xref: /openbmc/linux/fs/kernfs/dir.c (revision b34e08d5)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46 
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 					      size_t buflen)
49 {
50 	char *p = buf + buflen;
51 	int len;
52 
53 	*--p = '\0';
54 
55 	do {
56 		len = strlen(kn->name);
57 		if (p - buf < len + 1) {
58 			buf[0] = '\0';
59 			p = NULL;
60 			break;
61 		}
62 		p -= len;
63 		memcpy(p, kn->name, len);
64 		*--p = '/';
65 		kn = kn->parent;
66 	} while (kn && kn->parent);
67 
68 	return p;
69 }
70 
71 /**
72  * kernfs_name - obtain the name of a given node
73  * @kn: kernfs_node of interest
74  * @buf: buffer to copy @kn's name into
75  * @buflen: size of @buf
76  *
77  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
78  * similar to strlcpy().  It returns the length of @kn's name and if @buf
79  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80  *
81  * This function can be called from any context.
82  */
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 	unsigned long flags;
86 	int ret;
87 
88 	spin_lock_irqsave(&kernfs_rename_lock, flags);
89 	ret = kernfs_name_locked(kn, buf, buflen);
90 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 	return ret;
92 }
93 
94 /**
95  * kernfs_path - build full path of a given node
96  * @kn: kernfs_node of interest
97  * @buf: buffer to copy @kn's name into
98  * @buflen: size of @buf
99  *
100  * Builds and returns the full path of @kn in @buf of @buflen bytes.  The
101  * path is built from the end of @buf so the returned pointer usually
102  * doesn't match @buf.  If @buf isn't long enough, @buf is nul terminated
103  * and %NULL is returned.
104  */
105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
106 {
107 	unsigned long flags;
108 	char *p;
109 
110 	spin_lock_irqsave(&kernfs_rename_lock, flags);
111 	p = kernfs_path_locked(kn, buf, buflen);
112 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 	return p;
114 }
115 EXPORT_SYMBOL_GPL(kernfs_path);
116 
117 /**
118  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119  * @kn: kernfs_node of interest
120  *
121  * This function can be called from any context.
122  */
123 void pr_cont_kernfs_name(struct kernfs_node *kn)
124 {
125 	unsigned long flags;
126 
127 	spin_lock_irqsave(&kernfs_rename_lock, flags);
128 
129 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 	pr_cont("%s", kernfs_pr_cont_buf);
131 
132 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
133 }
134 
135 /**
136  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137  * @kn: kernfs_node of interest
138  *
139  * This function can be called from any context.
140  */
141 void pr_cont_kernfs_path(struct kernfs_node *kn)
142 {
143 	unsigned long flags;
144 	char *p;
145 
146 	spin_lock_irqsave(&kernfs_rename_lock, flags);
147 
148 	p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 			       sizeof(kernfs_pr_cont_buf));
150 	if (p)
151 		pr_cont("%s", p);
152 	else
153 		pr_cont("<name too long>");
154 
155 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157 
158 /**
159  * kernfs_get_parent - determine the parent node and pin it
160  * @kn: kernfs_node of interest
161  *
162  * Determines @kn's parent, pins and returns it.  This function can be
163  * called from any context.
164  */
165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
166 {
167 	struct kernfs_node *parent;
168 	unsigned long flags;
169 
170 	spin_lock_irqsave(&kernfs_rename_lock, flags);
171 	parent = kn->parent;
172 	kernfs_get(parent);
173 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
174 
175 	return parent;
176 }
177 
178 /**
179  *	kernfs_name_hash
180  *	@name: Null terminated string to hash
181  *	@ns:   Namespace tag to hash
182  *
183  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
184  */
185 static unsigned int kernfs_name_hash(const char *name, const void *ns)
186 {
187 	unsigned long hash = init_name_hash();
188 	unsigned int len = strlen(name);
189 	while (len--)
190 		hash = partial_name_hash(*name++, hash);
191 	hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 	hash &= 0x7fffffffU;
193 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
194 	if (hash < 2)
195 		hash += 2;
196 	if (hash >= INT_MAX)
197 		hash = INT_MAX - 1;
198 	return hash;
199 }
200 
201 static int kernfs_name_compare(unsigned int hash, const char *name,
202 			       const void *ns, const struct kernfs_node *kn)
203 {
204 	if (hash != kn->hash)
205 		return hash - kn->hash;
206 	if (ns != kn->ns)
207 		return ns - kn->ns;
208 	return strcmp(name, kn->name);
209 }
210 
211 static int kernfs_sd_compare(const struct kernfs_node *left,
212 			     const struct kernfs_node *right)
213 {
214 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
215 }
216 
217 /**
218  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
219  *	@kn: kernfs_node of interest
220  *
221  *	Link @kn into its sibling rbtree which starts from
222  *	@kn->parent->dir.children.
223  *
224  *	Locking:
225  *	mutex_lock(kernfs_mutex)
226  *
227  *	RETURNS:
228  *	0 on susccess -EEXIST on failure.
229  */
230 static int kernfs_link_sibling(struct kernfs_node *kn)
231 {
232 	struct rb_node **node = &kn->parent->dir.children.rb_node;
233 	struct rb_node *parent = NULL;
234 
235 	if (kernfs_type(kn) == KERNFS_DIR)
236 		kn->parent->dir.subdirs++;
237 
238 	while (*node) {
239 		struct kernfs_node *pos;
240 		int result;
241 
242 		pos = rb_to_kn(*node);
243 		parent = *node;
244 		result = kernfs_sd_compare(kn, pos);
245 		if (result < 0)
246 			node = &pos->rb.rb_left;
247 		else if (result > 0)
248 			node = &pos->rb.rb_right;
249 		else
250 			return -EEXIST;
251 	}
252 	/* add new node and rebalance the tree */
253 	rb_link_node(&kn->rb, parent, node);
254 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
255 	return 0;
256 }
257 
258 /**
259  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
260  *	@kn: kernfs_node of interest
261  *
262  *	Try to unlink @kn from its sibling rbtree which starts from
263  *	kn->parent->dir.children.  Returns %true if @kn was actually
264  *	removed, %false if @kn wasn't on the rbtree.
265  *
266  *	Locking:
267  *	mutex_lock(kernfs_mutex)
268  */
269 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
270 {
271 	if (RB_EMPTY_NODE(&kn->rb))
272 		return false;
273 
274 	if (kernfs_type(kn) == KERNFS_DIR)
275 		kn->parent->dir.subdirs--;
276 
277 	rb_erase(&kn->rb, &kn->parent->dir.children);
278 	RB_CLEAR_NODE(&kn->rb);
279 	return true;
280 }
281 
282 /**
283  *	kernfs_get_active - get an active reference to kernfs_node
284  *	@kn: kernfs_node to get an active reference to
285  *
286  *	Get an active reference of @kn.  This function is noop if @kn
287  *	is NULL.
288  *
289  *	RETURNS:
290  *	Pointer to @kn on success, NULL on failure.
291  */
292 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
293 {
294 	if (unlikely(!kn))
295 		return NULL;
296 
297 	if (!atomic_inc_unless_negative(&kn->active))
298 		return NULL;
299 
300 	if (kernfs_lockdep(kn))
301 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
302 	return kn;
303 }
304 
305 /**
306  *	kernfs_put_active - put an active reference to kernfs_node
307  *	@kn: kernfs_node to put an active reference to
308  *
309  *	Put an active reference to @kn.  This function is noop if @kn
310  *	is NULL.
311  */
312 void kernfs_put_active(struct kernfs_node *kn)
313 {
314 	struct kernfs_root *root = kernfs_root(kn);
315 	int v;
316 
317 	if (unlikely(!kn))
318 		return;
319 
320 	if (kernfs_lockdep(kn))
321 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
322 	v = atomic_dec_return(&kn->active);
323 	if (likely(v != KN_DEACTIVATED_BIAS))
324 		return;
325 
326 	wake_up_all(&root->deactivate_waitq);
327 }
328 
329 /**
330  * kernfs_drain - drain kernfs_node
331  * @kn: kernfs_node to drain
332  *
333  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
334  * removers may invoke this function concurrently on @kn and all will
335  * return after draining is complete.
336  */
337 static void kernfs_drain(struct kernfs_node *kn)
338 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
339 {
340 	struct kernfs_root *root = kernfs_root(kn);
341 
342 	lockdep_assert_held(&kernfs_mutex);
343 	WARN_ON_ONCE(kernfs_active(kn));
344 
345 	mutex_unlock(&kernfs_mutex);
346 
347 	if (kernfs_lockdep(kn)) {
348 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
349 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
350 			lock_contended(&kn->dep_map, _RET_IP_);
351 	}
352 
353 	/* but everyone should wait for draining */
354 	wait_event(root->deactivate_waitq,
355 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
356 
357 	if (kernfs_lockdep(kn)) {
358 		lock_acquired(&kn->dep_map, _RET_IP_);
359 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
360 	}
361 
362 	kernfs_unmap_bin_file(kn);
363 
364 	mutex_lock(&kernfs_mutex);
365 }
366 
367 /**
368  * kernfs_get - get a reference count on a kernfs_node
369  * @kn: the target kernfs_node
370  */
371 void kernfs_get(struct kernfs_node *kn)
372 {
373 	if (kn) {
374 		WARN_ON(!atomic_read(&kn->count));
375 		atomic_inc(&kn->count);
376 	}
377 }
378 EXPORT_SYMBOL_GPL(kernfs_get);
379 
380 /**
381  * kernfs_put - put a reference count on a kernfs_node
382  * @kn: the target kernfs_node
383  *
384  * Put a reference count of @kn and destroy it if it reached zero.
385  */
386 void kernfs_put(struct kernfs_node *kn)
387 {
388 	struct kernfs_node *parent;
389 	struct kernfs_root *root;
390 
391 	if (!kn || !atomic_dec_and_test(&kn->count))
392 		return;
393 	root = kernfs_root(kn);
394  repeat:
395 	/*
396 	 * Moving/renaming is always done while holding reference.
397 	 * kn->parent won't change beneath us.
398 	 */
399 	parent = kn->parent;
400 
401 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
402 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
403 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
404 
405 	if (kernfs_type(kn) == KERNFS_LINK)
406 		kernfs_put(kn->symlink.target_kn);
407 	if (!(kn->flags & KERNFS_STATIC_NAME))
408 		kfree(kn->name);
409 	if (kn->iattr) {
410 		if (kn->iattr->ia_secdata)
411 			security_release_secctx(kn->iattr->ia_secdata,
412 						kn->iattr->ia_secdata_len);
413 		simple_xattrs_free(&kn->iattr->xattrs);
414 	}
415 	kfree(kn->iattr);
416 	ida_simple_remove(&root->ino_ida, kn->ino);
417 	kmem_cache_free(kernfs_node_cache, kn);
418 
419 	kn = parent;
420 	if (kn) {
421 		if (atomic_dec_and_test(&kn->count))
422 			goto repeat;
423 	} else {
424 		/* just released the root kn, free @root too */
425 		ida_destroy(&root->ino_ida);
426 		kfree(root);
427 	}
428 }
429 EXPORT_SYMBOL_GPL(kernfs_put);
430 
431 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
432 {
433 	struct kernfs_node *kn;
434 
435 	if (flags & LOOKUP_RCU)
436 		return -ECHILD;
437 
438 	/* Always perform fresh lookup for negatives */
439 	if (!dentry->d_inode)
440 		goto out_bad_unlocked;
441 
442 	kn = dentry->d_fsdata;
443 	mutex_lock(&kernfs_mutex);
444 
445 	/* The kernfs node has been deactivated */
446 	if (!kernfs_active(kn))
447 		goto out_bad;
448 
449 	/* The kernfs node has been moved? */
450 	if (dentry->d_parent->d_fsdata != kn->parent)
451 		goto out_bad;
452 
453 	/* The kernfs node has been renamed */
454 	if (strcmp(dentry->d_name.name, kn->name) != 0)
455 		goto out_bad;
456 
457 	/* The kernfs node has been moved to a different namespace */
458 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
459 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
460 		goto out_bad;
461 
462 	mutex_unlock(&kernfs_mutex);
463 out_valid:
464 	return 1;
465 out_bad:
466 	mutex_unlock(&kernfs_mutex);
467 out_bad_unlocked:
468 	/*
469 	 * @dentry doesn't match the underlying kernfs node, drop the
470 	 * dentry and force lookup.  If we have submounts we must allow the
471 	 * vfs caches to lie about the state of the filesystem to prevent
472 	 * leaks and other nasty things, so use check_submounts_and_drop()
473 	 * instead of d_drop().
474 	 */
475 	if (check_submounts_and_drop(dentry) != 0)
476 		goto out_valid;
477 
478 	return 0;
479 }
480 
481 static void kernfs_dop_release(struct dentry *dentry)
482 {
483 	kernfs_put(dentry->d_fsdata);
484 }
485 
486 const struct dentry_operations kernfs_dops = {
487 	.d_revalidate	= kernfs_dop_revalidate,
488 	.d_release	= kernfs_dop_release,
489 };
490 
491 /**
492  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
493  * @dentry: the dentry in question
494  *
495  * Return the kernfs_node associated with @dentry.  If @dentry is not a
496  * kernfs one, %NULL is returned.
497  *
498  * While the returned kernfs_node will stay accessible as long as @dentry
499  * is accessible, the returned node can be in any state and the caller is
500  * fully responsible for determining what's accessible.
501  */
502 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
503 {
504 	if (dentry->d_sb->s_op == &kernfs_sops)
505 		return dentry->d_fsdata;
506 	return NULL;
507 }
508 
509 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
510 					     const char *name, umode_t mode,
511 					     unsigned flags)
512 {
513 	char *dup_name = NULL;
514 	struct kernfs_node *kn;
515 	int ret;
516 
517 	if (!(flags & KERNFS_STATIC_NAME)) {
518 		name = dup_name = kstrdup(name, GFP_KERNEL);
519 		if (!name)
520 			return NULL;
521 	}
522 
523 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
524 	if (!kn)
525 		goto err_out1;
526 
527 	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
528 	if (ret < 0)
529 		goto err_out2;
530 	kn->ino = ret;
531 
532 	atomic_set(&kn->count, 1);
533 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
534 	RB_CLEAR_NODE(&kn->rb);
535 
536 	kn->name = name;
537 	kn->mode = mode;
538 	kn->flags = flags;
539 
540 	return kn;
541 
542  err_out2:
543 	kmem_cache_free(kernfs_node_cache, kn);
544  err_out1:
545 	kfree(dup_name);
546 	return NULL;
547 }
548 
549 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
550 				    const char *name, umode_t mode,
551 				    unsigned flags)
552 {
553 	struct kernfs_node *kn;
554 
555 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
556 	if (kn) {
557 		kernfs_get(parent);
558 		kn->parent = parent;
559 	}
560 	return kn;
561 }
562 
563 /**
564  *	kernfs_add_one - add kernfs_node to parent without warning
565  *	@kn: kernfs_node to be added
566  *
567  *	The caller must already have initialized @kn->parent.  This
568  *	function increments nlink of the parent's inode if @kn is a
569  *	directory and link into the children list of the parent.
570  *
571  *	RETURNS:
572  *	0 on success, -EEXIST if entry with the given name already
573  *	exists.
574  */
575 int kernfs_add_one(struct kernfs_node *kn)
576 {
577 	struct kernfs_node *parent = kn->parent;
578 	struct kernfs_iattrs *ps_iattr;
579 	bool has_ns;
580 	int ret;
581 
582 	mutex_lock(&kernfs_mutex);
583 
584 	ret = -EINVAL;
585 	has_ns = kernfs_ns_enabled(parent);
586 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
587 		 has_ns ? "required" : "invalid", parent->name, kn->name))
588 		goto out_unlock;
589 
590 	if (kernfs_type(parent) != KERNFS_DIR)
591 		goto out_unlock;
592 
593 	ret = -ENOENT;
594 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
595 		goto out_unlock;
596 
597 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
598 
599 	ret = kernfs_link_sibling(kn);
600 	if (ret)
601 		goto out_unlock;
602 
603 	/* Update timestamps on the parent */
604 	ps_iattr = parent->iattr;
605 	if (ps_iattr) {
606 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
607 		ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
608 	}
609 
610 	mutex_unlock(&kernfs_mutex);
611 
612 	/*
613 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
614 	 * If not activated here, the kernfs user is responsible for
615 	 * activating the node with kernfs_activate().  A node which hasn't
616 	 * been activated is not visible to userland and its removal won't
617 	 * trigger deactivation.
618 	 */
619 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
620 		kernfs_activate(kn);
621 	return 0;
622 
623 out_unlock:
624 	mutex_unlock(&kernfs_mutex);
625 	return ret;
626 }
627 
628 /**
629  * kernfs_find_ns - find kernfs_node with the given name
630  * @parent: kernfs_node to search under
631  * @name: name to look for
632  * @ns: the namespace tag to use
633  *
634  * Look for kernfs_node with name @name under @parent.  Returns pointer to
635  * the found kernfs_node on success, %NULL on failure.
636  */
637 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
638 					  const unsigned char *name,
639 					  const void *ns)
640 {
641 	struct rb_node *node = parent->dir.children.rb_node;
642 	bool has_ns = kernfs_ns_enabled(parent);
643 	unsigned int hash;
644 
645 	lockdep_assert_held(&kernfs_mutex);
646 
647 	if (has_ns != (bool)ns) {
648 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
649 		     has_ns ? "required" : "invalid", parent->name, name);
650 		return NULL;
651 	}
652 
653 	hash = kernfs_name_hash(name, ns);
654 	while (node) {
655 		struct kernfs_node *kn;
656 		int result;
657 
658 		kn = rb_to_kn(node);
659 		result = kernfs_name_compare(hash, name, ns, kn);
660 		if (result < 0)
661 			node = node->rb_left;
662 		else if (result > 0)
663 			node = node->rb_right;
664 		else
665 			return kn;
666 	}
667 	return NULL;
668 }
669 
670 /**
671  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
672  * @parent: kernfs_node to search under
673  * @name: name to look for
674  * @ns: the namespace tag to use
675  *
676  * Look for kernfs_node with name @name under @parent and get a reference
677  * if found.  This function may sleep and returns pointer to the found
678  * kernfs_node on success, %NULL on failure.
679  */
680 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
681 					   const char *name, const void *ns)
682 {
683 	struct kernfs_node *kn;
684 
685 	mutex_lock(&kernfs_mutex);
686 	kn = kernfs_find_ns(parent, name, ns);
687 	kernfs_get(kn);
688 	mutex_unlock(&kernfs_mutex);
689 
690 	return kn;
691 }
692 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
693 
694 /**
695  * kernfs_create_root - create a new kernfs hierarchy
696  * @scops: optional syscall operations for the hierarchy
697  * @flags: KERNFS_ROOT_* flags
698  * @priv: opaque data associated with the new directory
699  *
700  * Returns the root of the new hierarchy on success, ERR_PTR() value on
701  * failure.
702  */
703 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
704 				       unsigned int flags, void *priv)
705 {
706 	struct kernfs_root *root;
707 	struct kernfs_node *kn;
708 
709 	root = kzalloc(sizeof(*root), GFP_KERNEL);
710 	if (!root)
711 		return ERR_PTR(-ENOMEM);
712 
713 	ida_init(&root->ino_ida);
714 
715 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
716 			       KERNFS_DIR);
717 	if (!kn) {
718 		ida_destroy(&root->ino_ida);
719 		kfree(root);
720 		return ERR_PTR(-ENOMEM);
721 	}
722 
723 	kn->priv = priv;
724 	kn->dir.root = root;
725 
726 	root->syscall_ops = scops;
727 	root->flags = flags;
728 	root->kn = kn;
729 	init_waitqueue_head(&root->deactivate_waitq);
730 
731 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
732 		kernfs_activate(kn);
733 
734 	return root;
735 }
736 
737 /**
738  * kernfs_destroy_root - destroy a kernfs hierarchy
739  * @root: root of the hierarchy to destroy
740  *
741  * Destroy the hierarchy anchored at @root by removing all existing
742  * directories and destroying @root.
743  */
744 void kernfs_destroy_root(struct kernfs_root *root)
745 {
746 	kernfs_remove(root->kn);	/* will also free @root */
747 }
748 
749 /**
750  * kernfs_create_dir_ns - create a directory
751  * @parent: parent in which to create a new directory
752  * @name: name of the new directory
753  * @mode: mode of the new directory
754  * @priv: opaque data associated with the new directory
755  * @ns: optional namespace tag of the directory
756  *
757  * Returns the created node on success, ERR_PTR() value on failure.
758  */
759 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
760 					 const char *name, umode_t mode,
761 					 void *priv, const void *ns)
762 {
763 	struct kernfs_node *kn;
764 	int rc;
765 
766 	/* allocate */
767 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
768 	if (!kn)
769 		return ERR_PTR(-ENOMEM);
770 
771 	kn->dir.root = parent->dir.root;
772 	kn->ns = ns;
773 	kn->priv = priv;
774 
775 	/* link in */
776 	rc = kernfs_add_one(kn);
777 	if (!rc)
778 		return kn;
779 
780 	kernfs_put(kn);
781 	return ERR_PTR(rc);
782 }
783 
784 static struct dentry *kernfs_iop_lookup(struct inode *dir,
785 					struct dentry *dentry,
786 					unsigned int flags)
787 {
788 	struct dentry *ret;
789 	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
790 	struct kernfs_node *kn;
791 	struct inode *inode;
792 	const void *ns = NULL;
793 
794 	mutex_lock(&kernfs_mutex);
795 
796 	if (kernfs_ns_enabled(parent))
797 		ns = kernfs_info(dir->i_sb)->ns;
798 
799 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
800 
801 	/* no such entry */
802 	if (!kn || !kernfs_active(kn)) {
803 		ret = NULL;
804 		goto out_unlock;
805 	}
806 	kernfs_get(kn);
807 	dentry->d_fsdata = kn;
808 
809 	/* attach dentry and inode */
810 	inode = kernfs_get_inode(dir->i_sb, kn);
811 	if (!inode) {
812 		ret = ERR_PTR(-ENOMEM);
813 		goto out_unlock;
814 	}
815 
816 	/* instantiate and hash dentry */
817 	ret = d_materialise_unique(dentry, inode);
818  out_unlock:
819 	mutex_unlock(&kernfs_mutex);
820 	return ret;
821 }
822 
823 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
824 			    umode_t mode)
825 {
826 	struct kernfs_node *parent = dir->i_private;
827 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
828 	int ret;
829 
830 	if (!scops || !scops->mkdir)
831 		return -EPERM;
832 
833 	if (!kernfs_get_active(parent))
834 		return -ENODEV;
835 
836 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
837 
838 	kernfs_put_active(parent);
839 	return ret;
840 }
841 
842 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
843 {
844 	struct kernfs_node *kn  = dentry->d_fsdata;
845 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
846 	int ret;
847 
848 	if (!scops || !scops->rmdir)
849 		return -EPERM;
850 
851 	if (!kernfs_get_active(kn))
852 		return -ENODEV;
853 
854 	ret = scops->rmdir(kn);
855 
856 	kernfs_put_active(kn);
857 	return ret;
858 }
859 
860 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
861 			     struct inode *new_dir, struct dentry *new_dentry)
862 {
863 	struct kernfs_node *kn  = old_dentry->d_fsdata;
864 	struct kernfs_node *new_parent = new_dir->i_private;
865 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
866 	int ret;
867 
868 	if (!scops || !scops->rename)
869 		return -EPERM;
870 
871 	if (!kernfs_get_active(kn))
872 		return -ENODEV;
873 
874 	if (!kernfs_get_active(new_parent)) {
875 		kernfs_put_active(kn);
876 		return -ENODEV;
877 	}
878 
879 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
880 
881 	kernfs_put_active(new_parent);
882 	kernfs_put_active(kn);
883 	return ret;
884 }
885 
886 const struct inode_operations kernfs_dir_iops = {
887 	.lookup		= kernfs_iop_lookup,
888 	.permission	= kernfs_iop_permission,
889 	.setattr	= kernfs_iop_setattr,
890 	.getattr	= kernfs_iop_getattr,
891 	.setxattr	= kernfs_iop_setxattr,
892 	.removexattr	= kernfs_iop_removexattr,
893 	.getxattr	= kernfs_iop_getxattr,
894 	.listxattr	= kernfs_iop_listxattr,
895 
896 	.mkdir		= kernfs_iop_mkdir,
897 	.rmdir		= kernfs_iop_rmdir,
898 	.rename		= kernfs_iop_rename,
899 };
900 
901 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
902 {
903 	struct kernfs_node *last;
904 
905 	while (true) {
906 		struct rb_node *rbn;
907 
908 		last = pos;
909 
910 		if (kernfs_type(pos) != KERNFS_DIR)
911 			break;
912 
913 		rbn = rb_first(&pos->dir.children);
914 		if (!rbn)
915 			break;
916 
917 		pos = rb_to_kn(rbn);
918 	}
919 
920 	return last;
921 }
922 
923 /**
924  * kernfs_next_descendant_post - find the next descendant for post-order walk
925  * @pos: the current position (%NULL to initiate traversal)
926  * @root: kernfs_node whose descendants to walk
927  *
928  * Find the next descendant to visit for post-order traversal of @root's
929  * descendants.  @root is included in the iteration and the last node to be
930  * visited.
931  */
932 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
933 						       struct kernfs_node *root)
934 {
935 	struct rb_node *rbn;
936 
937 	lockdep_assert_held(&kernfs_mutex);
938 
939 	/* if first iteration, visit leftmost descendant which may be root */
940 	if (!pos)
941 		return kernfs_leftmost_descendant(root);
942 
943 	/* if we visited @root, we're done */
944 	if (pos == root)
945 		return NULL;
946 
947 	/* if there's an unvisited sibling, visit its leftmost descendant */
948 	rbn = rb_next(&pos->rb);
949 	if (rbn)
950 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
951 
952 	/* no sibling left, visit parent */
953 	return pos->parent;
954 }
955 
956 /**
957  * kernfs_activate - activate a node which started deactivated
958  * @kn: kernfs_node whose subtree is to be activated
959  *
960  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
961  * needs to be explicitly activated.  A node which hasn't been activated
962  * isn't visible to userland and deactivation is skipped during its
963  * removal.  This is useful to construct atomic init sequences where
964  * creation of multiple nodes should either succeed or fail atomically.
965  *
966  * The caller is responsible for ensuring that this function is not called
967  * after kernfs_remove*() is invoked on @kn.
968  */
969 void kernfs_activate(struct kernfs_node *kn)
970 {
971 	struct kernfs_node *pos;
972 
973 	mutex_lock(&kernfs_mutex);
974 
975 	pos = NULL;
976 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
977 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
978 			continue;
979 
980 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
981 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
982 
983 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
984 		pos->flags |= KERNFS_ACTIVATED;
985 	}
986 
987 	mutex_unlock(&kernfs_mutex);
988 }
989 
990 static void __kernfs_remove(struct kernfs_node *kn)
991 {
992 	struct kernfs_node *pos;
993 
994 	lockdep_assert_held(&kernfs_mutex);
995 
996 	/*
997 	 * Short-circuit if non-root @kn has already finished removal.
998 	 * This is for kernfs_remove_self() which plays with active ref
999 	 * after removal.
1000 	 */
1001 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1002 		return;
1003 
1004 	pr_debug("kernfs %s: removing\n", kn->name);
1005 
1006 	/* prevent any new usage under @kn by deactivating all nodes */
1007 	pos = NULL;
1008 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1009 		if (kernfs_active(pos))
1010 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1011 
1012 	/* deactivate and unlink the subtree node-by-node */
1013 	do {
1014 		pos = kernfs_leftmost_descendant(kn);
1015 
1016 		/*
1017 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1018 		 * base ref could have been put by someone else by the time
1019 		 * the function returns.  Make sure it doesn't go away
1020 		 * underneath us.
1021 		 */
1022 		kernfs_get(pos);
1023 
1024 		/*
1025 		 * Drain iff @kn was activated.  This avoids draining and
1026 		 * its lockdep annotations for nodes which have never been
1027 		 * activated and allows embedding kernfs_remove() in create
1028 		 * error paths without worrying about draining.
1029 		 */
1030 		if (kn->flags & KERNFS_ACTIVATED)
1031 			kernfs_drain(pos);
1032 		else
1033 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1034 
1035 		/*
1036 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1037 		 * to decide who's responsible for cleanups.
1038 		 */
1039 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1040 			struct kernfs_iattrs *ps_iattr =
1041 				pos->parent ? pos->parent->iattr : NULL;
1042 
1043 			/* update timestamps on the parent */
1044 			if (ps_iattr) {
1045 				ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1046 				ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1047 			}
1048 
1049 			kernfs_put(pos);
1050 		}
1051 
1052 		kernfs_put(pos);
1053 	} while (pos != kn);
1054 }
1055 
1056 /**
1057  * kernfs_remove - remove a kernfs_node recursively
1058  * @kn: the kernfs_node to remove
1059  *
1060  * Remove @kn along with all its subdirectories and files.
1061  */
1062 void kernfs_remove(struct kernfs_node *kn)
1063 {
1064 	mutex_lock(&kernfs_mutex);
1065 	__kernfs_remove(kn);
1066 	mutex_unlock(&kernfs_mutex);
1067 }
1068 
1069 /**
1070  * kernfs_break_active_protection - break out of active protection
1071  * @kn: the self kernfs_node
1072  *
1073  * The caller must be running off of a kernfs operation which is invoked
1074  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1075  * this function must also be matched with an invocation of
1076  * kernfs_unbreak_active_protection().
1077  *
1078  * This function releases the active reference of @kn the caller is
1079  * holding.  Once this function is called, @kn may be removed at any point
1080  * and the caller is solely responsible for ensuring that the objects it
1081  * dereferences are accessible.
1082  */
1083 void kernfs_break_active_protection(struct kernfs_node *kn)
1084 {
1085 	/*
1086 	 * Take out ourself out of the active ref dependency chain.  If
1087 	 * we're called without an active ref, lockdep will complain.
1088 	 */
1089 	kernfs_put_active(kn);
1090 }
1091 
1092 /**
1093  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1094  * @kn: the self kernfs_node
1095  *
1096  * If kernfs_break_active_protection() was called, this function must be
1097  * invoked before finishing the kernfs operation.  Note that while this
1098  * function restores the active reference, it doesn't and can't actually
1099  * restore the active protection - @kn may already or be in the process of
1100  * being removed.  Once kernfs_break_active_protection() is invoked, that
1101  * protection is irreversibly gone for the kernfs operation instance.
1102  *
1103  * While this function may be called at any point after
1104  * kernfs_break_active_protection() is invoked, its most useful location
1105  * would be right before the enclosing kernfs operation returns.
1106  */
1107 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1108 {
1109 	/*
1110 	 * @kn->active could be in any state; however, the increment we do
1111 	 * here will be undone as soon as the enclosing kernfs operation
1112 	 * finishes and this temporary bump can't break anything.  If @kn
1113 	 * is alive, nothing changes.  If @kn is being deactivated, the
1114 	 * soon-to-follow put will either finish deactivation or restore
1115 	 * deactivated state.  If @kn is already removed, the temporary
1116 	 * bump is guaranteed to be gone before @kn is released.
1117 	 */
1118 	atomic_inc(&kn->active);
1119 	if (kernfs_lockdep(kn))
1120 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1121 }
1122 
1123 /**
1124  * kernfs_remove_self - remove a kernfs_node from its own method
1125  * @kn: the self kernfs_node to remove
1126  *
1127  * The caller must be running off of a kernfs operation which is invoked
1128  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1129  * implement a file operation which deletes itself.
1130  *
1131  * For example, the "delete" file for a sysfs device directory can be
1132  * implemented by invoking kernfs_remove_self() on the "delete" file
1133  * itself.  This function breaks the circular dependency of trying to
1134  * deactivate self while holding an active ref itself.  It isn't necessary
1135  * to modify the usual removal path to use kernfs_remove_self().  The
1136  * "delete" implementation can simply invoke kernfs_remove_self() on self
1137  * before proceeding with the usual removal path.  kernfs will ignore later
1138  * kernfs_remove() on self.
1139  *
1140  * kernfs_remove_self() can be called multiple times concurrently on the
1141  * same kernfs_node.  Only the first one actually performs removal and
1142  * returns %true.  All others will wait until the kernfs operation which
1143  * won self-removal finishes and return %false.  Note that the losers wait
1144  * for the completion of not only the winning kernfs_remove_self() but also
1145  * the whole kernfs_ops which won the arbitration.  This can be used to
1146  * guarantee, for example, all concurrent writes to a "delete" file to
1147  * finish only after the whole operation is complete.
1148  */
1149 bool kernfs_remove_self(struct kernfs_node *kn)
1150 {
1151 	bool ret;
1152 
1153 	mutex_lock(&kernfs_mutex);
1154 	kernfs_break_active_protection(kn);
1155 
1156 	/*
1157 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1158 	 * the first one will actually perform removal.  When the removal
1159 	 * is complete, SUICIDED is set and the active ref is restored
1160 	 * while holding kernfs_mutex.  The ones which lost arbitration
1161 	 * waits for SUICDED && drained which can happen only after the
1162 	 * enclosing kernfs operation which executed the winning instance
1163 	 * of kernfs_remove_self() finished.
1164 	 */
1165 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1166 		kn->flags |= KERNFS_SUICIDAL;
1167 		__kernfs_remove(kn);
1168 		kn->flags |= KERNFS_SUICIDED;
1169 		ret = true;
1170 	} else {
1171 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1172 		DEFINE_WAIT(wait);
1173 
1174 		while (true) {
1175 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1176 
1177 			if ((kn->flags & KERNFS_SUICIDED) &&
1178 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1179 				break;
1180 
1181 			mutex_unlock(&kernfs_mutex);
1182 			schedule();
1183 			mutex_lock(&kernfs_mutex);
1184 		}
1185 		finish_wait(waitq, &wait);
1186 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1187 		ret = false;
1188 	}
1189 
1190 	/*
1191 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1192 	 * for SUICIDED && deactivated could finish prematurely.
1193 	 */
1194 	kernfs_unbreak_active_protection(kn);
1195 
1196 	mutex_unlock(&kernfs_mutex);
1197 	return ret;
1198 }
1199 
1200 /**
1201  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1202  * @parent: parent of the target
1203  * @name: name of the kernfs_node to remove
1204  * @ns: namespace tag of the kernfs_node to remove
1205  *
1206  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1207  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1208  */
1209 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1210 			     const void *ns)
1211 {
1212 	struct kernfs_node *kn;
1213 
1214 	if (!parent) {
1215 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1216 			name);
1217 		return -ENOENT;
1218 	}
1219 
1220 	mutex_lock(&kernfs_mutex);
1221 
1222 	kn = kernfs_find_ns(parent, name, ns);
1223 	if (kn)
1224 		__kernfs_remove(kn);
1225 
1226 	mutex_unlock(&kernfs_mutex);
1227 
1228 	if (kn)
1229 		return 0;
1230 	else
1231 		return -ENOENT;
1232 }
1233 
1234 /**
1235  * kernfs_rename_ns - move and rename a kernfs_node
1236  * @kn: target node
1237  * @new_parent: new parent to put @sd under
1238  * @new_name: new name
1239  * @new_ns: new namespace tag
1240  */
1241 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1242 		     const char *new_name, const void *new_ns)
1243 {
1244 	struct kernfs_node *old_parent;
1245 	const char *old_name = NULL;
1246 	int error;
1247 
1248 	/* can't move or rename root */
1249 	if (!kn->parent)
1250 		return -EINVAL;
1251 
1252 	mutex_lock(&kernfs_mutex);
1253 
1254 	error = -ENOENT;
1255 	if (!kernfs_active(kn) || !kernfs_active(new_parent))
1256 		goto out;
1257 
1258 	error = 0;
1259 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1260 	    (strcmp(kn->name, new_name) == 0))
1261 		goto out;	/* nothing to rename */
1262 
1263 	error = -EEXIST;
1264 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1265 		goto out;
1266 
1267 	/* rename kernfs_node */
1268 	if (strcmp(kn->name, new_name) != 0) {
1269 		error = -ENOMEM;
1270 		new_name = kstrdup(new_name, GFP_KERNEL);
1271 		if (!new_name)
1272 			goto out;
1273 	} else {
1274 		new_name = NULL;
1275 	}
1276 
1277 	/*
1278 	 * Move to the appropriate place in the appropriate directories rbtree.
1279 	 */
1280 	kernfs_unlink_sibling(kn);
1281 	kernfs_get(new_parent);
1282 
1283 	/* rename_lock protects ->parent and ->name accessors */
1284 	spin_lock_irq(&kernfs_rename_lock);
1285 
1286 	old_parent = kn->parent;
1287 	kn->parent = new_parent;
1288 
1289 	kn->ns = new_ns;
1290 	if (new_name) {
1291 		if (!(kn->flags & KERNFS_STATIC_NAME))
1292 			old_name = kn->name;
1293 		kn->flags &= ~KERNFS_STATIC_NAME;
1294 		kn->name = new_name;
1295 	}
1296 
1297 	spin_unlock_irq(&kernfs_rename_lock);
1298 
1299 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1300 	kernfs_link_sibling(kn);
1301 
1302 	kernfs_put(old_parent);
1303 	kfree(old_name);
1304 
1305 	error = 0;
1306  out:
1307 	mutex_unlock(&kernfs_mutex);
1308 	return error;
1309 }
1310 
1311 /* Relationship between s_mode and the DT_xxx types */
1312 static inline unsigned char dt_type(struct kernfs_node *kn)
1313 {
1314 	return (kn->mode >> 12) & 15;
1315 }
1316 
1317 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1318 {
1319 	kernfs_put(filp->private_data);
1320 	return 0;
1321 }
1322 
1323 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1324 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1325 {
1326 	if (pos) {
1327 		int valid = kernfs_active(pos) &&
1328 			pos->parent == parent && hash == pos->hash;
1329 		kernfs_put(pos);
1330 		if (!valid)
1331 			pos = NULL;
1332 	}
1333 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1334 		struct rb_node *node = parent->dir.children.rb_node;
1335 		while (node) {
1336 			pos = rb_to_kn(node);
1337 
1338 			if (hash < pos->hash)
1339 				node = node->rb_left;
1340 			else if (hash > pos->hash)
1341 				node = node->rb_right;
1342 			else
1343 				break;
1344 		}
1345 	}
1346 	/* Skip over entries which are dying/dead or in the wrong namespace */
1347 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1348 		struct rb_node *node = rb_next(&pos->rb);
1349 		if (!node)
1350 			pos = NULL;
1351 		else
1352 			pos = rb_to_kn(node);
1353 	}
1354 	return pos;
1355 }
1356 
1357 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1358 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1359 {
1360 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1361 	if (pos) {
1362 		do {
1363 			struct rb_node *node = rb_next(&pos->rb);
1364 			if (!node)
1365 				pos = NULL;
1366 			else
1367 				pos = rb_to_kn(node);
1368 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1369 	}
1370 	return pos;
1371 }
1372 
1373 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1374 {
1375 	struct dentry *dentry = file->f_path.dentry;
1376 	struct kernfs_node *parent = dentry->d_fsdata;
1377 	struct kernfs_node *pos = file->private_data;
1378 	const void *ns = NULL;
1379 
1380 	if (!dir_emit_dots(file, ctx))
1381 		return 0;
1382 	mutex_lock(&kernfs_mutex);
1383 
1384 	if (kernfs_ns_enabled(parent))
1385 		ns = kernfs_info(dentry->d_sb)->ns;
1386 
1387 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1388 	     pos;
1389 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1390 		const char *name = pos->name;
1391 		unsigned int type = dt_type(pos);
1392 		int len = strlen(name);
1393 		ino_t ino = pos->ino;
1394 
1395 		ctx->pos = pos->hash;
1396 		file->private_data = pos;
1397 		kernfs_get(pos);
1398 
1399 		mutex_unlock(&kernfs_mutex);
1400 		if (!dir_emit(ctx, name, len, ino, type))
1401 			return 0;
1402 		mutex_lock(&kernfs_mutex);
1403 	}
1404 	mutex_unlock(&kernfs_mutex);
1405 	file->private_data = NULL;
1406 	ctx->pos = INT_MAX;
1407 	return 0;
1408 }
1409 
1410 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1411 				    int whence)
1412 {
1413 	struct inode *inode = file_inode(file);
1414 	loff_t ret;
1415 
1416 	mutex_lock(&inode->i_mutex);
1417 	ret = generic_file_llseek(file, offset, whence);
1418 	mutex_unlock(&inode->i_mutex);
1419 
1420 	return ret;
1421 }
1422 
1423 const struct file_operations kernfs_dir_fops = {
1424 	.read		= generic_read_dir,
1425 	.iterate	= kernfs_fop_readdir,
1426 	.release	= kernfs_dir_fop_release,
1427 	.llseek		= kernfs_dir_fop_llseek,
1428 };
1429