1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/fs.h> 13 #include <linux/namei.h> 14 #include <linux/idr.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/hash.h> 18 19 #include "kernfs-internal.h" 20 21 DEFINE_MUTEX(kernfs_mutex); 22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 45 } 46 47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf, 48 size_t buflen) 49 { 50 char *p = buf + buflen; 51 int len; 52 53 *--p = '\0'; 54 55 do { 56 len = strlen(kn->name); 57 if (p - buf < len + 1) { 58 buf[0] = '\0'; 59 p = NULL; 60 break; 61 } 62 p -= len; 63 memcpy(p, kn->name, len); 64 *--p = '/'; 65 kn = kn->parent; 66 } while (kn && kn->parent); 67 68 return p; 69 } 70 71 /** 72 * kernfs_name - obtain the name of a given node 73 * @kn: kernfs_node of interest 74 * @buf: buffer to copy @kn's name into 75 * @buflen: size of @buf 76 * 77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 78 * similar to strlcpy(). It returns the length of @kn's name and if @buf 79 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 80 * 81 * This function can be called from any context. 82 */ 83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 84 { 85 unsigned long flags; 86 int ret; 87 88 spin_lock_irqsave(&kernfs_rename_lock, flags); 89 ret = kernfs_name_locked(kn, buf, buflen); 90 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 91 return ret; 92 } 93 94 /** 95 * kernfs_path - build full path of a given node 96 * @kn: kernfs_node of interest 97 * @buf: buffer to copy @kn's name into 98 * @buflen: size of @buf 99 * 100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The 101 * path is built from the end of @buf so the returned pointer usually 102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated 103 * and %NULL is returned. 104 */ 105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen) 106 { 107 unsigned long flags; 108 char *p; 109 110 spin_lock_irqsave(&kernfs_rename_lock, flags); 111 p = kernfs_path_locked(kn, buf, buflen); 112 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 113 return p; 114 } 115 EXPORT_SYMBOL_GPL(kernfs_path); 116 117 /** 118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 119 * @kn: kernfs_node of interest 120 * 121 * This function can be called from any context. 122 */ 123 void pr_cont_kernfs_name(struct kernfs_node *kn) 124 { 125 unsigned long flags; 126 127 spin_lock_irqsave(&kernfs_rename_lock, flags); 128 129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 130 pr_cont("%s", kernfs_pr_cont_buf); 131 132 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 133 } 134 135 /** 136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 137 * @kn: kernfs_node of interest 138 * 139 * This function can be called from any context. 140 */ 141 void pr_cont_kernfs_path(struct kernfs_node *kn) 142 { 143 unsigned long flags; 144 char *p; 145 146 spin_lock_irqsave(&kernfs_rename_lock, flags); 147 148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf, 149 sizeof(kernfs_pr_cont_buf)); 150 if (p) 151 pr_cont("%s", p); 152 else 153 pr_cont("<name too long>"); 154 155 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 156 } 157 158 /** 159 * kernfs_get_parent - determine the parent node and pin it 160 * @kn: kernfs_node of interest 161 * 162 * Determines @kn's parent, pins and returns it. This function can be 163 * called from any context. 164 */ 165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 166 { 167 struct kernfs_node *parent; 168 unsigned long flags; 169 170 spin_lock_irqsave(&kernfs_rename_lock, flags); 171 parent = kn->parent; 172 kernfs_get(parent); 173 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 174 175 return parent; 176 } 177 178 /** 179 * kernfs_name_hash 180 * @name: Null terminated string to hash 181 * @ns: Namespace tag to hash 182 * 183 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 184 */ 185 static unsigned int kernfs_name_hash(const char *name, const void *ns) 186 { 187 unsigned long hash = init_name_hash(); 188 unsigned int len = strlen(name); 189 while (len--) 190 hash = partial_name_hash(*name++, hash); 191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31)); 192 hash &= 0x7fffffffU; 193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 194 if (hash < 2) 195 hash += 2; 196 if (hash >= INT_MAX) 197 hash = INT_MAX - 1; 198 return hash; 199 } 200 201 static int kernfs_name_compare(unsigned int hash, const char *name, 202 const void *ns, const struct kernfs_node *kn) 203 { 204 if (hash < kn->hash) 205 return -1; 206 if (hash > kn->hash) 207 return 1; 208 if (ns < kn->ns) 209 return -1; 210 if (ns > kn->ns) 211 return 1; 212 return strcmp(name, kn->name); 213 } 214 215 static int kernfs_sd_compare(const struct kernfs_node *left, 216 const struct kernfs_node *right) 217 { 218 return kernfs_name_compare(left->hash, left->name, left->ns, right); 219 } 220 221 /** 222 * kernfs_link_sibling - link kernfs_node into sibling rbtree 223 * @kn: kernfs_node of interest 224 * 225 * Link @kn into its sibling rbtree which starts from 226 * @kn->parent->dir.children. 227 * 228 * Locking: 229 * mutex_lock(kernfs_mutex) 230 * 231 * RETURNS: 232 * 0 on susccess -EEXIST on failure. 233 */ 234 static int kernfs_link_sibling(struct kernfs_node *kn) 235 { 236 struct rb_node **node = &kn->parent->dir.children.rb_node; 237 struct rb_node *parent = NULL; 238 239 while (*node) { 240 struct kernfs_node *pos; 241 int result; 242 243 pos = rb_to_kn(*node); 244 parent = *node; 245 result = kernfs_sd_compare(kn, pos); 246 if (result < 0) 247 node = &pos->rb.rb_left; 248 else if (result > 0) 249 node = &pos->rb.rb_right; 250 else 251 return -EEXIST; 252 } 253 254 /* add new node and rebalance the tree */ 255 rb_link_node(&kn->rb, parent, node); 256 rb_insert_color(&kn->rb, &kn->parent->dir.children); 257 258 /* successfully added, account subdir number */ 259 if (kernfs_type(kn) == KERNFS_DIR) 260 kn->parent->dir.subdirs++; 261 262 return 0; 263 } 264 265 /** 266 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 267 * @kn: kernfs_node of interest 268 * 269 * Try to unlink @kn from its sibling rbtree which starts from 270 * kn->parent->dir.children. Returns %true if @kn was actually 271 * removed, %false if @kn wasn't on the rbtree. 272 * 273 * Locking: 274 * mutex_lock(kernfs_mutex) 275 */ 276 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 277 { 278 if (RB_EMPTY_NODE(&kn->rb)) 279 return false; 280 281 if (kernfs_type(kn) == KERNFS_DIR) 282 kn->parent->dir.subdirs--; 283 284 rb_erase(&kn->rb, &kn->parent->dir.children); 285 RB_CLEAR_NODE(&kn->rb); 286 return true; 287 } 288 289 /** 290 * kernfs_get_active - get an active reference to kernfs_node 291 * @kn: kernfs_node to get an active reference to 292 * 293 * Get an active reference of @kn. This function is noop if @kn 294 * is NULL. 295 * 296 * RETURNS: 297 * Pointer to @kn on success, NULL on failure. 298 */ 299 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 300 { 301 if (unlikely(!kn)) 302 return NULL; 303 304 if (!atomic_inc_unless_negative(&kn->active)) 305 return NULL; 306 307 if (kernfs_lockdep(kn)) 308 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 309 return kn; 310 } 311 312 /** 313 * kernfs_put_active - put an active reference to kernfs_node 314 * @kn: kernfs_node to put an active reference to 315 * 316 * Put an active reference to @kn. This function is noop if @kn 317 * is NULL. 318 */ 319 void kernfs_put_active(struct kernfs_node *kn) 320 { 321 struct kernfs_root *root = kernfs_root(kn); 322 int v; 323 324 if (unlikely(!kn)) 325 return; 326 327 if (kernfs_lockdep(kn)) 328 rwsem_release(&kn->dep_map, 1, _RET_IP_); 329 v = atomic_dec_return(&kn->active); 330 if (likely(v != KN_DEACTIVATED_BIAS)) 331 return; 332 333 wake_up_all(&root->deactivate_waitq); 334 } 335 336 /** 337 * kernfs_drain - drain kernfs_node 338 * @kn: kernfs_node to drain 339 * 340 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 341 * removers may invoke this function concurrently on @kn and all will 342 * return after draining is complete. 343 */ 344 static void kernfs_drain(struct kernfs_node *kn) 345 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 346 { 347 struct kernfs_root *root = kernfs_root(kn); 348 349 lockdep_assert_held(&kernfs_mutex); 350 WARN_ON_ONCE(kernfs_active(kn)); 351 352 mutex_unlock(&kernfs_mutex); 353 354 if (kernfs_lockdep(kn)) { 355 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 356 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 357 lock_contended(&kn->dep_map, _RET_IP_); 358 } 359 360 /* but everyone should wait for draining */ 361 wait_event(root->deactivate_waitq, 362 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 363 364 if (kernfs_lockdep(kn)) { 365 lock_acquired(&kn->dep_map, _RET_IP_); 366 rwsem_release(&kn->dep_map, 1, _RET_IP_); 367 } 368 369 kernfs_unmap_bin_file(kn); 370 371 mutex_lock(&kernfs_mutex); 372 } 373 374 /** 375 * kernfs_get - get a reference count on a kernfs_node 376 * @kn: the target kernfs_node 377 */ 378 void kernfs_get(struct kernfs_node *kn) 379 { 380 if (kn) { 381 WARN_ON(!atomic_read(&kn->count)); 382 atomic_inc(&kn->count); 383 } 384 } 385 EXPORT_SYMBOL_GPL(kernfs_get); 386 387 /** 388 * kernfs_put - put a reference count on a kernfs_node 389 * @kn: the target kernfs_node 390 * 391 * Put a reference count of @kn and destroy it if it reached zero. 392 */ 393 void kernfs_put(struct kernfs_node *kn) 394 { 395 struct kernfs_node *parent; 396 struct kernfs_root *root; 397 398 if (!kn || !atomic_dec_and_test(&kn->count)) 399 return; 400 root = kernfs_root(kn); 401 repeat: 402 /* 403 * Moving/renaming is always done while holding reference. 404 * kn->parent won't change beneath us. 405 */ 406 parent = kn->parent; 407 408 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 409 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 410 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 411 412 if (kernfs_type(kn) == KERNFS_LINK) 413 kernfs_put(kn->symlink.target_kn); 414 415 kfree_const(kn->name); 416 417 if (kn->iattr) { 418 if (kn->iattr->ia_secdata) 419 security_release_secctx(kn->iattr->ia_secdata, 420 kn->iattr->ia_secdata_len); 421 simple_xattrs_free(&kn->iattr->xattrs); 422 } 423 kfree(kn->iattr); 424 ida_simple_remove(&root->ino_ida, kn->ino); 425 kmem_cache_free(kernfs_node_cache, kn); 426 427 kn = parent; 428 if (kn) { 429 if (atomic_dec_and_test(&kn->count)) 430 goto repeat; 431 } else { 432 /* just released the root kn, free @root too */ 433 ida_destroy(&root->ino_ida); 434 kfree(root); 435 } 436 } 437 EXPORT_SYMBOL_GPL(kernfs_put); 438 439 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 440 { 441 struct kernfs_node *kn; 442 443 if (flags & LOOKUP_RCU) 444 return -ECHILD; 445 446 /* Always perform fresh lookup for negatives */ 447 if (d_really_is_negative(dentry)) 448 goto out_bad_unlocked; 449 450 kn = dentry->d_fsdata; 451 mutex_lock(&kernfs_mutex); 452 453 /* The kernfs node has been deactivated */ 454 if (!kernfs_active(kn)) 455 goto out_bad; 456 457 /* The kernfs node has been moved? */ 458 if (dentry->d_parent->d_fsdata != kn->parent) 459 goto out_bad; 460 461 /* The kernfs node has been renamed */ 462 if (strcmp(dentry->d_name.name, kn->name) != 0) 463 goto out_bad; 464 465 /* The kernfs node has been moved to a different namespace */ 466 if (kn->parent && kernfs_ns_enabled(kn->parent) && 467 kernfs_info(dentry->d_sb)->ns != kn->ns) 468 goto out_bad; 469 470 mutex_unlock(&kernfs_mutex); 471 return 1; 472 out_bad: 473 mutex_unlock(&kernfs_mutex); 474 out_bad_unlocked: 475 return 0; 476 } 477 478 static void kernfs_dop_release(struct dentry *dentry) 479 { 480 kernfs_put(dentry->d_fsdata); 481 } 482 483 const struct dentry_operations kernfs_dops = { 484 .d_revalidate = kernfs_dop_revalidate, 485 .d_release = kernfs_dop_release, 486 }; 487 488 /** 489 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 490 * @dentry: the dentry in question 491 * 492 * Return the kernfs_node associated with @dentry. If @dentry is not a 493 * kernfs one, %NULL is returned. 494 * 495 * While the returned kernfs_node will stay accessible as long as @dentry 496 * is accessible, the returned node can be in any state and the caller is 497 * fully responsible for determining what's accessible. 498 */ 499 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 500 { 501 if (dentry->d_sb->s_op == &kernfs_sops) 502 return dentry->d_fsdata; 503 return NULL; 504 } 505 506 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 507 const char *name, umode_t mode, 508 unsigned flags) 509 { 510 struct kernfs_node *kn; 511 int ret; 512 513 name = kstrdup_const(name, GFP_KERNEL); 514 if (!name) 515 return NULL; 516 517 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 518 if (!kn) 519 goto err_out1; 520 521 /* 522 * If the ino of the sysfs entry created for a kmem cache gets 523 * allocated from an ida layer, which is accounted to the memcg that 524 * owns the cache, the memcg will get pinned forever. So do not account 525 * ino ida allocations. 526 */ 527 ret = ida_simple_get(&root->ino_ida, 1, 0, 528 GFP_KERNEL | __GFP_NOACCOUNT); 529 if (ret < 0) 530 goto err_out2; 531 kn->ino = ret; 532 533 atomic_set(&kn->count, 1); 534 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 535 RB_CLEAR_NODE(&kn->rb); 536 537 kn->name = name; 538 kn->mode = mode; 539 kn->flags = flags; 540 541 return kn; 542 543 err_out2: 544 kmem_cache_free(kernfs_node_cache, kn); 545 err_out1: 546 kfree_const(name); 547 return NULL; 548 } 549 550 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 551 const char *name, umode_t mode, 552 unsigned flags) 553 { 554 struct kernfs_node *kn; 555 556 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags); 557 if (kn) { 558 kernfs_get(parent); 559 kn->parent = parent; 560 } 561 return kn; 562 } 563 564 /** 565 * kernfs_add_one - add kernfs_node to parent without warning 566 * @kn: kernfs_node to be added 567 * 568 * The caller must already have initialized @kn->parent. This 569 * function increments nlink of the parent's inode if @kn is a 570 * directory and link into the children list of the parent. 571 * 572 * RETURNS: 573 * 0 on success, -EEXIST if entry with the given name already 574 * exists. 575 */ 576 int kernfs_add_one(struct kernfs_node *kn) 577 { 578 struct kernfs_node *parent = kn->parent; 579 struct kernfs_iattrs *ps_iattr; 580 bool has_ns; 581 int ret; 582 583 mutex_lock(&kernfs_mutex); 584 585 ret = -EINVAL; 586 has_ns = kernfs_ns_enabled(parent); 587 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 588 has_ns ? "required" : "invalid", parent->name, kn->name)) 589 goto out_unlock; 590 591 if (kernfs_type(parent) != KERNFS_DIR) 592 goto out_unlock; 593 594 ret = -ENOENT; 595 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 596 goto out_unlock; 597 598 kn->hash = kernfs_name_hash(kn->name, kn->ns); 599 600 ret = kernfs_link_sibling(kn); 601 if (ret) 602 goto out_unlock; 603 604 /* Update timestamps on the parent */ 605 ps_iattr = parent->iattr; 606 if (ps_iattr) { 607 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 608 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME; 609 } 610 611 mutex_unlock(&kernfs_mutex); 612 613 /* 614 * Activate the new node unless CREATE_DEACTIVATED is requested. 615 * If not activated here, the kernfs user is responsible for 616 * activating the node with kernfs_activate(). A node which hasn't 617 * been activated is not visible to userland and its removal won't 618 * trigger deactivation. 619 */ 620 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 621 kernfs_activate(kn); 622 return 0; 623 624 out_unlock: 625 mutex_unlock(&kernfs_mutex); 626 return ret; 627 } 628 629 /** 630 * kernfs_find_ns - find kernfs_node with the given name 631 * @parent: kernfs_node to search under 632 * @name: name to look for 633 * @ns: the namespace tag to use 634 * 635 * Look for kernfs_node with name @name under @parent. Returns pointer to 636 * the found kernfs_node on success, %NULL on failure. 637 */ 638 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 639 const unsigned char *name, 640 const void *ns) 641 { 642 struct rb_node *node = parent->dir.children.rb_node; 643 bool has_ns = kernfs_ns_enabled(parent); 644 unsigned int hash; 645 646 lockdep_assert_held(&kernfs_mutex); 647 648 if (has_ns != (bool)ns) { 649 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 650 has_ns ? "required" : "invalid", parent->name, name); 651 return NULL; 652 } 653 654 hash = kernfs_name_hash(name, ns); 655 while (node) { 656 struct kernfs_node *kn; 657 int result; 658 659 kn = rb_to_kn(node); 660 result = kernfs_name_compare(hash, name, ns, kn); 661 if (result < 0) 662 node = node->rb_left; 663 else if (result > 0) 664 node = node->rb_right; 665 else 666 return kn; 667 } 668 return NULL; 669 } 670 671 /** 672 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 673 * @parent: kernfs_node to search under 674 * @name: name to look for 675 * @ns: the namespace tag to use 676 * 677 * Look for kernfs_node with name @name under @parent and get a reference 678 * if found. This function may sleep and returns pointer to the found 679 * kernfs_node on success, %NULL on failure. 680 */ 681 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 682 const char *name, const void *ns) 683 { 684 struct kernfs_node *kn; 685 686 mutex_lock(&kernfs_mutex); 687 kn = kernfs_find_ns(parent, name, ns); 688 kernfs_get(kn); 689 mutex_unlock(&kernfs_mutex); 690 691 return kn; 692 } 693 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 694 695 /** 696 * kernfs_create_root - create a new kernfs hierarchy 697 * @scops: optional syscall operations for the hierarchy 698 * @flags: KERNFS_ROOT_* flags 699 * @priv: opaque data associated with the new directory 700 * 701 * Returns the root of the new hierarchy on success, ERR_PTR() value on 702 * failure. 703 */ 704 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 705 unsigned int flags, void *priv) 706 { 707 struct kernfs_root *root; 708 struct kernfs_node *kn; 709 710 root = kzalloc(sizeof(*root), GFP_KERNEL); 711 if (!root) 712 return ERR_PTR(-ENOMEM); 713 714 ida_init(&root->ino_ida); 715 INIT_LIST_HEAD(&root->supers); 716 717 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 718 KERNFS_DIR); 719 if (!kn) { 720 ida_destroy(&root->ino_ida); 721 kfree(root); 722 return ERR_PTR(-ENOMEM); 723 } 724 725 kn->priv = priv; 726 kn->dir.root = root; 727 728 root->syscall_ops = scops; 729 root->flags = flags; 730 root->kn = kn; 731 init_waitqueue_head(&root->deactivate_waitq); 732 733 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 734 kernfs_activate(kn); 735 736 return root; 737 } 738 739 /** 740 * kernfs_destroy_root - destroy a kernfs hierarchy 741 * @root: root of the hierarchy to destroy 742 * 743 * Destroy the hierarchy anchored at @root by removing all existing 744 * directories and destroying @root. 745 */ 746 void kernfs_destroy_root(struct kernfs_root *root) 747 { 748 kernfs_remove(root->kn); /* will also free @root */ 749 } 750 751 /** 752 * kernfs_create_dir_ns - create a directory 753 * @parent: parent in which to create a new directory 754 * @name: name of the new directory 755 * @mode: mode of the new directory 756 * @priv: opaque data associated with the new directory 757 * @ns: optional namespace tag of the directory 758 * 759 * Returns the created node on success, ERR_PTR() value on failure. 760 */ 761 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 762 const char *name, umode_t mode, 763 void *priv, const void *ns) 764 { 765 struct kernfs_node *kn; 766 int rc; 767 768 /* allocate */ 769 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR); 770 if (!kn) 771 return ERR_PTR(-ENOMEM); 772 773 kn->dir.root = parent->dir.root; 774 kn->ns = ns; 775 kn->priv = priv; 776 777 /* link in */ 778 rc = kernfs_add_one(kn); 779 if (!rc) 780 return kn; 781 782 kernfs_put(kn); 783 return ERR_PTR(rc); 784 } 785 786 static struct dentry *kernfs_iop_lookup(struct inode *dir, 787 struct dentry *dentry, 788 unsigned int flags) 789 { 790 struct dentry *ret; 791 struct kernfs_node *parent = dentry->d_parent->d_fsdata; 792 struct kernfs_node *kn; 793 struct inode *inode; 794 const void *ns = NULL; 795 796 mutex_lock(&kernfs_mutex); 797 798 if (kernfs_ns_enabled(parent)) 799 ns = kernfs_info(dir->i_sb)->ns; 800 801 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 802 803 /* no such entry */ 804 if (!kn || !kernfs_active(kn)) { 805 ret = NULL; 806 goto out_unlock; 807 } 808 kernfs_get(kn); 809 dentry->d_fsdata = kn; 810 811 /* attach dentry and inode */ 812 inode = kernfs_get_inode(dir->i_sb, kn); 813 if (!inode) { 814 ret = ERR_PTR(-ENOMEM); 815 goto out_unlock; 816 } 817 818 /* instantiate and hash dentry */ 819 ret = d_splice_alias(inode, dentry); 820 out_unlock: 821 mutex_unlock(&kernfs_mutex); 822 return ret; 823 } 824 825 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 826 umode_t mode) 827 { 828 struct kernfs_node *parent = dir->i_private; 829 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 830 int ret; 831 832 if (!scops || !scops->mkdir) 833 return -EPERM; 834 835 if (!kernfs_get_active(parent)) 836 return -ENODEV; 837 838 ret = scops->mkdir(parent, dentry->d_name.name, mode); 839 840 kernfs_put_active(parent); 841 return ret; 842 } 843 844 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 845 { 846 struct kernfs_node *kn = dentry->d_fsdata; 847 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 848 int ret; 849 850 if (!scops || !scops->rmdir) 851 return -EPERM; 852 853 if (!kernfs_get_active(kn)) 854 return -ENODEV; 855 856 ret = scops->rmdir(kn); 857 858 kernfs_put_active(kn); 859 return ret; 860 } 861 862 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 863 struct inode *new_dir, struct dentry *new_dentry) 864 { 865 struct kernfs_node *kn = old_dentry->d_fsdata; 866 struct kernfs_node *new_parent = new_dir->i_private; 867 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 868 int ret; 869 870 if (!scops || !scops->rename) 871 return -EPERM; 872 873 if (!kernfs_get_active(kn)) 874 return -ENODEV; 875 876 if (!kernfs_get_active(new_parent)) { 877 kernfs_put_active(kn); 878 return -ENODEV; 879 } 880 881 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 882 883 kernfs_put_active(new_parent); 884 kernfs_put_active(kn); 885 return ret; 886 } 887 888 const struct inode_operations kernfs_dir_iops = { 889 .lookup = kernfs_iop_lookup, 890 .permission = kernfs_iop_permission, 891 .setattr = kernfs_iop_setattr, 892 .getattr = kernfs_iop_getattr, 893 .setxattr = kernfs_iop_setxattr, 894 .removexattr = kernfs_iop_removexattr, 895 .getxattr = kernfs_iop_getxattr, 896 .listxattr = kernfs_iop_listxattr, 897 898 .mkdir = kernfs_iop_mkdir, 899 .rmdir = kernfs_iop_rmdir, 900 .rename = kernfs_iop_rename, 901 }; 902 903 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 904 { 905 struct kernfs_node *last; 906 907 while (true) { 908 struct rb_node *rbn; 909 910 last = pos; 911 912 if (kernfs_type(pos) != KERNFS_DIR) 913 break; 914 915 rbn = rb_first(&pos->dir.children); 916 if (!rbn) 917 break; 918 919 pos = rb_to_kn(rbn); 920 } 921 922 return last; 923 } 924 925 /** 926 * kernfs_next_descendant_post - find the next descendant for post-order walk 927 * @pos: the current position (%NULL to initiate traversal) 928 * @root: kernfs_node whose descendants to walk 929 * 930 * Find the next descendant to visit for post-order traversal of @root's 931 * descendants. @root is included in the iteration and the last node to be 932 * visited. 933 */ 934 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 935 struct kernfs_node *root) 936 { 937 struct rb_node *rbn; 938 939 lockdep_assert_held(&kernfs_mutex); 940 941 /* if first iteration, visit leftmost descendant which may be root */ 942 if (!pos) 943 return kernfs_leftmost_descendant(root); 944 945 /* if we visited @root, we're done */ 946 if (pos == root) 947 return NULL; 948 949 /* if there's an unvisited sibling, visit its leftmost descendant */ 950 rbn = rb_next(&pos->rb); 951 if (rbn) 952 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 953 954 /* no sibling left, visit parent */ 955 return pos->parent; 956 } 957 958 /** 959 * kernfs_activate - activate a node which started deactivated 960 * @kn: kernfs_node whose subtree is to be activated 961 * 962 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 963 * needs to be explicitly activated. A node which hasn't been activated 964 * isn't visible to userland and deactivation is skipped during its 965 * removal. This is useful to construct atomic init sequences where 966 * creation of multiple nodes should either succeed or fail atomically. 967 * 968 * The caller is responsible for ensuring that this function is not called 969 * after kernfs_remove*() is invoked on @kn. 970 */ 971 void kernfs_activate(struct kernfs_node *kn) 972 { 973 struct kernfs_node *pos; 974 975 mutex_lock(&kernfs_mutex); 976 977 pos = NULL; 978 while ((pos = kernfs_next_descendant_post(pos, kn))) { 979 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 980 continue; 981 982 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 983 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 984 985 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 986 pos->flags |= KERNFS_ACTIVATED; 987 } 988 989 mutex_unlock(&kernfs_mutex); 990 } 991 992 static void __kernfs_remove(struct kernfs_node *kn) 993 { 994 struct kernfs_node *pos; 995 996 lockdep_assert_held(&kernfs_mutex); 997 998 /* 999 * Short-circuit if non-root @kn has already finished removal. 1000 * This is for kernfs_remove_self() which plays with active ref 1001 * after removal. 1002 */ 1003 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1004 return; 1005 1006 pr_debug("kernfs %s: removing\n", kn->name); 1007 1008 /* prevent any new usage under @kn by deactivating all nodes */ 1009 pos = NULL; 1010 while ((pos = kernfs_next_descendant_post(pos, kn))) 1011 if (kernfs_active(pos)) 1012 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1013 1014 /* deactivate and unlink the subtree node-by-node */ 1015 do { 1016 pos = kernfs_leftmost_descendant(kn); 1017 1018 /* 1019 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1020 * base ref could have been put by someone else by the time 1021 * the function returns. Make sure it doesn't go away 1022 * underneath us. 1023 */ 1024 kernfs_get(pos); 1025 1026 /* 1027 * Drain iff @kn was activated. This avoids draining and 1028 * its lockdep annotations for nodes which have never been 1029 * activated and allows embedding kernfs_remove() in create 1030 * error paths without worrying about draining. 1031 */ 1032 if (kn->flags & KERNFS_ACTIVATED) 1033 kernfs_drain(pos); 1034 else 1035 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1036 1037 /* 1038 * kernfs_unlink_sibling() succeeds once per node. Use it 1039 * to decide who's responsible for cleanups. 1040 */ 1041 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1042 struct kernfs_iattrs *ps_iattr = 1043 pos->parent ? pos->parent->iattr : NULL; 1044 1045 /* update timestamps on the parent */ 1046 if (ps_iattr) { 1047 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME; 1048 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME; 1049 } 1050 1051 kernfs_put(pos); 1052 } 1053 1054 kernfs_put(pos); 1055 } while (pos != kn); 1056 } 1057 1058 /** 1059 * kernfs_remove - remove a kernfs_node recursively 1060 * @kn: the kernfs_node to remove 1061 * 1062 * Remove @kn along with all its subdirectories and files. 1063 */ 1064 void kernfs_remove(struct kernfs_node *kn) 1065 { 1066 mutex_lock(&kernfs_mutex); 1067 __kernfs_remove(kn); 1068 mutex_unlock(&kernfs_mutex); 1069 } 1070 1071 /** 1072 * kernfs_break_active_protection - break out of active protection 1073 * @kn: the self kernfs_node 1074 * 1075 * The caller must be running off of a kernfs operation which is invoked 1076 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1077 * this function must also be matched with an invocation of 1078 * kernfs_unbreak_active_protection(). 1079 * 1080 * This function releases the active reference of @kn the caller is 1081 * holding. Once this function is called, @kn may be removed at any point 1082 * and the caller is solely responsible for ensuring that the objects it 1083 * dereferences are accessible. 1084 */ 1085 void kernfs_break_active_protection(struct kernfs_node *kn) 1086 { 1087 /* 1088 * Take out ourself out of the active ref dependency chain. If 1089 * we're called without an active ref, lockdep will complain. 1090 */ 1091 kernfs_put_active(kn); 1092 } 1093 1094 /** 1095 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1096 * @kn: the self kernfs_node 1097 * 1098 * If kernfs_break_active_protection() was called, this function must be 1099 * invoked before finishing the kernfs operation. Note that while this 1100 * function restores the active reference, it doesn't and can't actually 1101 * restore the active protection - @kn may already or be in the process of 1102 * being removed. Once kernfs_break_active_protection() is invoked, that 1103 * protection is irreversibly gone for the kernfs operation instance. 1104 * 1105 * While this function may be called at any point after 1106 * kernfs_break_active_protection() is invoked, its most useful location 1107 * would be right before the enclosing kernfs operation returns. 1108 */ 1109 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1110 { 1111 /* 1112 * @kn->active could be in any state; however, the increment we do 1113 * here will be undone as soon as the enclosing kernfs operation 1114 * finishes and this temporary bump can't break anything. If @kn 1115 * is alive, nothing changes. If @kn is being deactivated, the 1116 * soon-to-follow put will either finish deactivation or restore 1117 * deactivated state. If @kn is already removed, the temporary 1118 * bump is guaranteed to be gone before @kn is released. 1119 */ 1120 atomic_inc(&kn->active); 1121 if (kernfs_lockdep(kn)) 1122 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1123 } 1124 1125 /** 1126 * kernfs_remove_self - remove a kernfs_node from its own method 1127 * @kn: the self kernfs_node to remove 1128 * 1129 * The caller must be running off of a kernfs operation which is invoked 1130 * with an active reference - e.g. one of kernfs_ops. This can be used to 1131 * implement a file operation which deletes itself. 1132 * 1133 * For example, the "delete" file for a sysfs device directory can be 1134 * implemented by invoking kernfs_remove_self() on the "delete" file 1135 * itself. This function breaks the circular dependency of trying to 1136 * deactivate self while holding an active ref itself. It isn't necessary 1137 * to modify the usual removal path to use kernfs_remove_self(). The 1138 * "delete" implementation can simply invoke kernfs_remove_self() on self 1139 * before proceeding with the usual removal path. kernfs will ignore later 1140 * kernfs_remove() on self. 1141 * 1142 * kernfs_remove_self() can be called multiple times concurrently on the 1143 * same kernfs_node. Only the first one actually performs removal and 1144 * returns %true. All others will wait until the kernfs operation which 1145 * won self-removal finishes and return %false. Note that the losers wait 1146 * for the completion of not only the winning kernfs_remove_self() but also 1147 * the whole kernfs_ops which won the arbitration. This can be used to 1148 * guarantee, for example, all concurrent writes to a "delete" file to 1149 * finish only after the whole operation is complete. 1150 */ 1151 bool kernfs_remove_self(struct kernfs_node *kn) 1152 { 1153 bool ret; 1154 1155 mutex_lock(&kernfs_mutex); 1156 kernfs_break_active_protection(kn); 1157 1158 /* 1159 * SUICIDAL is used to arbitrate among competing invocations. Only 1160 * the first one will actually perform removal. When the removal 1161 * is complete, SUICIDED is set and the active ref is restored 1162 * while holding kernfs_mutex. The ones which lost arbitration 1163 * waits for SUICDED && drained which can happen only after the 1164 * enclosing kernfs operation which executed the winning instance 1165 * of kernfs_remove_self() finished. 1166 */ 1167 if (!(kn->flags & KERNFS_SUICIDAL)) { 1168 kn->flags |= KERNFS_SUICIDAL; 1169 __kernfs_remove(kn); 1170 kn->flags |= KERNFS_SUICIDED; 1171 ret = true; 1172 } else { 1173 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1174 DEFINE_WAIT(wait); 1175 1176 while (true) { 1177 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1178 1179 if ((kn->flags & KERNFS_SUICIDED) && 1180 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1181 break; 1182 1183 mutex_unlock(&kernfs_mutex); 1184 schedule(); 1185 mutex_lock(&kernfs_mutex); 1186 } 1187 finish_wait(waitq, &wait); 1188 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1189 ret = false; 1190 } 1191 1192 /* 1193 * This must be done while holding kernfs_mutex; otherwise, waiting 1194 * for SUICIDED && deactivated could finish prematurely. 1195 */ 1196 kernfs_unbreak_active_protection(kn); 1197 1198 mutex_unlock(&kernfs_mutex); 1199 return ret; 1200 } 1201 1202 /** 1203 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1204 * @parent: parent of the target 1205 * @name: name of the kernfs_node to remove 1206 * @ns: namespace tag of the kernfs_node to remove 1207 * 1208 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1209 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1210 */ 1211 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1212 const void *ns) 1213 { 1214 struct kernfs_node *kn; 1215 1216 if (!parent) { 1217 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1218 name); 1219 return -ENOENT; 1220 } 1221 1222 mutex_lock(&kernfs_mutex); 1223 1224 kn = kernfs_find_ns(parent, name, ns); 1225 if (kn) 1226 __kernfs_remove(kn); 1227 1228 mutex_unlock(&kernfs_mutex); 1229 1230 if (kn) 1231 return 0; 1232 else 1233 return -ENOENT; 1234 } 1235 1236 /** 1237 * kernfs_rename_ns - move and rename a kernfs_node 1238 * @kn: target node 1239 * @new_parent: new parent to put @sd under 1240 * @new_name: new name 1241 * @new_ns: new namespace tag 1242 */ 1243 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1244 const char *new_name, const void *new_ns) 1245 { 1246 struct kernfs_node *old_parent; 1247 const char *old_name = NULL; 1248 int error; 1249 1250 /* can't move or rename root */ 1251 if (!kn->parent) 1252 return -EINVAL; 1253 1254 mutex_lock(&kernfs_mutex); 1255 1256 error = -ENOENT; 1257 if (!kernfs_active(kn) || !kernfs_active(new_parent)) 1258 goto out; 1259 1260 error = 0; 1261 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1262 (strcmp(kn->name, new_name) == 0)) 1263 goto out; /* nothing to rename */ 1264 1265 error = -EEXIST; 1266 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1267 goto out; 1268 1269 /* rename kernfs_node */ 1270 if (strcmp(kn->name, new_name) != 0) { 1271 error = -ENOMEM; 1272 new_name = kstrdup_const(new_name, GFP_KERNEL); 1273 if (!new_name) 1274 goto out; 1275 } else { 1276 new_name = NULL; 1277 } 1278 1279 /* 1280 * Move to the appropriate place in the appropriate directories rbtree. 1281 */ 1282 kernfs_unlink_sibling(kn); 1283 kernfs_get(new_parent); 1284 1285 /* rename_lock protects ->parent and ->name accessors */ 1286 spin_lock_irq(&kernfs_rename_lock); 1287 1288 old_parent = kn->parent; 1289 kn->parent = new_parent; 1290 1291 kn->ns = new_ns; 1292 if (new_name) { 1293 old_name = kn->name; 1294 kn->name = new_name; 1295 } 1296 1297 spin_unlock_irq(&kernfs_rename_lock); 1298 1299 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1300 kernfs_link_sibling(kn); 1301 1302 kernfs_put(old_parent); 1303 kfree_const(old_name); 1304 1305 error = 0; 1306 out: 1307 mutex_unlock(&kernfs_mutex); 1308 return error; 1309 } 1310 1311 /* Relationship between s_mode and the DT_xxx types */ 1312 static inline unsigned char dt_type(struct kernfs_node *kn) 1313 { 1314 return (kn->mode >> 12) & 15; 1315 } 1316 1317 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1318 { 1319 kernfs_put(filp->private_data); 1320 return 0; 1321 } 1322 1323 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1324 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1325 { 1326 if (pos) { 1327 int valid = kernfs_active(pos) && 1328 pos->parent == parent && hash == pos->hash; 1329 kernfs_put(pos); 1330 if (!valid) 1331 pos = NULL; 1332 } 1333 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1334 struct rb_node *node = parent->dir.children.rb_node; 1335 while (node) { 1336 pos = rb_to_kn(node); 1337 1338 if (hash < pos->hash) 1339 node = node->rb_left; 1340 else if (hash > pos->hash) 1341 node = node->rb_right; 1342 else 1343 break; 1344 } 1345 } 1346 /* Skip over entries which are dying/dead or in the wrong namespace */ 1347 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1348 struct rb_node *node = rb_next(&pos->rb); 1349 if (!node) 1350 pos = NULL; 1351 else 1352 pos = rb_to_kn(node); 1353 } 1354 return pos; 1355 } 1356 1357 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1358 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1359 { 1360 pos = kernfs_dir_pos(ns, parent, ino, pos); 1361 if (pos) { 1362 do { 1363 struct rb_node *node = rb_next(&pos->rb); 1364 if (!node) 1365 pos = NULL; 1366 else 1367 pos = rb_to_kn(node); 1368 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1369 } 1370 return pos; 1371 } 1372 1373 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1374 { 1375 struct dentry *dentry = file->f_path.dentry; 1376 struct kernfs_node *parent = dentry->d_fsdata; 1377 struct kernfs_node *pos = file->private_data; 1378 const void *ns = NULL; 1379 1380 if (!dir_emit_dots(file, ctx)) 1381 return 0; 1382 mutex_lock(&kernfs_mutex); 1383 1384 if (kernfs_ns_enabled(parent)) 1385 ns = kernfs_info(dentry->d_sb)->ns; 1386 1387 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1388 pos; 1389 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1390 const char *name = pos->name; 1391 unsigned int type = dt_type(pos); 1392 int len = strlen(name); 1393 ino_t ino = pos->ino; 1394 1395 ctx->pos = pos->hash; 1396 file->private_data = pos; 1397 kernfs_get(pos); 1398 1399 mutex_unlock(&kernfs_mutex); 1400 if (!dir_emit(ctx, name, len, ino, type)) 1401 return 0; 1402 mutex_lock(&kernfs_mutex); 1403 } 1404 mutex_unlock(&kernfs_mutex); 1405 file->private_data = NULL; 1406 ctx->pos = INT_MAX; 1407 return 0; 1408 } 1409 1410 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset, 1411 int whence) 1412 { 1413 struct inode *inode = file_inode(file); 1414 loff_t ret; 1415 1416 mutex_lock(&inode->i_mutex); 1417 ret = generic_file_llseek(file, offset, whence); 1418 mutex_unlock(&inode->i_mutex); 1419 1420 return ret; 1421 } 1422 1423 const struct file_operations kernfs_dir_fops = { 1424 .read = generic_read_dir, 1425 .iterate = kernfs_fop_readdir, 1426 .release = kernfs_dir_fop_release, 1427 .llseek = kernfs_dir_fop_llseek, 1428 }; 1429