xref: /openbmc/linux/fs/kernfs/dir.c (revision bd1f88a12843e0b876eabecd042e307941643ed9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17 
18 #include "kernfs-internal.h"
19 
20 static DEFINE_RWLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
21 /*
22  * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
23  * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
24  * will perform wakeups when releasing console_sem. Holding rename_lock
25  * will introduce deadlock if the scheduler reads the kernfs_name in the
26  * wakeup path.
27  */
28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
29 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
30 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
31 
32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
33 
34 static bool __kernfs_active(struct kernfs_node *kn)
35 {
36 	return atomic_read(&kn->active) >= 0;
37 }
38 
39 static bool kernfs_active(struct kernfs_node *kn)
40 {
41 	lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem);
42 	return __kernfs_active(kn);
43 }
44 
45 static bool kernfs_lockdep(struct kernfs_node *kn)
46 {
47 #ifdef CONFIG_DEBUG_LOCK_ALLOC
48 	return kn->flags & KERNFS_LOCKDEP;
49 #else
50 	return false;
51 #endif
52 }
53 
54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
55 {
56 	if (!kn)
57 		return strlcpy(buf, "(null)", buflen);
58 
59 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
60 }
61 
62 /* kernfs_node_depth - compute depth from @from to @to */
63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
64 {
65 	size_t depth = 0;
66 
67 	while (to->parent && to != from) {
68 		depth++;
69 		to = to->parent;
70 	}
71 	return depth;
72 }
73 
74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
75 						  struct kernfs_node *b)
76 {
77 	size_t da, db;
78 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
79 
80 	if (ra != rb)
81 		return NULL;
82 
83 	da = kernfs_depth(ra->kn, a);
84 	db = kernfs_depth(rb->kn, b);
85 
86 	while (da > db) {
87 		a = a->parent;
88 		da--;
89 	}
90 	while (db > da) {
91 		b = b->parent;
92 		db--;
93 	}
94 
95 	/* worst case b and a will be the same at root */
96 	while (b != a) {
97 		b = b->parent;
98 		a = a->parent;
99 	}
100 
101 	return a;
102 }
103 
104 /**
105  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
106  * where kn_from is treated as root of the path.
107  * @kn_from: kernfs node which should be treated as root for the path
108  * @kn_to: kernfs node to which path is needed
109  * @buf: buffer to copy the path into
110  * @buflen: size of @buf
111  *
112  * We need to handle couple of scenarios here:
113  * [1] when @kn_from is an ancestor of @kn_to at some level
114  * kn_from: /n1/n2/n3
115  * kn_to:   /n1/n2/n3/n4/n5
116  * result:  /n4/n5
117  *
118  * [2] when @kn_from is on a different hierarchy and we need to find common
119  * ancestor between @kn_from and @kn_to.
120  * kn_from: /n1/n2/n3/n4
121  * kn_to:   /n1/n2/n5
122  * result:  /../../n5
123  * OR
124  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
125  * kn_to:   /n1/n2/n3         [depth=3]
126  * result:  /../..
127  *
128  * [3] when @kn_to is %NULL result will be "(null)"
129  *
130  * Return: the length of the full path.  If the full length is equal to or
131  * greater than @buflen, @buf contains the truncated path with the trailing
132  * '\0'.  On error, -errno is returned.
133  */
134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
135 					struct kernfs_node *kn_from,
136 					char *buf, size_t buflen)
137 {
138 	struct kernfs_node *kn, *common;
139 	const char parent_str[] = "/..";
140 	size_t depth_from, depth_to, len = 0;
141 	int i, j;
142 
143 	if (!kn_to)
144 		return strlcpy(buf, "(null)", buflen);
145 
146 	if (!kn_from)
147 		kn_from = kernfs_root(kn_to)->kn;
148 
149 	if (kn_from == kn_to)
150 		return strlcpy(buf, "/", buflen);
151 
152 	common = kernfs_common_ancestor(kn_from, kn_to);
153 	if (WARN_ON(!common))
154 		return -EINVAL;
155 
156 	depth_to = kernfs_depth(common, kn_to);
157 	depth_from = kernfs_depth(common, kn_from);
158 
159 	buf[0] = '\0';
160 
161 	for (i = 0; i < depth_from; i++)
162 		len += strlcpy(buf + len, parent_str,
163 			       len < buflen ? buflen - len : 0);
164 
165 	/* Calculate how many bytes we need for the rest */
166 	for (i = depth_to - 1; i >= 0; i--) {
167 		for (kn = kn_to, j = 0; j < i; j++)
168 			kn = kn->parent;
169 		len += strlcpy(buf + len, "/",
170 			       len < buflen ? buflen - len : 0);
171 		len += strlcpy(buf + len, kn->name,
172 			       len < buflen ? buflen - len : 0);
173 	}
174 
175 	return len;
176 }
177 
178 /**
179  * kernfs_name - obtain the name of a given node
180  * @kn: kernfs_node of interest
181  * @buf: buffer to copy @kn's name into
182  * @buflen: size of @buf
183  *
184  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
185  * similar to strlcpy().
186  *
187  * Fills buffer with "(null)" if @kn is %NULL.
188  *
189  * Return: the length of @kn's name and if @buf isn't long enough,
190  * it's filled up to @buflen-1 and nul terminated.
191  *
192  * This function can be called from any context.
193  */
194 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
195 {
196 	unsigned long flags;
197 	int ret;
198 
199 	read_lock_irqsave(&kernfs_rename_lock, flags);
200 	ret = kernfs_name_locked(kn, buf, buflen);
201 	read_unlock_irqrestore(&kernfs_rename_lock, flags);
202 	return ret;
203 }
204 
205 /**
206  * kernfs_path_from_node - build path of node @to relative to @from.
207  * @from: parent kernfs_node relative to which we need to build the path
208  * @to: kernfs_node of interest
209  * @buf: buffer to copy @to's path into
210  * @buflen: size of @buf
211  *
212  * Builds @to's path relative to @from in @buf. @from and @to must
213  * be on the same kernfs-root. If @from is not parent of @to, then a relative
214  * path (which includes '..'s) as needed to reach from @from to @to is
215  * returned.
216  *
217  * Return: the length of the full path.  If the full length is equal to or
218  * greater than @buflen, @buf contains the truncated path with the trailing
219  * '\0'.  On error, -errno is returned.
220  */
221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
222 			  char *buf, size_t buflen)
223 {
224 	unsigned long flags;
225 	int ret;
226 
227 	read_lock_irqsave(&kernfs_rename_lock, flags);
228 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
229 	read_unlock_irqrestore(&kernfs_rename_lock, flags);
230 	return ret;
231 }
232 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
233 
234 /**
235  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
236  * @kn: kernfs_node of interest
237  *
238  * This function can be called from any context.
239  */
240 void pr_cont_kernfs_name(struct kernfs_node *kn)
241 {
242 	unsigned long flags;
243 
244 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
245 
246 	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
247 	pr_cont("%s", kernfs_pr_cont_buf);
248 
249 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
250 }
251 
252 /**
253  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
254  * @kn: kernfs_node of interest
255  *
256  * This function can be called from any context.
257  */
258 void pr_cont_kernfs_path(struct kernfs_node *kn)
259 {
260 	unsigned long flags;
261 	int sz;
262 
263 	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
264 
265 	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
266 				   sizeof(kernfs_pr_cont_buf));
267 	if (sz < 0) {
268 		pr_cont("(error)");
269 		goto out;
270 	}
271 
272 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
273 		pr_cont("(name too long)");
274 		goto out;
275 	}
276 
277 	pr_cont("%s", kernfs_pr_cont_buf);
278 
279 out:
280 	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
281 }
282 
283 /**
284  * kernfs_get_parent - determine the parent node and pin it
285  * @kn: kernfs_node of interest
286  *
287  * Determines @kn's parent, pins and returns it.  This function can be
288  * called from any context.
289  *
290  * Return: parent node of @kn
291  */
292 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
293 {
294 	struct kernfs_node *parent;
295 	unsigned long flags;
296 
297 	read_lock_irqsave(&kernfs_rename_lock, flags);
298 	parent = kn->parent;
299 	kernfs_get(parent);
300 	read_unlock_irqrestore(&kernfs_rename_lock, flags);
301 
302 	return parent;
303 }
304 
305 /**
306  *	kernfs_name_hash - calculate hash of @ns + @name
307  *	@name: Null terminated string to hash
308  *	@ns:   Namespace tag to hash
309  *
310  *	Return: 31-bit hash of ns + name (so it fits in an off_t)
311  */
312 static unsigned int kernfs_name_hash(const char *name, const void *ns)
313 {
314 	unsigned long hash = init_name_hash(ns);
315 	unsigned int len = strlen(name);
316 	while (len--)
317 		hash = partial_name_hash(*name++, hash);
318 	hash = end_name_hash(hash);
319 	hash &= 0x7fffffffU;
320 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
321 	if (hash < 2)
322 		hash += 2;
323 	if (hash >= INT_MAX)
324 		hash = INT_MAX - 1;
325 	return hash;
326 }
327 
328 static int kernfs_name_compare(unsigned int hash, const char *name,
329 			       const void *ns, const struct kernfs_node *kn)
330 {
331 	if (hash < kn->hash)
332 		return -1;
333 	if (hash > kn->hash)
334 		return 1;
335 	if (ns < kn->ns)
336 		return -1;
337 	if (ns > kn->ns)
338 		return 1;
339 	return strcmp(name, kn->name);
340 }
341 
342 static int kernfs_sd_compare(const struct kernfs_node *left,
343 			     const struct kernfs_node *right)
344 {
345 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
346 }
347 
348 /**
349  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
350  *	@kn: kernfs_node of interest
351  *
352  *	Link @kn into its sibling rbtree which starts from
353  *	@kn->parent->dir.children.
354  *
355  *	Locking:
356  *	kernfs_rwsem held exclusive
357  *
358  *	Return:
359  *	%0 on success, -EEXIST on failure.
360  */
361 static int kernfs_link_sibling(struct kernfs_node *kn)
362 {
363 	struct rb_node **node = &kn->parent->dir.children.rb_node;
364 	struct rb_node *parent = NULL;
365 
366 	while (*node) {
367 		struct kernfs_node *pos;
368 		int result;
369 
370 		pos = rb_to_kn(*node);
371 		parent = *node;
372 		result = kernfs_sd_compare(kn, pos);
373 		if (result < 0)
374 			node = &pos->rb.rb_left;
375 		else if (result > 0)
376 			node = &pos->rb.rb_right;
377 		else
378 			return -EEXIST;
379 	}
380 
381 	/* add new node and rebalance the tree */
382 	rb_link_node(&kn->rb, parent, node);
383 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
384 
385 	/* successfully added, account subdir number */
386 	down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
387 	if (kernfs_type(kn) == KERNFS_DIR)
388 		kn->parent->dir.subdirs++;
389 	kernfs_inc_rev(kn->parent);
390 	up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
391 
392 	return 0;
393 }
394 
395 /**
396  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
397  *	@kn: kernfs_node of interest
398  *
399  *	Try to unlink @kn from its sibling rbtree which starts from
400  *	kn->parent->dir.children.
401  *
402  *	Return: %true if @kn was actually removed,
403  *	%false if @kn wasn't on the rbtree.
404  *
405  *	Locking:
406  *	kernfs_rwsem held exclusive
407  */
408 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
409 {
410 	if (RB_EMPTY_NODE(&kn->rb))
411 		return false;
412 
413 	down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
414 	if (kernfs_type(kn) == KERNFS_DIR)
415 		kn->parent->dir.subdirs--;
416 	kernfs_inc_rev(kn->parent);
417 	up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
418 
419 	rb_erase(&kn->rb, &kn->parent->dir.children);
420 	RB_CLEAR_NODE(&kn->rb);
421 	return true;
422 }
423 
424 /**
425  *	kernfs_get_active - get an active reference to kernfs_node
426  *	@kn: kernfs_node to get an active reference to
427  *
428  *	Get an active reference of @kn.  This function is noop if @kn
429  *	is %NULL.
430  *
431  *	Return:
432  *	Pointer to @kn on success, %NULL on failure.
433  */
434 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
435 {
436 	if (unlikely(!kn))
437 		return NULL;
438 
439 	if (!atomic_inc_unless_negative(&kn->active))
440 		return NULL;
441 
442 	if (kernfs_lockdep(kn))
443 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
444 	return kn;
445 }
446 
447 /**
448  *	kernfs_put_active - put an active reference to kernfs_node
449  *	@kn: kernfs_node to put an active reference to
450  *
451  *	Put an active reference to @kn.  This function is noop if @kn
452  *	is %NULL.
453  */
454 void kernfs_put_active(struct kernfs_node *kn)
455 {
456 	int v;
457 
458 	if (unlikely(!kn))
459 		return;
460 
461 	if (kernfs_lockdep(kn))
462 		rwsem_release(&kn->dep_map, _RET_IP_);
463 	v = atomic_dec_return(&kn->active);
464 	if (likely(v != KN_DEACTIVATED_BIAS))
465 		return;
466 
467 	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
468 }
469 
470 /**
471  * kernfs_drain - drain kernfs_node
472  * @kn: kernfs_node to drain
473  *
474  * Drain existing usages and nuke all existing mmaps of @kn.  Multiple
475  * removers may invoke this function concurrently on @kn and all will
476  * return after draining is complete.
477  */
478 static void kernfs_drain(struct kernfs_node *kn)
479 	__releases(&kernfs_root(kn)->kernfs_rwsem)
480 	__acquires(&kernfs_root(kn)->kernfs_rwsem)
481 {
482 	struct kernfs_root *root = kernfs_root(kn);
483 
484 	lockdep_assert_held_write(&root->kernfs_rwsem);
485 	WARN_ON_ONCE(kernfs_active(kn));
486 
487 	/*
488 	 * Skip draining if already fully drained. This avoids draining and its
489 	 * lockdep annotations for nodes which have never been activated
490 	 * allowing embedding kernfs_remove() in create error paths without
491 	 * worrying about draining.
492 	 */
493 	if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS &&
494 	    !kernfs_should_drain_open_files(kn))
495 		return;
496 
497 	up_write(&root->kernfs_rwsem);
498 
499 	if (kernfs_lockdep(kn)) {
500 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
501 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
502 			lock_contended(&kn->dep_map, _RET_IP_);
503 	}
504 
505 	wait_event(root->deactivate_waitq,
506 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
507 
508 	if (kernfs_lockdep(kn)) {
509 		lock_acquired(&kn->dep_map, _RET_IP_);
510 		rwsem_release(&kn->dep_map, _RET_IP_);
511 	}
512 
513 	if (kernfs_should_drain_open_files(kn))
514 		kernfs_drain_open_files(kn);
515 
516 	down_write(&root->kernfs_rwsem);
517 }
518 
519 /**
520  * kernfs_get - get a reference count on a kernfs_node
521  * @kn: the target kernfs_node
522  */
523 void kernfs_get(struct kernfs_node *kn)
524 {
525 	if (kn) {
526 		WARN_ON(!atomic_read(&kn->count));
527 		atomic_inc(&kn->count);
528 	}
529 }
530 EXPORT_SYMBOL_GPL(kernfs_get);
531 
532 /**
533  * kernfs_put - put a reference count on a kernfs_node
534  * @kn: the target kernfs_node
535  *
536  * Put a reference count of @kn and destroy it if it reached zero.
537  */
538 void kernfs_put(struct kernfs_node *kn)
539 {
540 	struct kernfs_node *parent;
541 	struct kernfs_root *root;
542 
543 	if (!kn || !atomic_dec_and_test(&kn->count))
544 		return;
545 	root = kernfs_root(kn);
546  repeat:
547 	/*
548 	 * Moving/renaming is always done while holding reference.
549 	 * kn->parent won't change beneath us.
550 	 */
551 	parent = kn->parent;
552 
553 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
554 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
555 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
556 
557 	if (kernfs_type(kn) == KERNFS_LINK)
558 		kernfs_put(kn->symlink.target_kn);
559 
560 	kfree_const(kn->name);
561 
562 	if (kn->iattr) {
563 		simple_xattrs_free(&kn->iattr->xattrs, NULL);
564 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
565 	}
566 	spin_lock(&kernfs_idr_lock);
567 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
568 	spin_unlock(&kernfs_idr_lock);
569 	kmem_cache_free(kernfs_node_cache, kn);
570 
571 	kn = parent;
572 	if (kn) {
573 		if (atomic_dec_and_test(&kn->count))
574 			goto repeat;
575 	} else {
576 		/* just released the root kn, free @root too */
577 		idr_destroy(&root->ino_idr);
578 		kfree(root);
579 	}
580 }
581 EXPORT_SYMBOL_GPL(kernfs_put);
582 
583 /**
584  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
585  * @dentry: the dentry in question
586  *
587  * Return: the kernfs_node associated with @dentry.  If @dentry is not a
588  * kernfs one, %NULL is returned.
589  *
590  * While the returned kernfs_node will stay accessible as long as @dentry
591  * is accessible, the returned node can be in any state and the caller is
592  * fully responsible for determining what's accessible.
593  */
594 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
595 {
596 	if (dentry->d_sb->s_op == &kernfs_sops)
597 		return kernfs_dentry_node(dentry);
598 	return NULL;
599 }
600 
601 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
602 					     struct kernfs_node *parent,
603 					     const char *name, umode_t mode,
604 					     kuid_t uid, kgid_t gid,
605 					     unsigned flags)
606 {
607 	struct kernfs_node *kn;
608 	u32 id_highbits;
609 	int ret;
610 
611 	name = kstrdup_const(name, GFP_KERNEL);
612 	if (!name)
613 		return NULL;
614 
615 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
616 	if (!kn)
617 		goto err_out1;
618 
619 	idr_preload(GFP_KERNEL);
620 	spin_lock(&kernfs_idr_lock);
621 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
622 	if (ret >= 0 && ret < root->last_id_lowbits)
623 		root->id_highbits++;
624 	id_highbits = root->id_highbits;
625 	root->last_id_lowbits = ret;
626 	spin_unlock(&kernfs_idr_lock);
627 	idr_preload_end();
628 	if (ret < 0)
629 		goto err_out2;
630 
631 	kn->id = (u64)id_highbits << 32 | ret;
632 
633 	atomic_set(&kn->count, 1);
634 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
635 	RB_CLEAR_NODE(&kn->rb);
636 
637 	kn->name = name;
638 	kn->mode = mode;
639 	kn->flags = flags;
640 
641 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
642 		struct iattr iattr = {
643 			.ia_valid = ATTR_UID | ATTR_GID,
644 			.ia_uid = uid,
645 			.ia_gid = gid,
646 		};
647 
648 		ret = __kernfs_setattr(kn, &iattr);
649 		if (ret < 0)
650 			goto err_out3;
651 	}
652 
653 	if (parent) {
654 		ret = security_kernfs_init_security(parent, kn);
655 		if (ret)
656 			goto err_out3;
657 	}
658 
659 	return kn;
660 
661  err_out3:
662 	spin_lock(&kernfs_idr_lock);
663 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
664 	spin_unlock(&kernfs_idr_lock);
665  err_out2:
666 	kmem_cache_free(kernfs_node_cache, kn);
667  err_out1:
668 	kfree_const(name);
669 	return NULL;
670 }
671 
672 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
673 				    const char *name, umode_t mode,
674 				    kuid_t uid, kgid_t gid,
675 				    unsigned flags)
676 {
677 	struct kernfs_node *kn;
678 
679 	kn = __kernfs_new_node(kernfs_root(parent), parent,
680 			       name, mode, uid, gid, flags);
681 	if (kn) {
682 		kernfs_get(parent);
683 		kn->parent = parent;
684 	}
685 	return kn;
686 }
687 
688 /*
689  * kernfs_find_and_get_node_by_id - get kernfs_node from node id
690  * @root: the kernfs root
691  * @id: the target node id
692  *
693  * @id's lower 32bits encode ino and upper gen.  If the gen portion is
694  * zero, all generations are matched.
695  *
696  * Return: %NULL on failure,
697  * otherwise a kernfs node with reference counter incremented.
698  */
699 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
700 						   u64 id)
701 {
702 	struct kernfs_node *kn;
703 	ino_t ino = kernfs_id_ino(id);
704 	u32 gen = kernfs_id_gen(id);
705 
706 	spin_lock(&kernfs_idr_lock);
707 
708 	kn = idr_find(&root->ino_idr, (u32)ino);
709 	if (!kn)
710 		goto err_unlock;
711 
712 	if (sizeof(ino_t) >= sizeof(u64)) {
713 		/* we looked up with the low 32bits, compare the whole */
714 		if (kernfs_ino(kn) != ino)
715 			goto err_unlock;
716 	} else {
717 		/* 0 matches all generations */
718 		if (unlikely(gen && kernfs_gen(kn) != gen))
719 			goto err_unlock;
720 	}
721 
722 	/*
723 	 * We should fail if @kn has never been activated and guarantee success
724 	 * if the caller knows that @kn is active. Both can be achieved by
725 	 * __kernfs_active() which tests @kn->active without kernfs_rwsem.
726 	 */
727 	if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count)))
728 		goto err_unlock;
729 
730 	spin_unlock(&kernfs_idr_lock);
731 	return kn;
732 err_unlock:
733 	spin_unlock(&kernfs_idr_lock);
734 	return NULL;
735 }
736 
737 /**
738  *	kernfs_add_one - add kernfs_node to parent without warning
739  *	@kn: kernfs_node to be added
740  *
741  *	The caller must already have initialized @kn->parent.  This
742  *	function increments nlink of the parent's inode if @kn is a
743  *	directory and link into the children list of the parent.
744  *
745  *	Return:
746  *	%0 on success, -EEXIST if entry with the given name already
747  *	exists.
748  */
749 int kernfs_add_one(struct kernfs_node *kn)
750 {
751 	struct kernfs_node *parent = kn->parent;
752 	struct kernfs_root *root = kernfs_root(parent);
753 	struct kernfs_iattrs *ps_iattr;
754 	bool has_ns;
755 	int ret;
756 
757 	down_write(&root->kernfs_rwsem);
758 
759 	ret = -EINVAL;
760 	has_ns = kernfs_ns_enabled(parent);
761 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
762 		 has_ns ? "required" : "invalid", parent->name, kn->name))
763 		goto out_unlock;
764 
765 	if (kernfs_type(parent) != KERNFS_DIR)
766 		goto out_unlock;
767 
768 	ret = -ENOENT;
769 	if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR))
770 		goto out_unlock;
771 
772 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
773 
774 	ret = kernfs_link_sibling(kn);
775 	if (ret)
776 		goto out_unlock;
777 
778 	/* Update timestamps on the parent */
779 	down_write(&root->kernfs_iattr_rwsem);
780 
781 	ps_iattr = parent->iattr;
782 	if (ps_iattr) {
783 		ktime_get_real_ts64(&ps_iattr->ia_ctime);
784 		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
785 	}
786 
787 	up_write(&root->kernfs_iattr_rwsem);
788 	up_write(&root->kernfs_rwsem);
789 
790 	/*
791 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
792 	 * If not activated here, the kernfs user is responsible for
793 	 * activating the node with kernfs_activate().  A node which hasn't
794 	 * been activated is not visible to userland and its removal won't
795 	 * trigger deactivation.
796 	 */
797 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
798 		kernfs_activate(kn);
799 	return 0;
800 
801 out_unlock:
802 	up_write(&root->kernfs_rwsem);
803 	return ret;
804 }
805 
806 /**
807  * kernfs_find_ns - find kernfs_node with the given name
808  * @parent: kernfs_node to search under
809  * @name: name to look for
810  * @ns: the namespace tag to use
811  *
812  * Look for kernfs_node with name @name under @parent.
813  *
814  * Return: pointer to the found kernfs_node on success, %NULL on failure.
815  */
816 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
817 					  const unsigned char *name,
818 					  const void *ns)
819 {
820 	struct rb_node *node = parent->dir.children.rb_node;
821 	bool has_ns = kernfs_ns_enabled(parent);
822 	unsigned int hash;
823 
824 	lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem);
825 
826 	if (has_ns != (bool)ns) {
827 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
828 		     has_ns ? "required" : "invalid", parent->name, name);
829 		return NULL;
830 	}
831 
832 	hash = kernfs_name_hash(name, ns);
833 	while (node) {
834 		struct kernfs_node *kn;
835 		int result;
836 
837 		kn = rb_to_kn(node);
838 		result = kernfs_name_compare(hash, name, ns, kn);
839 		if (result < 0)
840 			node = node->rb_left;
841 		else if (result > 0)
842 			node = node->rb_right;
843 		else
844 			return kn;
845 	}
846 	return NULL;
847 }
848 
849 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
850 					  const unsigned char *path,
851 					  const void *ns)
852 {
853 	size_t len;
854 	char *p, *name;
855 
856 	lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem);
857 
858 	spin_lock_irq(&kernfs_pr_cont_lock);
859 
860 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
861 
862 	if (len >= sizeof(kernfs_pr_cont_buf)) {
863 		spin_unlock_irq(&kernfs_pr_cont_lock);
864 		return NULL;
865 	}
866 
867 	p = kernfs_pr_cont_buf;
868 
869 	while ((name = strsep(&p, "/")) && parent) {
870 		if (*name == '\0')
871 			continue;
872 		parent = kernfs_find_ns(parent, name, ns);
873 	}
874 
875 	spin_unlock_irq(&kernfs_pr_cont_lock);
876 
877 	return parent;
878 }
879 
880 /**
881  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
882  * @parent: kernfs_node to search under
883  * @name: name to look for
884  * @ns: the namespace tag to use
885  *
886  * Look for kernfs_node with name @name under @parent and get a reference
887  * if found.  This function may sleep.
888  *
889  * Return: pointer to the found kernfs_node on success, %NULL on failure.
890  */
891 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
892 					   const char *name, const void *ns)
893 {
894 	struct kernfs_node *kn;
895 	struct kernfs_root *root = kernfs_root(parent);
896 
897 	down_read(&root->kernfs_rwsem);
898 	kn = kernfs_find_ns(parent, name, ns);
899 	kernfs_get(kn);
900 	up_read(&root->kernfs_rwsem);
901 
902 	return kn;
903 }
904 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
905 
906 /**
907  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
908  * @parent: kernfs_node to search under
909  * @path: path to look for
910  * @ns: the namespace tag to use
911  *
912  * Look for kernfs_node with path @path under @parent and get a reference
913  * if found.  This function may sleep.
914  *
915  * Return: pointer to the found kernfs_node on success, %NULL on failure.
916  */
917 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
918 					   const char *path, const void *ns)
919 {
920 	struct kernfs_node *kn;
921 	struct kernfs_root *root = kernfs_root(parent);
922 
923 	down_read(&root->kernfs_rwsem);
924 	kn = kernfs_walk_ns(parent, path, ns);
925 	kernfs_get(kn);
926 	up_read(&root->kernfs_rwsem);
927 
928 	return kn;
929 }
930 
931 /**
932  * kernfs_create_root - create a new kernfs hierarchy
933  * @scops: optional syscall operations for the hierarchy
934  * @flags: KERNFS_ROOT_* flags
935  * @priv: opaque data associated with the new directory
936  *
937  * Return: the root of the new hierarchy on success, ERR_PTR() value on
938  * failure.
939  */
940 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
941 				       unsigned int flags, void *priv)
942 {
943 	struct kernfs_root *root;
944 	struct kernfs_node *kn;
945 
946 	root = kzalloc(sizeof(*root), GFP_KERNEL);
947 	if (!root)
948 		return ERR_PTR(-ENOMEM);
949 
950 	idr_init(&root->ino_idr);
951 	init_rwsem(&root->kernfs_rwsem);
952 	init_rwsem(&root->kernfs_iattr_rwsem);
953 	init_rwsem(&root->kernfs_supers_rwsem);
954 	INIT_LIST_HEAD(&root->supers);
955 
956 	/*
957 	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
958 	 * High bits generation.  The starting value for both ino and
959 	 * genenration is 1.  Initialize upper 32bit allocation
960 	 * accordingly.
961 	 */
962 	if (sizeof(ino_t) >= sizeof(u64))
963 		root->id_highbits = 0;
964 	else
965 		root->id_highbits = 1;
966 
967 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
968 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
969 			       KERNFS_DIR);
970 	if (!kn) {
971 		idr_destroy(&root->ino_idr);
972 		kfree(root);
973 		return ERR_PTR(-ENOMEM);
974 	}
975 
976 	kn->priv = priv;
977 	kn->dir.root = root;
978 
979 	root->syscall_ops = scops;
980 	root->flags = flags;
981 	root->kn = kn;
982 	init_waitqueue_head(&root->deactivate_waitq);
983 
984 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
985 		kernfs_activate(kn);
986 
987 	return root;
988 }
989 
990 /**
991  * kernfs_destroy_root - destroy a kernfs hierarchy
992  * @root: root of the hierarchy to destroy
993  *
994  * Destroy the hierarchy anchored at @root by removing all existing
995  * directories and destroying @root.
996  */
997 void kernfs_destroy_root(struct kernfs_root *root)
998 {
999 	/*
1000 	 *  kernfs_remove holds kernfs_rwsem from the root so the root
1001 	 *  shouldn't be freed during the operation.
1002 	 */
1003 	kernfs_get(root->kn);
1004 	kernfs_remove(root->kn);
1005 	kernfs_put(root->kn); /* will also free @root */
1006 }
1007 
1008 /**
1009  * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root
1010  * @root: root to use to lookup
1011  *
1012  * Return: @root's kernfs_node
1013  */
1014 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root)
1015 {
1016 	return root->kn;
1017 }
1018 
1019 /**
1020  * kernfs_create_dir_ns - create a directory
1021  * @parent: parent in which to create a new directory
1022  * @name: name of the new directory
1023  * @mode: mode of the new directory
1024  * @uid: uid of the new directory
1025  * @gid: gid of the new directory
1026  * @priv: opaque data associated with the new directory
1027  * @ns: optional namespace tag of the directory
1028  *
1029  * Return: the created node on success, ERR_PTR() value on failure.
1030  */
1031 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1032 					 const char *name, umode_t mode,
1033 					 kuid_t uid, kgid_t gid,
1034 					 void *priv, const void *ns)
1035 {
1036 	struct kernfs_node *kn;
1037 	int rc;
1038 
1039 	/* allocate */
1040 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1041 			     uid, gid, KERNFS_DIR);
1042 	if (!kn)
1043 		return ERR_PTR(-ENOMEM);
1044 
1045 	kn->dir.root = parent->dir.root;
1046 	kn->ns = ns;
1047 	kn->priv = priv;
1048 
1049 	/* link in */
1050 	rc = kernfs_add_one(kn);
1051 	if (!rc)
1052 		return kn;
1053 
1054 	kernfs_put(kn);
1055 	return ERR_PTR(rc);
1056 }
1057 
1058 /**
1059  * kernfs_create_empty_dir - create an always empty directory
1060  * @parent: parent in which to create a new directory
1061  * @name: name of the new directory
1062  *
1063  * Return: the created node on success, ERR_PTR() value on failure.
1064  */
1065 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1066 					    const char *name)
1067 {
1068 	struct kernfs_node *kn;
1069 	int rc;
1070 
1071 	/* allocate */
1072 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1073 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1074 	if (!kn)
1075 		return ERR_PTR(-ENOMEM);
1076 
1077 	kn->flags |= KERNFS_EMPTY_DIR;
1078 	kn->dir.root = parent->dir.root;
1079 	kn->ns = NULL;
1080 	kn->priv = NULL;
1081 
1082 	/* link in */
1083 	rc = kernfs_add_one(kn);
1084 	if (!rc)
1085 		return kn;
1086 
1087 	kernfs_put(kn);
1088 	return ERR_PTR(rc);
1089 }
1090 
1091 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1092 {
1093 	struct kernfs_node *kn;
1094 	struct kernfs_root *root;
1095 
1096 	if (flags & LOOKUP_RCU)
1097 		return -ECHILD;
1098 
1099 	/* Negative hashed dentry? */
1100 	if (d_really_is_negative(dentry)) {
1101 		struct kernfs_node *parent;
1102 
1103 		/* If the kernfs parent node has changed discard and
1104 		 * proceed to ->lookup.
1105 		 *
1106 		 * There's nothing special needed here when getting the
1107 		 * dentry parent, even if a concurrent rename is in
1108 		 * progress. That's because the dentry is negative so
1109 		 * it can only be the target of the rename and it will
1110 		 * be doing a d_move() not a replace. Consequently the
1111 		 * dentry d_parent won't change over the d_move().
1112 		 *
1113 		 * Also kernfs negative dentries transitioning from
1114 		 * negative to positive during revalidate won't happen
1115 		 * because they are invalidated on containing directory
1116 		 * changes and the lookup re-done so that a new positive
1117 		 * dentry can be properly created.
1118 		 */
1119 		root = kernfs_root_from_sb(dentry->d_sb);
1120 		down_read(&root->kernfs_rwsem);
1121 		parent = kernfs_dentry_node(dentry->d_parent);
1122 		if (parent) {
1123 			if (kernfs_dir_changed(parent, dentry)) {
1124 				up_read(&root->kernfs_rwsem);
1125 				return 0;
1126 			}
1127 		}
1128 		up_read(&root->kernfs_rwsem);
1129 
1130 		/* The kernfs parent node hasn't changed, leave the
1131 		 * dentry negative and return success.
1132 		 */
1133 		return 1;
1134 	}
1135 
1136 	kn = kernfs_dentry_node(dentry);
1137 	root = kernfs_root(kn);
1138 	down_read(&root->kernfs_rwsem);
1139 
1140 	/* The kernfs node has been deactivated */
1141 	if (!kernfs_active(kn))
1142 		goto out_bad;
1143 
1144 	/* The kernfs node has been moved? */
1145 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1146 		goto out_bad;
1147 
1148 	/* The kernfs node has been renamed */
1149 	if (strcmp(dentry->d_name.name, kn->name) != 0)
1150 		goto out_bad;
1151 
1152 	/* The kernfs node has been moved to a different namespace */
1153 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1154 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
1155 		goto out_bad;
1156 
1157 	up_read(&root->kernfs_rwsem);
1158 	return 1;
1159 out_bad:
1160 	up_read(&root->kernfs_rwsem);
1161 	return 0;
1162 }
1163 
1164 const struct dentry_operations kernfs_dops = {
1165 	.d_revalidate	= kernfs_dop_revalidate,
1166 };
1167 
1168 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1169 					struct dentry *dentry,
1170 					unsigned int flags)
1171 {
1172 	struct kernfs_node *parent = dir->i_private;
1173 	struct kernfs_node *kn;
1174 	struct kernfs_root *root;
1175 	struct inode *inode = NULL;
1176 	const void *ns = NULL;
1177 
1178 	root = kernfs_root(parent);
1179 	down_read(&root->kernfs_rwsem);
1180 	if (kernfs_ns_enabled(parent))
1181 		ns = kernfs_info(dir->i_sb)->ns;
1182 
1183 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1184 	/* attach dentry and inode */
1185 	if (kn) {
1186 		/* Inactive nodes are invisible to the VFS so don't
1187 		 * create a negative.
1188 		 */
1189 		if (!kernfs_active(kn)) {
1190 			up_read(&root->kernfs_rwsem);
1191 			return NULL;
1192 		}
1193 		inode = kernfs_get_inode(dir->i_sb, kn);
1194 		if (!inode)
1195 			inode = ERR_PTR(-ENOMEM);
1196 	}
1197 	/*
1198 	 * Needed for negative dentry validation.
1199 	 * The negative dentry can be created in kernfs_iop_lookup()
1200 	 * or transforms from positive dentry in dentry_unlink_inode()
1201 	 * called from vfs_rmdir().
1202 	 */
1203 	if (!IS_ERR(inode))
1204 		kernfs_set_rev(parent, dentry);
1205 	up_read(&root->kernfs_rwsem);
1206 
1207 	/* instantiate and hash (possibly negative) dentry */
1208 	return d_splice_alias(inode, dentry);
1209 }
1210 
1211 static int kernfs_iop_mkdir(struct mnt_idmap *idmap,
1212 			    struct inode *dir, struct dentry *dentry,
1213 			    umode_t mode)
1214 {
1215 	struct kernfs_node *parent = dir->i_private;
1216 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1217 	int ret;
1218 
1219 	if (!scops || !scops->mkdir)
1220 		return -EPERM;
1221 
1222 	if (!kernfs_get_active(parent))
1223 		return -ENODEV;
1224 
1225 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1226 
1227 	kernfs_put_active(parent);
1228 	return ret;
1229 }
1230 
1231 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1232 {
1233 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1234 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1235 	int ret;
1236 
1237 	if (!scops || !scops->rmdir)
1238 		return -EPERM;
1239 
1240 	if (!kernfs_get_active(kn))
1241 		return -ENODEV;
1242 
1243 	ret = scops->rmdir(kn);
1244 
1245 	kernfs_put_active(kn);
1246 	return ret;
1247 }
1248 
1249 static int kernfs_iop_rename(struct mnt_idmap *idmap,
1250 			     struct inode *old_dir, struct dentry *old_dentry,
1251 			     struct inode *new_dir, struct dentry *new_dentry,
1252 			     unsigned int flags)
1253 {
1254 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1255 	struct kernfs_node *new_parent = new_dir->i_private;
1256 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1257 	int ret;
1258 
1259 	if (flags)
1260 		return -EINVAL;
1261 
1262 	if (!scops || !scops->rename)
1263 		return -EPERM;
1264 
1265 	if (!kernfs_get_active(kn))
1266 		return -ENODEV;
1267 
1268 	if (!kernfs_get_active(new_parent)) {
1269 		kernfs_put_active(kn);
1270 		return -ENODEV;
1271 	}
1272 
1273 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1274 
1275 	kernfs_put_active(new_parent);
1276 	kernfs_put_active(kn);
1277 	return ret;
1278 }
1279 
1280 const struct inode_operations kernfs_dir_iops = {
1281 	.lookup		= kernfs_iop_lookup,
1282 	.permission	= kernfs_iop_permission,
1283 	.setattr	= kernfs_iop_setattr,
1284 	.getattr	= kernfs_iop_getattr,
1285 	.listxattr	= kernfs_iop_listxattr,
1286 
1287 	.mkdir		= kernfs_iop_mkdir,
1288 	.rmdir		= kernfs_iop_rmdir,
1289 	.rename		= kernfs_iop_rename,
1290 };
1291 
1292 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1293 {
1294 	struct kernfs_node *last;
1295 
1296 	while (true) {
1297 		struct rb_node *rbn;
1298 
1299 		last = pos;
1300 
1301 		if (kernfs_type(pos) != KERNFS_DIR)
1302 			break;
1303 
1304 		rbn = rb_first(&pos->dir.children);
1305 		if (!rbn)
1306 			break;
1307 
1308 		pos = rb_to_kn(rbn);
1309 	}
1310 
1311 	return last;
1312 }
1313 
1314 /**
1315  * kernfs_next_descendant_post - find the next descendant for post-order walk
1316  * @pos: the current position (%NULL to initiate traversal)
1317  * @root: kernfs_node whose descendants to walk
1318  *
1319  * Find the next descendant to visit for post-order traversal of @root's
1320  * descendants.  @root is included in the iteration and the last node to be
1321  * visited.
1322  *
1323  * Return: the next descendant to visit or %NULL when done.
1324  */
1325 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1326 						       struct kernfs_node *root)
1327 {
1328 	struct rb_node *rbn;
1329 
1330 	lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem);
1331 
1332 	/* if first iteration, visit leftmost descendant which may be root */
1333 	if (!pos)
1334 		return kernfs_leftmost_descendant(root);
1335 
1336 	/* if we visited @root, we're done */
1337 	if (pos == root)
1338 		return NULL;
1339 
1340 	/* if there's an unvisited sibling, visit its leftmost descendant */
1341 	rbn = rb_next(&pos->rb);
1342 	if (rbn)
1343 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1344 
1345 	/* no sibling left, visit parent */
1346 	return pos->parent;
1347 }
1348 
1349 static void kernfs_activate_one(struct kernfs_node *kn)
1350 {
1351 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1352 
1353 	kn->flags |= KERNFS_ACTIVATED;
1354 
1355 	if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING)))
1356 		return;
1357 
1358 	WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb));
1359 	WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1360 
1361 	atomic_sub(KN_DEACTIVATED_BIAS, &kn->active);
1362 }
1363 
1364 /**
1365  * kernfs_activate - activate a node which started deactivated
1366  * @kn: kernfs_node whose subtree is to be activated
1367  *
1368  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1369  * needs to be explicitly activated.  A node which hasn't been activated
1370  * isn't visible to userland and deactivation is skipped during its
1371  * removal.  This is useful to construct atomic init sequences where
1372  * creation of multiple nodes should either succeed or fail atomically.
1373  *
1374  * The caller is responsible for ensuring that this function is not called
1375  * after kernfs_remove*() is invoked on @kn.
1376  */
1377 void kernfs_activate(struct kernfs_node *kn)
1378 {
1379 	struct kernfs_node *pos;
1380 	struct kernfs_root *root = kernfs_root(kn);
1381 
1382 	down_write(&root->kernfs_rwsem);
1383 
1384 	pos = NULL;
1385 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1386 		kernfs_activate_one(pos);
1387 
1388 	up_write(&root->kernfs_rwsem);
1389 }
1390 
1391 /**
1392  * kernfs_show - show or hide a node
1393  * @kn: kernfs_node to show or hide
1394  * @show: whether to show or hide
1395  *
1396  * If @show is %false, @kn is marked hidden and deactivated. A hidden node is
1397  * ignored in future activaitons. If %true, the mark is removed and activation
1398  * state is restored. This function won't implicitly activate a new node in a
1399  * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet.
1400  *
1401  * To avoid recursion complexities, directories aren't supported for now.
1402  */
1403 void kernfs_show(struct kernfs_node *kn, bool show)
1404 {
1405 	struct kernfs_root *root = kernfs_root(kn);
1406 
1407 	if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR))
1408 		return;
1409 
1410 	down_write(&root->kernfs_rwsem);
1411 
1412 	if (show) {
1413 		kn->flags &= ~KERNFS_HIDDEN;
1414 		if (kn->flags & KERNFS_ACTIVATED)
1415 			kernfs_activate_one(kn);
1416 	} else {
1417 		kn->flags |= KERNFS_HIDDEN;
1418 		if (kernfs_active(kn))
1419 			atomic_add(KN_DEACTIVATED_BIAS, &kn->active);
1420 		kernfs_drain(kn);
1421 	}
1422 
1423 	up_write(&root->kernfs_rwsem);
1424 }
1425 
1426 static void __kernfs_remove(struct kernfs_node *kn)
1427 {
1428 	struct kernfs_node *pos;
1429 
1430 	/* Short-circuit if non-root @kn has already finished removal. */
1431 	if (!kn)
1432 		return;
1433 
1434 	lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem);
1435 
1436 	/*
1437 	 * This is for kernfs_remove_self() which plays with active ref
1438 	 * after removal.
1439 	 */
1440 	if (kn->parent && RB_EMPTY_NODE(&kn->rb))
1441 		return;
1442 
1443 	pr_debug("kernfs %s: removing\n", kn->name);
1444 
1445 	/* prevent new usage by marking all nodes removing and deactivating */
1446 	pos = NULL;
1447 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1448 		pos->flags |= KERNFS_REMOVING;
1449 		if (kernfs_active(pos))
1450 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1451 	}
1452 
1453 	/* deactivate and unlink the subtree node-by-node */
1454 	do {
1455 		pos = kernfs_leftmost_descendant(kn);
1456 
1457 		/*
1458 		 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's
1459 		 * base ref could have been put by someone else by the time
1460 		 * the function returns.  Make sure it doesn't go away
1461 		 * underneath us.
1462 		 */
1463 		kernfs_get(pos);
1464 
1465 		kernfs_drain(pos);
1466 
1467 		/*
1468 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1469 		 * to decide who's responsible for cleanups.
1470 		 */
1471 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1472 			struct kernfs_iattrs *ps_iattr =
1473 				pos->parent ? pos->parent->iattr : NULL;
1474 
1475 			/* update timestamps on the parent */
1476 			down_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1477 
1478 			if (ps_iattr) {
1479 				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1480 				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1481 			}
1482 
1483 			up_write(&kernfs_root(kn)->kernfs_iattr_rwsem);
1484 			kernfs_put(pos);
1485 		}
1486 
1487 		kernfs_put(pos);
1488 	} while (pos != kn);
1489 }
1490 
1491 /**
1492  * kernfs_remove - remove a kernfs_node recursively
1493  * @kn: the kernfs_node to remove
1494  *
1495  * Remove @kn along with all its subdirectories and files.
1496  */
1497 void kernfs_remove(struct kernfs_node *kn)
1498 {
1499 	struct kernfs_root *root;
1500 
1501 	if (!kn)
1502 		return;
1503 
1504 	root = kernfs_root(kn);
1505 
1506 	down_write(&root->kernfs_rwsem);
1507 	__kernfs_remove(kn);
1508 	up_write(&root->kernfs_rwsem);
1509 }
1510 
1511 /**
1512  * kernfs_break_active_protection - break out of active protection
1513  * @kn: the self kernfs_node
1514  *
1515  * The caller must be running off of a kernfs operation which is invoked
1516  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1517  * this function must also be matched with an invocation of
1518  * kernfs_unbreak_active_protection().
1519  *
1520  * This function releases the active reference of @kn the caller is
1521  * holding.  Once this function is called, @kn may be removed at any point
1522  * and the caller is solely responsible for ensuring that the objects it
1523  * dereferences are accessible.
1524  */
1525 void kernfs_break_active_protection(struct kernfs_node *kn)
1526 {
1527 	/*
1528 	 * Take out ourself out of the active ref dependency chain.  If
1529 	 * we're called without an active ref, lockdep will complain.
1530 	 */
1531 	kernfs_put_active(kn);
1532 }
1533 
1534 /**
1535  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1536  * @kn: the self kernfs_node
1537  *
1538  * If kernfs_break_active_protection() was called, this function must be
1539  * invoked before finishing the kernfs operation.  Note that while this
1540  * function restores the active reference, it doesn't and can't actually
1541  * restore the active protection - @kn may already or be in the process of
1542  * being removed.  Once kernfs_break_active_protection() is invoked, that
1543  * protection is irreversibly gone for the kernfs operation instance.
1544  *
1545  * While this function may be called at any point after
1546  * kernfs_break_active_protection() is invoked, its most useful location
1547  * would be right before the enclosing kernfs operation returns.
1548  */
1549 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1550 {
1551 	/*
1552 	 * @kn->active could be in any state; however, the increment we do
1553 	 * here will be undone as soon as the enclosing kernfs operation
1554 	 * finishes and this temporary bump can't break anything.  If @kn
1555 	 * is alive, nothing changes.  If @kn is being deactivated, the
1556 	 * soon-to-follow put will either finish deactivation or restore
1557 	 * deactivated state.  If @kn is already removed, the temporary
1558 	 * bump is guaranteed to be gone before @kn is released.
1559 	 */
1560 	atomic_inc(&kn->active);
1561 	if (kernfs_lockdep(kn))
1562 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1563 }
1564 
1565 /**
1566  * kernfs_remove_self - remove a kernfs_node from its own method
1567  * @kn: the self kernfs_node to remove
1568  *
1569  * The caller must be running off of a kernfs operation which is invoked
1570  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1571  * implement a file operation which deletes itself.
1572  *
1573  * For example, the "delete" file for a sysfs device directory can be
1574  * implemented by invoking kernfs_remove_self() on the "delete" file
1575  * itself.  This function breaks the circular dependency of trying to
1576  * deactivate self while holding an active ref itself.  It isn't necessary
1577  * to modify the usual removal path to use kernfs_remove_self().  The
1578  * "delete" implementation can simply invoke kernfs_remove_self() on self
1579  * before proceeding with the usual removal path.  kernfs will ignore later
1580  * kernfs_remove() on self.
1581  *
1582  * kernfs_remove_self() can be called multiple times concurrently on the
1583  * same kernfs_node.  Only the first one actually performs removal and
1584  * returns %true.  All others will wait until the kernfs operation which
1585  * won self-removal finishes and return %false.  Note that the losers wait
1586  * for the completion of not only the winning kernfs_remove_self() but also
1587  * the whole kernfs_ops which won the arbitration.  This can be used to
1588  * guarantee, for example, all concurrent writes to a "delete" file to
1589  * finish only after the whole operation is complete.
1590  *
1591  * Return: %true if @kn is removed by this call, otherwise %false.
1592  */
1593 bool kernfs_remove_self(struct kernfs_node *kn)
1594 {
1595 	bool ret;
1596 	struct kernfs_root *root = kernfs_root(kn);
1597 
1598 	down_write(&root->kernfs_rwsem);
1599 	kernfs_break_active_protection(kn);
1600 
1601 	/*
1602 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1603 	 * the first one will actually perform removal.  When the removal
1604 	 * is complete, SUICIDED is set and the active ref is restored
1605 	 * while kernfs_rwsem for held exclusive.  The ones which lost
1606 	 * arbitration waits for SUICIDED && drained which can happen only
1607 	 * after the enclosing kernfs operation which executed the winning
1608 	 * instance of kernfs_remove_self() finished.
1609 	 */
1610 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1611 		kn->flags |= KERNFS_SUICIDAL;
1612 		__kernfs_remove(kn);
1613 		kn->flags |= KERNFS_SUICIDED;
1614 		ret = true;
1615 	} else {
1616 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1617 		DEFINE_WAIT(wait);
1618 
1619 		while (true) {
1620 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1621 
1622 			if ((kn->flags & KERNFS_SUICIDED) &&
1623 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1624 				break;
1625 
1626 			up_write(&root->kernfs_rwsem);
1627 			schedule();
1628 			down_write(&root->kernfs_rwsem);
1629 		}
1630 		finish_wait(waitq, &wait);
1631 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1632 		ret = false;
1633 	}
1634 
1635 	/*
1636 	 * This must be done while kernfs_rwsem held exclusive; otherwise,
1637 	 * waiting for SUICIDED && deactivated could finish prematurely.
1638 	 */
1639 	kernfs_unbreak_active_protection(kn);
1640 
1641 	up_write(&root->kernfs_rwsem);
1642 	return ret;
1643 }
1644 
1645 /**
1646  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1647  * @parent: parent of the target
1648  * @name: name of the kernfs_node to remove
1649  * @ns: namespace tag of the kernfs_node to remove
1650  *
1651  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1652  *
1653  * Return: %0 on success, -ENOENT if such entry doesn't exist.
1654  */
1655 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1656 			     const void *ns)
1657 {
1658 	struct kernfs_node *kn;
1659 	struct kernfs_root *root;
1660 
1661 	if (!parent) {
1662 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1663 			name);
1664 		return -ENOENT;
1665 	}
1666 
1667 	root = kernfs_root(parent);
1668 	down_write(&root->kernfs_rwsem);
1669 
1670 	kn = kernfs_find_ns(parent, name, ns);
1671 	if (kn) {
1672 		kernfs_get(kn);
1673 		__kernfs_remove(kn);
1674 		kernfs_put(kn);
1675 	}
1676 
1677 	up_write(&root->kernfs_rwsem);
1678 
1679 	if (kn)
1680 		return 0;
1681 	else
1682 		return -ENOENT;
1683 }
1684 
1685 /**
1686  * kernfs_rename_ns - move and rename a kernfs_node
1687  * @kn: target node
1688  * @new_parent: new parent to put @sd under
1689  * @new_name: new name
1690  * @new_ns: new namespace tag
1691  *
1692  * Return: %0 on success, -errno on failure.
1693  */
1694 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1695 		     const char *new_name, const void *new_ns)
1696 {
1697 	struct kernfs_node *old_parent;
1698 	struct kernfs_root *root;
1699 	const char *old_name = NULL;
1700 	int error;
1701 
1702 	/* can't move or rename root */
1703 	if (!kn->parent)
1704 		return -EINVAL;
1705 
1706 	root = kernfs_root(kn);
1707 	down_write(&root->kernfs_rwsem);
1708 
1709 	error = -ENOENT;
1710 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1711 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1712 		goto out;
1713 
1714 	error = 0;
1715 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1716 	    (strcmp(kn->name, new_name) == 0))
1717 		goto out;	/* nothing to rename */
1718 
1719 	error = -EEXIST;
1720 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1721 		goto out;
1722 
1723 	/* rename kernfs_node */
1724 	if (strcmp(kn->name, new_name) != 0) {
1725 		error = -ENOMEM;
1726 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1727 		if (!new_name)
1728 			goto out;
1729 	} else {
1730 		new_name = NULL;
1731 	}
1732 
1733 	/*
1734 	 * Move to the appropriate place in the appropriate directories rbtree.
1735 	 */
1736 	kernfs_unlink_sibling(kn);
1737 	kernfs_get(new_parent);
1738 
1739 	/* rename_lock protects ->parent and ->name accessors */
1740 	write_lock_irq(&kernfs_rename_lock);
1741 
1742 	old_parent = kn->parent;
1743 	kn->parent = new_parent;
1744 
1745 	kn->ns = new_ns;
1746 	if (new_name) {
1747 		old_name = kn->name;
1748 		kn->name = new_name;
1749 	}
1750 
1751 	write_unlock_irq(&kernfs_rename_lock);
1752 
1753 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1754 	kernfs_link_sibling(kn);
1755 
1756 	kernfs_put(old_parent);
1757 	kfree_const(old_name);
1758 
1759 	error = 0;
1760  out:
1761 	up_write(&root->kernfs_rwsem);
1762 	return error;
1763 }
1764 
1765 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1766 {
1767 	kernfs_put(filp->private_data);
1768 	return 0;
1769 }
1770 
1771 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1772 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1773 {
1774 	if (pos) {
1775 		int valid = kernfs_active(pos) &&
1776 			pos->parent == parent && hash == pos->hash;
1777 		kernfs_put(pos);
1778 		if (!valid)
1779 			pos = NULL;
1780 	}
1781 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1782 		struct rb_node *node = parent->dir.children.rb_node;
1783 		while (node) {
1784 			pos = rb_to_kn(node);
1785 
1786 			if (hash < pos->hash)
1787 				node = node->rb_left;
1788 			else if (hash > pos->hash)
1789 				node = node->rb_right;
1790 			else
1791 				break;
1792 		}
1793 	}
1794 	/* Skip over entries which are dying/dead or in the wrong namespace */
1795 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1796 		struct rb_node *node = rb_next(&pos->rb);
1797 		if (!node)
1798 			pos = NULL;
1799 		else
1800 			pos = rb_to_kn(node);
1801 	}
1802 	return pos;
1803 }
1804 
1805 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1806 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1807 {
1808 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1809 	if (pos) {
1810 		do {
1811 			struct rb_node *node = rb_next(&pos->rb);
1812 			if (!node)
1813 				pos = NULL;
1814 			else
1815 				pos = rb_to_kn(node);
1816 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1817 	}
1818 	return pos;
1819 }
1820 
1821 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1822 {
1823 	struct dentry *dentry = file->f_path.dentry;
1824 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1825 	struct kernfs_node *pos = file->private_data;
1826 	struct kernfs_root *root;
1827 	const void *ns = NULL;
1828 
1829 	if (!dir_emit_dots(file, ctx))
1830 		return 0;
1831 
1832 	root = kernfs_root(parent);
1833 	down_read(&root->kernfs_rwsem);
1834 
1835 	if (kernfs_ns_enabled(parent))
1836 		ns = kernfs_info(dentry->d_sb)->ns;
1837 
1838 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1839 	     pos;
1840 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1841 		const char *name = pos->name;
1842 		unsigned int type = fs_umode_to_dtype(pos->mode);
1843 		int len = strlen(name);
1844 		ino_t ino = kernfs_ino(pos);
1845 
1846 		ctx->pos = pos->hash;
1847 		file->private_data = pos;
1848 		kernfs_get(pos);
1849 
1850 		up_read(&root->kernfs_rwsem);
1851 		if (!dir_emit(ctx, name, len, ino, type))
1852 			return 0;
1853 		down_read(&root->kernfs_rwsem);
1854 	}
1855 	up_read(&root->kernfs_rwsem);
1856 	file->private_data = NULL;
1857 	ctx->pos = INT_MAX;
1858 	return 0;
1859 }
1860 
1861 const struct file_operations kernfs_dir_fops = {
1862 	.read		= generic_read_dir,
1863 	.iterate_shared	= kernfs_fop_readdir,
1864 	.release	= kernfs_dir_fop_release,
1865 	.llseek		= generic_file_llseek,
1866 };
1867