1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/fs.h> 13 #include <linux/namei.h> 14 #include <linux/idr.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/hash.h> 18 19 #include "kernfs-internal.h" 20 21 DEFINE_MUTEX(kernfs_mutex); 22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 45 } 46 47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf, 48 size_t buflen) 49 { 50 char *p = buf + buflen; 51 int len; 52 53 *--p = '\0'; 54 55 do { 56 len = strlen(kn->name); 57 if (p - buf < len + 1) { 58 buf[0] = '\0'; 59 p = NULL; 60 break; 61 } 62 p -= len; 63 memcpy(p, kn->name, len); 64 *--p = '/'; 65 kn = kn->parent; 66 } while (kn && kn->parent); 67 68 return p; 69 } 70 71 /** 72 * kernfs_name - obtain the name of a given node 73 * @kn: kernfs_node of interest 74 * @buf: buffer to copy @kn's name into 75 * @buflen: size of @buf 76 * 77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 78 * similar to strlcpy(). It returns the length of @kn's name and if @buf 79 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 80 * 81 * This function can be called from any context. 82 */ 83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 84 { 85 unsigned long flags; 86 int ret; 87 88 spin_lock_irqsave(&kernfs_rename_lock, flags); 89 ret = kernfs_name_locked(kn, buf, buflen); 90 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 91 return ret; 92 } 93 94 /** 95 * kernfs_path - build full path of a given node 96 * @kn: kernfs_node of interest 97 * @buf: buffer to copy @kn's name into 98 * @buflen: size of @buf 99 * 100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The 101 * path is built from the end of @buf so the returned pointer usually 102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated 103 * and %NULL is returned. 104 */ 105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen) 106 { 107 unsigned long flags; 108 char *p; 109 110 spin_lock_irqsave(&kernfs_rename_lock, flags); 111 p = kernfs_path_locked(kn, buf, buflen); 112 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 113 return p; 114 } 115 EXPORT_SYMBOL_GPL(kernfs_path); 116 117 /** 118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 119 * @kn: kernfs_node of interest 120 * 121 * This function can be called from any context. 122 */ 123 void pr_cont_kernfs_name(struct kernfs_node *kn) 124 { 125 unsigned long flags; 126 127 spin_lock_irqsave(&kernfs_rename_lock, flags); 128 129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 130 pr_cont("%s", kernfs_pr_cont_buf); 131 132 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 133 } 134 135 /** 136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 137 * @kn: kernfs_node of interest 138 * 139 * This function can be called from any context. 140 */ 141 void pr_cont_kernfs_path(struct kernfs_node *kn) 142 { 143 unsigned long flags; 144 char *p; 145 146 spin_lock_irqsave(&kernfs_rename_lock, flags); 147 148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf, 149 sizeof(kernfs_pr_cont_buf)); 150 if (p) 151 pr_cont("%s", p); 152 else 153 pr_cont("<name too long>"); 154 155 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 156 } 157 158 /** 159 * kernfs_get_parent - determine the parent node and pin it 160 * @kn: kernfs_node of interest 161 * 162 * Determines @kn's parent, pins and returns it. This function can be 163 * called from any context. 164 */ 165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 166 { 167 struct kernfs_node *parent; 168 unsigned long flags; 169 170 spin_lock_irqsave(&kernfs_rename_lock, flags); 171 parent = kn->parent; 172 kernfs_get(parent); 173 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 174 175 return parent; 176 } 177 178 /** 179 * kernfs_name_hash 180 * @name: Null terminated string to hash 181 * @ns: Namespace tag to hash 182 * 183 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 184 */ 185 static unsigned int kernfs_name_hash(const char *name, const void *ns) 186 { 187 unsigned long hash = init_name_hash(); 188 unsigned int len = strlen(name); 189 while (len--) 190 hash = partial_name_hash(*name++, hash); 191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31)); 192 hash &= 0x7fffffffU; 193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 194 if (hash < 2) 195 hash += 2; 196 if (hash >= INT_MAX) 197 hash = INT_MAX - 1; 198 return hash; 199 } 200 201 static int kernfs_name_compare(unsigned int hash, const char *name, 202 const void *ns, const struct kernfs_node *kn) 203 { 204 if (hash < kn->hash) 205 return -1; 206 if (hash > kn->hash) 207 return 1; 208 if (ns < kn->ns) 209 return -1; 210 if (ns > kn->ns) 211 return 1; 212 return strcmp(name, kn->name); 213 } 214 215 static int kernfs_sd_compare(const struct kernfs_node *left, 216 const struct kernfs_node *right) 217 { 218 return kernfs_name_compare(left->hash, left->name, left->ns, right); 219 } 220 221 /** 222 * kernfs_link_sibling - link kernfs_node into sibling rbtree 223 * @kn: kernfs_node of interest 224 * 225 * Link @kn into its sibling rbtree which starts from 226 * @kn->parent->dir.children. 227 * 228 * Locking: 229 * mutex_lock(kernfs_mutex) 230 * 231 * RETURNS: 232 * 0 on susccess -EEXIST on failure. 233 */ 234 static int kernfs_link_sibling(struct kernfs_node *kn) 235 { 236 struct rb_node **node = &kn->parent->dir.children.rb_node; 237 struct rb_node *parent = NULL; 238 239 while (*node) { 240 struct kernfs_node *pos; 241 int result; 242 243 pos = rb_to_kn(*node); 244 parent = *node; 245 result = kernfs_sd_compare(kn, pos); 246 if (result < 0) 247 node = &pos->rb.rb_left; 248 else if (result > 0) 249 node = &pos->rb.rb_right; 250 else 251 return -EEXIST; 252 } 253 254 /* add new node and rebalance the tree */ 255 rb_link_node(&kn->rb, parent, node); 256 rb_insert_color(&kn->rb, &kn->parent->dir.children); 257 258 /* successfully added, account subdir number */ 259 if (kernfs_type(kn) == KERNFS_DIR) 260 kn->parent->dir.subdirs++; 261 262 return 0; 263 } 264 265 /** 266 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 267 * @kn: kernfs_node of interest 268 * 269 * Try to unlink @kn from its sibling rbtree which starts from 270 * kn->parent->dir.children. Returns %true if @kn was actually 271 * removed, %false if @kn wasn't on the rbtree. 272 * 273 * Locking: 274 * mutex_lock(kernfs_mutex) 275 */ 276 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 277 { 278 if (RB_EMPTY_NODE(&kn->rb)) 279 return false; 280 281 if (kernfs_type(kn) == KERNFS_DIR) 282 kn->parent->dir.subdirs--; 283 284 rb_erase(&kn->rb, &kn->parent->dir.children); 285 RB_CLEAR_NODE(&kn->rb); 286 return true; 287 } 288 289 /** 290 * kernfs_get_active - get an active reference to kernfs_node 291 * @kn: kernfs_node to get an active reference to 292 * 293 * Get an active reference of @kn. This function is noop if @kn 294 * is NULL. 295 * 296 * RETURNS: 297 * Pointer to @kn on success, NULL on failure. 298 */ 299 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 300 { 301 if (unlikely(!kn)) 302 return NULL; 303 304 if (!atomic_inc_unless_negative(&kn->active)) 305 return NULL; 306 307 if (kernfs_lockdep(kn)) 308 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 309 return kn; 310 } 311 312 /** 313 * kernfs_put_active - put an active reference to kernfs_node 314 * @kn: kernfs_node to put an active reference to 315 * 316 * Put an active reference to @kn. This function is noop if @kn 317 * is NULL. 318 */ 319 void kernfs_put_active(struct kernfs_node *kn) 320 { 321 struct kernfs_root *root = kernfs_root(kn); 322 int v; 323 324 if (unlikely(!kn)) 325 return; 326 327 if (kernfs_lockdep(kn)) 328 rwsem_release(&kn->dep_map, 1, _RET_IP_); 329 v = atomic_dec_return(&kn->active); 330 if (likely(v != KN_DEACTIVATED_BIAS)) 331 return; 332 333 wake_up_all(&root->deactivate_waitq); 334 } 335 336 /** 337 * kernfs_drain - drain kernfs_node 338 * @kn: kernfs_node to drain 339 * 340 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 341 * removers may invoke this function concurrently on @kn and all will 342 * return after draining is complete. 343 */ 344 static void kernfs_drain(struct kernfs_node *kn) 345 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 346 { 347 struct kernfs_root *root = kernfs_root(kn); 348 349 lockdep_assert_held(&kernfs_mutex); 350 WARN_ON_ONCE(kernfs_active(kn)); 351 352 mutex_unlock(&kernfs_mutex); 353 354 if (kernfs_lockdep(kn)) { 355 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 356 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 357 lock_contended(&kn->dep_map, _RET_IP_); 358 } 359 360 /* but everyone should wait for draining */ 361 wait_event(root->deactivate_waitq, 362 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 363 364 if (kernfs_lockdep(kn)) { 365 lock_acquired(&kn->dep_map, _RET_IP_); 366 rwsem_release(&kn->dep_map, 1, _RET_IP_); 367 } 368 369 kernfs_unmap_bin_file(kn); 370 371 mutex_lock(&kernfs_mutex); 372 } 373 374 /** 375 * kernfs_get - get a reference count on a kernfs_node 376 * @kn: the target kernfs_node 377 */ 378 void kernfs_get(struct kernfs_node *kn) 379 { 380 if (kn) { 381 WARN_ON(!atomic_read(&kn->count)); 382 atomic_inc(&kn->count); 383 } 384 } 385 EXPORT_SYMBOL_GPL(kernfs_get); 386 387 /** 388 * kernfs_put - put a reference count on a kernfs_node 389 * @kn: the target kernfs_node 390 * 391 * Put a reference count of @kn and destroy it if it reached zero. 392 */ 393 void kernfs_put(struct kernfs_node *kn) 394 { 395 struct kernfs_node *parent; 396 struct kernfs_root *root; 397 398 if (!kn || !atomic_dec_and_test(&kn->count)) 399 return; 400 root = kernfs_root(kn); 401 repeat: 402 /* 403 * Moving/renaming is always done while holding reference. 404 * kn->parent won't change beneath us. 405 */ 406 parent = kn->parent; 407 408 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 409 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 410 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 411 412 if (kernfs_type(kn) == KERNFS_LINK) 413 kernfs_put(kn->symlink.target_kn); 414 415 kfree_const(kn->name); 416 417 if (kn->iattr) { 418 if (kn->iattr->ia_secdata) 419 security_release_secctx(kn->iattr->ia_secdata, 420 kn->iattr->ia_secdata_len); 421 simple_xattrs_free(&kn->iattr->xattrs); 422 } 423 kfree(kn->iattr); 424 ida_simple_remove(&root->ino_ida, kn->ino); 425 kmem_cache_free(kernfs_node_cache, kn); 426 427 kn = parent; 428 if (kn) { 429 if (atomic_dec_and_test(&kn->count)) 430 goto repeat; 431 } else { 432 /* just released the root kn, free @root too */ 433 ida_destroy(&root->ino_ida); 434 kfree(root); 435 } 436 } 437 EXPORT_SYMBOL_GPL(kernfs_put); 438 439 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 440 { 441 struct kernfs_node *kn; 442 443 if (flags & LOOKUP_RCU) 444 return -ECHILD; 445 446 /* Always perform fresh lookup for negatives */ 447 if (d_really_is_negative(dentry)) 448 goto out_bad_unlocked; 449 450 kn = dentry->d_fsdata; 451 mutex_lock(&kernfs_mutex); 452 453 /* The kernfs node has been deactivated */ 454 if (!kernfs_active(kn)) 455 goto out_bad; 456 457 /* The kernfs node has been moved? */ 458 if (dentry->d_parent->d_fsdata != kn->parent) 459 goto out_bad; 460 461 /* The kernfs node has been renamed */ 462 if (strcmp(dentry->d_name.name, kn->name) != 0) 463 goto out_bad; 464 465 /* The kernfs node has been moved to a different namespace */ 466 if (kn->parent && kernfs_ns_enabled(kn->parent) && 467 kernfs_info(dentry->d_sb)->ns != kn->ns) 468 goto out_bad; 469 470 mutex_unlock(&kernfs_mutex); 471 return 1; 472 out_bad: 473 mutex_unlock(&kernfs_mutex); 474 out_bad_unlocked: 475 return 0; 476 } 477 478 static void kernfs_dop_release(struct dentry *dentry) 479 { 480 kernfs_put(dentry->d_fsdata); 481 } 482 483 const struct dentry_operations kernfs_dops = { 484 .d_revalidate = kernfs_dop_revalidate, 485 .d_release = kernfs_dop_release, 486 }; 487 488 /** 489 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 490 * @dentry: the dentry in question 491 * 492 * Return the kernfs_node associated with @dentry. If @dentry is not a 493 * kernfs one, %NULL is returned. 494 * 495 * While the returned kernfs_node will stay accessible as long as @dentry 496 * is accessible, the returned node can be in any state and the caller is 497 * fully responsible for determining what's accessible. 498 */ 499 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 500 { 501 if (dentry->d_sb->s_op == &kernfs_sops) 502 return dentry->d_fsdata; 503 return NULL; 504 } 505 506 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 507 const char *name, umode_t mode, 508 unsigned flags) 509 { 510 struct kernfs_node *kn; 511 int ret; 512 513 name = kstrdup_const(name, GFP_KERNEL); 514 if (!name) 515 return NULL; 516 517 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 518 if (!kn) 519 goto err_out1; 520 521 /* 522 * If the ino of the sysfs entry created for a kmem cache gets 523 * allocated from an ida layer, which is accounted to the memcg that 524 * owns the cache, the memcg will get pinned forever. So do not account 525 * ino ida allocations. 526 */ 527 ret = ida_simple_get(&root->ino_ida, 1, 0, 528 GFP_KERNEL | __GFP_NOACCOUNT); 529 if (ret < 0) 530 goto err_out2; 531 kn->ino = ret; 532 533 atomic_set(&kn->count, 1); 534 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 535 RB_CLEAR_NODE(&kn->rb); 536 537 kn->name = name; 538 kn->mode = mode; 539 kn->flags = flags; 540 541 return kn; 542 543 err_out2: 544 kmem_cache_free(kernfs_node_cache, kn); 545 err_out1: 546 kfree_const(name); 547 return NULL; 548 } 549 550 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 551 const char *name, umode_t mode, 552 unsigned flags) 553 { 554 struct kernfs_node *kn; 555 556 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags); 557 if (kn) { 558 kernfs_get(parent); 559 kn->parent = parent; 560 } 561 return kn; 562 } 563 564 /** 565 * kernfs_add_one - add kernfs_node to parent without warning 566 * @kn: kernfs_node to be added 567 * 568 * The caller must already have initialized @kn->parent. This 569 * function increments nlink of the parent's inode if @kn is a 570 * directory and link into the children list of the parent. 571 * 572 * RETURNS: 573 * 0 on success, -EEXIST if entry with the given name already 574 * exists. 575 */ 576 int kernfs_add_one(struct kernfs_node *kn) 577 { 578 struct kernfs_node *parent = kn->parent; 579 struct kernfs_iattrs *ps_iattr; 580 bool has_ns; 581 int ret; 582 583 mutex_lock(&kernfs_mutex); 584 585 ret = -EINVAL; 586 has_ns = kernfs_ns_enabled(parent); 587 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 588 has_ns ? "required" : "invalid", parent->name, kn->name)) 589 goto out_unlock; 590 591 if (kernfs_type(parent) != KERNFS_DIR) 592 goto out_unlock; 593 594 ret = -ENOENT; 595 if (parent->flags & KERNFS_EMPTY_DIR) 596 goto out_unlock; 597 598 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 599 goto out_unlock; 600 601 kn->hash = kernfs_name_hash(kn->name, kn->ns); 602 603 ret = kernfs_link_sibling(kn); 604 if (ret) 605 goto out_unlock; 606 607 /* Update timestamps on the parent */ 608 ps_iattr = parent->iattr; 609 if (ps_iattr) { 610 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 611 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME; 612 } 613 614 mutex_unlock(&kernfs_mutex); 615 616 /* 617 * Activate the new node unless CREATE_DEACTIVATED is requested. 618 * If not activated here, the kernfs user is responsible for 619 * activating the node with kernfs_activate(). A node which hasn't 620 * been activated is not visible to userland and its removal won't 621 * trigger deactivation. 622 */ 623 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 624 kernfs_activate(kn); 625 return 0; 626 627 out_unlock: 628 mutex_unlock(&kernfs_mutex); 629 return ret; 630 } 631 632 /** 633 * kernfs_find_ns - find kernfs_node with the given name 634 * @parent: kernfs_node to search under 635 * @name: name to look for 636 * @ns: the namespace tag to use 637 * 638 * Look for kernfs_node with name @name under @parent. Returns pointer to 639 * the found kernfs_node on success, %NULL on failure. 640 */ 641 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 642 const unsigned char *name, 643 const void *ns) 644 { 645 struct rb_node *node = parent->dir.children.rb_node; 646 bool has_ns = kernfs_ns_enabled(parent); 647 unsigned int hash; 648 649 lockdep_assert_held(&kernfs_mutex); 650 651 if (has_ns != (bool)ns) { 652 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 653 has_ns ? "required" : "invalid", parent->name, name); 654 return NULL; 655 } 656 657 hash = kernfs_name_hash(name, ns); 658 while (node) { 659 struct kernfs_node *kn; 660 int result; 661 662 kn = rb_to_kn(node); 663 result = kernfs_name_compare(hash, name, ns, kn); 664 if (result < 0) 665 node = node->rb_left; 666 else if (result > 0) 667 node = node->rb_right; 668 else 669 return kn; 670 } 671 return NULL; 672 } 673 674 /** 675 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 676 * @parent: kernfs_node to search under 677 * @name: name to look for 678 * @ns: the namespace tag to use 679 * 680 * Look for kernfs_node with name @name under @parent and get a reference 681 * if found. This function may sleep and returns pointer to the found 682 * kernfs_node on success, %NULL on failure. 683 */ 684 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 685 const char *name, const void *ns) 686 { 687 struct kernfs_node *kn; 688 689 mutex_lock(&kernfs_mutex); 690 kn = kernfs_find_ns(parent, name, ns); 691 kernfs_get(kn); 692 mutex_unlock(&kernfs_mutex); 693 694 return kn; 695 } 696 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 697 698 /** 699 * kernfs_create_root - create a new kernfs hierarchy 700 * @scops: optional syscall operations for the hierarchy 701 * @flags: KERNFS_ROOT_* flags 702 * @priv: opaque data associated with the new directory 703 * 704 * Returns the root of the new hierarchy on success, ERR_PTR() value on 705 * failure. 706 */ 707 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 708 unsigned int flags, void *priv) 709 { 710 struct kernfs_root *root; 711 struct kernfs_node *kn; 712 713 root = kzalloc(sizeof(*root), GFP_KERNEL); 714 if (!root) 715 return ERR_PTR(-ENOMEM); 716 717 ida_init(&root->ino_ida); 718 INIT_LIST_HEAD(&root->supers); 719 720 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 721 KERNFS_DIR); 722 if (!kn) { 723 ida_destroy(&root->ino_ida); 724 kfree(root); 725 return ERR_PTR(-ENOMEM); 726 } 727 728 kn->priv = priv; 729 kn->dir.root = root; 730 731 root->syscall_ops = scops; 732 root->flags = flags; 733 root->kn = kn; 734 init_waitqueue_head(&root->deactivate_waitq); 735 736 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 737 kernfs_activate(kn); 738 739 return root; 740 } 741 742 /** 743 * kernfs_destroy_root - destroy a kernfs hierarchy 744 * @root: root of the hierarchy to destroy 745 * 746 * Destroy the hierarchy anchored at @root by removing all existing 747 * directories and destroying @root. 748 */ 749 void kernfs_destroy_root(struct kernfs_root *root) 750 { 751 kernfs_remove(root->kn); /* will also free @root */ 752 } 753 754 /** 755 * kernfs_create_dir_ns - create a directory 756 * @parent: parent in which to create a new directory 757 * @name: name of the new directory 758 * @mode: mode of the new directory 759 * @priv: opaque data associated with the new directory 760 * @ns: optional namespace tag of the directory 761 * 762 * Returns the created node on success, ERR_PTR() value on failure. 763 */ 764 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 765 const char *name, umode_t mode, 766 void *priv, const void *ns) 767 { 768 struct kernfs_node *kn; 769 int rc; 770 771 /* allocate */ 772 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR); 773 if (!kn) 774 return ERR_PTR(-ENOMEM); 775 776 kn->dir.root = parent->dir.root; 777 kn->ns = ns; 778 kn->priv = priv; 779 780 /* link in */ 781 rc = kernfs_add_one(kn); 782 if (!rc) 783 return kn; 784 785 kernfs_put(kn); 786 return ERR_PTR(rc); 787 } 788 789 /** 790 * kernfs_create_empty_dir - create an always empty directory 791 * @parent: parent in which to create a new directory 792 * @name: name of the new directory 793 * 794 * Returns the created node on success, ERR_PTR() value on failure. 795 */ 796 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 797 const char *name) 798 { 799 struct kernfs_node *kn; 800 int rc; 801 802 /* allocate */ 803 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR); 804 if (!kn) 805 return ERR_PTR(-ENOMEM); 806 807 kn->flags |= KERNFS_EMPTY_DIR; 808 kn->dir.root = parent->dir.root; 809 kn->ns = NULL; 810 kn->priv = NULL; 811 812 /* link in */ 813 rc = kernfs_add_one(kn); 814 if (!rc) 815 return kn; 816 817 kernfs_put(kn); 818 return ERR_PTR(rc); 819 } 820 821 static struct dentry *kernfs_iop_lookup(struct inode *dir, 822 struct dentry *dentry, 823 unsigned int flags) 824 { 825 struct dentry *ret; 826 struct kernfs_node *parent = dentry->d_parent->d_fsdata; 827 struct kernfs_node *kn; 828 struct inode *inode; 829 const void *ns = NULL; 830 831 mutex_lock(&kernfs_mutex); 832 833 if (kernfs_ns_enabled(parent)) 834 ns = kernfs_info(dir->i_sb)->ns; 835 836 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 837 838 /* no such entry */ 839 if (!kn || !kernfs_active(kn)) { 840 ret = NULL; 841 goto out_unlock; 842 } 843 kernfs_get(kn); 844 dentry->d_fsdata = kn; 845 846 /* attach dentry and inode */ 847 inode = kernfs_get_inode(dir->i_sb, kn); 848 if (!inode) { 849 ret = ERR_PTR(-ENOMEM); 850 goto out_unlock; 851 } 852 853 /* instantiate and hash dentry */ 854 ret = d_splice_alias(inode, dentry); 855 out_unlock: 856 mutex_unlock(&kernfs_mutex); 857 return ret; 858 } 859 860 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 861 umode_t mode) 862 { 863 struct kernfs_node *parent = dir->i_private; 864 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 865 int ret; 866 867 if (!scops || !scops->mkdir) 868 return -EPERM; 869 870 if (!kernfs_get_active(parent)) 871 return -ENODEV; 872 873 ret = scops->mkdir(parent, dentry->d_name.name, mode); 874 875 kernfs_put_active(parent); 876 return ret; 877 } 878 879 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 880 { 881 struct kernfs_node *kn = dentry->d_fsdata; 882 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 883 int ret; 884 885 if (!scops || !scops->rmdir) 886 return -EPERM; 887 888 if (!kernfs_get_active(kn)) 889 return -ENODEV; 890 891 ret = scops->rmdir(kn); 892 893 kernfs_put_active(kn); 894 return ret; 895 } 896 897 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 898 struct inode *new_dir, struct dentry *new_dentry) 899 { 900 struct kernfs_node *kn = old_dentry->d_fsdata; 901 struct kernfs_node *new_parent = new_dir->i_private; 902 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 903 int ret; 904 905 if (!scops || !scops->rename) 906 return -EPERM; 907 908 if (!kernfs_get_active(kn)) 909 return -ENODEV; 910 911 if (!kernfs_get_active(new_parent)) { 912 kernfs_put_active(kn); 913 return -ENODEV; 914 } 915 916 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 917 918 kernfs_put_active(new_parent); 919 kernfs_put_active(kn); 920 return ret; 921 } 922 923 const struct inode_operations kernfs_dir_iops = { 924 .lookup = kernfs_iop_lookup, 925 .permission = kernfs_iop_permission, 926 .setattr = kernfs_iop_setattr, 927 .getattr = kernfs_iop_getattr, 928 .setxattr = kernfs_iop_setxattr, 929 .removexattr = kernfs_iop_removexattr, 930 .getxattr = kernfs_iop_getxattr, 931 .listxattr = kernfs_iop_listxattr, 932 933 .mkdir = kernfs_iop_mkdir, 934 .rmdir = kernfs_iop_rmdir, 935 .rename = kernfs_iop_rename, 936 }; 937 938 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 939 { 940 struct kernfs_node *last; 941 942 while (true) { 943 struct rb_node *rbn; 944 945 last = pos; 946 947 if (kernfs_type(pos) != KERNFS_DIR) 948 break; 949 950 rbn = rb_first(&pos->dir.children); 951 if (!rbn) 952 break; 953 954 pos = rb_to_kn(rbn); 955 } 956 957 return last; 958 } 959 960 /** 961 * kernfs_next_descendant_post - find the next descendant for post-order walk 962 * @pos: the current position (%NULL to initiate traversal) 963 * @root: kernfs_node whose descendants to walk 964 * 965 * Find the next descendant to visit for post-order traversal of @root's 966 * descendants. @root is included in the iteration and the last node to be 967 * visited. 968 */ 969 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 970 struct kernfs_node *root) 971 { 972 struct rb_node *rbn; 973 974 lockdep_assert_held(&kernfs_mutex); 975 976 /* if first iteration, visit leftmost descendant which may be root */ 977 if (!pos) 978 return kernfs_leftmost_descendant(root); 979 980 /* if we visited @root, we're done */ 981 if (pos == root) 982 return NULL; 983 984 /* if there's an unvisited sibling, visit its leftmost descendant */ 985 rbn = rb_next(&pos->rb); 986 if (rbn) 987 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 988 989 /* no sibling left, visit parent */ 990 return pos->parent; 991 } 992 993 /** 994 * kernfs_activate - activate a node which started deactivated 995 * @kn: kernfs_node whose subtree is to be activated 996 * 997 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 998 * needs to be explicitly activated. A node which hasn't been activated 999 * isn't visible to userland and deactivation is skipped during its 1000 * removal. This is useful to construct atomic init sequences where 1001 * creation of multiple nodes should either succeed or fail atomically. 1002 * 1003 * The caller is responsible for ensuring that this function is not called 1004 * after kernfs_remove*() is invoked on @kn. 1005 */ 1006 void kernfs_activate(struct kernfs_node *kn) 1007 { 1008 struct kernfs_node *pos; 1009 1010 mutex_lock(&kernfs_mutex); 1011 1012 pos = NULL; 1013 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1014 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 1015 continue; 1016 1017 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1018 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1019 1020 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1021 pos->flags |= KERNFS_ACTIVATED; 1022 } 1023 1024 mutex_unlock(&kernfs_mutex); 1025 } 1026 1027 static void __kernfs_remove(struct kernfs_node *kn) 1028 { 1029 struct kernfs_node *pos; 1030 1031 lockdep_assert_held(&kernfs_mutex); 1032 1033 /* 1034 * Short-circuit if non-root @kn has already finished removal. 1035 * This is for kernfs_remove_self() which plays with active ref 1036 * after removal. 1037 */ 1038 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1039 return; 1040 1041 pr_debug("kernfs %s: removing\n", kn->name); 1042 1043 /* prevent any new usage under @kn by deactivating all nodes */ 1044 pos = NULL; 1045 while ((pos = kernfs_next_descendant_post(pos, kn))) 1046 if (kernfs_active(pos)) 1047 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1048 1049 /* deactivate and unlink the subtree node-by-node */ 1050 do { 1051 pos = kernfs_leftmost_descendant(kn); 1052 1053 /* 1054 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1055 * base ref could have been put by someone else by the time 1056 * the function returns. Make sure it doesn't go away 1057 * underneath us. 1058 */ 1059 kernfs_get(pos); 1060 1061 /* 1062 * Drain iff @kn was activated. This avoids draining and 1063 * its lockdep annotations for nodes which have never been 1064 * activated and allows embedding kernfs_remove() in create 1065 * error paths without worrying about draining. 1066 */ 1067 if (kn->flags & KERNFS_ACTIVATED) 1068 kernfs_drain(pos); 1069 else 1070 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1071 1072 /* 1073 * kernfs_unlink_sibling() succeeds once per node. Use it 1074 * to decide who's responsible for cleanups. 1075 */ 1076 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1077 struct kernfs_iattrs *ps_iattr = 1078 pos->parent ? pos->parent->iattr : NULL; 1079 1080 /* update timestamps on the parent */ 1081 if (ps_iattr) { 1082 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME; 1083 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME; 1084 } 1085 1086 kernfs_put(pos); 1087 } 1088 1089 kernfs_put(pos); 1090 } while (pos != kn); 1091 } 1092 1093 /** 1094 * kernfs_remove - remove a kernfs_node recursively 1095 * @kn: the kernfs_node to remove 1096 * 1097 * Remove @kn along with all its subdirectories and files. 1098 */ 1099 void kernfs_remove(struct kernfs_node *kn) 1100 { 1101 mutex_lock(&kernfs_mutex); 1102 __kernfs_remove(kn); 1103 mutex_unlock(&kernfs_mutex); 1104 } 1105 1106 /** 1107 * kernfs_break_active_protection - break out of active protection 1108 * @kn: the self kernfs_node 1109 * 1110 * The caller must be running off of a kernfs operation which is invoked 1111 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1112 * this function must also be matched with an invocation of 1113 * kernfs_unbreak_active_protection(). 1114 * 1115 * This function releases the active reference of @kn the caller is 1116 * holding. Once this function is called, @kn may be removed at any point 1117 * and the caller is solely responsible for ensuring that the objects it 1118 * dereferences are accessible. 1119 */ 1120 void kernfs_break_active_protection(struct kernfs_node *kn) 1121 { 1122 /* 1123 * Take out ourself out of the active ref dependency chain. If 1124 * we're called without an active ref, lockdep will complain. 1125 */ 1126 kernfs_put_active(kn); 1127 } 1128 1129 /** 1130 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1131 * @kn: the self kernfs_node 1132 * 1133 * If kernfs_break_active_protection() was called, this function must be 1134 * invoked before finishing the kernfs operation. Note that while this 1135 * function restores the active reference, it doesn't and can't actually 1136 * restore the active protection - @kn may already or be in the process of 1137 * being removed. Once kernfs_break_active_protection() is invoked, that 1138 * protection is irreversibly gone for the kernfs operation instance. 1139 * 1140 * While this function may be called at any point after 1141 * kernfs_break_active_protection() is invoked, its most useful location 1142 * would be right before the enclosing kernfs operation returns. 1143 */ 1144 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1145 { 1146 /* 1147 * @kn->active could be in any state; however, the increment we do 1148 * here will be undone as soon as the enclosing kernfs operation 1149 * finishes and this temporary bump can't break anything. If @kn 1150 * is alive, nothing changes. If @kn is being deactivated, the 1151 * soon-to-follow put will either finish deactivation or restore 1152 * deactivated state. If @kn is already removed, the temporary 1153 * bump is guaranteed to be gone before @kn is released. 1154 */ 1155 atomic_inc(&kn->active); 1156 if (kernfs_lockdep(kn)) 1157 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1158 } 1159 1160 /** 1161 * kernfs_remove_self - remove a kernfs_node from its own method 1162 * @kn: the self kernfs_node to remove 1163 * 1164 * The caller must be running off of a kernfs operation which is invoked 1165 * with an active reference - e.g. one of kernfs_ops. This can be used to 1166 * implement a file operation which deletes itself. 1167 * 1168 * For example, the "delete" file for a sysfs device directory can be 1169 * implemented by invoking kernfs_remove_self() on the "delete" file 1170 * itself. This function breaks the circular dependency of trying to 1171 * deactivate self while holding an active ref itself. It isn't necessary 1172 * to modify the usual removal path to use kernfs_remove_self(). The 1173 * "delete" implementation can simply invoke kernfs_remove_self() on self 1174 * before proceeding with the usual removal path. kernfs will ignore later 1175 * kernfs_remove() on self. 1176 * 1177 * kernfs_remove_self() can be called multiple times concurrently on the 1178 * same kernfs_node. Only the first one actually performs removal and 1179 * returns %true. All others will wait until the kernfs operation which 1180 * won self-removal finishes and return %false. Note that the losers wait 1181 * for the completion of not only the winning kernfs_remove_self() but also 1182 * the whole kernfs_ops which won the arbitration. This can be used to 1183 * guarantee, for example, all concurrent writes to a "delete" file to 1184 * finish only after the whole operation is complete. 1185 */ 1186 bool kernfs_remove_self(struct kernfs_node *kn) 1187 { 1188 bool ret; 1189 1190 mutex_lock(&kernfs_mutex); 1191 kernfs_break_active_protection(kn); 1192 1193 /* 1194 * SUICIDAL is used to arbitrate among competing invocations. Only 1195 * the first one will actually perform removal. When the removal 1196 * is complete, SUICIDED is set and the active ref is restored 1197 * while holding kernfs_mutex. The ones which lost arbitration 1198 * waits for SUICDED && drained which can happen only after the 1199 * enclosing kernfs operation which executed the winning instance 1200 * of kernfs_remove_self() finished. 1201 */ 1202 if (!(kn->flags & KERNFS_SUICIDAL)) { 1203 kn->flags |= KERNFS_SUICIDAL; 1204 __kernfs_remove(kn); 1205 kn->flags |= KERNFS_SUICIDED; 1206 ret = true; 1207 } else { 1208 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1209 DEFINE_WAIT(wait); 1210 1211 while (true) { 1212 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1213 1214 if ((kn->flags & KERNFS_SUICIDED) && 1215 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1216 break; 1217 1218 mutex_unlock(&kernfs_mutex); 1219 schedule(); 1220 mutex_lock(&kernfs_mutex); 1221 } 1222 finish_wait(waitq, &wait); 1223 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1224 ret = false; 1225 } 1226 1227 /* 1228 * This must be done while holding kernfs_mutex; otherwise, waiting 1229 * for SUICIDED && deactivated could finish prematurely. 1230 */ 1231 kernfs_unbreak_active_protection(kn); 1232 1233 mutex_unlock(&kernfs_mutex); 1234 return ret; 1235 } 1236 1237 /** 1238 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1239 * @parent: parent of the target 1240 * @name: name of the kernfs_node to remove 1241 * @ns: namespace tag of the kernfs_node to remove 1242 * 1243 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1244 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1245 */ 1246 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1247 const void *ns) 1248 { 1249 struct kernfs_node *kn; 1250 1251 if (!parent) { 1252 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1253 name); 1254 return -ENOENT; 1255 } 1256 1257 mutex_lock(&kernfs_mutex); 1258 1259 kn = kernfs_find_ns(parent, name, ns); 1260 if (kn) 1261 __kernfs_remove(kn); 1262 1263 mutex_unlock(&kernfs_mutex); 1264 1265 if (kn) 1266 return 0; 1267 else 1268 return -ENOENT; 1269 } 1270 1271 /** 1272 * kernfs_rename_ns - move and rename a kernfs_node 1273 * @kn: target node 1274 * @new_parent: new parent to put @sd under 1275 * @new_name: new name 1276 * @new_ns: new namespace tag 1277 */ 1278 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1279 const char *new_name, const void *new_ns) 1280 { 1281 struct kernfs_node *old_parent; 1282 const char *old_name = NULL; 1283 int error; 1284 1285 /* can't move or rename root */ 1286 if (!kn->parent) 1287 return -EINVAL; 1288 1289 mutex_lock(&kernfs_mutex); 1290 1291 error = -ENOENT; 1292 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1293 (new_parent->flags & KERNFS_EMPTY_DIR)) 1294 goto out; 1295 1296 error = 0; 1297 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1298 (strcmp(kn->name, new_name) == 0)) 1299 goto out; /* nothing to rename */ 1300 1301 error = -EEXIST; 1302 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1303 goto out; 1304 1305 /* rename kernfs_node */ 1306 if (strcmp(kn->name, new_name) != 0) { 1307 error = -ENOMEM; 1308 new_name = kstrdup_const(new_name, GFP_KERNEL); 1309 if (!new_name) 1310 goto out; 1311 } else { 1312 new_name = NULL; 1313 } 1314 1315 /* 1316 * Move to the appropriate place in the appropriate directories rbtree. 1317 */ 1318 kernfs_unlink_sibling(kn); 1319 kernfs_get(new_parent); 1320 1321 /* rename_lock protects ->parent and ->name accessors */ 1322 spin_lock_irq(&kernfs_rename_lock); 1323 1324 old_parent = kn->parent; 1325 kn->parent = new_parent; 1326 1327 kn->ns = new_ns; 1328 if (new_name) { 1329 old_name = kn->name; 1330 kn->name = new_name; 1331 } 1332 1333 spin_unlock_irq(&kernfs_rename_lock); 1334 1335 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1336 kernfs_link_sibling(kn); 1337 1338 kernfs_put(old_parent); 1339 kfree_const(old_name); 1340 1341 error = 0; 1342 out: 1343 mutex_unlock(&kernfs_mutex); 1344 return error; 1345 } 1346 1347 /* Relationship between s_mode and the DT_xxx types */ 1348 static inline unsigned char dt_type(struct kernfs_node *kn) 1349 { 1350 return (kn->mode >> 12) & 15; 1351 } 1352 1353 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1354 { 1355 kernfs_put(filp->private_data); 1356 return 0; 1357 } 1358 1359 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1360 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1361 { 1362 if (pos) { 1363 int valid = kernfs_active(pos) && 1364 pos->parent == parent && hash == pos->hash; 1365 kernfs_put(pos); 1366 if (!valid) 1367 pos = NULL; 1368 } 1369 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1370 struct rb_node *node = parent->dir.children.rb_node; 1371 while (node) { 1372 pos = rb_to_kn(node); 1373 1374 if (hash < pos->hash) 1375 node = node->rb_left; 1376 else if (hash > pos->hash) 1377 node = node->rb_right; 1378 else 1379 break; 1380 } 1381 } 1382 /* Skip over entries which are dying/dead or in the wrong namespace */ 1383 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1384 struct rb_node *node = rb_next(&pos->rb); 1385 if (!node) 1386 pos = NULL; 1387 else 1388 pos = rb_to_kn(node); 1389 } 1390 return pos; 1391 } 1392 1393 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1394 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1395 { 1396 pos = kernfs_dir_pos(ns, parent, ino, pos); 1397 if (pos) { 1398 do { 1399 struct rb_node *node = rb_next(&pos->rb); 1400 if (!node) 1401 pos = NULL; 1402 else 1403 pos = rb_to_kn(node); 1404 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1405 } 1406 return pos; 1407 } 1408 1409 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1410 { 1411 struct dentry *dentry = file->f_path.dentry; 1412 struct kernfs_node *parent = dentry->d_fsdata; 1413 struct kernfs_node *pos = file->private_data; 1414 const void *ns = NULL; 1415 1416 if (!dir_emit_dots(file, ctx)) 1417 return 0; 1418 mutex_lock(&kernfs_mutex); 1419 1420 if (kernfs_ns_enabled(parent)) 1421 ns = kernfs_info(dentry->d_sb)->ns; 1422 1423 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1424 pos; 1425 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1426 const char *name = pos->name; 1427 unsigned int type = dt_type(pos); 1428 int len = strlen(name); 1429 ino_t ino = pos->ino; 1430 1431 ctx->pos = pos->hash; 1432 file->private_data = pos; 1433 kernfs_get(pos); 1434 1435 mutex_unlock(&kernfs_mutex); 1436 if (!dir_emit(ctx, name, len, ino, type)) 1437 return 0; 1438 mutex_lock(&kernfs_mutex); 1439 } 1440 mutex_unlock(&kernfs_mutex); 1441 file->private_data = NULL; 1442 ctx->pos = INT_MAX; 1443 return 0; 1444 } 1445 1446 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset, 1447 int whence) 1448 { 1449 struct inode *inode = file_inode(file); 1450 loff_t ret; 1451 1452 mutex_lock(&inode->i_mutex); 1453 ret = generic_file_llseek(file, offset, whence); 1454 mutex_unlock(&inode->i_mutex); 1455 1456 return ret; 1457 } 1458 1459 const struct file_operations kernfs_dir_fops = { 1460 .read = generic_read_dir, 1461 .iterate = kernfs_fop_readdir, 1462 .release = kernfs_dir_fop_release, 1463 .llseek = kernfs_dir_fop_llseek, 1464 }; 1465