xref: /openbmc/linux/fs/kernfs/dir.c (revision c819e2cf)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46 
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 					      size_t buflen)
49 {
50 	char *p = buf + buflen;
51 	int len;
52 
53 	*--p = '\0';
54 
55 	do {
56 		len = strlen(kn->name);
57 		if (p - buf < len + 1) {
58 			buf[0] = '\0';
59 			p = NULL;
60 			break;
61 		}
62 		p -= len;
63 		memcpy(p, kn->name, len);
64 		*--p = '/';
65 		kn = kn->parent;
66 	} while (kn && kn->parent);
67 
68 	return p;
69 }
70 
71 /**
72  * kernfs_name - obtain the name of a given node
73  * @kn: kernfs_node of interest
74  * @buf: buffer to copy @kn's name into
75  * @buflen: size of @buf
76  *
77  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
78  * similar to strlcpy().  It returns the length of @kn's name and if @buf
79  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80  *
81  * This function can be called from any context.
82  */
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 	unsigned long flags;
86 	int ret;
87 
88 	spin_lock_irqsave(&kernfs_rename_lock, flags);
89 	ret = kernfs_name_locked(kn, buf, buflen);
90 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 	return ret;
92 }
93 
94 /**
95  * kernfs_path - build full path of a given node
96  * @kn: kernfs_node of interest
97  * @buf: buffer to copy @kn's name into
98  * @buflen: size of @buf
99  *
100  * Builds and returns the full path of @kn in @buf of @buflen bytes.  The
101  * path is built from the end of @buf so the returned pointer usually
102  * doesn't match @buf.  If @buf isn't long enough, @buf is nul terminated
103  * and %NULL is returned.
104  */
105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
106 {
107 	unsigned long flags;
108 	char *p;
109 
110 	spin_lock_irqsave(&kernfs_rename_lock, flags);
111 	p = kernfs_path_locked(kn, buf, buflen);
112 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 	return p;
114 }
115 EXPORT_SYMBOL_GPL(kernfs_path);
116 
117 /**
118  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119  * @kn: kernfs_node of interest
120  *
121  * This function can be called from any context.
122  */
123 void pr_cont_kernfs_name(struct kernfs_node *kn)
124 {
125 	unsigned long flags;
126 
127 	spin_lock_irqsave(&kernfs_rename_lock, flags);
128 
129 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 	pr_cont("%s", kernfs_pr_cont_buf);
131 
132 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
133 }
134 
135 /**
136  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137  * @kn: kernfs_node of interest
138  *
139  * This function can be called from any context.
140  */
141 void pr_cont_kernfs_path(struct kernfs_node *kn)
142 {
143 	unsigned long flags;
144 	char *p;
145 
146 	spin_lock_irqsave(&kernfs_rename_lock, flags);
147 
148 	p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 			       sizeof(kernfs_pr_cont_buf));
150 	if (p)
151 		pr_cont("%s", p);
152 	else
153 		pr_cont("<name too long>");
154 
155 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157 
158 /**
159  * kernfs_get_parent - determine the parent node and pin it
160  * @kn: kernfs_node of interest
161  *
162  * Determines @kn's parent, pins and returns it.  This function can be
163  * called from any context.
164  */
165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
166 {
167 	struct kernfs_node *parent;
168 	unsigned long flags;
169 
170 	spin_lock_irqsave(&kernfs_rename_lock, flags);
171 	parent = kn->parent;
172 	kernfs_get(parent);
173 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
174 
175 	return parent;
176 }
177 
178 /**
179  *	kernfs_name_hash
180  *	@name: Null terminated string to hash
181  *	@ns:   Namespace tag to hash
182  *
183  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
184  */
185 static unsigned int kernfs_name_hash(const char *name, const void *ns)
186 {
187 	unsigned long hash = init_name_hash();
188 	unsigned int len = strlen(name);
189 	while (len--)
190 		hash = partial_name_hash(*name++, hash);
191 	hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 	hash &= 0x7fffffffU;
193 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
194 	if (hash < 2)
195 		hash += 2;
196 	if (hash >= INT_MAX)
197 		hash = INT_MAX - 1;
198 	return hash;
199 }
200 
201 static int kernfs_name_compare(unsigned int hash, const char *name,
202 			       const void *ns, const struct kernfs_node *kn)
203 {
204 	if (hash < kn->hash)
205 		return -1;
206 	if (hash > kn->hash)
207 		return 1;
208 	if (ns < kn->ns)
209 		return -1;
210 	if (ns > kn->ns)
211 		return 1;
212 	return strcmp(name, kn->name);
213 }
214 
215 static int kernfs_sd_compare(const struct kernfs_node *left,
216 			     const struct kernfs_node *right)
217 {
218 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
219 }
220 
221 /**
222  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
223  *	@kn: kernfs_node of interest
224  *
225  *	Link @kn into its sibling rbtree which starts from
226  *	@kn->parent->dir.children.
227  *
228  *	Locking:
229  *	mutex_lock(kernfs_mutex)
230  *
231  *	RETURNS:
232  *	0 on susccess -EEXIST on failure.
233  */
234 static int kernfs_link_sibling(struct kernfs_node *kn)
235 {
236 	struct rb_node **node = &kn->parent->dir.children.rb_node;
237 	struct rb_node *parent = NULL;
238 
239 	while (*node) {
240 		struct kernfs_node *pos;
241 		int result;
242 
243 		pos = rb_to_kn(*node);
244 		parent = *node;
245 		result = kernfs_sd_compare(kn, pos);
246 		if (result < 0)
247 			node = &pos->rb.rb_left;
248 		else if (result > 0)
249 			node = &pos->rb.rb_right;
250 		else
251 			return -EEXIST;
252 	}
253 
254 	/* add new node and rebalance the tree */
255 	rb_link_node(&kn->rb, parent, node);
256 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
257 
258 	/* successfully added, account subdir number */
259 	if (kernfs_type(kn) == KERNFS_DIR)
260 		kn->parent->dir.subdirs++;
261 
262 	return 0;
263 }
264 
265 /**
266  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
267  *	@kn: kernfs_node of interest
268  *
269  *	Try to unlink @kn from its sibling rbtree which starts from
270  *	kn->parent->dir.children.  Returns %true if @kn was actually
271  *	removed, %false if @kn wasn't on the rbtree.
272  *
273  *	Locking:
274  *	mutex_lock(kernfs_mutex)
275  */
276 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
277 {
278 	if (RB_EMPTY_NODE(&kn->rb))
279 		return false;
280 
281 	if (kernfs_type(kn) == KERNFS_DIR)
282 		kn->parent->dir.subdirs--;
283 
284 	rb_erase(&kn->rb, &kn->parent->dir.children);
285 	RB_CLEAR_NODE(&kn->rb);
286 	return true;
287 }
288 
289 /**
290  *	kernfs_get_active - get an active reference to kernfs_node
291  *	@kn: kernfs_node to get an active reference to
292  *
293  *	Get an active reference of @kn.  This function is noop if @kn
294  *	is NULL.
295  *
296  *	RETURNS:
297  *	Pointer to @kn on success, NULL on failure.
298  */
299 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
300 {
301 	if (unlikely(!kn))
302 		return NULL;
303 
304 	if (!atomic_inc_unless_negative(&kn->active))
305 		return NULL;
306 
307 	if (kernfs_lockdep(kn))
308 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
309 	return kn;
310 }
311 
312 /**
313  *	kernfs_put_active - put an active reference to kernfs_node
314  *	@kn: kernfs_node to put an active reference to
315  *
316  *	Put an active reference to @kn.  This function is noop if @kn
317  *	is NULL.
318  */
319 void kernfs_put_active(struct kernfs_node *kn)
320 {
321 	struct kernfs_root *root = kernfs_root(kn);
322 	int v;
323 
324 	if (unlikely(!kn))
325 		return;
326 
327 	if (kernfs_lockdep(kn))
328 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
329 	v = atomic_dec_return(&kn->active);
330 	if (likely(v != KN_DEACTIVATED_BIAS))
331 		return;
332 
333 	wake_up_all(&root->deactivate_waitq);
334 }
335 
336 /**
337  * kernfs_drain - drain kernfs_node
338  * @kn: kernfs_node to drain
339  *
340  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
341  * removers may invoke this function concurrently on @kn and all will
342  * return after draining is complete.
343  */
344 static void kernfs_drain(struct kernfs_node *kn)
345 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
346 {
347 	struct kernfs_root *root = kernfs_root(kn);
348 
349 	lockdep_assert_held(&kernfs_mutex);
350 	WARN_ON_ONCE(kernfs_active(kn));
351 
352 	mutex_unlock(&kernfs_mutex);
353 
354 	if (kernfs_lockdep(kn)) {
355 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
356 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
357 			lock_contended(&kn->dep_map, _RET_IP_);
358 	}
359 
360 	/* but everyone should wait for draining */
361 	wait_event(root->deactivate_waitq,
362 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
363 
364 	if (kernfs_lockdep(kn)) {
365 		lock_acquired(&kn->dep_map, _RET_IP_);
366 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
367 	}
368 
369 	kernfs_unmap_bin_file(kn);
370 
371 	mutex_lock(&kernfs_mutex);
372 }
373 
374 /**
375  * kernfs_get - get a reference count on a kernfs_node
376  * @kn: the target kernfs_node
377  */
378 void kernfs_get(struct kernfs_node *kn)
379 {
380 	if (kn) {
381 		WARN_ON(!atomic_read(&kn->count));
382 		atomic_inc(&kn->count);
383 	}
384 }
385 EXPORT_SYMBOL_GPL(kernfs_get);
386 
387 /**
388  * kernfs_put - put a reference count on a kernfs_node
389  * @kn: the target kernfs_node
390  *
391  * Put a reference count of @kn and destroy it if it reached zero.
392  */
393 void kernfs_put(struct kernfs_node *kn)
394 {
395 	struct kernfs_node *parent;
396 	struct kernfs_root *root;
397 
398 	if (!kn || !atomic_dec_and_test(&kn->count))
399 		return;
400 	root = kernfs_root(kn);
401  repeat:
402 	/*
403 	 * Moving/renaming is always done while holding reference.
404 	 * kn->parent won't change beneath us.
405 	 */
406 	parent = kn->parent;
407 
408 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
409 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
410 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
411 
412 	if (kernfs_type(kn) == KERNFS_LINK)
413 		kernfs_put(kn->symlink.target_kn);
414 	if (!(kn->flags & KERNFS_STATIC_NAME))
415 		kfree(kn->name);
416 	if (kn->iattr) {
417 		if (kn->iattr->ia_secdata)
418 			security_release_secctx(kn->iattr->ia_secdata,
419 						kn->iattr->ia_secdata_len);
420 		simple_xattrs_free(&kn->iattr->xattrs);
421 	}
422 	kfree(kn->iattr);
423 	ida_simple_remove(&root->ino_ida, kn->ino);
424 	kmem_cache_free(kernfs_node_cache, kn);
425 
426 	kn = parent;
427 	if (kn) {
428 		if (atomic_dec_and_test(&kn->count))
429 			goto repeat;
430 	} else {
431 		/* just released the root kn, free @root too */
432 		ida_destroy(&root->ino_ida);
433 		kfree(root);
434 	}
435 }
436 EXPORT_SYMBOL_GPL(kernfs_put);
437 
438 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
439 {
440 	struct kernfs_node *kn;
441 
442 	if (flags & LOOKUP_RCU)
443 		return -ECHILD;
444 
445 	/* Always perform fresh lookup for negatives */
446 	if (!dentry->d_inode)
447 		goto out_bad_unlocked;
448 
449 	kn = dentry->d_fsdata;
450 	mutex_lock(&kernfs_mutex);
451 
452 	/* The kernfs node has been deactivated */
453 	if (!kernfs_active(kn))
454 		goto out_bad;
455 
456 	/* The kernfs node has been moved? */
457 	if (dentry->d_parent->d_fsdata != kn->parent)
458 		goto out_bad;
459 
460 	/* The kernfs node has been renamed */
461 	if (strcmp(dentry->d_name.name, kn->name) != 0)
462 		goto out_bad;
463 
464 	/* The kernfs node has been moved to a different namespace */
465 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
466 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
467 		goto out_bad;
468 
469 	mutex_unlock(&kernfs_mutex);
470 	return 1;
471 out_bad:
472 	mutex_unlock(&kernfs_mutex);
473 out_bad_unlocked:
474 	return 0;
475 }
476 
477 static void kernfs_dop_release(struct dentry *dentry)
478 {
479 	kernfs_put(dentry->d_fsdata);
480 }
481 
482 const struct dentry_operations kernfs_dops = {
483 	.d_revalidate	= kernfs_dop_revalidate,
484 	.d_release	= kernfs_dop_release,
485 };
486 
487 /**
488  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
489  * @dentry: the dentry in question
490  *
491  * Return the kernfs_node associated with @dentry.  If @dentry is not a
492  * kernfs one, %NULL is returned.
493  *
494  * While the returned kernfs_node will stay accessible as long as @dentry
495  * is accessible, the returned node can be in any state and the caller is
496  * fully responsible for determining what's accessible.
497  */
498 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
499 {
500 	if (dentry->d_sb->s_op == &kernfs_sops)
501 		return dentry->d_fsdata;
502 	return NULL;
503 }
504 
505 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
506 					     const char *name, umode_t mode,
507 					     unsigned flags)
508 {
509 	char *dup_name = NULL;
510 	struct kernfs_node *kn;
511 	int ret;
512 
513 	if (!(flags & KERNFS_STATIC_NAME)) {
514 		name = dup_name = kstrdup(name, GFP_KERNEL);
515 		if (!name)
516 			return NULL;
517 	}
518 
519 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
520 	if (!kn)
521 		goto err_out1;
522 
523 	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
524 	if (ret < 0)
525 		goto err_out2;
526 	kn->ino = ret;
527 
528 	atomic_set(&kn->count, 1);
529 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
530 	RB_CLEAR_NODE(&kn->rb);
531 
532 	kn->name = name;
533 	kn->mode = mode;
534 	kn->flags = flags;
535 
536 	return kn;
537 
538  err_out2:
539 	kmem_cache_free(kernfs_node_cache, kn);
540  err_out1:
541 	kfree(dup_name);
542 	return NULL;
543 }
544 
545 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
546 				    const char *name, umode_t mode,
547 				    unsigned flags)
548 {
549 	struct kernfs_node *kn;
550 
551 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
552 	if (kn) {
553 		kernfs_get(parent);
554 		kn->parent = parent;
555 	}
556 	return kn;
557 }
558 
559 /**
560  *	kernfs_add_one - add kernfs_node to parent without warning
561  *	@kn: kernfs_node to be added
562  *
563  *	The caller must already have initialized @kn->parent.  This
564  *	function increments nlink of the parent's inode if @kn is a
565  *	directory and link into the children list of the parent.
566  *
567  *	RETURNS:
568  *	0 on success, -EEXIST if entry with the given name already
569  *	exists.
570  */
571 int kernfs_add_one(struct kernfs_node *kn)
572 {
573 	struct kernfs_node *parent = kn->parent;
574 	struct kernfs_iattrs *ps_iattr;
575 	bool has_ns;
576 	int ret;
577 
578 	mutex_lock(&kernfs_mutex);
579 
580 	ret = -EINVAL;
581 	has_ns = kernfs_ns_enabled(parent);
582 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
583 		 has_ns ? "required" : "invalid", parent->name, kn->name))
584 		goto out_unlock;
585 
586 	if (kernfs_type(parent) != KERNFS_DIR)
587 		goto out_unlock;
588 
589 	ret = -ENOENT;
590 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
591 		goto out_unlock;
592 
593 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
594 
595 	ret = kernfs_link_sibling(kn);
596 	if (ret)
597 		goto out_unlock;
598 
599 	/* Update timestamps on the parent */
600 	ps_iattr = parent->iattr;
601 	if (ps_iattr) {
602 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
603 		ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
604 	}
605 
606 	mutex_unlock(&kernfs_mutex);
607 
608 	/*
609 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
610 	 * If not activated here, the kernfs user is responsible for
611 	 * activating the node with kernfs_activate().  A node which hasn't
612 	 * been activated is not visible to userland and its removal won't
613 	 * trigger deactivation.
614 	 */
615 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
616 		kernfs_activate(kn);
617 	return 0;
618 
619 out_unlock:
620 	mutex_unlock(&kernfs_mutex);
621 	return ret;
622 }
623 
624 /**
625  * kernfs_find_ns - find kernfs_node with the given name
626  * @parent: kernfs_node to search under
627  * @name: name to look for
628  * @ns: the namespace tag to use
629  *
630  * Look for kernfs_node with name @name under @parent.  Returns pointer to
631  * the found kernfs_node on success, %NULL on failure.
632  */
633 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
634 					  const unsigned char *name,
635 					  const void *ns)
636 {
637 	struct rb_node *node = parent->dir.children.rb_node;
638 	bool has_ns = kernfs_ns_enabled(parent);
639 	unsigned int hash;
640 
641 	lockdep_assert_held(&kernfs_mutex);
642 
643 	if (has_ns != (bool)ns) {
644 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
645 		     has_ns ? "required" : "invalid", parent->name, name);
646 		return NULL;
647 	}
648 
649 	hash = kernfs_name_hash(name, ns);
650 	while (node) {
651 		struct kernfs_node *kn;
652 		int result;
653 
654 		kn = rb_to_kn(node);
655 		result = kernfs_name_compare(hash, name, ns, kn);
656 		if (result < 0)
657 			node = node->rb_left;
658 		else if (result > 0)
659 			node = node->rb_right;
660 		else
661 			return kn;
662 	}
663 	return NULL;
664 }
665 
666 /**
667  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
668  * @parent: kernfs_node to search under
669  * @name: name to look for
670  * @ns: the namespace tag to use
671  *
672  * Look for kernfs_node with name @name under @parent and get a reference
673  * if found.  This function may sleep and returns pointer to the found
674  * kernfs_node on success, %NULL on failure.
675  */
676 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
677 					   const char *name, const void *ns)
678 {
679 	struct kernfs_node *kn;
680 
681 	mutex_lock(&kernfs_mutex);
682 	kn = kernfs_find_ns(parent, name, ns);
683 	kernfs_get(kn);
684 	mutex_unlock(&kernfs_mutex);
685 
686 	return kn;
687 }
688 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
689 
690 /**
691  * kernfs_create_root - create a new kernfs hierarchy
692  * @scops: optional syscall operations for the hierarchy
693  * @flags: KERNFS_ROOT_* flags
694  * @priv: opaque data associated with the new directory
695  *
696  * Returns the root of the new hierarchy on success, ERR_PTR() value on
697  * failure.
698  */
699 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
700 				       unsigned int flags, void *priv)
701 {
702 	struct kernfs_root *root;
703 	struct kernfs_node *kn;
704 
705 	root = kzalloc(sizeof(*root), GFP_KERNEL);
706 	if (!root)
707 		return ERR_PTR(-ENOMEM);
708 
709 	ida_init(&root->ino_ida);
710 	INIT_LIST_HEAD(&root->supers);
711 
712 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
713 			       KERNFS_DIR);
714 	if (!kn) {
715 		ida_destroy(&root->ino_ida);
716 		kfree(root);
717 		return ERR_PTR(-ENOMEM);
718 	}
719 
720 	kn->priv = priv;
721 	kn->dir.root = root;
722 
723 	root->syscall_ops = scops;
724 	root->flags = flags;
725 	root->kn = kn;
726 	init_waitqueue_head(&root->deactivate_waitq);
727 
728 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
729 		kernfs_activate(kn);
730 
731 	return root;
732 }
733 
734 /**
735  * kernfs_destroy_root - destroy a kernfs hierarchy
736  * @root: root of the hierarchy to destroy
737  *
738  * Destroy the hierarchy anchored at @root by removing all existing
739  * directories and destroying @root.
740  */
741 void kernfs_destroy_root(struct kernfs_root *root)
742 {
743 	kernfs_remove(root->kn);	/* will also free @root */
744 }
745 
746 /**
747  * kernfs_create_dir_ns - create a directory
748  * @parent: parent in which to create a new directory
749  * @name: name of the new directory
750  * @mode: mode of the new directory
751  * @priv: opaque data associated with the new directory
752  * @ns: optional namespace tag of the directory
753  *
754  * Returns the created node on success, ERR_PTR() value on failure.
755  */
756 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
757 					 const char *name, umode_t mode,
758 					 void *priv, const void *ns)
759 {
760 	struct kernfs_node *kn;
761 	int rc;
762 
763 	/* allocate */
764 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
765 	if (!kn)
766 		return ERR_PTR(-ENOMEM);
767 
768 	kn->dir.root = parent->dir.root;
769 	kn->ns = ns;
770 	kn->priv = priv;
771 
772 	/* link in */
773 	rc = kernfs_add_one(kn);
774 	if (!rc)
775 		return kn;
776 
777 	kernfs_put(kn);
778 	return ERR_PTR(rc);
779 }
780 
781 static struct dentry *kernfs_iop_lookup(struct inode *dir,
782 					struct dentry *dentry,
783 					unsigned int flags)
784 {
785 	struct dentry *ret;
786 	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
787 	struct kernfs_node *kn;
788 	struct inode *inode;
789 	const void *ns = NULL;
790 
791 	mutex_lock(&kernfs_mutex);
792 
793 	if (kernfs_ns_enabled(parent))
794 		ns = kernfs_info(dir->i_sb)->ns;
795 
796 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
797 
798 	/* no such entry */
799 	if (!kn || !kernfs_active(kn)) {
800 		ret = NULL;
801 		goto out_unlock;
802 	}
803 	kernfs_get(kn);
804 	dentry->d_fsdata = kn;
805 
806 	/* attach dentry and inode */
807 	inode = kernfs_get_inode(dir->i_sb, kn);
808 	if (!inode) {
809 		ret = ERR_PTR(-ENOMEM);
810 		goto out_unlock;
811 	}
812 
813 	/* instantiate and hash dentry */
814 	ret = d_splice_alias(inode, dentry);
815  out_unlock:
816 	mutex_unlock(&kernfs_mutex);
817 	return ret;
818 }
819 
820 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
821 			    umode_t mode)
822 {
823 	struct kernfs_node *parent = dir->i_private;
824 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
825 	int ret;
826 
827 	if (!scops || !scops->mkdir)
828 		return -EPERM;
829 
830 	if (!kernfs_get_active(parent))
831 		return -ENODEV;
832 
833 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
834 
835 	kernfs_put_active(parent);
836 	return ret;
837 }
838 
839 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
840 {
841 	struct kernfs_node *kn  = dentry->d_fsdata;
842 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
843 	int ret;
844 
845 	if (!scops || !scops->rmdir)
846 		return -EPERM;
847 
848 	if (!kernfs_get_active(kn))
849 		return -ENODEV;
850 
851 	ret = scops->rmdir(kn);
852 
853 	kernfs_put_active(kn);
854 	return ret;
855 }
856 
857 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
858 			     struct inode *new_dir, struct dentry *new_dentry)
859 {
860 	struct kernfs_node *kn  = old_dentry->d_fsdata;
861 	struct kernfs_node *new_parent = new_dir->i_private;
862 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
863 	int ret;
864 
865 	if (!scops || !scops->rename)
866 		return -EPERM;
867 
868 	if (!kernfs_get_active(kn))
869 		return -ENODEV;
870 
871 	if (!kernfs_get_active(new_parent)) {
872 		kernfs_put_active(kn);
873 		return -ENODEV;
874 	}
875 
876 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
877 
878 	kernfs_put_active(new_parent);
879 	kernfs_put_active(kn);
880 	return ret;
881 }
882 
883 const struct inode_operations kernfs_dir_iops = {
884 	.lookup		= kernfs_iop_lookup,
885 	.permission	= kernfs_iop_permission,
886 	.setattr	= kernfs_iop_setattr,
887 	.getattr	= kernfs_iop_getattr,
888 	.setxattr	= kernfs_iop_setxattr,
889 	.removexattr	= kernfs_iop_removexattr,
890 	.getxattr	= kernfs_iop_getxattr,
891 	.listxattr	= kernfs_iop_listxattr,
892 
893 	.mkdir		= kernfs_iop_mkdir,
894 	.rmdir		= kernfs_iop_rmdir,
895 	.rename		= kernfs_iop_rename,
896 };
897 
898 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
899 {
900 	struct kernfs_node *last;
901 
902 	while (true) {
903 		struct rb_node *rbn;
904 
905 		last = pos;
906 
907 		if (kernfs_type(pos) != KERNFS_DIR)
908 			break;
909 
910 		rbn = rb_first(&pos->dir.children);
911 		if (!rbn)
912 			break;
913 
914 		pos = rb_to_kn(rbn);
915 	}
916 
917 	return last;
918 }
919 
920 /**
921  * kernfs_next_descendant_post - find the next descendant for post-order walk
922  * @pos: the current position (%NULL to initiate traversal)
923  * @root: kernfs_node whose descendants to walk
924  *
925  * Find the next descendant to visit for post-order traversal of @root's
926  * descendants.  @root is included in the iteration and the last node to be
927  * visited.
928  */
929 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
930 						       struct kernfs_node *root)
931 {
932 	struct rb_node *rbn;
933 
934 	lockdep_assert_held(&kernfs_mutex);
935 
936 	/* if first iteration, visit leftmost descendant which may be root */
937 	if (!pos)
938 		return kernfs_leftmost_descendant(root);
939 
940 	/* if we visited @root, we're done */
941 	if (pos == root)
942 		return NULL;
943 
944 	/* if there's an unvisited sibling, visit its leftmost descendant */
945 	rbn = rb_next(&pos->rb);
946 	if (rbn)
947 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
948 
949 	/* no sibling left, visit parent */
950 	return pos->parent;
951 }
952 
953 /**
954  * kernfs_activate - activate a node which started deactivated
955  * @kn: kernfs_node whose subtree is to be activated
956  *
957  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
958  * needs to be explicitly activated.  A node which hasn't been activated
959  * isn't visible to userland and deactivation is skipped during its
960  * removal.  This is useful to construct atomic init sequences where
961  * creation of multiple nodes should either succeed or fail atomically.
962  *
963  * The caller is responsible for ensuring that this function is not called
964  * after kernfs_remove*() is invoked on @kn.
965  */
966 void kernfs_activate(struct kernfs_node *kn)
967 {
968 	struct kernfs_node *pos;
969 
970 	mutex_lock(&kernfs_mutex);
971 
972 	pos = NULL;
973 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
974 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
975 			continue;
976 
977 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
978 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
979 
980 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
981 		pos->flags |= KERNFS_ACTIVATED;
982 	}
983 
984 	mutex_unlock(&kernfs_mutex);
985 }
986 
987 static void __kernfs_remove(struct kernfs_node *kn)
988 {
989 	struct kernfs_node *pos;
990 
991 	lockdep_assert_held(&kernfs_mutex);
992 
993 	/*
994 	 * Short-circuit if non-root @kn has already finished removal.
995 	 * This is for kernfs_remove_self() which plays with active ref
996 	 * after removal.
997 	 */
998 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
999 		return;
1000 
1001 	pr_debug("kernfs %s: removing\n", kn->name);
1002 
1003 	/* prevent any new usage under @kn by deactivating all nodes */
1004 	pos = NULL;
1005 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1006 		if (kernfs_active(pos))
1007 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1008 
1009 	/* deactivate and unlink the subtree node-by-node */
1010 	do {
1011 		pos = kernfs_leftmost_descendant(kn);
1012 
1013 		/*
1014 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1015 		 * base ref could have been put by someone else by the time
1016 		 * the function returns.  Make sure it doesn't go away
1017 		 * underneath us.
1018 		 */
1019 		kernfs_get(pos);
1020 
1021 		/*
1022 		 * Drain iff @kn was activated.  This avoids draining and
1023 		 * its lockdep annotations for nodes which have never been
1024 		 * activated and allows embedding kernfs_remove() in create
1025 		 * error paths without worrying about draining.
1026 		 */
1027 		if (kn->flags & KERNFS_ACTIVATED)
1028 			kernfs_drain(pos);
1029 		else
1030 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1031 
1032 		/*
1033 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1034 		 * to decide who's responsible for cleanups.
1035 		 */
1036 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1037 			struct kernfs_iattrs *ps_iattr =
1038 				pos->parent ? pos->parent->iattr : NULL;
1039 
1040 			/* update timestamps on the parent */
1041 			if (ps_iattr) {
1042 				ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1043 				ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1044 			}
1045 
1046 			kernfs_put(pos);
1047 		}
1048 
1049 		kernfs_put(pos);
1050 	} while (pos != kn);
1051 }
1052 
1053 /**
1054  * kernfs_remove - remove a kernfs_node recursively
1055  * @kn: the kernfs_node to remove
1056  *
1057  * Remove @kn along with all its subdirectories and files.
1058  */
1059 void kernfs_remove(struct kernfs_node *kn)
1060 {
1061 	mutex_lock(&kernfs_mutex);
1062 	__kernfs_remove(kn);
1063 	mutex_unlock(&kernfs_mutex);
1064 }
1065 
1066 /**
1067  * kernfs_break_active_protection - break out of active protection
1068  * @kn: the self kernfs_node
1069  *
1070  * The caller must be running off of a kernfs operation which is invoked
1071  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1072  * this function must also be matched with an invocation of
1073  * kernfs_unbreak_active_protection().
1074  *
1075  * This function releases the active reference of @kn the caller is
1076  * holding.  Once this function is called, @kn may be removed at any point
1077  * and the caller is solely responsible for ensuring that the objects it
1078  * dereferences are accessible.
1079  */
1080 void kernfs_break_active_protection(struct kernfs_node *kn)
1081 {
1082 	/*
1083 	 * Take out ourself out of the active ref dependency chain.  If
1084 	 * we're called without an active ref, lockdep will complain.
1085 	 */
1086 	kernfs_put_active(kn);
1087 }
1088 
1089 /**
1090  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1091  * @kn: the self kernfs_node
1092  *
1093  * If kernfs_break_active_protection() was called, this function must be
1094  * invoked before finishing the kernfs operation.  Note that while this
1095  * function restores the active reference, it doesn't and can't actually
1096  * restore the active protection - @kn may already or be in the process of
1097  * being removed.  Once kernfs_break_active_protection() is invoked, that
1098  * protection is irreversibly gone for the kernfs operation instance.
1099  *
1100  * While this function may be called at any point after
1101  * kernfs_break_active_protection() is invoked, its most useful location
1102  * would be right before the enclosing kernfs operation returns.
1103  */
1104 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1105 {
1106 	/*
1107 	 * @kn->active could be in any state; however, the increment we do
1108 	 * here will be undone as soon as the enclosing kernfs operation
1109 	 * finishes and this temporary bump can't break anything.  If @kn
1110 	 * is alive, nothing changes.  If @kn is being deactivated, the
1111 	 * soon-to-follow put will either finish deactivation or restore
1112 	 * deactivated state.  If @kn is already removed, the temporary
1113 	 * bump is guaranteed to be gone before @kn is released.
1114 	 */
1115 	atomic_inc(&kn->active);
1116 	if (kernfs_lockdep(kn))
1117 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1118 }
1119 
1120 /**
1121  * kernfs_remove_self - remove a kernfs_node from its own method
1122  * @kn: the self kernfs_node to remove
1123  *
1124  * The caller must be running off of a kernfs operation which is invoked
1125  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1126  * implement a file operation which deletes itself.
1127  *
1128  * For example, the "delete" file for a sysfs device directory can be
1129  * implemented by invoking kernfs_remove_self() on the "delete" file
1130  * itself.  This function breaks the circular dependency of trying to
1131  * deactivate self while holding an active ref itself.  It isn't necessary
1132  * to modify the usual removal path to use kernfs_remove_self().  The
1133  * "delete" implementation can simply invoke kernfs_remove_self() on self
1134  * before proceeding with the usual removal path.  kernfs will ignore later
1135  * kernfs_remove() on self.
1136  *
1137  * kernfs_remove_self() can be called multiple times concurrently on the
1138  * same kernfs_node.  Only the first one actually performs removal and
1139  * returns %true.  All others will wait until the kernfs operation which
1140  * won self-removal finishes and return %false.  Note that the losers wait
1141  * for the completion of not only the winning kernfs_remove_self() but also
1142  * the whole kernfs_ops which won the arbitration.  This can be used to
1143  * guarantee, for example, all concurrent writes to a "delete" file to
1144  * finish only after the whole operation is complete.
1145  */
1146 bool kernfs_remove_self(struct kernfs_node *kn)
1147 {
1148 	bool ret;
1149 
1150 	mutex_lock(&kernfs_mutex);
1151 	kernfs_break_active_protection(kn);
1152 
1153 	/*
1154 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1155 	 * the first one will actually perform removal.  When the removal
1156 	 * is complete, SUICIDED is set and the active ref is restored
1157 	 * while holding kernfs_mutex.  The ones which lost arbitration
1158 	 * waits for SUICDED && drained which can happen only after the
1159 	 * enclosing kernfs operation which executed the winning instance
1160 	 * of kernfs_remove_self() finished.
1161 	 */
1162 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1163 		kn->flags |= KERNFS_SUICIDAL;
1164 		__kernfs_remove(kn);
1165 		kn->flags |= KERNFS_SUICIDED;
1166 		ret = true;
1167 	} else {
1168 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1169 		DEFINE_WAIT(wait);
1170 
1171 		while (true) {
1172 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1173 
1174 			if ((kn->flags & KERNFS_SUICIDED) &&
1175 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1176 				break;
1177 
1178 			mutex_unlock(&kernfs_mutex);
1179 			schedule();
1180 			mutex_lock(&kernfs_mutex);
1181 		}
1182 		finish_wait(waitq, &wait);
1183 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1184 		ret = false;
1185 	}
1186 
1187 	/*
1188 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1189 	 * for SUICIDED && deactivated could finish prematurely.
1190 	 */
1191 	kernfs_unbreak_active_protection(kn);
1192 
1193 	mutex_unlock(&kernfs_mutex);
1194 	return ret;
1195 }
1196 
1197 /**
1198  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1199  * @parent: parent of the target
1200  * @name: name of the kernfs_node to remove
1201  * @ns: namespace tag of the kernfs_node to remove
1202  *
1203  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1204  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1205  */
1206 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1207 			     const void *ns)
1208 {
1209 	struct kernfs_node *kn;
1210 
1211 	if (!parent) {
1212 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1213 			name);
1214 		return -ENOENT;
1215 	}
1216 
1217 	mutex_lock(&kernfs_mutex);
1218 
1219 	kn = kernfs_find_ns(parent, name, ns);
1220 	if (kn)
1221 		__kernfs_remove(kn);
1222 
1223 	mutex_unlock(&kernfs_mutex);
1224 
1225 	if (kn)
1226 		return 0;
1227 	else
1228 		return -ENOENT;
1229 }
1230 
1231 /**
1232  * kernfs_rename_ns - move and rename a kernfs_node
1233  * @kn: target node
1234  * @new_parent: new parent to put @sd under
1235  * @new_name: new name
1236  * @new_ns: new namespace tag
1237  */
1238 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1239 		     const char *new_name, const void *new_ns)
1240 {
1241 	struct kernfs_node *old_parent;
1242 	const char *old_name = NULL;
1243 	int error;
1244 
1245 	/* can't move or rename root */
1246 	if (!kn->parent)
1247 		return -EINVAL;
1248 
1249 	mutex_lock(&kernfs_mutex);
1250 
1251 	error = -ENOENT;
1252 	if (!kernfs_active(kn) || !kernfs_active(new_parent))
1253 		goto out;
1254 
1255 	error = 0;
1256 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1257 	    (strcmp(kn->name, new_name) == 0))
1258 		goto out;	/* nothing to rename */
1259 
1260 	error = -EEXIST;
1261 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1262 		goto out;
1263 
1264 	/* rename kernfs_node */
1265 	if (strcmp(kn->name, new_name) != 0) {
1266 		error = -ENOMEM;
1267 		new_name = kstrdup(new_name, GFP_KERNEL);
1268 		if (!new_name)
1269 			goto out;
1270 	} else {
1271 		new_name = NULL;
1272 	}
1273 
1274 	/*
1275 	 * Move to the appropriate place in the appropriate directories rbtree.
1276 	 */
1277 	kernfs_unlink_sibling(kn);
1278 	kernfs_get(new_parent);
1279 
1280 	/* rename_lock protects ->parent and ->name accessors */
1281 	spin_lock_irq(&kernfs_rename_lock);
1282 
1283 	old_parent = kn->parent;
1284 	kn->parent = new_parent;
1285 
1286 	kn->ns = new_ns;
1287 	if (new_name) {
1288 		if (!(kn->flags & KERNFS_STATIC_NAME))
1289 			old_name = kn->name;
1290 		kn->flags &= ~KERNFS_STATIC_NAME;
1291 		kn->name = new_name;
1292 	}
1293 
1294 	spin_unlock_irq(&kernfs_rename_lock);
1295 
1296 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1297 	kernfs_link_sibling(kn);
1298 
1299 	kernfs_put(old_parent);
1300 	kfree(old_name);
1301 
1302 	error = 0;
1303  out:
1304 	mutex_unlock(&kernfs_mutex);
1305 	return error;
1306 }
1307 
1308 /* Relationship between s_mode and the DT_xxx types */
1309 static inline unsigned char dt_type(struct kernfs_node *kn)
1310 {
1311 	return (kn->mode >> 12) & 15;
1312 }
1313 
1314 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1315 {
1316 	kernfs_put(filp->private_data);
1317 	return 0;
1318 }
1319 
1320 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1321 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1322 {
1323 	if (pos) {
1324 		int valid = kernfs_active(pos) &&
1325 			pos->parent == parent && hash == pos->hash;
1326 		kernfs_put(pos);
1327 		if (!valid)
1328 			pos = NULL;
1329 	}
1330 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1331 		struct rb_node *node = parent->dir.children.rb_node;
1332 		while (node) {
1333 			pos = rb_to_kn(node);
1334 
1335 			if (hash < pos->hash)
1336 				node = node->rb_left;
1337 			else if (hash > pos->hash)
1338 				node = node->rb_right;
1339 			else
1340 				break;
1341 		}
1342 	}
1343 	/* Skip over entries which are dying/dead or in the wrong namespace */
1344 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1345 		struct rb_node *node = rb_next(&pos->rb);
1346 		if (!node)
1347 			pos = NULL;
1348 		else
1349 			pos = rb_to_kn(node);
1350 	}
1351 	return pos;
1352 }
1353 
1354 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1355 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1356 {
1357 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1358 	if (pos) {
1359 		do {
1360 			struct rb_node *node = rb_next(&pos->rb);
1361 			if (!node)
1362 				pos = NULL;
1363 			else
1364 				pos = rb_to_kn(node);
1365 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1366 	}
1367 	return pos;
1368 }
1369 
1370 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1371 {
1372 	struct dentry *dentry = file->f_path.dentry;
1373 	struct kernfs_node *parent = dentry->d_fsdata;
1374 	struct kernfs_node *pos = file->private_data;
1375 	const void *ns = NULL;
1376 
1377 	if (!dir_emit_dots(file, ctx))
1378 		return 0;
1379 	mutex_lock(&kernfs_mutex);
1380 
1381 	if (kernfs_ns_enabled(parent))
1382 		ns = kernfs_info(dentry->d_sb)->ns;
1383 
1384 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1385 	     pos;
1386 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1387 		const char *name = pos->name;
1388 		unsigned int type = dt_type(pos);
1389 		int len = strlen(name);
1390 		ino_t ino = pos->ino;
1391 
1392 		ctx->pos = pos->hash;
1393 		file->private_data = pos;
1394 		kernfs_get(pos);
1395 
1396 		mutex_unlock(&kernfs_mutex);
1397 		if (!dir_emit(ctx, name, len, ino, type))
1398 			return 0;
1399 		mutex_lock(&kernfs_mutex);
1400 	}
1401 	mutex_unlock(&kernfs_mutex);
1402 	file->private_data = NULL;
1403 	ctx->pos = INT_MAX;
1404 	return 0;
1405 }
1406 
1407 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1408 				    int whence)
1409 {
1410 	struct inode *inode = file_inode(file);
1411 	loff_t ret;
1412 
1413 	mutex_lock(&inode->i_mutex);
1414 	ret = generic_file_llseek(file, offset, whence);
1415 	mutex_unlock(&inode->i_mutex);
1416 
1417 	return ret;
1418 }
1419 
1420 const struct file_operations kernfs_dir_fops = {
1421 	.read		= generic_read_dir,
1422 	.iterate	= kernfs_fop_readdir,
1423 	.release	= kernfs_dir_fop_release,
1424 	.llseek		= kernfs_dir_fop_llseek,
1425 };
1426