1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 DEFINE_MUTEX(kernfs_mutex); 21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 22 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 23 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 if (!kn) 45 return strlcpy(buf, "(null)", buflen); 46 47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 48 } 49 50 /* kernfs_node_depth - compute depth from @from to @to */ 51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 52 { 53 size_t depth = 0; 54 55 while (to->parent && to != from) { 56 depth++; 57 to = to->parent; 58 } 59 return depth; 60 } 61 62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 63 struct kernfs_node *b) 64 { 65 size_t da, db; 66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 67 68 if (ra != rb) 69 return NULL; 70 71 da = kernfs_depth(ra->kn, a); 72 db = kernfs_depth(rb->kn, b); 73 74 while (da > db) { 75 a = a->parent; 76 da--; 77 } 78 while (db > da) { 79 b = b->parent; 80 db--; 81 } 82 83 /* worst case b and a will be the same at root */ 84 while (b != a) { 85 b = b->parent; 86 a = a->parent; 87 } 88 89 return a; 90 } 91 92 /** 93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 94 * where kn_from is treated as root of the path. 95 * @kn_from: kernfs node which should be treated as root for the path 96 * @kn_to: kernfs node to which path is needed 97 * @buf: buffer to copy the path into 98 * @buflen: size of @buf 99 * 100 * We need to handle couple of scenarios here: 101 * [1] when @kn_from is an ancestor of @kn_to at some level 102 * kn_from: /n1/n2/n3 103 * kn_to: /n1/n2/n3/n4/n5 104 * result: /n4/n5 105 * 106 * [2] when @kn_from is on a different hierarchy and we need to find common 107 * ancestor between @kn_from and @kn_to. 108 * kn_from: /n1/n2/n3/n4 109 * kn_to: /n1/n2/n5 110 * result: /../../n5 111 * OR 112 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 113 * kn_to: /n1/n2/n3 [depth=3] 114 * result: /../.. 115 * 116 * [3] when @kn_to is NULL result will be "(null)" 117 * 118 * Returns the length of the full path. If the full length is equal to or 119 * greater than @buflen, @buf contains the truncated path with the trailing 120 * '\0'. On error, -errno is returned. 121 */ 122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 123 struct kernfs_node *kn_from, 124 char *buf, size_t buflen) 125 { 126 struct kernfs_node *kn, *common; 127 const char parent_str[] = "/.."; 128 size_t depth_from, depth_to, len = 0; 129 int i, j; 130 131 if (!kn_to) 132 return strlcpy(buf, "(null)", buflen); 133 134 if (!kn_from) 135 kn_from = kernfs_root(kn_to)->kn; 136 137 if (kn_from == kn_to) 138 return strlcpy(buf, "/", buflen); 139 140 common = kernfs_common_ancestor(kn_from, kn_to); 141 if (WARN_ON(!common)) 142 return -EINVAL; 143 144 depth_to = kernfs_depth(common, kn_to); 145 depth_from = kernfs_depth(common, kn_from); 146 147 if (buf) 148 buf[0] = '\0'; 149 150 for (i = 0; i < depth_from; i++) 151 len += strlcpy(buf + len, parent_str, 152 len < buflen ? buflen - len : 0); 153 154 /* Calculate how many bytes we need for the rest */ 155 for (i = depth_to - 1; i >= 0; i--) { 156 for (kn = kn_to, j = 0; j < i; j++) 157 kn = kn->parent; 158 len += strlcpy(buf + len, "/", 159 len < buflen ? buflen - len : 0); 160 len += strlcpy(buf + len, kn->name, 161 len < buflen ? buflen - len : 0); 162 } 163 164 return len; 165 } 166 167 /** 168 * kernfs_name - obtain the name of a given node 169 * @kn: kernfs_node of interest 170 * @buf: buffer to copy @kn's name into 171 * @buflen: size of @buf 172 * 173 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 174 * similar to strlcpy(). It returns the length of @kn's name and if @buf 175 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 176 * 177 * Fills buffer with "(null)" if @kn is NULL. 178 * 179 * This function can be called from any context. 180 */ 181 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 182 { 183 unsigned long flags; 184 int ret; 185 186 spin_lock_irqsave(&kernfs_rename_lock, flags); 187 ret = kernfs_name_locked(kn, buf, buflen); 188 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 189 return ret; 190 } 191 192 /** 193 * kernfs_path_from_node - build path of node @to relative to @from. 194 * @from: parent kernfs_node relative to which we need to build the path 195 * @to: kernfs_node of interest 196 * @buf: buffer to copy @to's path into 197 * @buflen: size of @buf 198 * 199 * Builds @to's path relative to @from in @buf. @from and @to must 200 * be on the same kernfs-root. If @from is not parent of @to, then a relative 201 * path (which includes '..'s) as needed to reach from @from to @to is 202 * returned. 203 * 204 * Returns the length of the full path. If the full length is equal to or 205 * greater than @buflen, @buf contains the truncated path with the trailing 206 * '\0'. On error, -errno is returned. 207 */ 208 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 209 char *buf, size_t buflen) 210 { 211 unsigned long flags; 212 int ret; 213 214 spin_lock_irqsave(&kernfs_rename_lock, flags); 215 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 216 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 217 return ret; 218 } 219 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 220 221 /** 222 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 223 * @kn: kernfs_node of interest 224 * 225 * This function can be called from any context. 226 */ 227 void pr_cont_kernfs_name(struct kernfs_node *kn) 228 { 229 unsigned long flags; 230 231 spin_lock_irqsave(&kernfs_rename_lock, flags); 232 233 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 234 pr_cont("%s", kernfs_pr_cont_buf); 235 236 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 237 } 238 239 /** 240 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 241 * @kn: kernfs_node of interest 242 * 243 * This function can be called from any context. 244 */ 245 void pr_cont_kernfs_path(struct kernfs_node *kn) 246 { 247 unsigned long flags; 248 int sz; 249 250 spin_lock_irqsave(&kernfs_rename_lock, flags); 251 252 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf, 253 sizeof(kernfs_pr_cont_buf)); 254 if (sz < 0) { 255 pr_cont("(error)"); 256 goto out; 257 } 258 259 if (sz >= sizeof(kernfs_pr_cont_buf)) { 260 pr_cont("(name too long)"); 261 goto out; 262 } 263 264 pr_cont("%s", kernfs_pr_cont_buf); 265 266 out: 267 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 268 } 269 270 /** 271 * kernfs_get_parent - determine the parent node and pin it 272 * @kn: kernfs_node of interest 273 * 274 * Determines @kn's parent, pins and returns it. This function can be 275 * called from any context. 276 */ 277 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 278 { 279 struct kernfs_node *parent; 280 unsigned long flags; 281 282 spin_lock_irqsave(&kernfs_rename_lock, flags); 283 parent = kn->parent; 284 kernfs_get(parent); 285 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 286 287 return parent; 288 } 289 290 /** 291 * kernfs_name_hash 292 * @name: Null terminated string to hash 293 * @ns: Namespace tag to hash 294 * 295 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 296 */ 297 static unsigned int kernfs_name_hash(const char *name, const void *ns) 298 { 299 unsigned long hash = init_name_hash(ns); 300 unsigned int len = strlen(name); 301 while (len--) 302 hash = partial_name_hash(*name++, hash); 303 hash = end_name_hash(hash); 304 hash &= 0x7fffffffU; 305 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 306 if (hash < 2) 307 hash += 2; 308 if (hash >= INT_MAX) 309 hash = INT_MAX - 1; 310 return hash; 311 } 312 313 static int kernfs_name_compare(unsigned int hash, const char *name, 314 const void *ns, const struct kernfs_node *kn) 315 { 316 if (hash < kn->hash) 317 return -1; 318 if (hash > kn->hash) 319 return 1; 320 if (ns < kn->ns) 321 return -1; 322 if (ns > kn->ns) 323 return 1; 324 return strcmp(name, kn->name); 325 } 326 327 static int kernfs_sd_compare(const struct kernfs_node *left, 328 const struct kernfs_node *right) 329 { 330 return kernfs_name_compare(left->hash, left->name, left->ns, right); 331 } 332 333 /** 334 * kernfs_link_sibling - link kernfs_node into sibling rbtree 335 * @kn: kernfs_node of interest 336 * 337 * Link @kn into its sibling rbtree which starts from 338 * @kn->parent->dir.children. 339 * 340 * Locking: 341 * mutex_lock(kernfs_mutex) 342 * 343 * RETURNS: 344 * 0 on susccess -EEXIST on failure. 345 */ 346 static int kernfs_link_sibling(struct kernfs_node *kn) 347 { 348 struct rb_node **node = &kn->parent->dir.children.rb_node; 349 struct rb_node *parent = NULL; 350 351 while (*node) { 352 struct kernfs_node *pos; 353 int result; 354 355 pos = rb_to_kn(*node); 356 parent = *node; 357 result = kernfs_sd_compare(kn, pos); 358 if (result < 0) 359 node = &pos->rb.rb_left; 360 else if (result > 0) 361 node = &pos->rb.rb_right; 362 else 363 return -EEXIST; 364 } 365 366 /* add new node and rebalance the tree */ 367 rb_link_node(&kn->rb, parent, node); 368 rb_insert_color(&kn->rb, &kn->parent->dir.children); 369 370 /* successfully added, account subdir number */ 371 if (kernfs_type(kn) == KERNFS_DIR) 372 kn->parent->dir.subdirs++; 373 374 return 0; 375 } 376 377 /** 378 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 379 * @kn: kernfs_node of interest 380 * 381 * Try to unlink @kn from its sibling rbtree which starts from 382 * kn->parent->dir.children. Returns %true if @kn was actually 383 * removed, %false if @kn wasn't on the rbtree. 384 * 385 * Locking: 386 * mutex_lock(kernfs_mutex) 387 */ 388 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 389 { 390 if (RB_EMPTY_NODE(&kn->rb)) 391 return false; 392 393 if (kernfs_type(kn) == KERNFS_DIR) 394 kn->parent->dir.subdirs--; 395 396 rb_erase(&kn->rb, &kn->parent->dir.children); 397 RB_CLEAR_NODE(&kn->rb); 398 return true; 399 } 400 401 /** 402 * kernfs_get_active - get an active reference to kernfs_node 403 * @kn: kernfs_node to get an active reference to 404 * 405 * Get an active reference of @kn. This function is noop if @kn 406 * is NULL. 407 * 408 * RETURNS: 409 * Pointer to @kn on success, NULL on failure. 410 */ 411 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 412 { 413 if (unlikely(!kn)) 414 return NULL; 415 416 if (!atomic_inc_unless_negative(&kn->active)) 417 return NULL; 418 419 if (kernfs_lockdep(kn)) 420 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 421 return kn; 422 } 423 424 /** 425 * kernfs_put_active - put an active reference to kernfs_node 426 * @kn: kernfs_node to put an active reference to 427 * 428 * Put an active reference to @kn. This function is noop if @kn 429 * is NULL. 430 */ 431 void kernfs_put_active(struct kernfs_node *kn) 432 { 433 struct kernfs_root *root = kernfs_root(kn); 434 int v; 435 436 if (unlikely(!kn)) 437 return; 438 439 if (kernfs_lockdep(kn)) 440 rwsem_release(&kn->dep_map, 1, _RET_IP_); 441 v = atomic_dec_return(&kn->active); 442 if (likely(v != KN_DEACTIVATED_BIAS)) 443 return; 444 445 wake_up_all(&root->deactivate_waitq); 446 } 447 448 /** 449 * kernfs_drain - drain kernfs_node 450 * @kn: kernfs_node to drain 451 * 452 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 453 * removers may invoke this function concurrently on @kn and all will 454 * return after draining is complete. 455 */ 456 static void kernfs_drain(struct kernfs_node *kn) 457 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 458 { 459 struct kernfs_root *root = kernfs_root(kn); 460 461 lockdep_assert_held(&kernfs_mutex); 462 WARN_ON_ONCE(kernfs_active(kn)); 463 464 mutex_unlock(&kernfs_mutex); 465 466 if (kernfs_lockdep(kn)) { 467 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 468 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 469 lock_contended(&kn->dep_map, _RET_IP_); 470 } 471 472 /* but everyone should wait for draining */ 473 wait_event(root->deactivate_waitq, 474 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 475 476 if (kernfs_lockdep(kn)) { 477 lock_acquired(&kn->dep_map, _RET_IP_); 478 rwsem_release(&kn->dep_map, 1, _RET_IP_); 479 } 480 481 kernfs_drain_open_files(kn); 482 483 mutex_lock(&kernfs_mutex); 484 } 485 486 /** 487 * kernfs_get - get a reference count on a kernfs_node 488 * @kn: the target kernfs_node 489 */ 490 void kernfs_get(struct kernfs_node *kn) 491 { 492 if (kn) { 493 WARN_ON(!atomic_read(&kn->count)); 494 atomic_inc(&kn->count); 495 } 496 } 497 EXPORT_SYMBOL_GPL(kernfs_get); 498 499 /** 500 * kernfs_put - put a reference count on a kernfs_node 501 * @kn: the target kernfs_node 502 * 503 * Put a reference count of @kn and destroy it if it reached zero. 504 */ 505 void kernfs_put(struct kernfs_node *kn) 506 { 507 struct kernfs_node *parent; 508 struct kernfs_root *root; 509 510 /* 511 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino 512 * depends on this to filter reused stale node 513 */ 514 if (!kn || !atomic_dec_and_test(&kn->count)) 515 return; 516 root = kernfs_root(kn); 517 repeat: 518 /* 519 * Moving/renaming is always done while holding reference. 520 * kn->parent won't change beneath us. 521 */ 522 parent = kn->parent; 523 524 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 525 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 526 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 527 528 if (kernfs_type(kn) == KERNFS_LINK) 529 kernfs_put(kn->symlink.target_kn); 530 531 kfree_const(kn->name); 532 533 if (kn->iattr) { 534 simple_xattrs_free(&kn->iattr->xattrs); 535 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 536 } 537 spin_lock(&kernfs_idr_lock); 538 idr_remove(&root->ino_idr, kn->id.ino); 539 spin_unlock(&kernfs_idr_lock); 540 kmem_cache_free(kernfs_node_cache, kn); 541 542 kn = parent; 543 if (kn) { 544 if (atomic_dec_and_test(&kn->count)) 545 goto repeat; 546 } else { 547 /* just released the root kn, free @root too */ 548 idr_destroy(&root->ino_idr); 549 kfree(root); 550 } 551 } 552 EXPORT_SYMBOL_GPL(kernfs_put); 553 554 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 555 { 556 struct kernfs_node *kn; 557 558 if (flags & LOOKUP_RCU) 559 return -ECHILD; 560 561 /* Always perform fresh lookup for negatives */ 562 if (d_really_is_negative(dentry)) 563 goto out_bad_unlocked; 564 565 kn = kernfs_dentry_node(dentry); 566 mutex_lock(&kernfs_mutex); 567 568 /* The kernfs node has been deactivated */ 569 if (!kernfs_active(kn)) 570 goto out_bad; 571 572 /* The kernfs node has been moved? */ 573 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 574 goto out_bad; 575 576 /* The kernfs node has been renamed */ 577 if (strcmp(dentry->d_name.name, kn->name) != 0) 578 goto out_bad; 579 580 /* The kernfs node has been moved to a different namespace */ 581 if (kn->parent && kernfs_ns_enabled(kn->parent) && 582 kernfs_info(dentry->d_sb)->ns != kn->ns) 583 goto out_bad; 584 585 mutex_unlock(&kernfs_mutex); 586 return 1; 587 out_bad: 588 mutex_unlock(&kernfs_mutex); 589 out_bad_unlocked: 590 return 0; 591 } 592 593 const struct dentry_operations kernfs_dops = { 594 .d_revalidate = kernfs_dop_revalidate, 595 }; 596 597 /** 598 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 599 * @dentry: the dentry in question 600 * 601 * Return the kernfs_node associated with @dentry. If @dentry is not a 602 * kernfs one, %NULL is returned. 603 * 604 * While the returned kernfs_node will stay accessible as long as @dentry 605 * is accessible, the returned node can be in any state and the caller is 606 * fully responsible for determining what's accessible. 607 */ 608 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 609 { 610 if (dentry->d_sb->s_op == &kernfs_sops && 611 !d_really_is_negative(dentry)) 612 return kernfs_dentry_node(dentry); 613 return NULL; 614 } 615 616 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 617 struct kernfs_node *parent, 618 const char *name, umode_t mode, 619 kuid_t uid, kgid_t gid, 620 unsigned flags) 621 { 622 struct kernfs_node *kn; 623 u32 gen; 624 int cursor; 625 int ret; 626 627 name = kstrdup_const(name, GFP_KERNEL); 628 if (!name) 629 return NULL; 630 631 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 632 if (!kn) 633 goto err_out1; 634 635 idr_preload(GFP_KERNEL); 636 spin_lock(&kernfs_idr_lock); 637 cursor = idr_get_cursor(&root->ino_idr); 638 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 639 if (ret >= 0 && ret < cursor) 640 root->next_generation++; 641 gen = root->next_generation; 642 spin_unlock(&kernfs_idr_lock); 643 idr_preload_end(); 644 if (ret < 0) 645 goto err_out2; 646 kn->id.ino = ret; 647 kn->id.generation = gen; 648 649 /* 650 * set ino first. This RELEASE is paired with atomic_inc_not_zero in 651 * kernfs_find_and_get_node_by_ino 652 */ 653 atomic_set_release(&kn->count, 1); 654 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 655 RB_CLEAR_NODE(&kn->rb); 656 657 kn->name = name; 658 kn->mode = mode; 659 kn->flags = flags; 660 661 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 662 struct iattr iattr = { 663 .ia_valid = ATTR_UID | ATTR_GID, 664 .ia_uid = uid, 665 .ia_gid = gid, 666 }; 667 668 ret = __kernfs_setattr(kn, &iattr); 669 if (ret < 0) 670 goto err_out3; 671 } 672 673 if (parent) { 674 ret = security_kernfs_init_security(parent, kn); 675 if (ret) 676 goto err_out3; 677 } 678 679 return kn; 680 681 err_out3: 682 idr_remove(&root->ino_idr, kn->id.ino); 683 err_out2: 684 kmem_cache_free(kernfs_node_cache, kn); 685 err_out1: 686 kfree_const(name); 687 return NULL; 688 } 689 690 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 691 const char *name, umode_t mode, 692 kuid_t uid, kgid_t gid, 693 unsigned flags) 694 { 695 struct kernfs_node *kn; 696 697 kn = __kernfs_new_node(kernfs_root(parent), parent, 698 name, mode, uid, gid, flags); 699 if (kn) { 700 kernfs_get(parent); 701 kn->parent = parent; 702 } 703 return kn; 704 } 705 706 /* 707 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number 708 * @root: the kernfs root 709 * @ino: inode number 710 * 711 * RETURNS: 712 * NULL on failure. Return a kernfs node with reference counter incremented 713 */ 714 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root, 715 unsigned int ino) 716 { 717 struct kernfs_node *kn; 718 719 rcu_read_lock(); 720 kn = idr_find(&root->ino_idr, ino); 721 if (!kn) 722 goto out; 723 724 /* 725 * Since kernfs_node is freed in RCU, it's possible an old node for ino 726 * is freed, but reused before RCU grace period. But a freed node (see 727 * kernfs_put) or an incompletedly initialized node (see 728 * __kernfs_new_node) should have 'count' 0. We can use this fact to 729 * filter out such node. 730 */ 731 if (!atomic_inc_not_zero(&kn->count)) { 732 kn = NULL; 733 goto out; 734 } 735 736 /* 737 * The node could be a new node or a reused node. If it's a new node, 738 * we are ok. If it's reused because of RCU (because of 739 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino' 740 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate, 741 * hence we can use 'ino' to filter stale node. 742 */ 743 if (kn->id.ino != ino) 744 goto out; 745 rcu_read_unlock(); 746 747 return kn; 748 out: 749 rcu_read_unlock(); 750 kernfs_put(kn); 751 return NULL; 752 } 753 754 /** 755 * kernfs_add_one - add kernfs_node to parent without warning 756 * @kn: kernfs_node to be added 757 * 758 * The caller must already have initialized @kn->parent. This 759 * function increments nlink of the parent's inode if @kn is a 760 * directory and link into the children list of the parent. 761 * 762 * RETURNS: 763 * 0 on success, -EEXIST if entry with the given name already 764 * exists. 765 */ 766 int kernfs_add_one(struct kernfs_node *kn) 767 { 768 struct kernfs_node *parent = kn->parent; 769 struct kernfs_iattrs *ps_iattr; 770 bool has_ns; 771 int ret; 772 773 mutex_lock(&kernfs_mutex); 774 775 ret = -EINVAL; 776 has_ns = kernfs_ns_enabled(parent); 777 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 778 has_ns ? "required" : "invalid", parent->name, kn->name)) 779 goto out_unlock; 780 781 if (kernfs_type(parent) != KERNFS_DIR) 782 goto out_unlock; 783 784 ret = -ENOENT; 785 if (parent->flags & KERNFS_EMPTY_DIR) 786 goto out_unlock; 787 788 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 789 goto out_unlock; 790 791 kn->hash = kernfs_name_hash(kn->name, kn->ns); 792 793 ret = kernfs_link_sibling(kn); 794 if (ret) 795 goto out_unlock; 796 797 /* Update timestamps on the parent */ 798 ps_iattr = parent->iattr; 799 if (ps_iattr) { 800 ktime_get_real_ts64(&ps_iattr->ia_ctime); 801 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 802 } 803 804 mutex_unlock(&kernfs_mutex); 805 806 /* 807 * Activate the new node unless CREATE_DEACTIVATED is requested. 808 * If not activated here, the kernfs user is responsible for 809 * activating the node with kernfs_activate(). A node which hasn't 810 * been activated is not visible to userland and its removal won't 811 * trigger deactivation. 812 */ 813 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 814 kernfs_activate(kn); 815 return 0; 816 817 out_unlock: 818 mutex_unlock(&kernfs_mutex); 819 return ret; 820 } 821 822 /** 823 * kernfs_find_ns - find kernfs_node with the given name 824 * @parent: kernfs_node to search under 825 * @name: name to look for 826 * @ns: the namespace tag to use 827 * 828 * Look for kernfs_node with name @name under @parent. Returns pointer to 829 * the found kernfs_node on success, %NULL on failure. 830 */ 831 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 832 const unsigned char *name, 833 const void *ns) 834 { 835 struct rb_node *node = parent->dir.children.rb_node; 836 bool has_ns = kernfs_ns_enabled(parent); 837 unsigned int hash; 838 839 lockdep_assert_held(&kernfs_mutex); 840 841 if (has_ns != (bool)ns) { 842 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 843 has_ns ? "required" : "invalid", parent->name, name); 844 return NULL; 845 } 846 847 hash = kernfs_name_hash(name, ns); 848 while (node) { 849 struct kernfs_node *kn; 850 int result; 851 852 kn = rb_to_kn(node); 853 result = kernfs_name_compare(hash, name, ns, kn); 854 if (result < 0) 855 node = node->rb_left; 856 else if (result > 0) 857 node = node->rb_right; 858 else 859 return kn; 860 } 861 return NULL; 862 } 863 864 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 865 const unsigned char *path, 866 const void *ns) 867 { 868 size_t len; 869 char *p, *name; 870 871 lockdep_assert_held(&kernfs_mutex); 872 873 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */ 874 spin_lock_irq(&kernfs_rename_lock); 875 876 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 877 878 if (len >= sizeof(kernfs_pr_cont_buf)) { 879 spin_unlock_irq(&kernfs_rename_lock); 880 return NULL; 881 } 882 883 p = kernfs_pr_cont_buf; 884 885 while ((name = strsep(&p, "/")) && parent) { 886 if (*name == '\0') 887 continue; 888 parent = kernfs_find_ns(parent, name, ns); 889 } 890 891 spin_unlock_irq(&kernfs_rename_lock); 892 893 return parent; 894 } 895 896 /** 897 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 898 * @parent: kernfs_node to search under 899 * @name: name to look for 900 * @ns: the namespace tag to use 901 * 902 * Look for kernfs_node with name @name under @parent and get a reference 903 * if found. This function may sleep and returns pointer to the found 904 * kernfs_node on success, %NULL on failure. 905 */ 906 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 907 const char *name, const void *ns) 908 { 909 struct kernfs_node *kn; 910 911 mutex_lock(&kernfs_mutex); 912 kn = kernfs_find_ns(parent, name, ns); 913 kernfs_get(kn); 914 mutex_unlock(&kernfs_mutex); 915 916 return kn; 917 } 918 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 919 920 /** 921 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 922 * @parent: kernfs_node to search under 923 * @path: path to look for 924 * @ns: the namespace tag to use 925 * 926 * Look for kernfs_node with path @path under @parent and get a reference 927 * if found. This function may sleep and returns pointer to the found 928 * kernfs_node on success, %NULL on failure. 929 */ 930 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 931 const char *path, const void *ns) 932 { 933 struct kernfs_node *kn; 934 935 mutex_lock(&kernfs_mutex); 936 kn = kernfs_walk_ns(parent, path, ns); 937 kernfs_get(kn); 938 mutex_unlock(&kernfs_mutex); 939 940 return kn; 941 } 942 943 /** 944 * kernfs_create_root - create a new kernfs hierarchy 945 * @scops: optional syscall operations for the hierarchy 946 * @flags: KERNFS_ROOT_* flags 947 * @priv: opaque data associated with the new directory 948 * 949 * Returns the root of the new hierarchy on success, ERR_PTR() value on 950 * failure. 951 */ 952 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 953 unsigned int flags, void *priv) 954 { 955 struct kernfs_root *root; 956 struct kernfs_node *kn; 957 958 root = kzalloc(sizeof(*root), GFP_KERNEL); 959 if (!root) 960 return ERR_PTR(-ENOMEM); 961 962 idr_init(&root->ino_idr); 963 INIT_LIST_HEAD(&root->supers); 964 root->next_generation = 1; 965 966 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 967 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 968 KERNFS_DIR); 969 if (!kn) { 970 idr_destroy(&root->ino_idr); 971 kfree(root); 972 return ERR_PTR(-ENOMEM); 973 } 974 975 kn->priv = priv; 976 kn->dir.root = root; 977 978 root->syscall_ops = scops; 979 root->flags = flags; 980 root->kn = kn; 981 init_waitqueue_head(&root->deactivate_waitq); 982 983 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 984 kernfs_activate(kn); 985 986 return root; 987 } 988 989 /** 990 * kernfs_destroy_root - destroy a kernfs hierarchy 991 * @root: root of the hierarchy to destroy 992 * 993 * Destroy the hierarchy anchored at @root by removing all existing 994 * directories and destroying @root. 995 */ 996 void kernfs_destroy_root(struct kernfs_root *root) 997 { 998 kernfs_remove(root->kn); /* will also free @root */ 999 } 1000 1001 /** 1002 * kernfs_create_dir_ns - create a directory 1003 * @parent: parent in which to create a new directory 1004 * @name: name of the new directory 1005 * @mode: mode of the new directory 1006 * @uid: uid of the new directory 1007 * @gid: gid of the new directory 1008 * @priv: opaque data associated with the new directory 1009 * @ns: optional namespace tag of the directory 1010 * 1011 * Returns the created node on success, ERR_PTR() value on failure. 1012 */ 1013 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1014 const char *name, umode_t mode, 1015 kuid_t uid, kgid_t gid, 1016 void *priv, const void *ns) 1017 { 1018 struct kernfs_node *kn; 1019 int rc; 1020 1021 /* allocate */ 1022 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1023 uid, gid, KERNFS_DIR); 1024 if (!kn) 1025 return ERR_PTR(-ENOMEM); 1026 1027 kn->dir.root = parent->dir.root; 1028 kn->ns = ns; 1029 kn->priv = priv; 1030 1031 /* link in */ 1032 rc = kernfs_add_one(kn); 1033 if (!rc) 1034 return kn; 1035 1036 kernfs_put(kn); 1037 return ERR_PTR(rc); 1038 } 1039 1040 /** 1041 * kernfs_create_empty_dir - create an always empty directory 1042 * @parent: parent in which to create a new directory 1043 * @name: name of the new directory 1044 * 1045 * Returns the created node on success, ERR_PTR() value on failure. 1046 */ 1047 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1048 const char *name) 1049 { 1050 struct kernfs_node *kn; 1051 int rc; 1052 1053 /* allocate */ 1054 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1055 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1056 if (!kn) 1057 return ERR_PTR(-ENOMEM); 1058 1059 kn->flags |= KERNFS_EMPTY_DIR; 1060 kn->dir.root = parent->dir.root; 1061 kn->ns = NULL; 1062 kn->priv = NULL; 1063 1064 /* link in */ 1065 rc = kernfs_add_one(kn); 1066 if (!rc) 1067 return kn; 1068 1069 kernfs_put(kn); 1070 return ERR_PTR(rc); 1071 } 1072 1073 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1074 struct dentry *dentry, 1075 unsigned int flags) 1076 { 1077 struct dentry *ret; 1078 struct kernfs_node *parent = dir->i_private; 1079 struct kernfs_node *kn; 1080 struct inode *inode; 1081 const void *ns = NULL; 1082 1083 mutex_lock(&kernfs_mutex); 1084 1085 if (kernfs_ns_enabled(parent)) 1086 ns = kernfs_info(dir->i_sb)->ns; 1087 1088 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1089 1090 /* no such entry */ 1091 if (!kn || !kernfs_active(kn)) { 1092 ret = NULL; 1093 goto out_unlock; 1094 } 1095 1096 /* attach dentry and inode */ 1097 inode = kernfs_get_inode(dir->i_sb, kn); 1098 if (!inode) { 1099 ret = ERR_PTR(-ENOMEM); 1100 goto out_unlock; 1101 } 1102 1103 /* instantiate and hash dentry */ 1104 ret = d_splice_alias(inode, dentry); 1105 out_unlock: 1106 mutex_unlock(&kernfs_mutex); 1107 return ret; 1108 } 1109 1110 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 1111 umode_t mode) 1112 { 1113 struct kernfs_node *parent = dir->i_private; 1114 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1115 int ret; 1116 1117 if (!scops || !scops->mkdir) 1118 return -EPERM; 1119 1120 if (!kernfs_get_active(parent)) 1121 return -ENODEV; 1122 1123 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1124 1125 kernfs_put_active(parent); 1126 return ret; 1127 } 1128 1129 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1130 { 1131 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1132 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1133 int ret; 1134 1135 if (!scops || !scops->rmdir) 1136 return -EPERM; 1137 1138 if (!kernfs_get_active(kn)) 1139 return -ENODEV; 1140 1141 ret = scops->rmdir(kn); 1142 1143 kernfs_put_active(kn); 1144 return ret; 1145 } 1146 1147 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 1148 struct inode *new_dir, struct dentry *new_dentry, 1149 unsigned int flags) 1150 { 1151 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1152 struct kernfs_node *new_parent = new_dir->i_private; 1153 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1154 int ret; 1155 1156 if (flags) 1157 return -EINVAL; 1158 1159 if (!scops || !scops->rename) 1160 return -EPERM; 1161 1162 if (!kernfs_get_active(kn)) 1163 return -ENODEV; 1164 1165 if (!kernfs_get_active(new_parent)) { 1166 kernfs_put_active(kn); 1167 return -ENODEV; 1168 } 1169 1170 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1171 1172 kernfs_put_active(new_parent); 1173 kernfs_put_active(kn); 1174 return ret; 1175 } 1176 1177 const struct inode_operations kernfs_dir_iops = { 1178 .lookup = kernfs_iop_lookup, 1179 .permission = kernfs_iop_permission, 1180 .setattr = kernfs_iop_setattr, 1181 .getattr = kernfs_iop_getattr, 1182 .listxattr = kernfs_iop_listxattr, 1183 1184 .mkdir = kernfs_iop_mkdir, 1185 .rmdir = kernfs_iop_rmdir, 1186 .rename = kernfs_iop_rename, 1187 }; 1188 1189 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1190 { 1191 struct kernfs_node *last; 1192 1193 while (true) { 1194 struct rb_node *rbn; 1195 1196 last = pos; 1197 1198 if (kernfs_type(pos) != KERNFS_DIR) 1199 break; 1200 1201 rbn = rb_first(&pos->dir.children); 1202 if (!rbn) 1203 break; 1204 1205 pos = rb_to_kn(rbn); 1206 } 1207 1208 return last; 1209 } 1210 1211 /** 1212 * kernfs_next_descendant_post - find the next descendant for post-order walk 1213 * @pos: the current position (%NULL to initiate traversal) 1214 * @root: kernfs_node whose descendants to walk 1215 * 1216 * Find the next descendant to visit for post-order traversal of @root's 1217 * descendants. @root is included in the iteration and the last node to be 1218 * visited. 1219 */ 1220 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1221 struct kernfs_node *root) 1222 { 1223 struct rb_node *rbn; 1224 1225 lockdep_assert_held(&kernfs_mutex); 1226 1227 /* if first iteration, visit leftmost descendant which may be root */ 1228 if (!pos) 1229 return kernfs_leftmost_descendant(root); 1230 1231 /* if we visited @root, we're done */ 1232 if (pos == root) 1233 return NULL; 1234 1235 /* if there's an unvisited sibling, visit its leftmost descendant */ 1236 rbn = rb_next(&pos->rb); 1237 if (rbn) 1238 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1239 1240 /* no sibling left, visit parent */ 1241 return pos->parent; 1242 } 1243 1244 /** 1245 * kernfs_activate - activate a node which started deactivated 1246 * @kn: kernfs_node whose subtree is to be activated 1247 * 1248 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1249 * needs to be explicitly activated. A node which hasn't been activated 1250 * isn't visible to userland and deactivation is skipped during its 1251 * removal. This is useful to construct atomic init sequences where 1252 * creation of multiple nodes should either succeed or fail atomically. 1253 * 1254 * The caller is responsible for ensuring that this function is not called 1255 * after kernfs_remove*() is invoked on @kn. 1256 */ 1257 void kernfs_activate(struct kernfs_node *kn) 1258 { 1259 struct kernfs_node *pos; 1260 1261 mutex_lock(&kernfs_mutex); 1262 1263 pos = NULL; 1264 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1265 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 1266 continue; 1267 1268 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1269 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1270 1271 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1272 pos->flags |= KERNFS_ACTIVATED; 1273 } 1274 1275 mutex_unlock(&kernfs_mutex); 1276 } 1277 1278 static void __kernfs_remove(struct kernfs_node *kn) 1279 { 1280 struct kernfs_node *pos; 1281 1282 lockdep_assert_held(&kernfs_mutex); 1283 1284 /* 1285 * Short-circuit if non-root @kn has already finished removal. 1286 * This is for kernfs_remove_self() which plays with active ref 1287 * after removal. 1288 */ 1289 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1290 return; 1291 1292 pr_debug("kernfs %s: removing\n", kn->name); 1293 1294 /* prevent any new usage under @kn by deactivating all nodes */ 1295 pos = NULL; 1296 while ((pos = kernfs_next_descendant_post(pos, kn))) 1297 if (kernfs_active(pos)) 1298 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1299 1300 /* deactivate and unlink the subtree node-by-node */ 1301 do { 1302 pos = kernfs_leftmost_descendant(kn); 1303 1304 /* 1305 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1306 * base ref could have been put by someone else by the time 1307 * the function returns. Make sure it doesn't go away 1308 * underneath us. 1309 */ 1310 kernfs_get(pos); 1311 1312 /* 1313 * Drain iff @kn was activated. This avoids draining and 1314 * its lockdep annotations for nodes which have never been 1315 * activated and allows embedding kernfs_remove() in create 1316 * error paths without worrying about draining. 1317 */ 1318 if (kn->flags & KERNFS_ACTIVATED) 1319 kernfs_drain(pos); 1320 else 1321 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1322 1323 /* 1324 * kernfs_unlink_sibling() succeeds once per node. Use it 1325 * to decide who's responsible for cleanups. 1326 */ 1327 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1328 struct kernfs_iattrs *ps_iattr = 1329 pos->parent ? pos->parent->iattr : NULL; 1330 1331 /* update timestamps on the parent */ 1332 if (ps_iattr) { 1333 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1334 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1335 } 1336 1337 kernfs_put(pos); 1338 } 1339 1340 kernfs_put(pos); 1341 } while (pos != kn); 1342 } 1343 1344 /** 1345 * kernfs_remove - remove a kernfs_node recursively 1346 * @kn: the kernfs_node to remove 1347 * 1348 * Remove @kn along with all its subdirectories and files. 1349 */ 1350 void kernfs_remove(struct kernfs_node *kn) 1351 { 1352 mutex_lock(&kernfs_mutex); 1353 __kernfs_remove(kn); 1354 mutex_unlock(&kernfs_mutex); 1355 } 1356 1357 /** 1358 * kernfs_break_active_protection - break out of active protection 1359 * @kn: the self kernfs_node 1360 * 1361 * The caller must be running off of a kernfs operation which is invoked 1362 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1363 * this function must also be matched with an invocation of 1364 * kernfs_unbreak_active_protection(). 1365 * 1366 * This function releases the active reference of @kn the caller is 1367 * holding. Once this function is called, @kn may be removed at any point 1368 * and the caller is solely responsible for ensuring that the objects it 1369 * dereferences are accessible. 1370 */ 1371 void kernfs_break_active_protection(struct kernfs_node *kn) 1372 { 1373 /* 1374 * Take out ourself out of the active ref dependency chain. If 1375 * we're called without an active ref, lockdep will complain. 1376 */ 1377 kernfs_put_active(kn); 1378 } 1379 1380 /** 1381 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1382 * @kn: the self kernfs_node 1383 * 1384 * If kernfs_break_active_protection() was called, this function must be 1385 * invoked before finishing the kernfs operation. Note that while this 1386 * function restores the active reference, it doesn't and can't actually 1387 * restore the active protection - @kn may already or be in the process of 1388 * being removed. Once kernfs_break_active_protection() is invoked, that 1389 * protection is irreversibly gone for the kernfs operation instance. 1390 * 1391 * While this function may be called at any point after 1392 * kernfs_break_active_protection() is invoked, its most useful location 1393 * would be right before the enclosing kernfs operation returns. 1394 */ 1395 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1396 { 1397 /* 1398 * @kn->active could be in any state; however, the increment we do 1399 * here will be undone as soon as the enclosing kernfs operation 1400 * finishes and this temporary bump can't break anything. If @kn 1401 * is alive, nothing changes. If @kn is being deactivated, the 1402 * soon-to-follow put will either finish deactivation or restore 1403 * deactivated state. If @kn is already removed, the temporary 1404 * bump is guaranteed to be gone before @kn is released. 1405 */ 1406 atomic_inc(&kn->active); 1407 if (kernfs_lockdep(kn)) 1408 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1409 } 1410 1411 /** 1412 * kernfs_remove_self - remove a kernfs_node from its own method 1413 * @kn: the self kernfs_node to remove 1414 * 1415 * The caller must be running off of a kernfs operation which is invoked 1416 * with an active reference - e.g. one of kernfs_ops. This can be used to 1417 * implement a file operation which deletes itself. 1418 * 1419 * For example, the "delete" file for a sysfs device directory can be 1420 * implemented by invoking kernfs_remove_self() on the "delete" file 1421 * itself. This function breaks the circular dependency of trying to 1422 * deactivate self while holding an active ref itself. It isn't necessary 1423 * to modify the usual removal path to use kernfs_remove_self(). The 1424 * "delete" implementation can simply invoke kernfs_remove_self() on self 1425 * before proceeding with the usual removal path. kernfs will ignore later 1426 * kernfs_remove() on self. 1427 * 1428 * kernfs_remove_self() can be called multiple times concurrently on the 1429 * same kernfs_node. Only the first one actually performs removal and 1430 * returns %true. All others will wait until the kernfs operation which 1431 * won self-removal finishes and return %false. Note that the losers wait 1432 * for the completion of not only the winning kernfs_remove_self() but also 1433 * the whole kernfs_ops which won the arbitration. This can be used to 1434 * guarantee, for example, all concurrent writes to a "delete" file to 1435 * finish only after the whole operation is complete. 1436 */ 1437 bool kernfs_remove_self(struct kernfs_node *kn) 1438 { 1439 bool ret; 1440 1441 mutex_lock(&kernfs_mutex); 1442 kernfs_break_active_protection(kn); 1443 1444 /* 1445 * SUICIDAL is used to arbitrate among competing invocations. Only 1446 * the first one will actually perform removal. When the removal 1447 * is complete, SUICIDED is set and the active ref is restored 1448 * while holding kernfs_mutex. The ones which lost arbitration 1449 * waits for SUICDED && drained which can happen only after the 1450 * enclosing kernfs operation which executed the winning instance 1451 * of kernfs_remove_self() finished. 1452 */ 1453 if (!(kn->flags & KERNFS_SUICIDAL)) { 1454 kn->flags |= KERNFS_SUICIDAL; 1455 __kernfs_remove(kn); 1456 kn->flags |= KERNFS_SUICIDED; 1457 ret = true; 1458 } else { 1459 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1460 DEFINE_WAIT(wait); 1461 1462 while (true) { 1463 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1464 1465 if ((kn->flags & KERNFS_SUICIDED) && 1466 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1467 break; 1468 1469 mutex_unlock(&kernfs_mutex); 1470 schedule(); 1471 mutex_lock(&kernfs_mutex); 1472 } 1473 finish_wait(waitq, &wait); 1474 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1475 ret = false; 1476 } 1477 1478 /* 1479 * This must be done while holding kernfs_mutex; otherwise, waiting 1480 * for SUICIDED && deactivated could finish prematurely. 1481 */ 1482 kernfs_unbreak_active_protection(kn); 1483 1484 mutex_unlock(&kernfs_mutex); 1485 return ret; 1486 } 1487 1488 /** 1489 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1490 * @parent: parent of the target 1491 * @name: name of the kernfs_node to remove 1492 * @ns: namespace tag of the kernfs_node to remove 1493 * 1494 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1495 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1496 */ 1497 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1498 const void *ns) 1499 { 1500 struct kernfs_node *kn; 1501 1502 if (!parent) { 1503 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1504 name); 1505 return -ENOENT; 1506 } 1507 1508 mutex_lock(&kernfs_mutex); 1509 1510 kn = kernfs_find_ns(parent, name, ns); 1511 if (kn) 1512 __kernfs_remove(kn); 1513 1514 mutex_unlock(&kernfs_mutex); 1515 1516 if (kn) 1517 return 0; 1518 else 1519 return -ENOENT; 1520 } 1521 1522 /** 1523 * kernfs_rename_ns - move and rename a kernfs_node 1524 * @kn: target node 1525 * @new_parent: new parent to put @sd under 1526 * @new_name: new name 1527 * @new_ns: new namespace tag 1528 */ 1529 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1530 const char *new_name, const void *new_ns) 1531 { 1532 struct kernfs_node *old_parent; 1533 const char *old_name = NULL; 1534 int error; 1535 1536 /* can't move or rename root */ 1537 if (!kn->parent) 1538 return -EINVAL; 1539 1540 mutex_lock(&kernfs_mutex); 1541 1542 error = -ENOENT; 1543 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1544 (new_parent->flags & KERNFS_EMPTY_DIR)) 1545 goto out; 1546 1547 error = 0; 1548 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1549 (strcmp(kn->name, new_name) == 0)) 1550 goto out; /* nothing to rename */ 1551 1552 error = -EEXIST; 1553 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1554 goto out; 1555 1556 /* rename kernfs_node */ 1557 if (strcmp(kn->name, new_name) != 0) { 1558 error = -ENOMEM; 1559 new_name = kstrdup_const(new_name, GFP_KERNEL); 1560 if (!new_name) 1561 goto out; 1562 } else { 1563 new_name = NULL; 1564 } 1565 1566 /* 1567 * Move to the appropriate place in the appropriate directories rbtree. 1568 */ 1569 kernfs_unlink_sibling(kn); 1570 kernfs_get(new_parent); 1571 1572 /* rename_lock protects ->parent and ->name accessors */ 1573 spin_lock_irq(&kernfs_rename_lock); 1574 1575 old_parent = kn->parent; 1576 kn->parent = new_parent; 1577 1578 kn->ns = new_ns; 1579 if (new_name) { 1580 old_name = kn->name; 1581 kn->name = new_name; 1582 } 1583 1584 spin_unlock_irq(&kernfs_rename_lock); 1585 1586 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1587 kernfs_link_sibling(kn); 1588 1589 kernfs_put(old_parent); 1590 kfree_const(old_name); 1591 1592 error = 0; 1593 out: 1594 mutex_unlock(&kernfs_mutex); 1595 return error; 1596 } 1597 1598 /* Relationship between s_mode and the DT_xxx types */ 1599 static inline unsigned char dt_type(struct kernfs_node *kn) 1600 { 1601 return (kn->mode >> 12) & 15; 1602 } 1603 1604 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1605 { 1606 kernfs_put(filp->private_data); 1607 return 0; 1608 } 1609 1610 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1611 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1612 { 1613 if (pos) { 1614 int valid = kernfs_active(pos) && 1615 pos->parent == parent && hash == pos->hash; 1616 kernfs_put(pos); 1617 if (!valid) 1618 pos = NULL; 1619 } 1620 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1621 struct rb_node *node = parent->dir.children.rb_node; 1622 while (node) { 1623 pos = rb_to_kn(node); 1624 1625 if (hash < pos->hash) 1626 node = node->rb_left; 1627 else if (hash > pos->hash) 1628 node = node->rb_right; 1629 else 1630 break; 1631 } 1632 } 1633 /* Skip over entries which are dying/dead or in the wrong namespace */ 1634 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1635 struct rb_node *node = rb_next(&pos->rb); 1636 if (!node) 1637 pos = NULL; 1638 else 1639 pos = rb_to_kn(node); 1640 } 1641 return pos; 1642 } 1643 1644 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1645 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1646 { 1647 pos = kernfs_dir_pos(ns, parent, ino, pos); 1648 if (pos) { 1649 do { 1650 struct rb_node *node = rb_next(&pos->rb); 1651 if (!node) 1652 pos = NULL; 1653 else 1654 pos = rb_to_kn(node); 1655 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1656 } 1657 return pos; 1658 } 1659 1660 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1661 { 1662 struct dentry *dentry = file->f_path.dentry; 1663 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1664 struct kernfs_node *pos = file->private_data; 1665 const void *ns = NULL; 1666 1667 if (!dir_emit_dots(file, ctx)) 1668 return 0; 1669 mutex_lock(&kernfs_mutex); 1670 1671 if (kernfs_ns_enabled(parent)) 1672 ns = kernfs_info(dentry->d_sb)->ns; 1673 1674 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1675 pos; 1676 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1677 const char *name = pos->name; 1678 unsigned int type = dt_type(pos); 1679 int len = strlen(name); 1680 ino_t ino = pos->id.ino; 1681 1682 ctx->pos = pos->hash; 1683 file->private_data = pos; 1684 kernfs_get(pos); 1685 1686 mutex_unlock(&kernfs_mutex); 1687 if (!dir_emit(ctx, name, len, ino, type)) 1688 return 0; 1689 mutex_lock(&kernfs_mutex); 1690 } 1691 mutex_unlock(&kernfs_mutex); 1692 file->private_data = NULL; 1693 ctx->pos = INT_MAX; 1694 return 0; 1695 } 1696 1697 const struct file_operations kernfs_dir_fops = { 1698 .read = generic_read_dir, 1699 .iterate_shared = kernfs_fop_readdir, 1700 .release = kernfs_dir_fop_release, 1701 .llseek = generic_file_llseek, 1702 }; 1703