->count, 1);
639 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
640 	RB_CLEAR_NODE(&kn->rb);
641 
642 	kn->name = name;
643 	kn->mode = mode;
644 	kn->flags = flags;
645 
646 	return kn;
647 
648  err_out2:
649 	kmem_cache_free(kernfs_node_cache, kn);
650  err_out1:
651 	kfree_const(name);
652 	return NULL;
653 }
654 
655 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
656 				    const char *name, umode_t mode,
657 				    unsigned flags)
658 {
659 	struct kernfs_node *kn;
660 
661 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
662 	if (kn) {
663 		kernfs_get(parent);
664 		kn->parent = parent;
665 	}
666 	return kn;
667 }
668 
669 /**
670  *	kernfs_add_one - add kernfs_node to parent without warning
671  *	@kn: kernfs_node to be added
672  *
673  *	The caller must already have initialized @kn->parent.  This
674  *	function increments nlink of the parent's inode if @kn is a
675  *	directory and link into the children list of the parent.
676  *
677  *	RETURNS:
678  *	0 on success, -EEXIST if entry with the given name already
679  *	exists.
680  */
681 int kernfs_add_one(struct kernfs_node *kn)
682 {
683 	struct kernfs_node *parent = kn->parent;
684 	struct kernfs_iattrs *ps_iattr;
685 	bool has_ns;
686 	int ret;
687 
688 	mutex_lock(&kernfs_mutex);
689 
690 	ret = -EINVAL;
691 	has_ns = kernfs_ns_enabled(parent);
692 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
693 		 has_ns ? "required" : "invalid", parent->name, kn->name))
694 		goto out_unlock;
695 
696 	if (kernfs_type(parent) != KERNFS_DIR)
697 		goto out_unlock;
698 
699 	ret = -ENOENT;
700 	if (parent->flags & KERNFS_EMPTY_DIR)
701 		goto out_unlock;
702 
703 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
704 		goto out_unlock;
705 
706 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
707 
708 	ret = kernfs_link_sibling(kn);
709 	if (ret)
710 		goto out_unlock;
711 
712 	/* Update timestamps on the parent */
713 	ps_iattr = parent->iattr;
714 	if (ps_iattr) {
715 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
716 		ktime_get_real_ts(&ps_iattrs->ia_ctime);
717 		ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
718 	}
719 
720 	mutex_unlock(&kernfs_mutex);
721 
722 	/*
723 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
724 	 * If not activated here, the kernfs user is responsible for
725 	 * activating the node with kernfs_activate().  A node which hasn't
726 	 * been activated is not visible to userland and its removal won't
727 	 * trigger deactivation.
728 	 */
729 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
730 		kernfs_activate(kn);
731 	return 0;
732 
733 out_unlock:
734 	mutex_unlock(&kernfs_mutex);
735 	return ret;
736 }
737 
738 /**
739  * kernfs_find_ns - find kernfs_node with the given name
740  * @parent: kernfs_node to search under
741  * @name: name to look for
742  * @ns: the namespace tag to use
743  *
744  * Look for kernfs_node with name @name under @parent.  Returns pointer to
745  * the found kernfs_node on success, %NULL on failure.
746  */
747 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
748 					  const unsigned char *name,
749 					  const void *ns)
750 {
751 	struct rb_node *node = parent->dir.children.rb_node;
752 	bool has_ns = kernfs_ns_enabled(parent);
753 	unsigned int hash;
754 
755 	lockdep_assert_held(&kernfs_mutex);
756 
757 	if (has_ns != (bool)ns) {
758 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
759 		     has_ns ? "required" : "invalid", parent->name, name);
760 		return NULL;
761 	}
762 
763 	hash = kernfs_name_hash(name, ns);
764 	while (node) {
765 		struct kernfs_node *kn;
766 		int result;
767 
768 		kn = rb_to_kn(node);
769 		result = kernfs_name_compare(hash, name, ns, kn);
770 		if (result < 0)
771 			node = node->rb_left;
772 		else if (result > 0)
773 			node = node->rb_right;
774 		else
775 			return kn;
776 	}
777 	return NULL;
778 }
779 
780 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
781 					  const unsigned char *path,
782 					  const void *ns)
783 {
784 	size_t len;
785 	char *p, *name;
786 
787 	lockdep_assert_held(&kernfs_mutex);
788 
789 	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
790 	spin_lock_irq(&kernfs_rename_lock);
791 
792 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
793 
794 	if (len >= sizeof(kernfs_pr_cont_buf)) {
795 		spin_unlock_irq(&kernfs_rename_lock);
796 		return NULL;
797 	}
798 
799 	p = kernfs_pr_cont_buf;
800 
801 	while ((name = strsep(&p, "/")) && parent) {
802 		if (*name == '\0')
803 			continue;
804 		parent = kernfs_find_ns(parent, name, ns);
805 	}
806 
807 	spin_unlock_irq(&kernfs_rename_lock);
808 
809 	return parent;
810 }
811 
812 /**
813  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
814  * @parent: kernfs_node to search under
815  * @name: name to look for
816  * @ns: the namespace tag to use
817  *
818  * Look for kernfs_node with name @name under @parent and get a reference
819  * if found.  This function may sleep and returns pointer to the found
820  * kernfs_node on success, %NULL on failure.
821  */
822 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
823 					   const char *name, const void *ns)
824 {
825 	struct kernfs_node *kn;
826 
827 	mutex_lock(&kernfs_mutex);
828 	kn = kernfs_find_ns(parent, name, ns);
829 	kernfs_get(kn);
830 	mutex_unlock(&kernfs_mutex);
831 
832 	return kn;
833 }
834 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
835 
836 /**
837  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
838  * @parent: kernfs_node to search under
839  * @path: path to look for
840  * @ns: the namespace tag to use
841  *
842  * Look for kernfs_node with path @path under @parent and get a reference
843  * if found.  This function may sleep and returns pointer to the found
844  * kernfs_node on success, %NULL on failure.
845  */
846 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
847 					   const char *path, const void *ns)
848 {
849 	struct kernfs_node *kn;
850 
851 	mutex_lock(&kernfs_mutex);
852 	kn = kernfs_walk_ns(parent, path, ns);
853 	kernfs_get(kn);
854 	mutex_unlock(&kernfs_mutex);
855 
856 	return kn;
857 }
858 
859 /**
860  * kernfs_create_root - create a new kernfs hierarchy
861  * @scops: optional syscall operations for the hierarchy
862  * @flags: KERNFS_ROOT_* flags
863  * @priv: opaque data associated with the new directory
864  *
865  * Returns the root of the new hierarchy on success, ERR_PTR() value on
866  * failure.
867  */
868 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
869 				       unsigned int flags, void *priv)
870 {
871 	struct kernfs_root *root;
872 	struct kernfs_node *kn;
873 
874 	root = kzalloc(sizeof(*root), GFP_KERNEL);
875 	if (!root)
876 		return ERR_PTR(-ENOMEM);
877 
878 	ida_init(&root->ino_ida);
879 	INIT_LIST_HEAD(&root->supers);
880 
881 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
882 			       KERNFS_DIR);
883 	if (!kn) {
884 		ida_destroy(&root->ino_ida);
885 		kfree(root);
886 		return ERR_PTR(-ENOMEM);
887 	}
888 
889 	kn->priv = priv;
890 	kn->dir.root = root;
891 
892 	root->syscall_ops = scops;
893 	root->flags = flags;
894 	root->kn = kn;
895 	init_waitqueue_head(&root->deactivate_waitq);
896 
897 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
898 		kernfs_activate(kn);
899 
900 	return root;
901 }
902 
903 /**
904  * kernfs_destroy_root - destroy a kernfs hierarchy
905  * @root: root of the hierarchy to destroy
906  *
907  * Destroy the hierarchy anchored at @root by removing all existing
908  * directories and destroying @root.
909  */
910 void kernfs_destroy_root(struct kernfs_root *root)
911 {
912 	kernfs_remove(root->kn);	/* will also free @root */
913 }
914 
915 /**
916  * kernfs_create_dir_ns - create a directory
917  * @parent: parent in which to create a new directory
918  * @name: name of the new directory
919  * @mode: mode of the new directory
920  * @priv: opaque data associated with the new directory
921  * @ns: optional namespace tag of the directory
922  *
923  * Returns the created node on success, ERR_PTR() value on failure.
924  */
925 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
926 					 const char *name, umode_t mode,
927 					 void *priv, const void *ns)
928 {
929 	struct kernfs_node *kn;
930 	int rc;
931 
932 	/* allocate */
933 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
934 	if (!kn)
935 		return ERR_PTR(-ENOMEM);
936 
937 	kn->dir.root = parent->dir.root;
938 	kn->ns = ns;
939 	kn->priv = priv;
940 
941 	/* link in */
942 	rc = kernfs_add_one(kn);
943 	if (!rc)
944 		return kn;
945 
946 	kernfs_put(kn);
947 	return ERR_PTR(rc);
948 }
949 
950 /**
951  * kernfs_create_empty_dir - create an always empty directory
952  * @parent: parent in which to create a new directory
953  * @name: name of the new directory
954  *
955  * Returns the created node on success, ERR_PTR() value on failure.
956  */
957 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
958 					    const char *name)
959 {
960 	struct kernfs_node *kn;
961 	int rc;
962 
963 	/* allocate */
964 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
965 	if (!kn)
966 		return ERR_PTR(-ENOMEM);
967 
968 	kn->flags |= KERNFS_EMPTY_DIR;
969 	kn->dir.root = parent->dir.root;
970 	kn->ns = NULL;
971 	kn->priv = NULL;
972 
973 	/* link in */
974 	rc = kernfs_add_one(kn);
975 	if (!rc)
976 		return kn;
977 
978 	kernfs_put(kn);
979 	return ERR_PTR(rc);
980 }
981 
982 static struct dentry *kernfs_iop_lookup(struct inode *dir,
983 					struct dentry *dentry,
984 					unsigned int flags)
985 {
986 	struct dentry *ret;
987 	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
988 	struct kernfs_node *kn;
989 	struct inode *inode;
990 	const void *ns = NULL;
991 
992 	mutex_lock(&kernfs_mutex);
993 
994 	if (kernfs_ns_enabled(parent))
995 		ns = kernfs_info(dir->i_sb)->ns;
996 
997 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
998 
999 	/* no such entry */
1000 	if (!kn || !kernfs_active(kn)) {
1001 		ret = NULL;
1002 		goto out_unlock;
1003 	}
1004 	kernfs_get(kn);
1005 	dentry->d_fsdata = kn;
1006 
1007 	/* attach dentry and inode */
1008 	inode = kernfs_get_inode(dir->i_sb, kn);
1009 	if (!inode) {
1010 		ret = ERR_PTR(-ENOMEM);
1011 		goto out_unlock;
1012 	}
1013 
1014 	/* instantiate and hash dentry */
1015 	ret = d_splice_alias(inode, dentry);
1016  out_unlock:
1017 	mutex_unlock(&kernfs_mutex);
1018 	return ret;
1019 }
1020 
1021 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1022 			    umode_t mode)
1023 {
1024 	struct kernfs_node *parent = dir->i_private;
1025 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1026 	int ret;
1027 
1028 	if (!scops || !scops->mkdir)
1029 		return -EPERM;
1030 
1031 	if (!kernfs_get_active(parent))
1032 		return -ENODEV;
1033 
1034 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1035 
1036 	kernfs_put_active(parent);
1037 	return ret;
1038 }
1039 
1040 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1041 {
1042 	struct kernfs_node *kn  = dentry->d_fsdata;
1043 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1044 	int ret;
1045 
1046 	if (!scops || !scops->rmdir)
1047 		return -EPERM;
1048 
1049 	if (!kernfs_get_active(kn))
1050 		return -ENODEV;
1051 
1052 	ret = scops->rmdir(kn);
1053 
1054 	kernfs_put_active(kn);
1055 	return ret;
1056 }
1057 
1058 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1059 			     struct inode *new_dir, struct dentry *new_dentry,
1060 			     unsigned int flags)
1061 {
1062 	struct kernfs_node *kn  = old_dentry->d_fsdata;
1063 	struct kernfs_node *new_parent = new_dir->i_private;
1064 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1065 	int ret;
1066 
1067 	if (flags)
1068 		return -EINVAL;
1069 
1070 	if (!scops || !scops->rename)
1071 		return -EPERM;
1072 
1073 	if (!kernfs_get_active(kn))
1074 		return -ENODEV;
1075 
1076 	if (!kernfs_get_active(new_parent)) {
1077 		kernfs_put_active(kn);
1078 		return -ENODEV;
1079 	}
1080 
1081 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1082 
1083 	kernfs_put_active(new_parent);
1084 	kernfs_put_active(kn);
1085 	return ret;
1086 }
1087 
1088 const struct inode_operations kernfs_dir_iops = {
1089 	.lookup		= kernfs_iop_lookup,
1090 	.permission	= kernfs_iop_permission,
1091 	.setattr	= kernfs_iop_setattr,
1092 	.getattr	= kernfs_iop_getattr,
1093 	.listxattr	= kernfs_iop_listxattr,
1094 
1095 	.mkdir		= kernfs_iop_mkdir,
1096 	.rmdir		= kernfs_iop_rmdir,
1097 	.rename		= kernfs_iop_rename,
1098 };
1099 
1100 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1101 {
1102 	struct kernfs_node *last;
1103 
1104 	while (true) {
1105 		struct rb_node *rbn;
1106 
1107 		last = pos;
1108 
1109 		if (kernfs_type(pos) != KERNFS_DIR)
1110 			break;
1111 
1112 		rbn = rb_first(&pos->dir.children);
1113 		if (!rbn)
1114 			break;
1115 
1116 		pos = rb_to_kn(rbn);
1117 	}
1118 
1119 	return last;
1120 }
1121 
1122 /**
1123  * kernfs_next_descendant_post - find the next descendant for post-order walk
1124  * @pos: the current position (%NULL to initiate traversal)
1125  * @root: kernfs_node whose descendants to walk
1126  *
1127  * Find the next descendant to visit for post-order traversal of @root's
1128  * descendants.  @root is included in the iteration and the last node to be
1129  * visited.
1130  */
1131 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1132 						       struct kernfs_node *root)
1133 {
1134 	struct rb_node *rbn;
1135 
1136 	lockdep_assert_held(&kernfs_mutex);
1137 
1138 	/* if first iteration, visit leftmost descendant which may be root */
1139 	if (!pos)
1140 		return kernfs_leftmost_descendant(root);
1141 
1142 	/* if we visited @root, we're done */
1143 	if (pos == root)
1144 		return NULL;
1145 
1146 	/* if there's an unvisited sibling, visit its leftmost descendant */
1147 	rbn = rb_next(&pos->rb);
1148 	if (rbn)
1149 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1150 
1151 	/* no sibling left, visit parent */
1152 	return pos->parent;
1153 }
1154 
1155 /**
1156  * kernfs_activate - activate a node which started deactivated
1157  * @kn: kernfs_node whose subtree is to be activated
1158  *
1159  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1160  * needs to be explicitly activated.  A node which hasn't been activated
1161  * isn't visible to userland and deactivation is skipped during its
1162  * removal.  This is useful to construct atomic init sequences where
1163  * creation of multiple nodes should either succeed or fail atomically.
1164  *
1165  * The caller is responsible for ensuring that this function is not called
1166  * after kernfs_remove*() is invoked on @kn.
1167  */
1168 void kernfs_activate(struct kernfs_node *kn)
1169 {
1170 	struct kernfs_node *pos;
1171 
1172 	mutex_lock(&kernfs_mutex);
1173 
1174 	pos = NULL;
1175 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1176 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1177 			continue;
1178 
1179 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1180 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1181 
1182 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1183 		pos->flags |= KERNFS_ACTIVATED;
1184 	}
1185 
1186 	mutex_unlock(&kernfs_mutex);
1187 }
1188 
1189 static void __kernfs_remove(struct kernfs_node *kn)
1190 {
1191 	struct kernfs_node *pos;
1192 
1193 	lockdep_assert_held(&kernfs_mutex);
1194 
1195 	/*
1196 	 * Short-circuit if non-root @kn has already finished removal.
1197 	 * This is for kernfs_remove_self() which plays with active ref
1198 	 * after removal.
1199 	 */
1200 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1201 		return;
1202 
1203 	pr_debug("kernfs %s: removing\n", kn->name);
1204 
1205 	/* prevent any new usage under @kn by deactivating all nodes */
1206 	pos = NULL;
1207 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1208 		if (kernfs_active(pos))
1209 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1210 
1211 	/* deactivate and unlink the subtree node-by-node */
1212 	do {
1213 		pos = kernfs_leftmost_descendant(kn);
1214 
1215 		/*
1216 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1217 		 * base ref could have been put by someone else by the time
1218 		 * the function returns.  Make sure it doesn't go away
1219 		 * underneath us.
1220 		 */
1221 		kernfs_get(pos);
1222 
1223 		/*
1224 		 * Drain iff @kn was activated.  This avoids draining and
1225 		 * its lockdep annotations for nodes which have never been
1226 		 * activated and allows embedding kernfs_remove() in create
1227 		 * error paths without worrying about draining.
1228 		 */
1229 		if (kn->flags & KERNFS_ACTIVATED)
1230 			kernfs_drain(pos);
1231 		else
1232 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1233 
1234 		/*
1235 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1236 		 * to decide who's responsible for cleanups.
1237 		 */
1238 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1239 			struct kernfs_iattrs *ps_iattr =
1240 				pos->parent ? pos->parent->iattr : NULL;
1241 
1242 			/* update timestamps on the parent */
1243 			if (ps_iattr) {
1244 				ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1245 				ps_iattr->ia_iattr.ia_mtime =
1246 					ps_iattr->ia_iattr.ia_ctime;
1247 			}
1248 
1249 			kernfs_put(pos);
1250 		}
1251 
1252 		kernfs_put(pos);
1253 	} while (pos != kn);
1254 }
1255 
1256 /**
1257  * kernfs_remove - remove a kernfs_node recursively
1258  * @kn: the kernfs_node to remove
1259  *
1260  * Remove @kn along with all its subdirectories and files.
1261  */
1262 void kernfs_remove(struct kernfs_node *kn)
1263 {
1264 	mutex_lock(&kernfs_mutex);
1265 	__kernfs_remove(kn);
1266 	mutex_unlock(&kernfs_mutex);
1267 }
1268 
1269 /**
1270  * kernfs_break_active_protection - break out of active protection
1271  * @kn: the self kernfs_node
1272  *
1273  * The caller must be running off of a kernfs operation which is invoked
1274  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1275  * this function must also be matched with an invocation of
1276  * kernfs_unbreak_active_protection().
1277  *
1278  * This function releases the active reference of @kn the caller is
1279  * holding.  Once this function is called, @kn may be removed at any point
1280  * and the caller is solely responsible for ensuring that the objects it
1281  * dereferences are accessible.
1282  */
1283 void kernfs_break_active_protection(struct kernfs_node *kn)
1284 {
1285 	/*
1286 	 * Take out ourself out of the active ref dependency chain.  If
1287 	 * we're called without an active ref, lockdep will complain.
1288 	 */
1289 	kernfs_put_active(kn);
1290 }
1291 
1292 /**
1293  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1294  * @kn: the self kernfs_node
1295  *
1296  * If kernfs_break_active_protection() was called, this function must be
1297  * invoked before finishing the kernfs operation.  Note that while this
1298  * function restores the active reference, it doesn't and can't actually
1299  * restore the active protection - @kn may already or be in the process of
1300  * being removed.  Once kernfs_break_active_protection() is invoked, that
1301  * protection is irreversibly gone for the kernfs operation instance.
1302  *
1303  * While this function may be called at any point after
1304  * kernfs_break_active_protection() is invoked, its most useful location
1305  * would be right before the enclosing kernfs operation returns.
1306  */
1307 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1308 {
1309 	/*
1310 	 * @kn->active could be in any state; however, the increment we do
1311 	 * here will be undone as soon as the enclosing kernfs operation
1312 	 * finishes and this temporary bump can't break anything.  If @kn
1313 	 * is alive, nothing changes.  If @kn is being deactivated, the
1314 	 * soon-to-follow put will either finish deactivation or restore
1315 	 * deactivated state.  If @kn is already removed, the temporary
1316 	 * bump is guaranteed to be gone before @kn is released.
1317 	 */
1318 	atomic_inc(&kn->active);
1319 	if (kernfs_lockdep(kn))
1320 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1321 }
1322 
1323 /**
1324  * kernfs_remove_self - remove a kernfs_node from its own method
1325  * @kn: the self kernfs_node to remove
1326  *
1327  * The caller must be running off of a kernfs operation which is invoked
1328  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1329  * implement a file operation which deletes itself.
1330  *
1331  * For example, the "delete" file for a sysfs device directory can be
1332  * implemented by invoking kernfs_remove_self() on the "delete" file
1333  * itself.  This function breaks the circular dependency of trying to
1334  * deactivate self while holding an active ref itself.  It isn't necessary
1335  * to modify the usual removal path to use kernfs_remove_self().  The
1336  * "delete" implementation can simply invoke kernfs_remove_self() on self
1337  * before proceeding with the usual removal path.  kernfs will ignore later
1338  * kernfs_remove() on self.
1339  *
1340  * kernfs_remove_self() can be called multiple times concurrently on the
1341  * same kernfs_node.  Only the first one actually performs removal and
1342  * returns %true.  All others will wait until the kernfs operation which
1343  * won self-removal finishes and return %false.  Note that the losers wait
1344  * for the completion of not only the winning kernfs_remove_self() but also
1345  * the whole kernfs_ops which won the arbitration.  This can be used to
1346  * guarantee, for example, all concurrent writes to a "delete" file to
1347  * finish only after the whole operation is complete.
1348  */
1349 bool kernfs_remove_self(struct kernfs_node *kn)
1350 {
1351 	bool ret;
1352 
1353 	mutex_lock(&kernfs_mutex);
1354 	kernfs_break_active_protection(kn);
1355 
1356 	/*
1357 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1358 	 * the first one will actually perform removal.  When the removal
1359 	 * is complete, SUICIDED is set and the active ref is restored
1360 	 * while holding kernfs_mutex.  The ones which lost arbitration
1361 	 * waits for SUICDED && drained which can happen only after the
1362 	 * enclosing kernfs operation which executed the winning instance
1363 	 * of kernfs_remove_self() finished.
1364 	 */
1365 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1366 		kn->flags |= KERNFS_SUICIDAL;
1367 		__kernfs_remove(kn);
1368 		kn->flags |= KERNFS_SUICIDED;
1369 		ret = true;
1370 	} else {
1371 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1372 		DEFINE_WAIT(wait);
1373 
1374 		while (true) {
1375 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1376 
1377 			if ((kn->flags & KERNFS_SUICIDED) &&
1378 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1379 				break;
1380 
1381 			mutex_unlock(&kernfs_mutex);
1382 			schedule();
1383 			mutex_lock(&kernfs_mutex);
1384 		}
1385 		finish_wait(waitq, &wait);
1386 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1387 		ret = false;
1388 	}
1389 
1390 	/*
1391 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1392 	 * for SUICIDED && deactivated could finish prematurely.
1393 	 */
1394 	kernfs_unbreak_active_protection(kn);
1395 
1396 	mutex_unlock(&kernfs_mutex);
1397 	return ret;
1398 }
1399 
1400 /**
1401  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1402  * @parent: parent of the target
1403  * @name: name of the kernfs_node to remove
1404  * @ns: namespace tag of the kernfs_node to remove
1405  *
1406  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1407  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1408  */
1409 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1410 			     const void *ns)
1411 {
1412 	struct kernfs_node *kn;
1413 
1414 	if (!parent) {
1415 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1416 			name);
1417 		return -ENOENT;
1418 	}
1419 
1420 	mutex_lock(&kernfs_mutex);
1421 
1422 	kn = kernfs_find_ns(parent, name, ns);
1423 	if (kn)
1424 		__kernfs_remove(kn);
1425 
1426 	mutex_unlock(&kernfs_mutex);
1427 
1428 	if (kn)
1429 		return 0;
1430 	else
1431 		return -ENOENT;
1432 }
1433 
1434 /**
1435  * kernfs_rename_ns - move and rename a kernfs_node
1436  * @kn: target node
1437  * @new_parent: new parent to put @sd under
1438  * @new_name: new name
1439  * @new_ns: new namespace tag
1440  */
1441 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1442 		     const char *new_name, const void *new_ns)
1443 {
1444 	struct kernfs_node *old_parent;
1445 	const char *old_name = NULL;
1446 	int error;
1447 
1448 	/* can't move or rename root */
1449 	if (!kn->parent)
1450 		return -EINVAL;
1451 
1452 	mutex_lock(&kernfs_mutex);
1453 
1454 	error = -ENOENT;
1455 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1456 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1457 		goto out;
1458 
1459 	error = 0;
1460 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1461 	    (strcmp(kn->name, new_name) == 0))
1462 		goto out;	/* nothing to rename */
1463 
1464 	error = -EEXIST;
1465 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1466 		goto out;
1467 
1468 	/* rename kernfs_node */
1469 	if (strcmp(kn->name, new_name) != 0) {
1470 		error = -ENOMEM;
1471 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1472 		if (!new_name)
1473 			goto out;
1474 	} else {
1475 		new_name = NULL;
1476 	}
1477 
1478 	/*
1479 	 * Move to the appropriate place in the appropriate directories rbtree.
1480 	 */
1481 	kernfs_unlink_sibling(kn);
1482 	kernfs_get(new_parent);
1483 
1484 	/* rename_lock protects ->parent and ->name accessors */
1485 	spin_lock_irq(&kernfs_rename_lock);
1486 
1487 	old_parent = kn->parent;
1488 	kn->parent = new_parent;
1489 
1490 	kn->ns = new_ns;
1491 	if (new_name) {
1492 		old_name = kn->name;
1493 		kn->name = new_name;
1494 	}
1495 
1496 	spin_unlock_irq(&kernfs_rename_lock);
1497 
1498 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1499 	kernfs_link_sibling(kn);
1500 
1501 	kernfs_put(old_parent);
1502 	kfree_const(old_name);
1503 
1504 	error = 0;
1505  out:
1506 	mutex_unlock(&kernfs_mutex);
1507 	return error;
1508 }
1509 
1510 /* Relationship between s_mode and the DT_xxx types */
1511 static inline unsigned char dt_type(struct kernfs_node *kn)
1512 {
1513 	return (kn->mode >> 12) & 15;
1514 }
1515 
1516 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1517 {
1518 	kernfs_put(filp->private_data);
1519 	return 0;
1520 }
1521 
1522 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1523 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1524 {
1525 	if (pos) {
1526 		int valid = kernfs_active(pos) &&
1527 			pos->parent == parent && hash == pos->hash;
1528 		kernfs_put(pos);
1529 		if (!valid)
1530 			pos = NULL;
1531 	}
1532 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1533 		struct rb_node *node = parent->dir.children.rb_node;
1534 		while (node) {
1535 			pos = rb_to_kn(node);
1536 
1537 			if (hash < pos->hash)
1538 				node = node->rb_left;
1539 			else if (hash > pos->hash)
1540 				node = node->rb_right;
1541 			else
1542 				break;
1543 		}
1544 	}
1545 	/* Skip over entries which are dying/dead or in the wrong namespace */
1546 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1547 		struct rb_node *node = rb_next(&pos->rb);
1548 		if (!node)
1549 			pos = NULL;
1550 		else
1551 			pos = rb_to_kn(node);
1552 	}
1553 	return pos;
1554 }
1555 
1556 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1557 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1558 {
1559 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1560 	if (pos) {
1561 		do {
1562 			struct rb_node *node = rb_next(&pos->rb);
1563 			if (!node)
1564 				pos = NULL;
1565 			else
1566 				pos = rb_to_kn(node);
1567 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1568 	}
1569 	return pos;
1570 }
1571 
1572 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1573 {
1574 	struct dentry *dentry = file->f_path.dentry;
1575 	struct kernfs_node *parent = dentry->d_fsdata;
1576 	struct kernfs_node *pos = file->private_data;
1577 	const void *ns = NULL;
1578 
1579 	if (!dir_emit_dots(file, ctx))
1580 		return 0;
1581 	mutex_lock(&kernfs_mutex);
1582 
1583 	if (kernfs_ns_enabled(parent))
1584 		ns = kernfs_info(dentry->d_sb)->ns;
1585 
1586 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1587 	     pos;
1588 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1589 		const char *name = pos->name;
1590 		unsigned int type = dt_type(pos);
1591 		int len = strlen(name);
1592 		ino_t ino = pos->ino;
1593 
1594 		ctx->pos = pos->hash;
1595 		file->private_data = pos;
1596 		kernfs_get(pos);
1597 
1598 		mutex_unlock(&kernfs_mutex);
1599 		if (!dir_emit(ctx, name, len, ino, type))
1600 			return 0;
1601 		mutex_lock(&kernfs_mutex);
1602 	}
1603 	mutex_unlock(&kernfs_mutex);
1604 	file->private_data = NULL;
1605 	ctx->pos = INT_MAX;
1606 	return 0;
1607 }
1608 
1609 const struct file_operations kernfs_dir_fops = {
1610 	.read		= generic_read_dir,
1611 	.iterate_shared	= kernfs_fop_readdir,
1612 	.release	= kernfs_dir_fop_release,
1613 	.llseek		= generic_file_llseek,
1614 };
1615