1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 static DEFINE_RWLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 21 /* 22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to 23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont() 24 * will perform wakeups when releasing console_sem. Holding rename_lock 25 * will introduce deadlock if the scheduler reads the kernfs_name in the 26 * wakeup path. 27 */ 28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock); 29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ 30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 31 32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 33 34 static bool __kernfs_active(struct kernfs_node *kn) 35 { 36 return atomic_read(&kn->active) >= 0; 37 } 38 39 static bool kernfs_active(struct kernfs_node *kn) 40 { 41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); 42 return __kernfs_active(kn); 43 } 44 45 static bool kernfs_lockdep(struct kernfs_node *kn) 46 { 47 #ifdef CONFIG_DEBUG_LOCK_ALLOC 48 return kn->flags & KERNFS_LOCKDEP; 49 #else 50 return false; 51 #endif 52 } 53 54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 55 { 56 if (!kn) 57 return strlcpy(buf, "(null)", buflen); 58 59 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 60 } 61 62 /* kernfs_node_depth - compute depth from @from to @to */ 63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 64 { 65 size_t depth = 0; 66 67 while (to->parent && to != from) { 68 depth++; 69 to = to->parent; 70 } 71 return depth; 72 } 73 74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 75 struct kernfs_node *b) 76 { 77 size_t da, db; 78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 79 80 if (ra != rb) 81 return NULL; 82 83 da = kernfs_depth(ra->kn, a); 84 db = kernfs_depth(rb->kn, b); 85 86 while (da > db) { 87 a = a->parent; 88 da--; 89 } 90 while (db > da) { 91 b = b->parent; 92 db--; 93 } 94 95 /* worst case b and a will be the same at root */ 96 while (b != a) { 97 b = b->parent; 98 a = a->parent; 99 } 100 101 return a; 102 } 103 104 /** 105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 106 * where kn_from is treated as root of the path. 107 * @kn_from: kernfs node which should be treated as root for the path 108 * @kn_to: kernfs node to which path is needed 109 * @buf: buffer to copy the path into 110 * @buflen: size of @buf 111 * 112 * We need to handle couple of scenarios here: 113 * [1] when @kn_from is an ancestor of @kn_to at some level 114 * kn_from: /n1/n2/n3 115 * kn_to: /n1/n2/n3/n4/n5 116 * result: /n4/n5 117 * 118 * [2] when @kn_from is on a different hierarchy and we need to find common 119 * ancestor between @kn_from and @kn_to. 120 * kn_from: /n1/n2/n3/n4 121 * kn_to: /n1/n2/n5 122 * result: /../../n5 123 * OR 124 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 125 * kn_to: /n1/n2/n3 [depth=3] 126 * result: /../.. 127 * 128 * [3] when @kn_to is %NULL result will be "(null)" 129 * 130 * Return: the length of the full path. If the full length is equal to or 131 * greater than @buflen, @buf contains the truncated path with the trailing 132 * '\0'. On error, -errno is returned. 133 */ 134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 135 struct kernfs_node *kn_from, 136 char *buf, size_t buflen) 137 { 138 struct kernfs_node *kn, *common; 139 const char parent_str[] = "/.."; 140 size_t depth_from, depth_to, len = 0; 141 int i, j; 142 143 if (!kn_to) 144 return strlcpy(buf, "(null)", buflen); 145 146 if (!kn_from) 147 kn_from = kernfs_root(kn_to)->kn; 148 149 if (kn_from == kn_to) 150 return strlcpy(buf, "/", buflen); 151 152 common = kernfs_common_ancestor(kn_from, kn_to); 153 if (WARN_ON(!common)) 154 return -EINVAL; 155 156 depth_to = kernfs_depth(common, kn_to); 157 depth_from = kernfs_depth(common, kn_from); 158 159 buf[0] = '\0'; 160 161 for (i = 0; i < depth_from; i++) 162 len += strlcpy(buf + len, parent_str, 163 len < buflen ? buflen - len : 0); 164 165 /* Calculate how many bytes we need for the rest */ 166 for (i = depth_to - 1; i >= 0; i--) { 167 for (kn = kn_to, j = 0; j < i; j++) 168 kn = kn->parent; 169 len += strlcpy(buf + len, "/", 170 len < buflen ? buflen - len : 0); 171 len += strlcpy(buf + len, kn->name, 172 len < buflen ? buflen - len : 0); 173 } 174 175 return len; 176 } 177 178 /** 179 * kernfs_name - obtain the name of a given node 180 * @kn: kernfs_node of interest 181 * @buf: buffer to copy @kn's name into 182 * @buflen: size of @buf 183 * 184 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 185 * similar to strlcpy(). 186 * 187 * Fills buffer with "(null)" if @kn is %NULL. 188 * 189 * Return: the length of @kn's name and if @buf isn't long enough, 190 * it's filled up to @buflen-1 and nul terminated. 191 * 192 * This function can be called from any context. 193 */ 194 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 195 { 196 unsigned long flags; 197 int ret; 198 199 read_lock_irqsave(&kernfs_rename_lock, flags); 200 ret = kernfs_name_locked(kn, buf, buflen); 201 read_unlock_irqrestore(&kernfs_rename_lock, flags); 202 return ret; 203 } 204 205 /** 206 * kernfs_path_from_node - build path of node @to relative to @from. 207 * @from: parent kernfs_node relative to which we need to build the path 208 * @to: kernfs_node of interest 209 * @buf: buffer to copy @to's path into 210 * @buflen: size of @buf 211 * 212 * Builds @to's path relative to @from in @buf. @from and @to must 213 * be on the same kernfs-root. If @from is not parent of @to, then a relative 214 * path (which includes '..'s) as needed to reach from @from to @to is 215 * returned. 216 * 217 * Return: the length of the full path. If the full length is equal to or 218 * greater than @buflen, @buf contains the truncated path with the trailing 219 * '\0'. On error, -errno is returned. 220 */ 221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 222 char *buf, size_t buflen) 223 { 224 unsigned long flags; 225 int ret; 226 227 read_lock_irqsave(&kernfs_rename_lock, flags); 228 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 229 read_unlock_irqrestore(&kernfs_rename_lock, flags); 230 return ret; 231 } 232 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 233 234 /** 235 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 236 * @kn: kernfs_node of interest 237 * 238 * This function can be called from any context. 239 */ 240 void pr_cont_kernfs_name(struct kernfs_node *kn) 241 { 242 unsigned long flags; 243 244 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 245 246 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 247 pr_cont("%s", kernfs_pr_cont_buf); 248 249 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 250 } 251 252 /** 253 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 254 * @kn: kernfs_node of interest 255 * 256 * This function can be called from any context. 257 */ 258 void pr_cont_kernfs_path(struct kernfs_node *kn) 259 { 260 unsigned long flags; 261 int sz; 262 263 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 264 265 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, 266 sizeof(kernfs_pr_cont_buf)); 267 if (sz < 0) { 268 pr_cont("(error)"); 269 goto out; 270 } 271 272 if (sz >= sizeof(kernfs_pr_cont_buf)) { 273 pr_cont("(name too long)"); 274 goto out; 275 } 276 277 pr_cont("%s", kernfs_pr_cont_buf); 278 279 out: 280 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 281 } 282 283 /** 284 * kernfs_get_parent - determine the parent node and pin it 285 * @kn: kernfs_node of interest 286 * 287 * Determines @kn's parent, pins and returns it. This function can be 288 * called from any context. 289 * 290 * Return: parent node of @kn 291 */ 292 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 293 { 294 struct kernfs_node *parent; 295 unsigned long flags; 296 297 read_lock_irqsave(&kernfs_rename_lock, flags); 298 parent = kn->parent; 299 kernfs_get(parent); 300 read_unlock_irqrestore(&kernfs_rename_lock, flags); 301 302 return parent; 303 } 304 305 /** 306 * kernfs_name_hash - calculate hash of @ns + @name 307 * @name: Null terminated string to hash 308 * @ns: Namespace tag to hash 309 * 310 * Return: 31-bit hash of ns + name (so it fits in an off_t) 311 */ 312 static unsigned int kernfs_name_hash(const char *name, const void *ns) 313 { 314 unsigned long hash = init_name_hash(ns); 315 unsigned int len = strlen(name); 316 while (len--) 317 hash = partial_name_hash(*name++, hash); 318 hash = end_name_hash(hash); 319 hash &= 0x7fffffffU; 320 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 321 if (hash < 2) 322 hash += 2; 323 if (hash >= INT_MAX) 324 hash = INT_MAX - 1; 325 return hash; 326 } 327 328 static int kernfs_name_compare(unsigned int hash, const char *name, 329 const void *ns, const struct kernfs_node *kn) 330 { 331 if (hash < kn->hash) 332 return -1; 333 if (hash > kn->hash) 334 return 1; 335 if (ns < kn->ns) 336 return -1; 337 if (ns > kn->ns) 338 return 1; 339 return strcmp(name, kn->name); 340 } 341 342 static int kernfs_sd_compare(const struct kernfs_node *left, 343 const struct kernfs_node *right) 344 { 345 return kernfs_name_compare(left->hash, left->name, left->ns, right); 346 } 347 348 /** 349 * kernfs_link_sibling - link kernfs_node into sibling rbtree 350 * @kn: kernfs_node of interest 351 * 352 * Link @kn into its sibling rbtree which starts from 353 * @kn->parent->dir.children. 354 * 355 * Locking: 356 * kernfs_rwsem held exclusive 357 * 358 * Return: 359 * %0 on success, -EEXIST on failure. 360 */ 361 static int kernfs_link_sibling(struct kernfs_node *kn) 362 { 363 struct rb_node **node = &kn->parent->dir.children.rb_node; 364 struct rb_node *parent = NULL; 365 366 while (*node) { 367 struct kernfs_node *pos; 368 int result; 369 370 pos = rb_to_kn(*node); 371 parent = *node; 372 result = kernfs_sd_compare(kn, pos); 373 if (result < 0) 374 node = &pos->rb.rb_left; 375 else if (result > 0) 376 node = &pos->rb.rb_right; 377 else 378 return -EEXIST; 379 } 380 381 /* add new node and rebalance the tree */ 382 rb_link_node(&kn->rb, parent, node); 383 rb_insert_color(&kn->rb, &kn->parent->dir.children); 384 385 /* successfully added, account subdir number */ 386 if (kernfs_type(kn) == KERNFS_DIR) 387 kn->parent->dir.subdirs++; 388 kernfs_inc_rev(kn->parent); 389 390 return 0; 391 } 392 393 /** 394 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 395 * @kn: kernfs_node of interest 396 * 397 * Try to unlink @kn from its sibling rbtree which starts from 398 * kn->parent->dir.children. 399 * 400 * Return: %true if @kn was actually removed, 401 * %false if @kn wasn't on the rbtree. 402 * 403 * Locking: 404 * kernfs_rwsem held exclusive 405 */ 406 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 407 { 408 if (RB_EMPTY_NODE(&kn->rb)) 409 return false; 410 411 if (kernfs_type(kn) == KERNFS_DIR) 412 kn->parent->dir.subdirs--; 413 kernfs_inc_rev(kn->parent); 414 415 rb_erase(&kn->rb, &kn->parent->dir.children); 416 RB_CLEAR_NODE(&kn->rb); 417 return true; 418 } 419 420 /** 421 * kernfs_get_active - get an active reference to kernfs_node 422 * @kn: kernfs_node to get an active reference to 423 * 424 * Get an active reference of @kn. This function is noop if @kn 425 * is %NULL. 426 * 427 * Return: 428 * Pointer to @kn on success, %NULL on failure. 429 */ 430 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 431 { 432 if (unlikely(!kn)) 433 return NULL; 434 435 if (!atomic_inc_unless_negative(&kn->active)) 436 return NULL; 437 438 if (kernfs_lockdep(kn)) 439 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 440 return kn; 441 } 442 443 /** 444 * kernfs_put_active - put an active reference to kernfs_node 445 * @kn: kernfs_node to put an active reference to 446 * 447 * Put an active reference to @kn. This function is noop if @kn 448 * is %NULL. 449 */ 450 void kernfs_put_active(struct kernfs_node *kn) 451 { 452 int v; 453 454 if (unlikely(!kn)) 455 return; 456 457 if (kernfs_lockdep(kn)) 458 rwsem_release(&kn->dep_map, _RET_IP_); 459 v = atomic_dec_return(&kn->active); 460 if (likely(v != KN_DEACTIVATED_BIAS)) 461 return; 462 463 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 464 } 465 466 /** 467 * kernfs_drain - drain kernfs_node 468 * @kn: kernfs_node to drain 469 * 470 * Drain existing usages and nuke all existing mmaps of @kn. Multiple 471 * removers may invoke this function concurrently on @kn and all will 472 * return after draining is complete. 473 */ 474 static void kernfs_drain(struct kernfs_node *kn) 475 __releases(&kernfs_root(kn)->kernfs_rwsem) 476 __acquires(&kernfs_root(kn)->kernfs_rwsem) 477 { 478 struct kernfs_root *root = kernfs_root(kn); 479 480 lockdep_assert_held_write(&root->kernfs_rwsem); 481 WARN_ON_ONCE(kernfs_active(kn)); 482 483 /* 484 * Skip draining if already fully drained. This avoids draining and its 485 * lockdep annotations for nodes which have never been activated 486 * allowing embedding kernfs_remove() in create error paths without 487 * worrying about draining. 488 */ 489 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS && 490 !kernfs_should_drain_open_files(kn)) 491 return; 492 493 up_write(&root->kernfs_rwsem); 494 495 if (kernfs_lockdep(kn)) { 496 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 497 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 498 lock_contended(&kn->dep_map, _RET_IP_); 499 } 500 501 wait_event(root->deactivate_waitq, 502 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 503 504 if (kernfs_lockdep(kn)) { 505 lock_acquired(&kn->dep_map, _RET_IP_); 506 rwsem_release(&kn->dep_map, _RET_IP_); 507 } 508 509 if (kernfs_should_drain_open_files(kn)) 510 kernfs_drain_open_files(kn); 511 512 down_write(&root->kernfs_rwsem); 513 } 514 515 /** 516 * kernfs_get - get a reference count on a kernfs_node 517 * @kn: the target kernfs_node 518 */ 519 void kernfs_get(struct kernfs_node *kn) 520 { 521 if (kn) { 522 WARN_ON(!atomic_read(&kn->count)); 523 atomic_inc(&kn->count); 524 } 525 } 526 EXPORT_SYMBOL_GPL(kernfs_get); 527 528 /** 529 * kernfs_put - put a reference count on a kernfs_node 530 * @kn: the target kernfs_node 531 * 532 * Put a reference count of @kn and destroy it if it reached zero. 533 */ 534 void kernfs_put(struct kernfs_node *kn) 535 { 536 struct kernfs_node *parent; 537 struct kernfs_root *root; 538 539 if (!kn || !atomic_dec_and_test(&kn->count)) 540 return; 541 root = kernfs_root(kn); 542 repeat: 543 /* 544 * Moving/renaming is always done while holding reference. 545 * kn->parent won't change beneath us. 546 */ 547 parent = kn->parent; 548 549 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 550 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 551 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 552 553 if (kernfs_type(kn) == KERNFS_LINK) 554 kernfs_put(kn->symlink.target_kn); 555 556 kfree_const(kn->name); 557 558 if (kn->iattr) { 559 simple_xattrs_free(&kn->iattr->xattrs); 560 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 561 } 562 spin_lock(&kernfs_idr_lock); 563 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 564 spin_unlock(&kernfs_idr_lock); 565 kmem_cache_free(kernfs_node_cache, kn); 566 567 kn = parent; 568 if (kn) { 569 if (atomic_dec_and_test(&kn->count)) 570 goto repeat; 571 } else { 572 /* just released the root kn, free @root too */ 573 idr_destroy(&root->ino_idr); 574 kfree(root); 575 } 576 } 577 EXPORT_SYMBOL_GPL(kernfs_put); 578 579 /** 580 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 581 * @dentry: the dentry in question 582 * 583 * Return: the kernfs_node associated with @dentry. If @dentry is not a 584 * kernfs one, %NULL is returned. 585 * 586 * While the returned kernfs_node will stay accessible as long as @dentry 587 * is accessible, the returned node can be in any state and the caller is 588 * fully responsible for determining what's accessible. 589 */ 590 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 591 { 592 if (dentry->d_sb->s_op == &kernfs_sops) 593 return kernfs_dentry_node(dentry); 594 return NULL; 595 } 596 597 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 598 struct kernfs_node *parent, 599 const char *name, umode_t mode, 600 kuid_t uid, kgid_t gid, 601 unsigned flags) 602 { 603 struct kernfs_node *kn; 604 u32 id_highbits; 605 int ret; 606 607 name = kstrdup_const(name, GFP_KERNEL); 608 if (!name) 609 return NULL; 610 611 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 612 if (!kn) 613 goto err_out1; 614 615 idr_preload(GFP_KERNEL); 616 spin_lock(&kernfs_idr_lock); 617 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 618 if (ret >= 0 && ret < root->last_id_lowbits) 619 root->id_highbits++; 620 id_highbits = root->id_highbits; 621 root->last_id_lowbits = ret; 622 spin_unlock(&kernfs_idr_lock); 623 idr_preload_end(); 624 if (ret < 0) 625 goto err_out2; 626 627 kn->id = (u64)id_highbits << 32 | ret; 628 629 atomic_set(&kn->count, 1); 630 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 631 RB_CLEAR_NODE(&kn->rb); 632 633 kn->name = name; 634 kn->mode = mode; 635 kn->flags = flags; 636 637 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 638 struct iattr iattr = { 639 .ia_valid = ATTR_UID | ATTR_GID, 640 .ia_uid = uid, 641 .ia_gid = gid, 642 }; 643 644 ret = __kernfs_setattr(kn, &iattr); 645 if (ret < 0) 646 goto err_out3; 647 } 648 649 if (parent) { 650 ret = security_kernfs_init_security(parent, kn); 651 if (ret) 652 goto err_out3; 653 } 654 655 return kn; 656 657 err_out3: 658 spin_lock(&kernfs_idr_lock); 659 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 660 spin_unlock(&kernfs_idr_lock); 661 err_out2: 662 kmem_cache_free(kernfs_node_cache, kn); 663 err_out1: 664 kfree_const(name); 665 return NULL; 666 } 667 668 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 669 const char *name, umode_t mode, 670 kuid_t uid, kgid_t gid, 671 unsigned flags) 672 { 673 struct kernfs_node *kn; 674 675 kn = __kernfs_new_node(kernfs_root(parent), parent, 676 name, mode, uid, gid, flags); 677 if (kn) { 678 kernfs_get(parent); 679 kn->parent = parent; 680 } 681 return kn; 682 } 683 684 /* 685 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 686 * @root: the kernfs root 687 * @id: the target node id 688 * 689 * @id's lower 32bits encode ino and upper gen. If the gen portion is 690 * zero, all generations are matched. 691 * 692 * Return: %NULL on failure, 693 * otherwise a kernfs node with reference counter incremented. 694 */ 695 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 696 u64 id) 697 { 698 struct kernfs_node *kn; 699 ino_t ino = kernfs_id_ino(id); 700 u32 gen = kernfs_id_gen(id); 701 702 spin_lock(&kernfs_idr_lock); 703 704 kn = idr_find(&root->ino_idr, (u32)ino); 705 if (!kn) 706 goto err_unlock; 707 708 if (sizeof(ino_t) >= sizeof(u64)) { 709 /* we looked up with the low 32bits, compare the whole */ 710 if (kernfs_ino(kn) != ino) 711 goto err_unlock; 712 } else { 713 /* 0 matches all generations */ 714 if (unlikely(gen && kernfs_gen(kn) != gen)) 715 goto err_unlock; 716 } 717 718 /* 719 * We should fail if @kn has never been activated and guarantee success 720 * if the caller knows that @kn is active. Both can be achieved by 721 * __kernfs_active() which tests @kn->active without kernfs_rwsem. 722 */ 723 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count))) 724 goto err_unlock; 725 726 spin_unlock(&kernfs_idr_lock); 727 return kn; 728 err_unlock: 729 spin_unlock(&kernfs_idr_lock); 730 return NULL; 731 } 732 733 /** 734 * kernfs_add_one - add kernfs_node to parent without warning 735 * @kn: kernfs_node to be added 736 * 737 * The caller must already have initialized @kn->parent. This 738 * function increments nlink of the parent's inode if @kn is a 739 * directory and link into the children list of the parent. 740 * 741 * Return: 742 * %0 on success, -EEXIST if entry with the given name already 743 * exists. 744 */ 745 int kernfs_add_one(struct kernfs_node *kn) 746 { 747 struct kernfs_node *parent = kn->parent; 748 struct kernfs_root *root = kernfs_root(parent); 749 struct kernfs_iattrs *ps_iattr; 750 bool has_ns; 751 int ret; 752 753 down_write(&root->kernfs_rwsem); 754 755 ret = -EINVAL; 756 has_ns = kernfs_ns_enabled(parent); 757 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 758 has_ns ? "required" : "invalid", parent->name, kn->name)) 759 goto out_unlock; 760 761 if (kernfs_type(parent) != KERNFS_DIR) 762 goto out_unlock; 763 764 ret = -ENOENT; 765 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR)) 766 goto out_unlock; 767 768 kn->hash = kernfs_name_hash(kn->name, kn->ns); 769 770 ret = kernfs_link_sibling(kn); 771 if (ret) 772 goto out_unlock; 773 774 /* Update timestamps on the parent */ 775 down_write(&root->kernfs_iattr_rwsem); 776 777 ps_iattr = parent->iattr; 778 if (ps_iattr) { 779 ktime_get_real_ts64(&ps_iattr->ia_ctime); 780 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 781 } 782 783 up_write(&root->kernfs_iattr_rwsem); 784 up_write(&root->kernfs_rwsem); 785 786 /* 787 * Activate the new node unless CREATE_DEACTIVATED is requested. 788 * If not activated here, the kernfs user is responsible for 789 * activating the node with kernfs_activate(). A node which hasn't 790 * been activated is not visible to userland and its removal won't 791 * trigger deactivation. 792 */ 793 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 794 kernfs_activate(kn); 795 return 0; 796 797 out_unlock: 798 up_write(&root->kernfs_rwsem); 799 return ret; 800 } 801 802 /** 803 * kernfs_find_ns - find kernfs_node with the given name 804 * @parent: kernfs_node to search under 805 * @name: name to look for 806 * @ns: the namespace tag to use 807 * 808 * Look for kernfs_node with name @name under @parent. 809 * 810 * Return: pointer to the found kernfs_node on success, %NULL on failure. 811 */ 812 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 813 const unsigned char *name, 814 const void *ns) 815 { 816 struct rb_node *node = parent->dir.children.rb_node; 817 bool has_ns = kernfs_ns_enabled(parent); 818 unsigned int hash; 819 820 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); 821 822 if (has_ns != (bool)ns) { 823 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 824 has_ns ? "required" : "invalid", parent->name, name); 825 return NULL; 826 } 827 828 hash = kernfs_name_hash(name, ns); 829 while (node) { 830 struct kernfs_node *kn; 831 int result; 832 833 kn = rb_to_kn(node); 834 result = kernfs_name_compare(hash, name, ns, kn); 835 if (result < 0) 836 node = node->rb_left; 837 else if (result > 0) 838 node = node->rb_right; 839 else 840 return kn; 841 } 842 return NULL; 843 } 844 845 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 846 const unsigned char *path, 847 const void *ns) 848 { 849 size_t len; 850 char *p, *name; 851 852 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); 853 854 spin_lock_irq(&kernfs_pr_cont_lock); 855 856 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 857 858 if (len >= sizeof(kernfs_pr_cont_buf)) { 859 spin_unlock_irq(&kernfs_pr_cont_lock); 860 return NULL; 861 } 862 863 p = kernfs_pr_cont_buf; 864 865 while ((name = strsep(&p, "/")) && parent) { 866 if (*name == '\0') 867 continue; 868 parent = kernfs_find_ns(parent, name, ns); 869 } 870 871 spin_unlock_irq(&kernfs_pr_cont_lock); 872 873 return parent; 874 } 875 876 /** 877 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 878 * @parent: kernfs_node to search under 879 * @name: name to look for 880 * @ns: the namespace tag to use 881 * 882 * Look for kernfs_node with name @name under @parent and get a reference 883 * if found. This function may sleep. 884 * 885 * Return: pointer to the found kernfs_node on success, %NULL on failure. 886 */ 887 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 888 const char *name, const void *ns) 889 { 890 struct kernfs_node *kn; 891 struct kernfs_root *root = kernfs_root(parent); 892 893 down_read(&root->kernfs_rwsem); 894 kn = kernfs_find_ns(parent, name, ns); 895 kernfs_get(kn); 896 up_read(&root->kernfs_rwsem); 897 898 return kn; 899 } 900 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 901 902 /** 903 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 904 * @parent: kernfs_node to search under 905 * @path: path to look for 906 * @ns: the namespace tag to use 907 * 908 * Look for kernfs_node with path @path under @parent and get a reference 909 * if found. This function may sleep. 910 * 911 * Return: pointer to the found kernfs_node on success, %NULL on failure. 912 */ 913 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 914 const char *path, const void *ns) 915 { 916 struct kernfs_node *kn; 917 struct kernfs_root *root = kernfs_root(parent); 918 919 down_read(&root->kernfs_rwsem); 920 kn = kernfs_walk_ns(parent, path, ns); 921 kernfs_get(kn); 922 up_read(&root->kernfs_rwsem); 923 924 return kn; 925 } 926 927 /** 928 * kernfs_create_root - create a new kernfs hierarchy 929 * @scops: optional syscall operations for the hierarchy 930 * @flags: KERNFS_ROOT_* flags 931 * @priv: opaque data associated with the new directory 932 * 933 * Return: the root of the new hierarchy on success, ERR_PTR() value on 934 * failure. 935 */ 936 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 937 unsigned int flags, void *priv) 938 { 939 struct kernfs_root *root; 940 struct kernfs_node *kn; 941 942 root = kzalloc(sizeof(*root), GFP_KERNEL); 943 if (!root) 944 return ERR_PTR(-ENOMEM); 945 946 idr_init(&root->ino_idr); 947 init_rwsem(&root->kernfs_rwsem); 948 init_rwsem(&root->kernfs_iattr_rwsem); 949 init_rwsem(&root->kernfs_supers_rwsem); 950 INIT_LIST_HEAD(&root->supers); 951 952 /* 953 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 954 * High bits generation. The starting value for both ino and 955 * genenration is 1. Initialize upper 32bit allocation 956 * accordingly. 957 */ 958 if (sizeof(ino_t) >= sizeof(u64)) 959 root->id_highbits = 0; 960 else 961 root->id_highbits = 1; 962 963 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 964 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 965 KERNFS_DIR); 966 if (!kn) { 967 idr_destroy(&root->ino_idr); 968 kfree(root); 969 return ERR_PTR(-ENOMEM); 970 } 971 972 kn->priv = priv; 973 kn->dir.root = root; 974 975 root->syscall_ops = scops; 976 root->flags = flags; 977 root->kn = kn; 978 init_waitqueue_head(&root->deactivate_waitq); 979 980 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 981 kernfs_activate(kn); 982 983 return root; 984 } 985 986 /** 987 * kernfs_destroy_root - destroy a kernfs hierarchy 988 * @root: root of the hierarchy to destroy 989 * 990 * Destroy the hierarchy anchored at @root by removing all existing 991 * directories and destroying @root. 992 */ 993 void kernfs_destroy_root(struct kernfs_root *root) 994 { 995 /* 996 * kernfs_remove holds kernfs_rwsem from the root so the root 997 * shouldn't be freed during the operation. 998 */ 999 kernfs_get(root->kn); 1000 kernfs_remove(root->kn); 1001 kernfs_put(root->kn); /* will also free @root */ 1002 } 1003 1004 /** 1005 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root 1006 * @root: root to use to lookup 1007 * 1008 * Return: @root's kernfs_node 1009 */ 1010 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root) 1011 { 1012 return root->kn; 1013 } 1014 1015 /** 1016 * kernfs_create_dir_ns - create a directory 1017 * @parent: parent in which to create a new directory 1018 * @name: name of the new directory 1019 * @mode: mode of the new directory 1020 * @uid: uid of the new directory 1021 * @gid: gid of the new directory 1022 * @priv: opaque data associated with the new directory 1023 * @ns: optional namespace tag of the directory 1024 * 1025 * Return: the created node on success, ERR_PTR() value on failure. 1026 */ 1027 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1028 const char *name, umode_t mode, 1029 kuid_t uid, kgid_t gid, 1030 void *priv, const void *ns) 1031 { 1032 struct kernfs_node *kn; 1033 int rc; 1034 1035 /* allocate */ 1036 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1037 uid, gid, KERNFS_DIR); 1038 if (!kn) 1039 return ERR_PTR(-ENOMEM); 1040 1041 kn->dir.root = parent->dir.root; 1042 kn->ns = ns; 1043 kn->priv = priv; 1044 1045 /* link in */ 1046 rc = kernfs_add_one(kn); 1047 if (!rc) 1048 return kn; 1049 1050 kernfs_put(kn); 1051 return ERR_PTR(rc); 1052 } 1053 1054 /** 1055 * kernfs_create_empty_dir - create an always empty directory 1056 * @parent: parent in which to create a new directory 1057 * @name: name of the new directory 1058 * 1059 * Return: the created node on success, ERR_PTR() value on failure. 1060 */ 1061 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1062 const char *name) 1063 { 1064 struct kernfs_node *kn; 1065 int rc; 1066 1067 /* allocate */ 1068 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1069 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1070 if (!kn) 1071 return ERR_PTR(-ENOMEM); 1072 1073 kn->flags |= KERNFS_EMPTY_DIR; 1074 kn->dir.root = parent->dir.root; 1075 kn->ns = NULL; 1076 kn->priv = NULL; 1077 1078 /* link in */ 1079 rc = kernfs_add_one(kn); 1080 if (!rc) 1081 return kn; 1082 1083 kernfs_put(kn); 1084 return ERR_PTR(rc); 1085 } 1086 1087 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 1088 { 1089 struct kernfs_node *kn; 1090 struct kernfs_root *root; 1091 1092 if (flags & LOOKUP_RCU) 1093 return -ECHILD; 1094 1095 /* Negative hashed dentry? */ 1096 if (d_really_is_negative(dentry)) { 1097 struct kernfs_node *parent; 1098 1099 /* If the kernfs parent node has changed discard and 1100 * proceed to ->lookup. 1101 * 1102 * There's nothing special needed here when getting the 1103 * dentry parent, even if a concurrent rename is in 1104 * progress. That's because the dentry is negative so 1105 * it can only be the target of the rename and it will 1106 * be doing a d_move() not a replace. Consequently the 1107 * dentry d_parent won't change over the d_move(). 1108 * 1109 * Also kernfs negative dentries transitioning from 1110 * negative to positive during revalidate won't happen 1111 * because they are invalidated on containing directory 1112 * changes and the lookup re-done so that a new positive 1113 * dentry can be properly created. 1114 */ 1115 root = kernfs_root_from_sb(dentry->d_sb); 1116 down_read(&root->kernfs_rwsem); 1117 parent = kernfs_dentry_node(dentry->d_parent); 1118 if (parent) { 1119 if (kernfs_dir_changed(parent, dentry)) { 1120 up_read(&root->kernfs_rwsem); 1121 return 0; 1122 } 1123 } 1124 up_read(&root->kernfs_rwsem); 1125 1126 /* The kernfs parent node hasn't changed, leave the 1127 * dentry negative and return success. 1128 */ 1129 return 1; 1130 } 1131 1132 kn = kernfs_dentry_node(dentry); 1133 root = kernfs_root(kn); 1134 down_read(&root->kernfs_rwsem); 1135 1136 /* The kernfs node has been deactivated */ 1137 if (!kernfs_active(kn)) 1138 goto out_bad; 1139 1140 /* The kernfs node has been moved? */ 1141 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 1142 goto out_bad; 1143 1144 /* The kernfs node has been renamed */ 1145 if (strcmp(dentry->d_name.name, kn->name) != 0) 1146 goto out_bad; 1147 1148 /* The kernfs node has been moved to a different namespace */ 1149 if (kn->parent && kernfs_ns_enabled(kn->parent) && 1150 kernfs_info(dentry->d_sb)->ns != kn->ns) 1151 goto out_bad; 1152 1153 up_read(&root->kernfs_rwsem); 1154 return 1; 1155 out_bad: 1156 up_read(&root->kernfs_rwsem); 1157 return 0; 1158 } 1159 1160 const struct dentry_operations kernfs_dops = { 1161 .d_revalidate = kernfs_dop_revalidate, 1162 }; 1163 1164 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1165 struct dentry *dentry, 1166 unsigned int flags) 1167 { 1168 struct kernfs_node *parent = dir->i_private; 1169 struct kernfs_node *kn; 1170 struct kernfs_root *root; 1171 struct inode *inode = NULL; 1172 const void *ns = NULL; 1173 1174 root = kernfs_root(parent); 1175 down_read(&root->kernfs_rwsem); 1176 if (kernfs_ns_enabled(parent)) 1177 ns = kernfs_info(dir->i_sb)->ns; 1178 1179 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1180 /* attach dentry and inode */ 1181 if (kn) { 1182 /* Inactive nodes are invisible to the VFS so don't 1183 * create a negative. 1184 */ 1185 if (!kernfs_active(kn)) { 1186 up_read(&root->kernfs_rwsem); 1187 return NULL; 1188 } 1189 inode = kernfs_get_inode(dir->i_sb, kn); 1190 if (!inode) 1191 inode = ERR_PTR(-ENOMEM); 1192 } 1193 /* 1194 * Needed for negative dentry validation. 1195 * The negative dentry can be created in kernfs_iop_lookup() 1196 * or transforms from positive dentry in dentry_unlink_inode() 1197 * called from vfs_rmdir(). 1198 */ 1199 if (!IS_ERR(inode)) 1200 kernfs_set_rev(parent, dentry); 1201 up_read(&root->kernfs_rwsem); 1202 1203 /* instantiate and hash (possibly negative) dentry */ 1204 return d_splice_alias(inode, dentry); 1205 } 1206 1207 static int kernfs_iop_mkdir(struct mnt_idmap *idmap, 1208 struct inode *dir, struct dentry *dentry, 1209 umode_t mode) 1210 { 1211 struct kernfs_node *parent = dir->i_private; 1212 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1213 int ret; 1214 1215 if (!scops || !scops->mkdir) 1216 return -EPERM; 1217 1218 if (!kernfs_get_active(parent)) 1219 return -ENODEV; 1220 1221 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1222 1223 kernfs_put_active(parent); 1224 return ret; 1225 } 1226 1227 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1228 { 1229 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1230 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1231 int ret; 1232 1233 if (!scops || !scops->rmdir) 1234 return -EPERM; 1235 1236 if (!kernfs_get_active(kn)) 1237 return -ENODEV; 1238 1239 ret = scops->rmdir(kn); 1240 1241 kernfs_put_active(kn); 1242 return ret; 1243 } 1244 1245 static int kernfs_iop_rename(struct mnt_idmap *idmap, 1246 struct inode *old_dir, struct dentry *old_dentry, 1247 struct inode *new_dir, struct dentry *new_dentry, 1248 unsigned int flags) 1249 { 1250 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1251 struct kernfs_node *new_parent = new_dir->i_private; 1252 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1253 int ret; 1254 1255 if (flags) 1256 return -EINVAL; 1257 1258 if (!scops || !scops->rename) 1259 return -EPERM; 1260 1261 if (!kernfs_get_active(kn)) 1262 return -ENODEV; 1263 1264 if (!kernfs_get_active(new_parent)) { 1265 kernfs_put_active(kn); 1266 return -ENODEV; 1267 } 1268 1269 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1270 1271 kernfs_put_active(new_parent); 1272 kernfs_put_active(kn); 1273 return ret; 1274 } 1275 1276 const struct inode_operations kernfs_dir_iops = { 1277 .lookup = kernfs_iop_lookup, 1278 .permission = kernfs_iop_permission, 1279 .setattr = kernfs_iop_setattr, 1280 .getattr = kernfs_iop_getattr, 1281 .listxattr = kernfs_iop_listxattr, 1282 1283 .mkdir = kernfs_iop_mkdir, 1284 .rmdir = kernfs_iop_rmdir, 1285 .rename = kernfs_iop_rename, 1286 }; 1287 1288 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1289 { 1290 struct kernfs_node *last; 1291 1292 while (true) { 1293 struct rb_node *rbn; 1294 1295 last = pos; 1296 1297 if (kernfs_type(pos) != KERNFS_DIR) 1298 break; 1299 1300 rbn = rb_first(&pos->dir.children); 1301 if (!rbn) 1302 break; 1303 1304 pos = rb_to_kn(rbn); 1305 } 1306 1307 return last; 1308 } 1309 1310 /** 1311 * kernfs_next_descendant_post - find the next descendant for post-order walk 1312 * @pos: the current position (%NULL to initiate traversal) 1313 * @root: kernfs_node whose descendants to walk 1314 * 1315 * Find the next descendant to visit for post-order traversal of @root's 1316 * descendants. @root is included in the iteration and the last node to be 1317 * visited. 1318 * 1319 * Return: the next descendant to visit or %NULL when done. 1320 */ 1321 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1322 struct kernfs_node *root) 1323 { 1324 struct rb_node *rbn; 1325 1326 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); 1327 1328 /* if first iteration, visit leftmost descendant which may be root */ 1329 if (!pos) 1330 return kernfs_leftmost_descendant(root); 1331 1332 /* if we visited @root, we're done */ 1333 if (pos == root) 1334 return NULL; 1335 1336 /* if there's an unvisited sibling, visit its leftmost descendant */ 1337 rbn = rb_next(&pos->rb); 1338 if (rbn) 1339 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1340 1341 /* no sibling left, visit parent */ 1342 return pos->parent; 1343 } 1344 1345 static void kernfs_activate_one(struct kernfs_node *kn) 1346 { 1347 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1348 1349 kn->flags |= KERNFS_ACTIVATED; 1350 1351 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING))) 1352 return; 1353 1354 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb)); 1355 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1356 1357 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active); 1358 } 1359 1360 /** 1361 * kernfs_activate - activate a node which started deactivated 1362 * @kn: kernfs_node whose subtree is to be activated 1363 * 1364 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1365 * needs to be explicitly activated. A node which hasn't been activated 1366 * isn't visible to userland and deactivation is skipped during its 1367 * removal. This is useful to construct atomic init sequences where 1368 * creation of multiple nodes should either succeed or fail atomically. 1369 * 1370 * The caller is responsible for ensuring that this function is not called 1371 * after kernfs_remove*() is invoked on @kn. 1372 */ 1373 void kernfs_activate(struct kernfs_node *kn) 1374 { 1375 struct kernfs_node *pos; 1376 struct kernfs_root *root = kernfs_root(kn); 1377 1378 down_write(&root->kernfs_rwsem); 1379 1380 pos = NULL; 1381 while ((pos = kernfs_next_descendant_post(pos, kn))) 1382 kernfs_activate_one(pos); 1383 1384 up_write(&root->kernfs_rwsem); 1385 } 1386 1387 /** 1388 * kernfs_show - show or hide a node 1389 * @kn: kernfs_node to show or hide 1390 * @show: whether to show or hide 1391 * 1392 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is 1393 * ignored in future activaitons. If %true, the mark is removed and activation 1394 * state is restored. This function won't implicitly activate a new node in a 1395 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet. 1396 * 1397 * To avoid recursion complexities, directories aren't supported for now. 1398 */ 1399 void kernfs_show(struct kernfs_node *kn, bool show) 1400 { 1401 struct kernfs_root *root = kernfs_root(kn); 1402 1403 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR)) 1404 return; 1405 1406 down_write(&root->kernfs_rwsem); 1407 1408 if (show) { 1409 kn->flags &= ~KERNFS_HIDDEN; 1410 if (kn->flags & KERNFS_ACTIVATED) 1411 kernfs_activate_one(kn); 1412 } else { 1413 kn->flags |= KERNFS_HIDDEN; 1414 if (kernfs_active(kn)) 1415 atomic_add(KN_DEACTIVATED_BIAS, &kn->active); 1416 kernfs_drain(kn); 1417 } 1418 1419 up_write(&root->kernfs_rwsem); 1420 } 1421 1422 static void __kernfs_remove(struct kernfs_node *kn) 1423 { 1424 struct kernfs_node *pos; 1425 1426 /* Short-circuit if non-root @kn has already finished removal. */ 1427 if (!kn) 1428 return; 1429 1430 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1431 1432 /* 1433 * This is for kernfs_remove_self() which plays with active ref 1434 * after removal. 1435 */ 1436 if (kn->parent && RB_EMPTY_NODE(&kn->rb)) 1437 return; 1438 1439 pr_debug("kernfs %s: removing\n", kn->name); 1440 1441 /* prevent new usage by marking all nodes removing and deactivating */ 1442 pos = NULL; 1443 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1444 pos->flags |= KERNFS_REMOVING; 1445 if (kernfs_active(pos)) 1446 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1447 } 1448 1449 /* deactivate and unlink the subtree node-by-node */ 1450 do { 1451 pos = kernfs_leftmost_descendant(kn); 1452 1453 /* 1454 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's 1455 * base ref could have been put by someone else by the time 1456 * the function returns. Make sure it doesn't go away 1457 * underneath us. 1458 */ 1459 kernfs_get(pos); 1460 1461 kernfs_drain(pos); 1462 1463 /* 1464 * kernfs_unlink_sibling() succeeds once per node. Use it 1465 * to decide who's responsible for cleanups. 1466 */ 1467 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1468 struct kernfs_iattrs *ps_iattr = 1469 pos->parent ? pos->parent->iattr : NULL; 1470 1471 /* update timestamps on the parent */ 1472 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1473 1474 if (ps_iattr) { 1475 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1476 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1477 } 1478 1479 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1480 kernfs_put(pos); 1481 } 1482 1483 kernfs_put(pos); 1484 } while (pos != kn); 1485 } 1486 1487 /** 1488 * kernfs_remove - remove a kernfs_node recursively 1489 * @kn: the kernfs_node to remove 1490 * 1491 * Remove @kn along with all its subdirectories and files. 1492 */ 1493 void kernfs_remove(struct kernfs_node *kn) 1494 { 1495 struct kernfs_root *root; 1496 1497 if (!kn) 1498 return; 1499 1500 root = kernfs_root(kn); 1501 1502 down_write(&root->kernfs_rwsem); 1503 __kernfs_remove(kn); 1504 up_write(&root->kernfs_rwsem); 1505 } 1506 1507 /** 1508 * kernfs_break_active_protection - break out of active protection 1509 * @kn: the self kernfs_node 1510 * 1511 * The caller must be running off of a kernfs operation which is invoked 1512 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1513 * this function must also be matched with an invocation of 1514 * kernfs_unbreak_active_protection(). 1515 * 1516 * This function releases the active reference of @kn the caller is 1517 * holding. Once this function is called, @kn may be removed at any point 1518 * and the caller is solely responsible for ensuring that the objects it 1519 * dereferences are accessible. 1520 */ 1521 void kernfs_break_active_protection(struct kernfs_node *kn) 1522 { 1523 /* 1524 * Take out ourself out of the active ref dependency chain. If 1525 * we're called without an active ref, lockdep will complain. 1526 */ 1527 kernfs_put_active(kn); 1528 } 1529 1530 /** 1531 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1532 * @kn: the self kernfs_node 1533 * 1534 * If kernfs_break_active_protection() was called, this function must be 1535 * invoked before finishing the kernfs operation. Note that while this 1536 * function restores the active reference, it doesn't and can't actually 1537 * restore the active protection - @kn may already or be in the process of 1538 * being removed. Once kernfs_break_active_protection() is invoked, that 1539 * protection is irreversibly gone for the kernfs operation instance. 1540 * 1541 * While this function may be called at any point after 1542 * kernfs_break_active_protection() is invoked, its most useful location 1543 * would be right before the enclosing kernfs operation returns. 1544 */ 1545 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1546 { 1547 /* 1548 * @kn->active could be in any state; however, the increment we do 1549 * here will be undone as soon as the enclosing kernfs operation 1550 * finishes and this temporary bump can't break anything. If @kn 1551 * is alive, nothing changes. If @kn is being deactivated, the 1552 * soon-to-follow put will either finish deactivation or restore 1553 * deactivated state. If @kn is already removed, the temporary 1554 * bump is guaranteed to be gone before @kn is released. 1555 */ 1556 atomic_inc(&kn->active); 1557 if (kernfs_lockdep(kn)) 1558 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1559 } 1560 1561 /** 1562 * kernfs_remove_self - remove a kernfs_node from its own method 1563 * @kn: the self kernfs_node to remove 1564 * 1565 * The caller must be running off of a kernfs operation which is invoked 1566 * with an active reference - e.g. one of kernfs_ops. This can be used to 1567 * implement a file operation which deletes itself. 1568 * 1569 * For example, the "delete" file for a sysfs device directory can be 1570 * implemented by invoking kernfs_remove_self() on the "delete" file 1571 * itself. This function breaks the circular dependency of trying to 1572 * deactivate self while holding an active ref itself. It isn't necessary 1573 * to modify the usual removal path to use kernfs_remove_self(). The 1574 * "delete" implementation can simply invoke kernfs_remove_self() on self 1575 * before proceeding with the usual removal path. kernfs will ignore later 1576 * kernfs_remove() on self. 1577 * 1578 * kernfs_remove_self() can be called multiple times concurrently on the 1579 * same kernfs_node. Only the first one actually performs removal and 1580 * returns %true. All others will wait until the kernfs operation which 1581 * won self-removal finishes and return %false. Note that the losers wait 1582 * for the completion of not only the winning kernfs_remove_self() but also 1583 * the whole kernfs_ops which won the arbitration. This can be used to 1584 * guarantee, for example, all concurrent writes to a "delete" file to 1585 * finish only after the whole operation is complete. 1586 * 1587 * Return: %true if @kn is removed by this call, otherwise %false. 1588 */ 1589 bool kernfs_remove_self(struct kernfs_node *kn) 1590 { 1591 bool ret; 1592 struct kernfs_root *root = kernfs_root(kn); 1593 1594 down_write(&root->kernfs_rwsem); 1595 kernfs_break_active_protection(kn); 1596 1597 /* 1598 * SUICIDAL is used to arbitrate among competing invocations. Only 1599 * the first one will actually perform removal. When the removal 1600 * is complete, SUICIDED is set and the active ref is restored 1601 * while kernfs_rwsem for held exclusive. The ones which lost 1602 * arbitration waits for SUICIDED && drained which can happen only 1603 * after the enclosing kernfs operation which executed the winning 1604 * instance of kernfs_remove_self() finished. 1605 */ 1606 if (!(kn->flags & KERNFS_SUICIDAL)) { 1607 kn->flags |= KERNFS_SUICIDAL; 1608 __kernfs_remove(kn); 1609 kn->flags |= KERNFS_SUICIDED; 1610 ret = true; 1611 } else { 1612 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1613 DEFINE_WAIT(wait); 1614 1615 while (true) { 1616 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1617 1618 if ((kn->flags & KERNFS_SUICIDED) && 1619 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1620 break; 1621 1622 up_write(&root->kernfs_rwsem); 1623 schedule(); 1624 down_write(&root->kernfs_rwsem); 1625 } 1626 finish_wait(waitq, &wait); 1627 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1628 ret = false; 1629 } 1630 1631 /* 1632 * This must be done while kernfs_rwsem held exclusive; otherwise, 1633 * waiting for SUICIDED && deactivated could finish prematurely. 1634 */ 1635 kernfs_unbreak_active_protection(kn); 1636 1637 up_write(&root->kernfs_rwsem); 1638 return ret; 1639 } 1640 1641 /** 1642 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1643 * @parent: parent of the target 1644 * @name: name of the kernfs_node to remove 1645 * @ns: namespace tag of the kernfs_node to remove 1646 * 1647 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1648 * 1649 * Return: %0 on success, -ENOENT if such entry doesn't exist. 1650 */ 1651 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1652 const void *ns) 1653 { 1654 struct kernfs_node *kn; 1655 struct kernfs_root *root; 1656 1657 if (!parent) { 1658 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1659 name); 1660 return -ENOENT; 1661 } 1662 1663 root = kernfs_root(parent); 1664 down_write(&root->kernfs_rwsem); 1665 1666 kn = kernfs_find_ns(parent, name, ns); 1667 if (kn) { 1668 kernfs_get(kn); 1669 __kernfs_remove(kn); 1670 kernfs_put(kn); 1671 } 1672 1673 up_write(&root->kernfs_rwsem); 1674 1675 if (kn) 1676 return 0; 1677 else 1678 return -ENOENT; 1679 } 1680 1681 /** 1682 * kernfs_rename_ns - move and rename a kernfs_node 1683 * @kn: target node 1684 * @new_parent: new parent to put @sd under 1685 * @new_name: new name 1686 * @new_ns: new namespace tag 1687 * 1688 * Return: %0 on success, -errno on failure. 1689 */ 1690 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1691 const char *new_name, const void *new_ns) 1692 { 1693 struct kernfs_node *old_parent; 1694 struct kernfs_root *root; 1695 const char *old_name = NULL; 1696 int error; 1697 1698 /* can't move or rename root */ 1699 if (!kn->parent) 1700 return -EINVAL; 1701 1702 root = kernfs_root(kn); 1703 down_write(&root->kernfs_rwsem); 1704 1705 error = -ENOENT; 1706 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1707 (new_parent->flags & KERNFS_EMPTY_DIR)) 1708 goto out; 1709 1710 error = 0; 1711 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1712 (strcmp(kn->name, new_name) == 0)) 1713 goto out; /* nothing to rename */ 1714 1715 error = -EEXIST; 1716 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1717 goto out; 1718 1719 /* rename kernfs_node */ 1720 if (strcmp(kn->name, new_name) != 0) { 1721 error = -ENOMEM; 1722 new_name = kstrdup_const(new_name, GFP_KERNEL); 1723 if (!new_name) 1724 goto out; 1725 } else { 1726 new_name = NULL; 1727 } 1728 1729 /* 1730 * Move to the appropriate place in the appropriate directories rbtree. 1731 */ 1732 kernfs_unlink_sibling(kn); 1733 kernfs_get(new_parent); 1734 1735 /* rename_lock protects ->parent and ->name accessors */ 1736 write_lock_irq(&kernfs_rename_lock); 1737 1738 old_parent = kn->parent; 1739 kn->parent = new_parent; 1740 1741 kn->ns = new_ns; 1742 if (new_name) { 1743 old_name = kn->name; 1744 kn->name = new_name; 1745 } 1746 1747 write_unlock_irq(&kernfs_rename_lock); 1748 1749 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1750 kernfs_link_sibling(kn); 1751 1752 kernfs_put(old_parent); 1753 kfree_const(old_name); 1754 1755 error = 0; 1756 out: 1757 up_write(&root->kernfs_rwsem); 1758 return error; 1759 } 1760 1761 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1762 { 1763 kernfs_put(filp->private_data); 1764 return 0; 1765 } 1766 1767 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1768 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1769 { 1770 if (pos) { 1771 int valid = kernfs_active(pos) && 1772 pos->parent == parent && hash == pos->hash; 1773 kernfs_put(pos); 1774 if (!valid) 1775 pos = NULL; 1776 } 1777 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1778 struct rb_node *node = parent->dir.children.rb_node; 1779 while (node) { 1780 pos = rb_to_kn(node); 1781 1782 if (hash < pos->hash) 1783 node = node->rb_left; 1784 else if (hash > pos->hash) 1785 node = node->rb_right; 1786 else 1787 break; 1788 } 1789 } 1790 /* Skip over entries which are dying/dead or in the wrong namespace */ 1791 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1792 struct rb_node *node = rb_next(&pos->rb); 1793 if (!node) 1794 pos = NULL; 1795 else 1796 pos = rb_to_kn(node); 1797 } 1798 return pos; 1799 } 1800 1801 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1802 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1803 { 1804 pos = kernfs_dir_pos(ns, parent, ino, pos); 1805 if (pos) { 1806 do { 1807 struct rb_node *node = rb_next(&pos->rb); 1808 if (!node) 1809 pos = NULL; 1810 else 1811 pos = rb_to_kn(node); 1812 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1813 } 1814 return pos; 1815 } 1816 1817 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1818 { 1819 struct dentry *dentry = file->f_path.dentry; 1820 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1821 struct kernfs_node *pos = file->private_data; 1822 struct kernfs_root *root; 1823 const void *ns = NULL; 1824 1825 if (!dir_emit_dots(file, ctx)) 1826 return 0; 1827 1828 root = kernfs_root(parent); 1829 down_read(&root->kernfs_rwsem); 1830 1831 if (kernfs_ns_enabled(parent)) 1832 ns = kernfs_info(dentry->d_sb)->ns; 1833 1834 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1835 pos; 1836 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1837 const char *name = pos->name; 1838 unsigned int type = fs_umode_to_dtype(pos->mode); 1839 int len = strlen(name); 1840 ino_t ino = kernfs_ino(pos); 1841 1842 ctx->pos = pos->hash; 1843 file->private_data = pos; 1844 kernfs_get(pos); 1845 1846 up_read(&root->kernfs_rwsem); 1847 if (!dir_emit(ctx, name, len, ino, type)) 1848 return 0; 1849 down_read(&root->kernfs_rwsem); 1850 } 1851 up_read(&root->kernfs_rwsem); 1852 file->private_data = NULL; 1853 ctx->pos = INT_MAX; 1854 return 0; 1855 } 1856 1857 const struct file_operations kernfs_dir_fops = { 1858 .read = generic_read_dir, 1859 .iterate_shared = kernfs_fop_readdir, 1860 .release = kernfs_dir_fop_release, 1861 .llseek = generic_file_llseek, 1862 }; 1863