xref: /openbmc/linux/fs/kernfs/dir.c (revision b593bce5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17 
18 #include "kernfs-internal.h"
19 
20 DEFINE_MUTEX(kernfs_mutex);
21 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
22 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
23 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	if (!kn)
45 		return strlcpy(buf, "(null)", buflen);
46 
47 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
48 }
49 
50 /* kernfs_node_depth - compute depth from @from to @to */
51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
52 {
53 	size_t depth = 0;
54 
55 	while (to->parent && to != from) {
56 		depth++;
57 		to = to->parent;
58 	}
59 	return depth;
60 }
61 
62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 						  struct kernfs_node *b)
64 {
65 	size_t da, db;
66 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
67 
68 	if (ra != rb)
69 		return NULL;
70 
71 	da = kernfs_depth(ra->kn, a);
72 	db = kernfs_depth(rb->kn, b);
73 
74 	while (da > db) {
75 		a = a->parent;
76 		da--;
77 	}
78 	while (db > da) {
79 		b = b->parent;
80 		db--;
81 	}
82 
83 	/* worst case b and a will be the same at root */
84 	while (b != a) {
85 		b = b->parent;
86 		a = a->parent;
87 	}
88 
89 	return a;
90 }
91 
92 /**
93  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94  * where kn_from is treated as root of the path.
95  * @kn_from: kernfs node which should be treated as root for the path
96  * @kn_to: kernfs node to which path is needed
97  * @buf: buffer to copy the path into
98  * @buflen: size of @buf
99  *
100  * We need to handle couple of scenarios here:
101  * [1] when @kn_from is an ancestor of @kn_to at some level
102  * kn_from: /n1/n2/n3
103  * kn_to:   /n1/n2/n3/n4/n5
104  * result:  /n4/n5
105  *
106  * [2] when @kn_from is on a different hierarchy and we need to find common
107  * ancestor between @kn_from and @kn_to.
108  * kn_from: /n1/n2/n3/n4
109  * kn_to:   /n1/n2/n5
110  * result:  /../../n5
111  * OR
112  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
113  * kn_to:   /n1/n2/n3         [depth=3]
114  * result:  /../..
115  *
116  * [3] when @kn_to is NULL result will be "(null)"
117  *
118  * Returns the length of the full path.  If the full length is equal to or
119  * greater than @buflen, @buf contains the truncated path with the trailing
120  * '\0'.  On error, -errno is returned.
121  */
122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 					struct kernfs_node *kn_from,
124 					char *buf, size_t buflen)
125 {
126 	struct kernfs_node *kn, *common;
127 	const char parent_str[] = "/..";
128 	size_t depth_from, depth_to, len = 0;
129 	int i, j;
130 
131 	if (!kn_to)
132 		return strlcpy(buf, "(null)", buflen);
133 
134 	if (!kn_from)
135 		kn_from = kernfs_root(kn_to)->kn;
136 
137 	if (kn_from == kn_to)
138 		return strlcpy(buf, "/", buflen);
139 
140 	common = kernfs_common_ancestor(kn_from, kn_to);
141 	if (WARN_ON(!common))
142 		return -EINVAL;
143 
144 	depth_to = kernfs_depth(common, kn_to);
145 	depth_from = kernfs_depth(common, kn_from);
146 
147 	if (buf)
148 		buf[0] = '\0';
149 
150 	for (i = 0; i < depth_from; i++)
151 		len += strlcpy(buf + len, parent_str,
152 			       len < buflen ? buflen - len : 0);
153 
154 	/* Calculate how many bytes we need for the rest */
155 	for (i = depth_to - 1; i >= 0; i--) {
156 		for (kn = kn_to, j = 0; j < i; j++)
157 			kn = kn->parent;
158 		len += strlcpy(buf + len, "/",
159 			       len < buflen ? buflen - len : 0);
160 		len += strlcpy(buf + len, kn->name,
161 			       len < buflen ? buflen - len : 0);
162 	}
163 
164 	return len;
165 }
166 
167 /**
168  * kernfs_name - obtain the name of a given node
169  * @kn: kernfs_node of interest
170  * @buf: buffer to copy @kn's name into
171  * @buflen: size of @buf
172  *
173  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
174  * similar to strlcpy().  It returns the length of @kn's name and if @buf
175  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
176  *
177  * Fills buffer with "(null)" if @kn is NULL.
178  *
179  * This function can be called from any context.
180  */
181 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
182 {
183 	unsigned long flags;
184 	int ret;
185 
186 	spin_lock_irqsave(&kernfs_rename_lock, flags);
187 	ret = kernfs_name_locked(kn, buf, buflen);
188 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
189 	return ret;
190 }
191 
192 /**
193  * kernfs_path_from_node - build path of node @to relative to @from.
194  * @from: parent kernfs_node relative to which we need to build the path
195  * @to: kernfs_node of interest
196  * @buf: buffer to copy @to's path into
197  * @buflen: size of @buf
198  *
199  * Builds @to's path relative to @from in @buf. @from and @to must
200  * be on the same kernfs-root. If @from is not parent of @to, then a relative
201  * path (which includes '..'s) as needed to reach from @from to @to is
202  * returned.
203  *
204  * Returns the length of the full path.  If the full length is equal to or
205  * greater than @buflen, @buf contains the truncated path with the trailing
206  * '\0'.  On error, -errno is returned.
207  */
208 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
209 			  char *buf, size_t buflen)
210 {
211 	unsigned long flags;
212 	int ret;
213 
214 	spin_lock_irqsave(&kernfs_rename_lock, flags);
215 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
216 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
217 	return ret;
218 }
219 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
220 
221 /**
222  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
223  * @kn: kernfs_node of interest
224  *
225  * This function can be called from any context.
226  */
227 void pr_cont_kernfs_name(struct kernfs_node *kn)
228 {
229 	unsigned long flags;
230 
231 	spin_lock_irqsave(&kernfs_rename_lock, flags);
232 
233 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
234 	pr_cont("%s", kernfs_pr_cont_buf);
235 
236 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
237 }
238 
239 /**
240  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
241  * @kn: kernfs_node of interest
242  *
243  * This function can be called from any context.
244  */
245 void pr_cont_kernfs_path(struct kernfs_node *kn)
246 {
247 	unsigned long flags;
248 	int sz;
249 
250 	spin_lock_irqsave(&kernfs_rename_lock, flags);
251 
252 	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
253 					  sizeof(kernfs_pr_cont_buf));
254 	if (sz < 0) {
255 		pr_cont("(error)");
256 		goto out;
257 	}
258 
259 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
260 		pr_cont("(name too long)");
261 		goto out;
262 	}
263 
264 	pr_cont("%s", kernfs_pr_cont_buf);
265 
266 out:
267 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
268 }
269 
270 /**
271  * kernfs_get_parent - determine the parent node and pin it
272  * @kn: kernfs_node of interest
273  *
274  * Determines @kn's parent, pins and returns it.  This function can be
275  * called from any context.
276  */
277 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
278 {
279 	struct kernfs_node *parent;
280 	unsigned long flags;
281 
282 	spin_lock_irqsave(&kernfs_rename_lock, flags);
283 	parent = kn->parent;
284 	kernfs_get(parent);
285 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
286 
287 	return parent;
288 }
289 
290 /**
291  *	kernfs_name_hash
292  *	@name: Null terminated string to hash
293  *	@ns:   Namespace tag to hash
294  *
295  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
296  */
297 static unsigned int kernfs_name_hash(const char *name, const void *ns)
298 {
299 	unsigned long hash = init_name_hash(ns);
300 	unsigned int len = strlen(name);
301 	while (len--)
302 		hash = partial_name_hash(*name++, hash);
303 	hash = end_name_hash(hash);
304 	hash &= 0x7fffffffU;
305 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
306 	if (hash < 2)
307 		hash += 2;
308 	if (hash >= INT_MAX)
309 		hash = INT_MAX - 1;
310 	return hash;
311 }
312 
313 static int kernfs_name_compare(unsigned int hash, const char *name,
314 			       const void *ns, const struct kernfs_node *kn)
315 {
316 	if (hash < kn->hash)
317 		return -1;
318 	if (hash > kn->hash)
319 		return 1;
320 	if (ns < kn->ns)
321 		return -1;
322 	if (ns > kn->ns)
323 		return 1;
324 	return strcmp(name, kn->name);
325 }
326 
327 static int kernfs_sd_compare(const struct kernfs_node *left,
328 			     const struct kernfs_node *right)
329 {
330 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
331 }
332 
333 /**
334  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
335  *	@kn: kernfs_node of interest
336  *
337  *	Link @kn into its sibling rbtree which starts from
338  *	@kn->parent->dir.children.
339  *
340  *	Locking:
341  *	mutex_lock(kernfs_mutex)
342  *
343  *	RETURNS:
344  *	0 on susccess -EEXIST on failure.
345  */
346 static int kernfs_link_sibling(struct kernfs_node *kn)
347 {
348 	struct rb_node **node = &kn->parent->dir.children.rb_node;
349 	struct rb_node *parent = NULL;
350 
351 	while (*node) {
352 		struct kernfs_node *pos;
353 		int result;
354 
355 		pos = rb_to_kn(*node);
356 		parent = *node;
357 		result = kernfs_sd_compare(kn, pos);
358 		if (result < 0)
359 			node = &pos->rb.rb_left;
360 		else if (result > 0)
361 			node = &pos->rb.rb_right;
362 		else
363 			return -EEXIST;
364 	}
365 
366 	/* add new node and rebalance the tree */
367 	rb_link_node(&kn->rb, parent, node);
368 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
369 
370 	/* successfully added, account subdir number */
371 	if (kernfs_type(kn) == KERNFS_DIR)
372 		kn->parent->dir.subdirs++;
373 
374 	return 0;
375 }
376 
377 /**
378  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
379  *	@kn: kernfs_node of interest
380  *
381  *	Try to unlink @kn from its sibling rbtree which starts from
382  *	kn->parent->dir.children.  Returns %true if @kn was actually
383  *	removed, %false if @kn wasn't on the rbtree.
384  *
385  *	Locking:
386  *	mutex_lock(kernfs_mutex)
387  */
388 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
389 {
390 	if (RB_EMPTY_NODE(&kn->rb))
391 		return false;
392 
393 	if (kernfs_type(kn) == KERNFS_DIR)
394 		kn->parent->dir.subdirs--;
395 
396 	rb_erase(&kn->rb, &kn->parent->dir.children);
397 	RB_CLEAR_NODE(&kn->rb);
398 	return true;
399 }
400 
401 /**
402  *	kernfs_get_active - get an active reference to kernfs_node
403  *	@kn: kernfs_node to get an active reference to
404  *
405  *	Get an active reference of @kn.  This function is noop if @kn
406  *	is NULL.
407  *
408  *	RETURNS:
409  *	Pointer to @kn on success, NULL on failure.
410  */
411 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
412 {
413 	if (unlikely(!kn))
414 		return NULL;
415 
416 	if (!atomic_inc_unless_negative(&kn->active))
417 		return NULL;
418 
419 	if (kernfs_lockdep(kn))
420 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
421 	return kn;
422 }
423 
424 /**
425  *	kernfs_put_active - put an active reference to kernfs_node
426  *	@kn: kernfs_node to put an active reference to
427  *
428  *	Put an active reference to @kn.  This function is noop if @kn
429  *	is NULL.
430  */
431 void kernfs_put_active(struct kernfs_node *kn)
432 {
433 	struct kernfs_root *root = kernfs_root(kn);
434 	int v;
435 
436 	if (unlikely(!kn))
437 		return;
438 
439 	if (kernfs_lockdep(kn))
440 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
441 	v = atomic_dec_return(&kn->active);
442 	if (likely(v != KN_DEACTIVATED_BIAS))
443 		return;
444 
445 	wake_up_all(&root->deactivate_waitq);
446 }
447 
448 /**
449  * kernfs_drain - drain kernfs_node
450  * @kn: kernfs_node to drain
451  *
452  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
453  * removers may invoke this function concurrently on @kn and all will
454  * return after draining is complete.
455  */
456 static void kernfs_drain(struct kernfs_node *kn)
457 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
458 {
459 	struct kernfs_root *root = kernfs_root(kn);
460 
461 	lockdep_assert_held(&kernfs_mutex);
462 	WARN_ON_ONCE(kernfs_active(kn));
463 
464 	mutex_unlock(&kernfs_mutex);
465 
466 	if (kernfs_lockdep(kn)) {
467 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
468 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
469 			lock_contended(&kn->dep_map, _RET_IP_);
470 	}
471 
472 	/* but everyone should wait for draining */
473 	wait_event(root->deactivate_waitq,
474 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
475 
476 	if (kernfs_lockdep(kn)) {
477 		lock_acquired(&kn->dep_map, _RET_IP_);
478 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
479 	}
480 
481 	kernfs_drain_open_files(kn);
482 
483 	mutex_lock(&kernfs_mutex);
484 }
485 
486 /**
487  * kernfs_get - get a reference count on a kernfs_node
488  * @kn: the target kernfs_node
489  */
490 void kernfs_get(struct kernfs_node *kn)
491 {
492 	if (kn) {
493 		WARN_ON(!atomic_read(&kn->count));
494 		atomic_inc(&kn->count);
495 	}
496 }
497 EXPORT_SYMBOL_GPL(kernfs_get);
498 
499 /**
500  * kernfs_put - put a reference count on a kernfs_node
501  * @kn: the target kernfs_node
502  *
503  * Put a reference count of @kn and destroy it if it reached zero.
504  */
505 void kernfs_put(struct kernfs_node *kn)
506 {
507 	struct kernfs_node *parent;
508 	struct kernfs_root *root;
509 
510 	/*
511 	 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
512 	 * depends on this to filter reused stale node
513 	 */
514 	if (!kn || !atomic_dec_and_test(&kn->count))
515 		return;
516 	root = kernfs_root(kn);
517  repeat:
518 	/*
519 	 * Moving/renaming is always done while holding reference.
520 	 * kn->parent won't change beneath us.
521 	 */
522 	parent = kn->parent;
523 
524 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
525 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
526 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
527 
528 	if (kernfs_type(kn) == KERNFS_LINK)
529 		kernfs_put(kn->symlink.target_kn);
530 
531 	kfree_const(kn->name);
532 
533 	if (kn->iattr) {
534 		simple_xattrs_free(&kn->iattr->xattrs);
535 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
536 	}
537 	spin_lock(&kernfs_idr_lock);
538 	idr_remove(&root->ino_idr, kn->id.ino);
539 	spin_unlock(&kernfs_idr_lock);
540 	kmem_cache_free(kernfs_node_cache, kn);
541 
542 	kn = parent;
543 	if (kn) {
544 		if (atomic_dec_and_test(&kn->count))
545 			goto repeat;
546 	} else {
547 		/* just released the root kn, free @root too */
548 		idr_destroy(&root->ino_idr);
549 		kfree(root);
550 	}
551 }
552 EXPORT_SYMBOL_GPL(kernfs_put);
553 
554 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
555 {
556 	struct kernfs_node *kn;
557 
558 	if (flags & LOOKUP_RCU)
559 		return -ECHILD;
560 
561 	/* Always perform fresh lookup for negatives */
562 	if (d_really_is_negative(dentry))
563 		goto out_bad_unlocked;
564 
565 	kn = kernfs_dentry_node(dentry);
566 	mutex_lock(&kernfs_mutex);
567 
568 	/* The kernfs node has been deactivated */
569 	if (!kernfs_active(kn))
570 		goto out_bad;
571 
572 	/* The kernfs node has been moved? */
573 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
574 		goto out_bad;
575 
576 	/* The kernfs node has been renamed */
577 	if (strcmp(dentry->d_name.name, kn->name) != 0)
578 		goto out_bad;
579 
580 	/* The kernfs node has been moved to a different namespace */
581 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
582 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
583 		goto out_bad;
584 
585 	mutex_unlock(&kernfs_mutex);
586 	return 1;
587 out_bad:
588 	mutex_unlock(&kernfs_mutex);
589 out_bad_unlocked:
590 	return 0;
591 }
592 
593 const struct dentry_operations kernfs_dops = {
594 	.d_revalidate	= kernfs_dop_revalidate,
595 };
596 
597 /**
598  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
599  * @dentry: the dentry in question
600  *
601  * Return the kernfs_node associated with @dentry.  If @dentry is not a
602  * kernfs one, %NULL is returned.
603  *
604  * While the returned kernfs_node will stay accessible as long as @dentry
605  * is accessible, the returned node can be in any state and the caller is
606  * fully responsible for determining what's accessible.
607  */
608 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
609 {
610 	if (dentry->d_sb->s_op == &kernfs_sops &&
611 	    !d_really_is_negative(dentry))
612 		return kernfs_dentry_node(dentry);
613 	return NULL;
614 }
615 
616 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
617 					     struct kernfs_node *parent,
618 					     const char *name, umode_t mode,
619 					     kuid_t uid, kgid_t gid,
620 					     unsigned flags)
621 {
622 	struct kernfs_node *kn;
623 	u32 gen;
624 	int cursor;
625 	int ret;
626 
627 	name = kstrdup_const(name, GFP_KERNEL);
628 	if (!name)
629 		return NULL;
630 
631 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
632 	if (!kn)
633 		goto err_out1;
634 
635 	idr_preload(GFP_KERNEL);
636 	spin_lock(&kernfs_idr_lock);
637 	cursor = idr_get_cursor(&root->ino_idr);
638 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
639 	if (ret >= 0 && ret < cursor)
640 		root->next_generation++;
641 	gen = root->next_generation;
642 	spin_unlock(&kernfs_idr_lock);
643 	idr_preload_end();
644 	if (ret < 0)
645 		goto err_out2;
646 	kn->id.ino = ret;
647 	kn->id.generation = gen;
648 
649 	/*
650 	 * set ino first. This RELEASE is paired with atomic_inc_not_zero in
651 	 * kernfs_find_and_get_node_by_ino
652 	 */
653 	atomic_set_release(&kn->count, 1);
654 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
655 	RB_CLEAR_NODE(&kn->rb);
656 
657 	kn->name = name;
658 	kn->mode = mode;
659 	kn->flags = flags;
660 
661 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
662 		struct iattr iattr = {
663 			.ia_valid = ATTR_UID | ATTR_GID,
664 			.ia_uid = uid,
665 			.ia_gid = gid,
666 		};
667 
668 		ret = __kernfs_setattr(kn, &iattr);
669 		if (ret < 0)
670 			goto err_out3;
671 	}
672 
673 	if (parent) {
674 		ret = security_kernfs_init_security(parent, kn);
675 		if (ret)
676 			goto err_out3;
677 	}
678 
679 	return kn;
680 
681  err_out3:
682 	idr_remove(&root->ino_idr, kn->id.ino);
683  err_out2:
684 	kmem_cache_free(kernfs_node_cache, kn);
685  err_out1:
686 	kfree_const(name);
687 	return NULL;
688 }
689 
690 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
691 				    const char *name, umode_t mode,
692 				    kuid_t uid, kgid_t gid,
693 				    unsigned flags)
694 {
695 	struct kernfs_node *kn;
696 
697 	kn = __kernfs_new_node(kernfs_root(parent), parent,
698 			       name, mode, uid, gid, flags);
699 	if (kn) {
700 		kernfs_get(parent);
701 		kn->parent = parent;
702 	}
703 	return kn;
704 }
705 
706 /*
707  * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
708  * @root: the kernfs root
709  * @ino: inode number
710  *
711  * RETURNS:
712  * NULL on failure. Return a kernfs node with reference counter incremented
713  */
714 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
715 						    unsigned int ino)
716 {
717 	struct kernfs_node *kn;
718 
719 	rcu_read_lock();
720 	kn = idr_find(&root->ino_idr, ino);
721 	if (!kn)
722 		goto out;
723 
724 	/*
725 	 * Since kernfs_node is freed in RCU, it's possible an old node for ino
726 	 * is freed, but reused before RCU grace period. But a freed node (see
727 	 * kernfs_put) or an incompletedly initialized node (see
728 	 * __kernfs_new_node) should have 'count' 0. We can use this fact to
729 	 * filter out such node.
730 	 */
731 	if (!atomic_inc_not_zero(&kn->count)) {
732 		kn = NULL;
733 		goto out;
734 	}
735 
736 	/*
737 	 * The node could be a new node or a reused node. If it's a new node,
738 	 * we are ok. If it's reused because of RCU (because of
739 	 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
740 	 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
741 	 * hence we can use 'ino' to filter stale node.
742 	 */
743 	if (kn->id.ino != ino)
744 		goto out;
745 	rcu_read_unlock();
746 
747 	return kn;
748 out:
749 	rcu_read_unlock();
750 	kernfs_put(kn);
751 	return NULL;
752 }
753 
754 /**
755  *	kernfs_add_one - add kernfs_node to parent without warning
756  *	@kn: kernfs_node to be added
757  *
758  *	The caller must already have initialized @kn->parent.  This
759  *	function increments nlink of the parent's inode if @kn is a
760  *	directory and link into the children list of the parent.
761  *
762  *	RETURNS:
763  *	0 on success, -EEXIST if entry with the given name already
764  *	exists.
765  */
766 int kernfs_add_one(struct kernfs_node *kn)
767 {
768 	struct kernfs_node *parent = kn->parent;
769 	struct kernfs_iattrs *ps_iattr;
770 	bool has_ns;
771 	int ret;
772 
773 	mutex_lock(&kernfs_mutex);
774 
775 	ret = -EINVAL;
776 	has_ns = kernfs_ns_enabled(parent);
777 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
778 		 has_ns ? "required" : "invalid", parent->name, kn->name))
779 		goto out_unlock;
780 
781 	if (kernfs_type(parent) != KERNFS_DIR)
782 		goto out_unlock;
783 
784 	ret = -ENOENT;
785 	if (parent->flags & KERNFS_EMPTY_DIR)
786 		goto out_unlock;
787 
788 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
789 		goto out_unlock;
790 
791 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
792 
793 	ret = kernfs_link_sibling(kn);
794 	if (ret)
795 		goto out_unlock;
796 
797 	/* Update timestamps on the parent */
798 	ps_iattr = parent->iattr;
799 	if (ps_iattr) {
800 		ktime_get_real_ts64(&ps_iattr->ia_ctime);
801 		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
802 	}
803 
804 	mutex_unlock(&kernfs_mutex);
805 
806 	/*
807 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
808 	 * If not activated here, the kernfs user is responsible for
809 	 * activating the node with kernfs_activate().  A node which hasn't
810 	 * been activated is not visible to userland and its removal won't
811 	 * trigger deactivation.
812 	 */
813 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
814 		kernfs_activate(kn);
815 	return 0;
816 
817 out_unlock:
818 	mutex_unlock(&kernfs_mutex);
819 	return ret;
820 }
821 
822 /**
823  * kernfs_find_ns - find kernfs_node with the given name
824  * @parent: kernfs_node to search under
825  * @name: name to look for
826  * @ns: the namespace tag to use
827  *
828  * Look for kernfs_node with name @name under @parent.  Returns pointer to
829  * the found kernfs_node on success, %NULL on failure.
830  */
831 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
832 					  const unsigned char *name,
833 					  const void *ns)
834 {
835 	struct rb_node *node = parent->dir.children.rb_node;
836 	bool has_ns = kernfs_ns_enabled(parent);
837 	unsigned int hash;
838 
839 	lockdep_assert_held(&kernfs_mutex);
840 
841 	if (has_ns != (bool)ns) {
842 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
843 		     has_ns ? "required" : "invalid", parent->name, name);
844 		return NULL;
845 	}
846 
847 	hash = kernfs_name_hash(name, ns);
848 	while (node) {
849 		struct kernfs_node *kn;
850 		int result;
851 
852 		kn = rb_to_kn(node);
853 		result = kernfs_name_compare(hash, name, ns, kn);
854 		if (result < 0)
855 			node = node->rb_left;
856 		else if (result > 0)
857 			node = node->rb_right;
858 		else
859 			return kn;
860 	}
861 	return NULL;
862 }
863 
864 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
865 					  const unsigned char *path,
866 					  const void *ns)
867 {
868 	size_t len;
869 	char *p, *name;
870 
871 	lockdep_assert_held(&kernfs_mutex);
872 
873 	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
874 	spin_lock_irq(&kernfs_rename_lock);
875 
876 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
877 
878 	if (len >= sizeof(kernfs_pr_cont_buf)) {
879 		spin_unlock_irq(&kernfs_rename_lock);
880 		return NULL;
881 	}
882 
883 	p = kernfs_pr_cont_buf;
884 
885 	while ((name = strsep(&p, "/")) && parent) {
886 		if (*name == '\0')
887 			continue;
888 		parent = kernfs_find_ns(parent, name, ns);
889 	}
890 
891 	spin_unlock_irq(&kernfs_rename_lock);
892 
893 	return parent;
894 }
895 
896 /**
897  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
898  * @parent: kernfs_node to search under
899  * @name: name to look for
900  * @ns: the namespace tag to use
901  *
902  * Look for kernfs_node with name @name under @parent and get a reference
903  * if found.  This function may sleep and returns pointer to the found
904  * kernfs_node on success, %NULL on failure.
905  */
906 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
907 					   const char *name, const void *ns)
908 {
909 	struct kernfs_node *kn;
910 
911 	mutex_lock(&kernfs_mutex);
912 	kn = kernfs_find_ns(parent, name, ns);
913 	kernfs_get(kn);
914 	mutex_unlock(&kernfs_mutex);
915 
916 	return kn;
917 }
918 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
919 
920 /**
921  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
922  * @parent: kernfs_node to search under
923  * @path: path to look for
924  * @ns: the namespace tag to use
925  *
926  * Look for kernfs_node with path @path under @parent and get a reference
927  * if found.  This function may sleep and returns pointer to the found
928  * kernfs_node on success, %NULL on failure.
929  */
930 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
931 					   const char *path, const void *ns)
932 {
933 	struct kernfs_node *kn;
934 
935 	mutex_lock(&kernfs_mutex);
936 	kn = kernfs_walk_ns(parent, path, ns);
937 	kernfs_get(kn);
938 	mutex_unlock(&kernfs_mutex);
939 
940 	return kn;
941 }
942 
943 /**
944  * kernfs_create_root - create a new kernfs hierarchy
945  * @scops: optional syscall operations for the hierarchy
946  * @flags: KERNFS_ROOT_* flags
947  * @priv: opaque data associated with the new directory
948  *
949  * Returns the root of the new hierarchy on success, ERR_PTR() value on
950  * failure.
951  */
952 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
953 				       unsigned int flags, void *priv)
954 {
955 	struct kernfs_root *root;
956 	struct kernfs_node *kn;
957 
958 	root = kzalloc(sizeof(*root), GFP_KERNEL);
959 	if (!root)
960 		return ERR_PTR(-ENOMEM);
961 
962 	idr_init(&root->ino_idr);
963 	INIT_LIST_HEAD(&root->supers);
964 	root->next_generation = 1;
965 
966 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
967 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
968 			       KERNFS_DIR);
969 	if (!kn) {
970 		idr_destroy(&root->ino_idr);
971 		kfree(root);
972 		return ERR_PTR(-ENOMEM);
973 	}
974 
975 	kn->priv = priv;
976 	kn->dir.root = root;
977 
978 	root->syscall_ops = scops;
979 	root->flags = flags;
980 	root->kn = kn;
981 	init_waitqueue_head(&root->deactivate_waitq);
982 
983 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
984 		kernfs_activate(kn);
985 
986 	return root;
987 }
988 
989 /**
990  * kernfs_destroy_root - destroy a kernfs hierarchy
991  * @root: root of the hierarchy to destroy
992  *
993  * Destroy the hierarchy anchored at @root by removing all existing
994  * directories and destroying @root.
995  */
996 void kernfs_destroy_root(struct kernfs_root *root)
997 {
998 	kernfs_remove(root->kn);	/* will also free @root */
999 }
1000 
1001 /**
1002  * kernfs_create_dir_ns - create a directory
1003  * @parent: parent in which to create a new directory
1004  * @name: name of the new directory
1005  * @mode: mode of the new directory
1006  * @uid: uid of the new directory
1007  * @gid: gid of the new directory
1008  * @priv: opaque data associated with the new directory
1009  * @ns: optional namespace tag of the directory
1010  *
1011  * Returns the created node on success, ERR_PTR() value on failure.
1012  */
1013 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1014 					 const char *name, umode_t mode,
1015 					 kuid_t uid, kgid_t gid,
1016 					 void *priv, const void *ns)
1017 {
1018 	struct kernfs_node *kn;
1019 	int rc;
1020 
1021 	/* allocate */
1022 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1023 			     uid, gid, KERNFS_DIR);
1024 	if (!kn)
1025 		return ERR_PTR(-ENOMEM);
1026 
1027 	kn->dir.root = parent->dir.root;
1028 	kn->ns = ns;
1029 	kn->priv = priv;
1030 
1031 	/* link in */
1032 	rc = kernfs_add_one(kn);
1033 	if (!rc)
1034 		return kn;
1035 
1036 	kernfs_put(kn);
1037 	return ERR_PTR(rc);
1038 }
1039 
1040 /**
1041  * kernfs_create_empty_dir - create an always empty directory
1042  * @parent: parent in which to create a new directory
1043  * @name: name of the new directory
1044  *
1045  * Returns the created node on success, ERR_PTR() value on failure.
1046  */
1047 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1048 					    const char *name)
1049 {
1050 	struct kernfs_node *kn;
1051 	int rc;
1052 
1053 	/* allocate */
1054 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1055 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1056 	if (!kn)
1057 		return ERR_PTR(-ENOMEM);
1058 
1059 	kn->flags |= KERNFS_EMPTY_DIR;
1060 	kn->dir.root = parent->dir.root;
1061 	kn->ns = NULL;
1062 	kn->priv = NULL;
1063 
1064 	/* link in */
1065 	rc = kernfs_add_one(kn);
1066 	if (!rc)
1067 		return kn;
1068 
1069 	kernfs_put(kn);
1070 	return ERR_PTR(rc);
1071 }
1072 
1073 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1074 					struct dentry *dentry,
1075 					unsigned int flags)
1076 {
1077 	struct dentry *ret;
1078 	struct kernfs_node *parent = dir->i_private;
1079 	struct kernfs_node *kn;
1080 	struct inode *inode;
1081 	const void *ns = NULL;
1082 
1083 	mutex_lock(&kernfs_mutex);
1084 
1085 	if (kernfs_ns_enabled(parent))
1086 		ns = kernfs_info(dir->i_sb)->ns;
1087 
1088 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1089 
1090 	/* no such entry */
1091 	if (!kn || !kernfs_active(kn)) {
1092 		ret = NULL;
1093 		goto out_unlock;
1094 	}
1095 
1096 	/* attach dentry and inode */
1097 	inode = kernfs_get_inode(dir->i_sb, kn);
1098 	if (!inode) {
1099 		ret = ERR_PTR(-ENOMEM);
1100 		goto out_unlock;
1101 	}
1102 
1103 	/* instantiate and hash dentry */
1104 	ret = d_splice_alias(inode, dentry);
1105  out_unlock:
1106 	mutex_unlock(&kernfs_mutex);
1107 	return ret;
1108 }
1109 
1110 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1111 			    umode_t mode)
1112 {
1113 	struct kernfs_node *parent = dir->i_private;
1114 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1115 	int ret;
1116 
1117 	if (!scops || !scops->mkdir)
1118 		return -EPERM;
1119 
1120 	if (!kernfs_get_active(parent))
1121 		return -ENODEV;
1122 
1123 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1124 
1125 	kernfs_put_active(parent);
1126 	return ret;
1127 }
1128 
1129 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1130 {
1131 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1132 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1133 	int ret;
1134 
1135 	if (!scops || !scops->rmdir)
1136 		return -EPERM;
1137 
1138 	if (!kernfs_get_active(kn))
1139 		return -ENODEV;
1140 
1141 	ret = scops->rmdir(kn);
1142 
1143 	kernfs_put_active(kn);
1144 	return ret;
1145 }
1146 
1147 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1148 			     struct inode *new_dir, struct dentry *new_dentry,
1149 			     unsigned int flags)
1150 {
1151 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1152 	struct kernfs_node *new_parent = new_dir->i_private;
1153 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1154 	int ret;
1155 
1156 	if (flags)
1157 		return -EINVAL;
1158 
1159 	if (!scops || !scops->rename)
1160 		return -EPERM;
1161 
1162 	if (!kernfs_get_active(kn))
1163 		return -ENODEV;
1164 
1165 	if (!kernfs_get_active(new_parent)) {
1166 		kernfs_put_active(kn);
1167 		return -ENODEV;
1168 	}
1169 
1170 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1171 
1172 	kernfs_put_active(new_parent);
1173 	kernfs_put_active(kn);
1174 	return ret;
1175 }
1176 
1177 const struct inode_operations kernfs_dir_iops = {
1178 	.lookup		= kernfs_iop_lookup,
1179 	.permission	= kernfs_iop_permission,
1180 	.setattr	= kernfs_iop_setattr,
1181 	.getattr	= kernfs_iop_getattr,
1182 	.listxattr	= kernfs_iop_listxattr,
1183 
1184 	.mkdir		= kernfs_iop_mkdir,
1185 	.rmdir		= kernfs_iop_rmdir,
1186 	.rename		= kernfs_iop_rename,
1187 };
1188 
1189 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1190 {
1191 	struct kernfs_node *last;
1192 
1193 	while (true) {
1194 		struct rb_node *rbn;
1195 
1196 		last = pos;
1197 
1198 		if (kernfs_type(pos) != KERNFS_DIR)
1199 			break;
1200 
1201 		rbn = rb_first(&pos->dir.children);
1202 		if (!rbn)
1203 			break;
1204 
1205 		pos = rb_to_kn(rbn);
1206 	}
1207 
1208 	return last;
1209 }
1210 
1211 /**
1212  * kernfs_next_descendant_post - find the next descendant for post-order walk
1213  * @pos: the current position (%NULL to initiate traversal)
1214  * @root: kernfs_node whose descendants to walk
1215  *
1216  * Find the next descendant to visit for post-order traversal of @root's
1217  * descendants.  @root is included in the iteration and the last node to be
1218  * visited.
1219  */
1220 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1221 						       struct kernfs_node *root)
1222 {
1223 	struct rb_node *rbn;
1224 
1225 	lockdep_assert_held(&kernfs_mutex);
1226 
1227 	/* if first iteration, visit leftmost descendant which may be root */
1228 	if (!pos)
1229 		return kernfs_leftmost_descendant(root);
1230 
1231 	/* if we visited @root, we're done */
1232 	if (pos == root)
1233 		return NULL;
1234 
1235 	/* if there's an unvisited sibling, visit its leftmost descendant */
1236 	rbn = rb_next(&pos->rb);
1237 	if (rbn)
1238 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1239 
1240 	/* no sibling left, visit parent */
1241 	return pos->parent;
1242 }
1243 
1244 /**
1245  * kernfs_activate - activate a node which started deactivated
1246  * @kn: kernfs_node whose subtree is to be activated
1247  *
1248  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1249  * needs to be explicitly activated.  A node which hasn't been activated
1250  * isn't visible to userland and deactivation is skipped during its
1251  * removal.  This is useful to construct atomic init sequences where
1252  * creation of multiple nodes should either succeed or fail atomically.
1253  *
1254  * The caller is responsible for ensuring that this function is not called
1255  * after kernfs_remove*() is invoked on @kn.
1256  */
1257 void kernfs_activate(struct kernfs_node *kn)
1258 {
1259 	struct kernfs_node *pos;
1260 
1261 	mutex_lock(&kernfs_mutex);
1262 
1263 	pos = NULL;
1264 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1265 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1266 			continue;
1267 
1268 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1269 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1270 
1271 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1272 		pos->flags |= KERNFS_ACTIVATED;
1273 	}
1274 
1275 	mutex_unlock(&kernfs_mutex);
1276 }
1277 
1278 static void __kernfs_remove(struct kernfs_node *kn)
1279 {
1280 	struct kernfs_node *pos;
1281 
1282 	lockdep_assert_held(&kernfs_mutex);
1283 
1284 	/*
1285 	 * Short-circuit if non-root @kn has already finished removal.
1286 	 * This is for kernfs_remove_self() which plays with active ref
1287 	 * after removal.
1288 	 */
1289 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1290 		return;
1291 
1292 	pr_debug("kernfs %s: removing\n", kn->name);
1293 
1294 	/* prevent any new usage under @kn by deactivating all nodes */
1295 	pos = NULL;
1296 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1297 		if (kernfs_active(pos))
1298 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1299 
1300 	/* deactivate and unlink the subtree node-by-node */
1301 	do {
1302 		pos = kernfs_leftmost_descendant(kn);
1303 
1304 		/*
1305 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1306 		 * base ref could have been put by someone else by the time
1307 		 * the function returns.  Make sure it doesn't go away
1308 		 * underneath us.
1309 		 */
1310 		kernfs_get(pos);
1311 
1312 		/*
1313 		 * Drain iff @kn was activated.  This avoids draining and
1314 		 * its lockdep annotations for nodes which have never been
1315 		 * activated and allows embedding kernfs_remove() in create
1316 		 * error paths without worrying about draining.
1317 		 */
1318 		if (kn->flags & KERNFS_ACTIVATED)
1319 			kernfs_drain(pos);
1320 		else
1321 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1322 
1323 		/*
1324 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1325 		 * to decide who's responsible for cleanups.
1326 		 */
1327 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1328 			struct kernfs_iattrs *ps_iattr =
1329 				pos->parent ? pos->parent->iattr : NULL;
1330 
1331 			/* update timestamps on the parent */
1332 			if (ps_iattr) {
1333 				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1334 				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1335 			}
1336 
1337 			kernfs_put(pos);
1338 		}
1339 
1340 		kernfs_put(pos);
1341 	} while (pos != kn);
1342 }
1343 
1344 /**
1345  * kernfs_remove - remove a kernfs_node recursively
1346  * @kn: the kernfs_node to remove
1347  *
1348  * Remove @kn along with all its subdirectories and files.
1349  */
1350 void kernfs_remove(struct kernfs_node *kn)
1351 {
1352 	mutex_lock(&kernfs_mutex);
1353 	__kernfs_remove(kn);
1354 	mutex_unlock(&kernfs_mutex);
1355 }
1356 
1357 /**
1358  * kernfs_break_active_protection - break out of active protection
1359  * @kn: the self kernfs_node
1360  *
1361  * The caller must be running off of a kernfs operation which is invoked
1362  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1363  * this function must also be matched with an invocation of
1364  * kernfs_unbreak_active_protection().
1365  *
1366  * This function releases the active reference of @kn the caller is
1367  * holding.  Once this function is called, @kn may be removed at any point
1368  * and the caller is solely responsible for ensuring that the objects it
1369  * dereferences are accessible.
1370  */
1371 void kernfs_break_active_protection(struct kernfs_node *kn)
1372 {
1373 	/*
1374 	 * Take out ourself out of the active ref dependency chain.  If
1375 	 * we're called without an active ref, lockdep will complain.
1376 	 */
1377 	kernfs_put_active(kn);
1378 }
1379 
1380 /**
1381  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1382  * @kn: the self kernfs_node
1383  *
1384  * If kernfs_break_active_protection() was called, this function must be
1385  * invoked before finishing the kernfs operation.  Note that while this
1386  * function restores the active reference, it doesn't and can't actually
1387  * restore the active protection - @kn may already or be in the process of
1388  * being removed.  Once kernfs_break_active_protection() is invoked, that
1389  * protection is irreversibly gone for the kernfs operation instance.
1390  *
1391  * While this function may be called at any point after
1392  * kernfs_break_active_protection() is invoked, its most useful location
1393  * would be right before the enclosing kernfs operation returns.
1394  */
1395 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1396 {
1397 	/*
1398 	 * @kn->active could be in any state; however, the increment we do
1399 	 * here will be undone as soon as the enclosing kernfs operation
1400 	 * finishes and this temporary bump can't break anything.  If @kn
1401 	 * is alive, nothing changes.  If @kn is being deactivated, the
1402 	 * soon-to-follow put will either finish deactivation or restore
1403 	 * deactivated state.  If @kn is already removed, the temporary
1404 	 * bump is guaranteed to be gone before @kn is released.
1405 	 */
1406 	atomic_inc(&kn->active);
1407 	if (kernfs_lockdep(kn))
1408 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1409 }
1410 
1411 /**
1412  * kernfs_remove_self - remove a kernfs_node from its own method
1413  * @kn: the self kernfs_node to remove
1414  *
1415  * The caller must be running off of a kernfs operation which is invoked
1416  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1417  * implement a file operation which deletes itself.
1418  *
1419  * For example, the "delete" file for a sysfs device directory can be
1420  * implemented by invoking kernfs_remove_self() on the "delete" file
1421  * itself.  This function breaks the circular dependency of trying to
1422  * deactivate self while holding an active ref itself.  It isn't necessary
1423  * to modify the usual removal path to use kernfs_remove_self().  The
1424  * "delete" implementation can simply invoke kernfs_remove_self() on self
1425  * before proceeding with the usual removal path.  kernfs will ignore later
1426  * kernfs_remove() on self.
1427  *
1428  * kernfs_remove_self() can be called multiple times concurrently on the
1429  * same kernfs_node.  Only the first one actually performs removal and
1430  * returns %true.  All others will wait until the kernfs operation which
1431  * won self-removal finishes and return %false.  Note that the losers wait
1432  * for the completion of not only the winning kernfs_remove_self() but also
1433  * the whole kernfs_ops which won the arbitration.  This can be used to
1434  * guarantee, for example, all concurrent writes to a "delete" file to
1435  * finish only after the whole operation is complete.
1436  */
1437 bool kernfs_remove_self(struct kernfs_node *kn)
1438 {
1439 	bool ret;
1440 
1441 	mutex_lock(&kernfs_mutex);
1442 	kernfs_break_active_protection(kn);
1443 
1444 	/*
1445 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1446 	 * the first one will actually perform removal.  When the removal
1447 	 * is complete, SUICIDED is set and the active ref is restored
1448 	 * while holding kernfs_mutex.  The ones which lost arbitration
1449 	 * waits for SUICDED && drained which can happen only after the
1450 	 * enclosing kernfs operation which executed the winning instance
1451 	 * of kernfs_remove_self() finished.
1452 	 */
1453 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1454 		kn->flags |= KERNFS_SUICIDAL;
1455 		__kernfs_remove(kn);
1456 		kn->flags |= KERNFS_SUICIDED;
1457 		ret = true;
1458 	} else {
1459 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1460 		DEFINE_WAIT(wait);
1461 
1462 		while (true) {
1463 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1464 
1465 			if ((kn->flags & KERNFS_SUICIDED) &&
1466 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1467 				break;
1468 
1469 			mutex_unlock(&kernfs_mutex);
1470 			schedule();
1471 			mutex_lock(&kernfs_mutex);
1472 		}
1473 		finish_wait(waitq, &wait);
1474 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1475 		ret = false;
1476 	}
1477 
1478 	/*
1479 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1480 	 * for SUICIDED && deactivated could finish prematurely.
1481 	 */
1482 	kernfs_unbreak_active_protection(kn);
1483 
1484 	mutex_unlock(&kernfs_mutex);
1485 	return ret;
1486 }
1487 
1488 /**
1489  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1490  * @parent: parent of the target
1491  * @name: name of the kernfs_node to remove
1492  * @ns: namespace tag of the kernfs_node to remove
1493  *
1494  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1495  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1496  */
1497 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1498 			     const void *ns)
1499 {
1500 	struct kernfs_node *kn;
1501 
1502 	if (!parent) {
1503 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1504 			name);
1505 		return -ENOENT;
1506 	}
1507 
1508 	mutex_lock(&kernfs_mutex);
1509 
1510 	kn = kernfs_find_ns(parent, name, ns);
1511 	if (kn)
1512 		__kernfs_remove(kn);
1513 
1514 	mutex_unlock(&kernfs_mutex);
1515 
1516 	if (kn)
1517 		return 0;
1518 	else
1519 		return -ENOENT;
1520 }
1521 
1522 /**
1523  * kernfs_rename_ns - move and rename a kernfs_node
1524  * @kn: target node
1525  * @new_parent: new parent to put @sd under
1526  * @new_name: new name
1527  * @new_ns: new namespace tag
1528  */
1529 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1530 		     const char *new_name, const void *new_ns)
1531 {
1532 	struct kernfs_node *old_parent;
1533 	const char *old_name = NULL;
1534 	int error;
1535 
1536 	/* can't move or rename root */
1537 	if (!kn->parent)
1538 		return -EINVAL;
1539 
1540 	mutex_lock(&kernfs_mutex);
1541 
1542 	error = -ENOENT;
1543 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1544 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1545 		goto out;
1546 
1547 	error = 0;
1548 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1549 	    (strcmp(kn->name, new_name) == 0))
1550 		goto out;	/* nothing to rename */
1551 
1552 	error = -EEXIST;
1553 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1554 		goto out;
1555 
1556 	/* rename kernfs_node */
1557 	if (strcmp(kn->name, new_name) != 0) {
1558 		error = -ENOMEM;
1559 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1560 		if (!new_name)
1561 			goto out;
1562 	} else {
1563 		new_name = NULL;
1564 	}
1565 
1566 	/*
1567 	 * Move to the appropriate place in the appropriate directories rbtree.
1568 	 */
1569 	kernfs_unlink_sibling(kn);
1570 	kernfs_get(new_parent);
1571 
1572 	/* rename_lock protects ->parent and ->name accessors */
1573 	spin_lock_irq(&kernfs_rename_lock);
1574 
1575 	old_parent = kn->parent;
1576 	kn->parent = new_parent;
1577 
1578 	kn->ns = new_ns;
1579 	if (new_name) {
1580 		old_name = kn->name;
1581 		kn->name = new_name;
1582 	}
1583 
1584 	spin_unlock_irq(&kernfs_rename_lock);
1585 
1586 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1587 	kernfs_link_sibling(kn);
1588 
1589 	kernfs_put(old_parent);
1590 	kfree_const(old_name);
1591 
1592 	error = 0;
1593  out:
1594 	mutex_unlock(&kernfs_mutex);
1595 	return error;
1596 }
1597 
1598 /* Relationship between s_mode and the DT_xxx types */
1599 static inline unsigned char dt_type(struct kernfs_node *kn)
1600 {
1601 	return (kn->mode >> 12) & 15;
1602 }
1603 
1604 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1605 {
1606 	kernfs_put(filp->private_data);
1607 	return 0;
1608 }
1609 
1610 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1611 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1612 {
1613 	if (pos) {
1614 		int valid = kernfs_active(pos) &&
1615 			pos->parent == parent && hash == pos->hash;
1616 		kernfs_put(pos);
1617 		if (!valid)
1618 			pos = NULL;
1619 	}
1620 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1621 		struct rb_node *node = parent->dir.children.rb_node;
1622 		while (node) {
1623 			pos = rb_to_kn(node);
1624 
1625 			if (hash < pos->hash)
1626 				node = node->rb_left;
1627 			else if (hash > pos->hash)
1628 				node = node->rb_right;
1629 			else
1630 				break;
1631 		}
1632 	}
1633 	/* Skip over entries which are dying/dead or in the wrong namespace */
1634 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1635 		struct rb_node *node = rb_next(&pos->rb);
1636 		if (!node)
1637 			pos = NULL;
1638 		else
1639 			pos = rb_to_kn(node);
1640 	}
1641 	return pos;
1642 }
1643 
1644 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1645 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1646 {
1647 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1648 	if (pos) {
1649 		do {
1650 			struct rb_node *node = rb_next(&pos->rb);
1651 			if (!node)
1652 				pos = NULL;
1653 			else
1654 				pos = rb_to_kn(node);
1655 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1656 	}
1657 	return pos;
1658 }
1659 
1660 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1661 {
1662 	struct dentry *dentry = file->f_path.dentry;
1663 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1664 	struct kernfs_node *pos = file->private_data;
1665 	const void *ns = NULL;
1666 
1667 	if (!dir_emit_dots(file, ctx))
1668 		return 0;
1669 	mutex_lock(&kernfs_mutex);
1670 
1671 	if (kernfs_ns_enabled(parent))
1672 		ns = kernfs_info(dentry->d_sb)->ns;
1673 
1674 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1675 	     pos;
1676 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1677 		const char *name = pos->name;
1678 		unsigned int type = dt_type(pos);
1679 		int len = strlen(name);
1680 		ino_t ino = pos->id.ino;
1681 
1682 		ctx->pos = pos->hash;
1683 		file->private_data = pos;
1684 		kernfs_get(pos);
1685 
1686 		mutex_unlock(&kernfs_mutex);
1687 		if (!dir_emit(ctx, name, len, ino, type))
1688 			return 0;
1689 		mutex_lock(&kernfs_mutex);
1690 	}
1691 	mutex_unlock(&kernfs_mutex);
1692 	file->private_data = NULL;
1693 	ctx->pos = INT_MAX;
1694 	return 0;
1695 }
1696 
1697 const struct file_operations kernfs_dir_fops = {
1698 	.read		= generic_read_dir,
1699 	.iterate_shared	= kernfs_fop_readdir,
1700 	.release	= kernfs_dir_fop_release,
1701 	.llseek		= generic_file_llseek,
1702 };
1703