xref: /openbmc/linux/fs/kernfs/dir.c (revision a8f4fcdd8ba7d191c29ae87a2315906fe90368d6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/dir.c - kernfs directory implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
17 
18 #include "kernfs-internal.h"
19 
20 DECLARE_RWSEM(kernfs_rwsem);
21 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
22 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
23 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_rwsem);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	if (!kn)
45 		return strlcpy(buf, "(null)", buflen);
46 
47 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
48 }
49 
50 /* kernfs_node_depth - compute depth from @from to @to */
51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
52 {
53 	size_t depth = 0;
54 
55 	while (to->parent && to != from) {
56 		depth++;
57 		to = to->parent;
58 	}
59 	return depth;
60 }
61 
62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 						  struct kernfs_node *b)
64 {
65 	size_t da, db;
66 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
67 
68 	if (ra != rb)
69 		return NULL;
70 
71 	da = kernfs_depth(ra->kn, a);
72 	db = kernfs_depth(rb->kn, b);
73 
74 	while (da > db) {
75 		a = a->parent;
76 		da--;
77 	}
78 	while (db > da) {
79 		b = b->parent;
80 		db--;
81 	}
82 
83 	/* worst case b and a will be the same at root */
84 	while (b != a) {
85 		b = b->parent;
86 		a = a->parent;
87 	}
88 
89 	return a;
90 }
91 
92 /**
93  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94  * where kn_from is treated as root of the path.
95  * @kn_from: kernfs node which should be treated as root for the path
96  * @kn_to: kernfs node to which path is needed
97  * @buf: buffer to copy the path into
98  * @buflen: size of @buf
99  *
100  * We need to handle couple of scenarios here:
101  * [1] when @kn_from is an ancestor of @kn_to at some level
102  * kn_from: /n1/n2/n3
103  * kn_to:   /n1/n2/n3/n4/n5
104  * result:  /n4/n5
105  *
106  * [2] when @kn_from is on a different hierarchy and we need to find common
107  * ancestor between @kn_from and @kn_to.
108  * kn_from: /n1/n2/n3/n4
109  * kn_to:   /n1/n2/n5
110  * result:  /../../n5
111  * OR
112  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
113  * kn_to:   /n1/n2/n3         [depth=3]
114  * result:  /../..
115  *
116  * [3] when @kn_to is NULL result will be "(null)"
117  *
118  * Returns the length of the full path.  If the full length is equal to or
119  * greater than @buflen, @buf contains the truncated path with the trailing
120  * '\0'.  On error, -errno is returned.
121  */
122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 					struct kernfs_node *kn_from,
124 					char *buf, size_t buflen)
125 {
126 	struct kernfs_node *kn, *common;
127 	const char parent_str[] = "/..";
128 	size_t depth_from, depth_to, len = 0;
129 	int i, j;
130 
131 	if (!kn_to)
132 		return strlcpy(buf, "(null)", buflen);
133 
134 	if (!kn_from)
135 		kn_from = kernfs_root(kn_to)->kn;
136 
137 	if (kn_from == kn_to)
138 		return strlcpy(buf, "/", buflen);
139 
140 	if (!buf)
141 		return -EINVAL;
142 
143 	common = kernfs_common_ancestor(kn_from, kn_to);
144 	if (WARN_ON(!common))
145 		return -EINVAL;
146 
147 	depth_to = kernfs_depth(common, kn_to);
148 	depth_from = kernfs_depth(common, kn_from);
149 
150 	buf[0] = '\0';
151 
152 	for (i = 0; i < depth_from; i++)
153 		len += strlcpy(buf + len, parent_str,
154 			       len < buflen ? buflen - len : 0);
155 
156 	/* Calculate how many bytes we need for the rest */
157 	for (i = depth_to - 1; i >= 0; i--) {
158 		for (kn = kn_to, j = 0; j < i; j++)
159 			kn = kn->parent;
160 		len += strlcpy(buf + len, "/",
161 			       len < buflen ? buflen - len : 0);
162 		len += strlcpy(buf + len, kn->name,
163 			       len < buflen ? buflen - len : 0);
164 	}
165 
166 	return len;
167 }
168 
169 /**
170  * kernfs_name - obtain the name of a given node
171  * @kn: kernfs_node of interest
172  * @buf: buffer to copy @kn's name into
173  * @buflen: size of @buf
174  *
175  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
176  * similar to strlcpy().  It returns the length of @kn's name and if @buf
177  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
178  *
179  * Fills buffer with "(null)" if @kn is NULL.
180  *
181  * This function can be called from any context.
182  */
183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
184 {
185 	unsigned long flags;
186 	int ret;
187 
188 	spin_lock_irqsave(&kernfs_rename_lock, flags);
189 	ret = kernfs_name_locked(kn, buf, buflen);
190 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
191 	return ret;
192 }
193 
194 /**
195  * kernfs_path_from_node - build path of node @to relative to @from.
196  * @from: parent kernfs_node relative to which we need to build the path
197  * @to: kernfs_node of interest
198  * @buf: buffer to copy @to's path into
199  * @buflen: size of @buf
200  *
201  * Builds @to's path relative to @from in @buf. @from and @to must
202  * be on the same kernfs-root. If @from is not parent of @to, then a relative
203  * path (which includes '..'s) as needed to reach from @from to @to is
204  * returned.
205  *
206  * Returns the length of the full path.  If the full length is equal to or
207  * greater than @buflen, @buf contains the truncated path with the trailing
208  * '\0'.  On error, -errno is returned.
209  */
210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
211 			  char *buf, size_t buflen)
212 {
213 	unsigned long flags;
214 	int ret;
215 
216 	spin_lock_irqsave(&kernfs_rename_lock, flags);
217 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
218 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
219 	return ret;
220 }
221 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
222 
223 /**
224  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225  * @kn: kernfs_node of interest
226  *
227  * This function can be called from any context.
228  */
229 void pr_cont_kernfs_name(struct kernfs_node *kn)
230 {
231 	unsigned long flags;
232 
233 	spin_lock_irqsave(&kernfs_rename_lock, flags);
234 
235 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
236 	pr_cont("%s", kernfs_pr_cont_buf);
237 
238 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
239 }
240 
241 /**
242  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243  * @kn: kernfs_node of interest
244  *
245  * This function can be called from any context.
246  */
247 void pr_cont_kernfs_path(struct kernfs_node *kn)
248 {
249 	unsigned long flags;
250 	int sz;
251 
252 	spin_lock_irqsave(&kernfs_rename_lock, flags);
253 
254 	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
255 					  sizeof(kernfs_pr_cont_buf));
256 	if (sz < 0) {
257 		pr_cont("(error)");
258 		goto out;
259 	}
260 
261 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
262 		pr_cont("(name too long)");
263 		goto out;
264 	}
265 
266 	pr_cont("%s", kernfs_pr_cont_buf);
267 
268 out:
269 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
270 }
271 
272 /**
273  * kernfs_get_parent - determine the parent node and pin it
274  * @kn: kernfs_node of interest
275  *
276  * Determines @kn's parent, pins and returns it.  This function can be
277  * called from any context.
278  */
279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
280 {
281 	struct kernfs_node *parent;
282 	unsigned long flags;
283 
284 	spin_lock_irqsave(&kernfs_rename_lock, flags);
285 	parent = kn->parent;
286 	kernfs_get(parent);
287 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
288 
289 	return parent;
290 }
291 
292 /**
293  *	kernfs_name_hash
294  *	@name: Null terminated string to hash
295  *	@ns:   Namespace tag to hash
296  *
297  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
298  */
299 static unsigned int kernfs_name_hash(const char *name, const void *ns)
300 {
301 	unsigned long hash = init_name_hash(ns);
302 	unsigned int len = strlen(name);
303 	while (len--)
304 		hash = partial_name_hash(*name++, hash);
305 	hash = end_name_hash(hash);
306 	hash &= 0x7fffffffU;
307 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
308 	if (hash < 2)
309 		hash += 2;
310 	if (hash >= INT_MAX)
311 		hash = INT_MAX - 1;
312 	return hash;
313 }
314 
315 static int kernfs_name_compare(unsigned int hash, const char *name,
316 			       const void *ns, const struct kernfs_node *kn)
317 {
318 	if (hash < kn->hash)
319 		return -1;
320 	if (hash > kn->hash)
321 		return 1;
322 	if (ns < kn->ns)
323 		return -1;
324 	if (ns > kn->ns)
325 		return 1;
326 	return strcmp(name, kn->name);
327 }
328 
329 static int kernfs_sd_compare(const struct kernfs_node *left,
330 			     const struct kernfs_node *right)
331 {
332 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
333 }
334 
335 /**
336  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
337  *	@kn: kernfs_node of interest
338  *
339  *	Link @kn into its sibling rbtree which starts from
340  *	@kn->parent->dir.children.
341  *
342  *	Locking:
343  *	kernfs_rwsem held exclusive
344  *
345  *	RETURNS:
346  *	0 on susccess -EEXIST on failure.
347  */
348 static int kernfs_link_sibling(struct kernfs_node *kn)
349 {
350 	struct rb_node **node = &kn->parent->dir.children.rb_node;
351 	struct rb_node *parent = NULL;
352 
353 	while (*node) {
354 		struct kernfs_node *pos;
355 		int result;
356 
357 		pos = rb_to_kn(*node);
358 		parent = *node;
359 		result = kernfs_sd_compare(kn, pos);
360 		if (result < 0)
361 			node = &pos->rb.rb_left;
362 		else if (result > 0)
363 			node = &pos->rb.rb_right;
364 		else
365 			return -EEXIST;
366 	}
367 
368 	/* add new node and rebalance the tree */
369 	rb_link_node(&kn->rb, parent, node);
370 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
371 
372 	/* successfully added, account subdir number */
373 	if (kernfs_type(kn) == KERNFS_DIR)
374 		kn->parent->dir.subdirs++;
375 	kernfs_inc_rev(kn->parent);
376 
377 	return 0;
378 }
379 
380 /**
381  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
382  *	@kn: kernfs_node of interest
383  *
384  *	Try to unlink @kn from its sibling rbtree which starts from
385  *	kn->parent->dir.children.  Returns %true if @kn was actually
386  *	removed, %false if @kn wasn't on the rbtree.
387  *
388  *	Locking:
389  *	kernfs_rwsem held exclusive
390  */
391 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
392 {
393 	if (RB_EMPTY_NODE(&kn->rb))
394 		return false;
395 
396 	if (kernfs_type(kn) == KERNFS_DIR)
397 		kn->parent->dir.subdirs--;
398 	kernfs_inc_rev(kn->parent);
399 
400 	rb_erase(&kn->rb, &kn->parent->dir.children);
401 	RB_CLEAR_NODE(&kn->rb);
402 	return true;
403 }
404 
405 /**
406  *	kernfs_get_active - get an active reference to kernfs_node
407  *	@kn: kernfs_node to get an active reference to
408  *
409  *	Get an active reference of @kn.  This function is noop if @kn
410  *	is NULL.
411  *
412  *	RETURNS:
413  *	Pointer to @kn on success, NULL on failure.
414  */
415 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
416 {
417 	if (unlikely(!kn))
418 		return NULL;
419 
420 	if (!atomic_inc_unless_negative(&kn->active))
421 		return NULL;
422 
423 	if (kernfs_lockdep(kn))
424 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
425 	return kn;
426 }
427 
428 /**
429  *	kernfs_put_active - put an active reference to kernfs_node
430  *	@kn: kernfs_node to put an active reference to
431  *
432  *	Put an active reference to @kn.  This function is noop if @kn
433  *	is NULL.
434  */
435 void kernfs_put_active(struct kernfs_node *kn)
436 {
437 	int v;
438 
439 	if (unlikely(!kn))
440 		return;
441 
442 	if (kernfs_lockdep(kn))
443 		rwsem_release(&kn->dep_map, _RET_IP_);
444 	v = atomic_dec_return(&kn->active);
445 	if (likely(v != KN_DEACTIVATED_BIAS))
446 		return;
447 
448 	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
449 }
450 
451 /**
452  * kernfs_drain - drain kernfs_node
453  * @kn: kernfs_node to drain
454  *
455  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
456  * removers may invoke this function concurrently on @kn and all will
457  * return after draining is complete.
458  */
459 static void kernfs_drain(struct kernfs_node *kn)
460 	__releases(&kernfs_rwsem) __acquires(&kernfs_rwsem)
461 {
462 	struct kernfs_root *root = kernfs_root(kn);
463 
464 	lockdep_assert_held_write(&kernfs_rwsem);
465 	WARN_ON_ONCE(kernfs_active(kn));
466 
467 	up_write(&kernfs_rwsem);
468 
469 	if (kernfs_lockdep(kn)) {
470 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
471 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
472 			lock_contended(&kn->dep_map, _RET_IP_);
473 	}
474 
475 	/* but everyone should wait for draining */
476 	wait_event(root->deactivate_waitq,
477 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
478 
479 	if (kernfs_lockdep(kn)) {
480 		lock_acquired(&kn->dep_map, _RET_IP_);
481 		rwsem_release(&kn->dep_map, _RET_IP_);
482 	}
483 
484 	kernfs_drain_open_files(kn);
485 
486 	down_write(&kernfs_rwsem);
487 }
488 
489 /**
490  * kernfs_get - get a reference count on a kernfs_node
491  * @kn: the target kernfs_node
492  */
493 void kernfs_get(struct kernfs_node *kn)
494 {
495 	if (kn) {
496 		WARN_ON(!atomic_read(&kn->count));
497 		atomic_inc(&kn->count);
498 	}
499 }
500 EXPORT_SYMBOL_GPL(kernfs_get);
501 
502 /**
503  * kernfs_put - put a reference count on a kernfs_node
504  * @kn: the target kernfs_node
505  *
506  * Put a reference count of @kn and destroy it if it reached zero.
507  */
508 void kernfs_put(struct kernfs_node *kn)
509 {
510 	struct kernfs_node *parent;
511 	struct kernfs_root *root;
512 
513 	if (!kn || !atomic_dec_and_test(&kn->count))
514 		return;
515 	root = kernfs_root(kn);
516  repeat:
517 	/*
518 	 * Moving/renaming is always done while holding reference.
519 	 * kn->parent won't change beneath us.
520 	 */
521 	parent = kn->parent;
522 
523 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
524 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
525 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
526 
527 	if (kernfs_type(kn) == KERNFS_LINK)
528 		kernfs_put(kn->symlink.target_kn);
529 
530 	kfree_const(kn->name);
531 
532 	if (kn->iattr) {
533 		simple_xattrs_free(&kn->iattr->xattrs);
534 		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
535 	}
536 	spin_lock(&kernfs_idr_lock);
537 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
538 	spin_unlock(&kernfs_idr_lock);
539 	kmem_cache_free(kernfs_node_cache, kn);
540 
541 	kn = parent;
542 	if (kn) {
543 		if (atomic_dec_and_test(&kn->count))
544 			goto repeat;
545 	} else {
546 		/* just released the root kn, free @root too */
547 		idr_destroy(&root->ino_idr);
548 		kfree(root);
549 	}
550 }
551 EXPORT_SYMBOL_GPL(kernfs_put);
552 
553 /**
554  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
555  * @dentry: the dentry in question
556  *
557  * Return the kernfs_node associated with @dentry.  If @dentry is not a
558  * kernfs one, %NULL is returned.
559  *
560  * While the returned kernfs_node will stay accessible as long as @dentry
561  * is accessible, the returned node can be in any state and the caller is
562  * fully responsible for determining what's accessible.
563  */
564 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
565 {
566 	if (dentry->d_sb->s_op == &kernfs_sops)
567 		return kernfs_dentry_node(dentry);
568 	return NULL;
569 }
570 
571 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
572 					     struct kernfs_node *parent,
573 					     const char *name, umode_t mode,
574 					     kuid_t uid, kgid_t gid,
575 					     unsigned flags)
576 {
577 	struct kernfs_node *kn;
578 	u32 id_highbits;
579 	int ret;
580 
581 	name = kstrdup_const(name, GFP_KERNEL);
582 	if (!name)
583 		return NULL;
584 
585 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
586 	if (!kn)
587 		goto err_out1;
588 
589 	idr_preload(GFP_KERNEL);
590 	spin_lock(&kernfs_idr_lock);
591 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
592 	if (ret >= 0 && ret < root->last_id_lowbits)
593 		root->id_highbits++;
594 	id_highbits = root->id_highbits;
595 	root->last_id_lowbits = ret;
596 	spin_unlock(&kernfs_idr_lock);
597 	idr_preload_end();
598 	if (ret < 0)
599 		goto err_out2;
600 
601 	kn->id = (u64)id_highbits << 32 | ret;
602 
603 	atomic_set(&kn->count, 1);
604 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
605 	RB_CLEAR_NODE(&kn->rb);
606 
607 	kn->name = name;
608 	kn->mode = mode;
609 	kn->flags = flags;
610 
611 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
612 		struct iattr iattr = {
613 			.ia_valid = ATTR_UID | ATTR_GID,
614 			.ia_uid = uid,
615 			.ia_gid = gid,
616 		};
617 
618 		ret = __kernfs_setattr(kn, &iattr);
619 		if (ret < 0)
620 			goto err_out3;
621 	}
622 
623 	if (parent) {
624 		ret = security_kernfs_init_security(parent, kn);
625 		if (ret)
626 			goto err_out3;
627 	}
628 
629 	return kn;
630 
631  err_out3:
632 	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
633  err_out2:
634 	kmem_cache_free(kernfs_node_cache, kn);
635  err_out1:
636 	kfree_const(name);
637 	return NULL;
638 }
639 
640 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
641 				    const char *name, umode_t mode,
642 				    kuid_t uid, kgid_t gid,
643 				    unsigned flags)
644 {
645 	struct kernfs_node *kn;
646 
647 	kn = __kernfs_new_node(kernfs_root(parent), parent,
648 			       name, mode, uid, gid, flags);
649 	if (kn) {
650 		kernfs_get(parent);
651 		kn->parent = parent;
652 	}
653 	return kn;
654 }
655 
656 /*
657  * kernfs_find_and_get_node_by_id - get kernfs_node from node id
658  * @root: the kernfs root
659  * @id: the target node id
660  *
661  * @id's lower 32bits encode ino and upper gen.  If the gen portion is
662  * zero, all generations are matched.
663  *
664  * RETURNS:
665  * NULL on failure. Return a kernfs node with reference counter incremented
666  */
667 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
668 						   u64 id)
669 {
670 	struct kernfs_node *kn;
671 	ino_t ino = kernfs_id_ino(id);
672 	u32 gen = kernfs_id_gen(id);
673 
674 	spin_lock(&kernfs_idr_lock);
675 
676 	kn = idr_find(&root->ino_idr, (u32)ino);
677 	if (!kn)
678 		goto err_unlock;
679 
680 	if (sizeof(ino_t) >= sizeof(u64)) {
681 		/* we looked up with the low 32bits, compare the whole */
682 		if (kernfs_ino(kn) != ino)
683 			goto err_unlock;
684 	} else {
685 		/* 0 matches all generations */
686 		if (unlikely(gen && kernfs_gen(kn) != gen))
687 			goto err_unlock;
688 	}
689 
690 	/*
691 	 * ACTIVATED is protected with kernfs_mutex but it was clear when
692 	 * @kn was added to idr and we just wanna see it set.  No need to
693 	 * grab kernfs_mutex.
694 	 */
695 	if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
696 		     !atomic_inc_not_zero(&kn->count)))
697 		goto err_unlock;
698 
699 	spin_unlock(&kernfs_idr_lock);
700 	return kn;
701 err_unlock:
702 	spin_unlock(&kernfs_idr_lock);
703 	return NULL;
704 }
705 
706 /**
707  *	kernfs_add_one - add kernfs_node to parent without warning
708  *	@kn: kernfs_node to be added
709  *
710  *	The caller must already have initialized @kn->parent.  This
711  *	function increments nlink of the parent's inode if @kn is a
712  *	directory and link into the children list of the parent.
713  *
714  *	RETURNS:
715  *	0 on success, -EEXIST if entry with the given name already
716  *	exists.
717  */
718 int kernfs_add_one(struct kernfs_node *kn)
719 {
720 	struct kernfs_node *parent = kn->parent;
721 	struct kernfs_iattrs *ps_iattr;
722 	bool has_ns;
723 	int ret;
724 
725 	down_write(&kernfs_rwsem);
726 
727 	ret = -EINVAL;
728 	has_ns = kernfs_ns_enabled(parent);
729 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
730 		 has_ns ? "required" : "invalid", parent->name, kn->name))
731 		goto out_unlock;
732 
733 	if (kernfs_type(parent) != KERNFS_DIR)
734 		goto out_unlock;
735 
736 	ret = -ENOENT;
737 	if (parent->flags & KERNFS_EMPTY_DIR)
738 		goto out_unlock;
739 
740 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
741 		goto out_unlock;
742 
743 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
744 
745 	ret = kernfs_link_sibling(kn);
746 	if (ret)
747 		goto out_unlock;
748 
749 	/* Update timestamps on the parent */
750 	ps_iattr = parent->iattr;
751 	if (ps_iattr) {
752 		ktime_get_real_ts64(&ps_iattr->ia_ctime);
753 		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
754 	}
755 
756 	up_write(&kernfs_rwsem);
757 
758 	/*
759 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
760 	 * If not activated here, the kernfs user is responsible for
761 	 * activating the node with kernfs_activate().  A node which hasn't
762 	 * been activated is not visible to userland and its removal won't
763 	 * trigger deactivation.
764 	 */
765 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
766 		kernfs_activate(kn);
767 	return 0;
768 
769 out_unlock:
770 	up_write(&kernfs_rwsem);
771 	return ret;
772 }
773 
774 /**
775  * kernfs_find_ns - find kernfs_node with the given name
776  * @parent: kernfs_node to search under
777  * @name: name to look for
778  * @ns: the namespace tag to use
779  *
780  * Look for kernfs_node with name @name under @parent.  Returns pointer to
781  * the found kernfs_node on success, %NULL on failure.
782  */
783 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
784 					  const unsigned char *name,
785 					  const void *ns)
786 {
787 	struct rb_node *node = parent->dir.children.rb_node;
788 	bool has_ns = kernfs_ns_enabled(parent);
789 	unsigned int hash;
790 
791 	lockdep_assert_held(&kernfs_rwsem);
792 
793 	if (has_ns != (bool)ns) {
794 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
795 		     has_ns ? "required" : "invalid", parent->name, name);
796 		return NULL;
797 	}
798 
799 	hash = kernfs_name_hash(name, ns);
800 	while (node) {
801 		struct kernfs_node *kn;
802 		int result;
803 
804 		kn = rb_to_kn(node);
805 		result = kernfs_name_compare(hash, name, ns, kn);
806 		if (result < 0)
807 			node = node->rb_left;
808 		else if (result > 0)
809 			node = node->rb_right;
810 		else
811 			return kn;
812 	}
813 	return NULL;
814 }
815 
816 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
817 					  const unsigned char *path,
818 					  const void *ns)
819 {
820 	size_t len;
821 	char *p, *name;
822 
823 	lockdep_assert_held_read(&kernfs_rwsem);
824 
825 	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
826 	spin_lock_irq(&kernfs_rename_lock);
827 
828 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
829 
830 	if (len >= sizeof(kernfs_pr_cont_buf)) {
831 		spin_unlock_irq(&kernfs_rename_lock);
832 		return NULL;
833 	}
834 
835 	p = kernfs_pr_cont_buf;
836 
837 	while ((name = strsep(&p, "/")) && parent) {
838 		if (*name == '\0')
839 			continue;
840 		parent = kernfs_find_ns(parent, name, ns);
841 	}
842 
843 	spin_unlock_irq(&kernfs_rename_lock);
844 
845 	return parent;
846 }
847 
848 /**
849  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
850  * @parent: kernfs_node to search under
851  * @name: name to look for
852  * @ns: the namespace tag to use
853  *
854  * Look for kernfs_node with name @name under @parent and get a reference
855  * if found.  This function may sleep and returns pointer to the found
856  * kernfs_node on success, %NULL on failure.
857  */
858 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
859 					   const char *name, const void *ns)
860 {
861 	struct kernfs_node *kn;
862 
863 	down_read(&kernfs_rwsem);
864 	kn = kernfs_find_ns(parent, name, ns);
865 	kernfs_get(kn);
866 	up_read(&kernfs_rwsem);
867 
868 	return kn;
869 }
870 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
871 
872 /**
873  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
874  * @parent: kernfs_node to search under
875  * @path: path to look for
876  * @ns: the namespace tag to use
877  *
878  * Look for kernfs_node with path @path under @parent and get a reference
879  * if found.  This function may sleep and returns pointer to the found
880  * kernfs_node on success, %NULL on failure.
881  */
882 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
883 					   const char *path, const void *ns)
884 {
885 	struct kernfs_node *kn;
886 
887 	down_read(&kernfs_rwsem);
888 	kn = kernfs_walk_ns(parent, path, ns);
889 	kernfs_get(kn);
890 	up_read(&kernfs_rwsem);
891 
892 	return kn;
893 }
894 
895 /**
896  * kernfs_create_root - create a new kernfs hierarchy
897  * @scops: optional syscall operations for the hierarchy
898  * @flags: KERNFS_ROOT_* flags
899  * @priv: opaque data associated with the new directory
900  *
901  * Returns the root of the new hierarchy on success, ERR_PTR() value on
902  * failure.
903  */
904 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
905 				       unsigned int flags, void *priv)
906 {
907 	struct kernfs_root *root;
908 	struct kernfs_node *kn;
909 
910 	root = kzalloc(sizeof(*root), GFP_KERNEL);
911 	if (!root)
912 		return ERR_PTR(-ENOMEM);
913 
914 	idr_init(&root->ino_idr);
915 	INIT_LIST_HEAD(&root->supers);
916 
917 	/*
918 	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
919 	 * High bits generation.  The starting value for both ino and
920 	 * genenration is 1.  Initialize upper 32bit allocation
921 	 * accordingly.
922 	 */
923 	if (sizeof(ino_t) >= sizeof(u64))
924 		root->id_highbits = 0;
925 	else
926 		root->id_highbits = 1;
927 
928 	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
929 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
930 			       KERNFS_DIR);
931 	if (!kn) {
932 		idr_destroy(&root->ino_idr);
933 		kfree(root);
934 		return ERR_PTR(-ENOMEM);
935 	}
936 
937 	kn->priv = priv;
938 	kn->dir.root = root;
939 
940 	root->syscall_ops = scops;
941 	root->flags = flags;
942 	root->kn = kn;
943 	init_waitqueue_head(&root->deactivate_waitq);
944 
945 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
946 		kernfs_activate(kn);
947 
948 	return root;
949 }
950 
951 /**
952  * kernfs_destroy_root - destroy a kernfs hierarchy
953  * @root: root of the hierarchy to destroy
954  *
955  * Destroy the hierarchy anchored at @root by removing all existing
956  * directories and destroying @root.
957  */
958 void kernfs_destroy_root(struct kernfs_root *root)
959 {
960 	kernfs_remove(root->kn);	/* will also free @root */
961 }
962 
963 /**
964  * kernfs_create_dir_ns - create a directory
965  * @parent: parent in which to create a new directory
966  * @name: name of the new directory
967  * @mode: mode of the new directory
968  * @uid: uid of the new directory
969  * @gid: gid of the new directory
970  * @priv: opaque data associated with the new directory
971  * @ns: optional namespace tag of the directory
972  *
973  * Returns the created node on success, ERR_PTR() value on failure.
974  */
975 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
976 					 const char *name, umode_t mode,
977 					 kuid_t uid, kgid_t gid,
978 					 void *priv, const void *ns)
979 {
980 	struct kernfs_node *kn;
981 	int rc;
982 
983 	/* allocate */
984 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
985 			     uid, gid, KERNFS_DIR);
986 	if (!kn)
987 		return ERR_PTR(-ENOMEM);
988 
989 	kn->dir.root = parent->dir.root;
990 	kn->ns = ns;
991 	kn->priv = priv;
992 
993 	/* link in */
994 	rc = kernfs_add_one(kn);
995 	if (!rc)
996 		return kn;
997 
998 	kernfs_put(kn);
999 	return ERR_PTR(rc);
1000 }
1001 
1002 /**
1003  * kernfs_create_empty_dir - create an always empty directory
1004  * @parent: parent in which to create a new directory
1005  * @name: name of the new directory
1006  *
1007  * Returns the created node on success, ERR_PTR() value on failure.
1008  */
1009 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1010 					    const char *name)
1011 {
1012 	struct kernfs_node *kn;
1013 	int rc;
1014 
1015 	/* allocate */
1016 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1017 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1018 	if (!kn)
1019 		return ERR_PTR(-ENOMEM);
1020 
1021 	kn->flags |= KERNFS_EMPTY_DIR;
1022 	kn->dir.root = parent->dir.root;
1023 	kn->ns = NULL;
1024 	kn->priv = NULL;
1025 
1026 	/* link in */
1027 	rc = kernfs_add_one(kn);
1028 	if (!rc)
1029 		return kn;
1030 
1031 	kernfs_put(kn);
1032 	return ERR_PTR(rc);
1033 }
1034 
1035 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
1036 {
1037 	struct kernfs_node *kn;
1038 
1039 	if (flags & LOOKUP_RCU)
1040 		return -ECHILD;
1041 
1042 	/* Negative hashed dentry? */
1043 	if (d_really_is_negative(dentry)) {
1044 		struct kernfs_node *parent;
1045 
1046 		/* If the kernfs parent node has changed discard and
1047 		 * proceed to ->lookup.
1048 		 */
1049 		down_read(&kernfs_rwsem);
1050 		spin_lock(&dentry->d_lock);
1051 		parent = kernfs_dentry_node(dentry->d_parent);
1052 		if (parent) {
1053 			if (kernfs_dir_changed(parent, dentry)) {
1054 				spin_unlock(&dentry->d_lock);
1055 				up_read(&kernfs_rwsem);
1056 				return 0;
1057 			}
1058 		}
1059 		spin_unlock(&dentry->d_lock);
1060 		up_read(&kernfs_rwsem);
1061 
1062 		/* The kernfs parent node hasn't changed, leave the
1063 		 * dentry negative and return success.
1064 		 */
1065 		return 1;
1066 	}
1067 
1068 	kn = kernfs_dentry_node(dentry);
1069 	down_read(&kernfs_rwsem);
1070 
1071 	/* The kernfs node has been deactivated */
1072 	if (!kernfs_active(kn))
1073 		goto out_bad;
1074 
1075 	/* The kernfs node has been moved? */
1076 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
1077 		goto out_bad;
1078 
1079 	/* The kernfs node has been renamed */
1080 	if (strcmp(dentry->d_name.name, kn->name) != 0)
1081 		goto out_bad;
1082 
1083 	/* The kernfs node has been moved to a different namespace */
1084 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
1085 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
1086 		goto out_bad;
1087 
1088 	up_read(&kernfs_rwsem);
1089 	return 1;
1090 out_bad:
1091 	up_read(&kernfs_rwsem);
1092 	return 0;
1093 }
1094 
1095 const struct dentry_operations kernfs_dops = {
1096 	.d_revalidate	= kernfs_dop_revalidate,
1097 };
1098 
1099 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1100 					struct dentry *dentry,
1101 					unsigned int flags)
1102 {
1103 	struct kernfs_node *parent = dir->i_private;
1104 	struct kernfs_node *kn;
1105 	struct inode *inode = NULL;
1106 	const void *ns = NULL;
1107 
1108 	down_read(&kernfs_rwsem);
1109 	if (kernfs_ns_enabled(parent))
1110 		ns = kernfs_info(dir->i_sb)->ns;
1111 
1112 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1113 	/* attach dentry and inode */
1114 	if (kn) {
1115 		/* Inactive nodes are invisible to the VFS so don't
1116 		 * create a negative.
1117 		 */
1118 		if (!kernfs_active(kn)) {
1119 			up_read(&kernfs_rwsem);
1120 			return NULL;
1121 		}
1122 		inode = kernfs_get_inode(dir->i_sb, kn);
1123 		if (!inode)
1124 			inode = ERR_PTR(-ENOMEM);
1125 	}
1126 	/*
1127 	 * Needed for negative dentry validation.
1128 	 * The negative dentry can be created in kernfs_iop_lookup()
1129 	 * or transforms from positive dentry in dentry_unlink_inode()
1130 	 * called from vfs_rmdir().
1131 	 */
1132 	if (!IS_ERR(inode))
1133 		kernfs_set_rev(parent, dentry);
1134 	up_read(&kernfs_rwsem);
1135 
1136 	/* instantiate and hash (possibly negative) dentry */
1137 	return d_splice_alias(inode, dentry);
1138 }
1139 
1140 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns,
1141 			    struct inode *dir, struct dentry *dentry,
1142 			    umode_t mode)
1143 {
1144 	struct kernfs_node *parent = dir->i_private;
1145 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1146 	int ret;
1147 
1148 	if (!scops || !scops->mkdir)
1149 		return -EPERM;
1150 
1151 	if (!kernfs_get_active(parent))
1152 		return -ENODEV;
1153 
1154 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1155 
1156 	kernfs_put_active(parent);
1157 	return ret;
1158 }
1159 
1160 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1161 {
1162 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1163 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1164 	int ret;
1165 
1166 	if (!scops || !scops->rmdir)
1167 		return -EPERM;
1168 
1169 	if (!kernfs_get_active(kn))
1170 		return -ENODEV;
1171 
1172 	ret = scops->rmdir(kn);
1173 
1174 	kernfs_put_active(kn);
1175 	return ret;
1176 }
1177 
1178 static int kernfs_iop_rename(struct user_namespace *mnt_userns,
1179 			     struct inode *old_dir, struct dentry *old_dentry,
1180 			     struct inode *new_dir, struct dentry *new_dentry,
1181 			     unsigned int flags)
1182 {
1183 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1184 	struct kernfs_node *new_parent = new_dir->i_private;
1185 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1186 	int ret;
1187 
1188 	if (flags)
1189 		return -EINVAL;
1190 
1191 	if (!scops || !scops->rename)
1192 		return -EPERM;
1193 
1194 	if (!kernfs_get_active(kn))
1195 		return -ENODEV;
1196 
1197 	if (!kernfs_get_active(new_parent)) {
1198 		kernfs_put_active(kn);
1199 		return -ENODEV;
1200 	}
1201 
1202 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1203 
1204 	kernfs_put_active(new_parent);
1205 	kernfs_put_active(kn);
1206 	return ret;
1207 }
1208 
1209 const struct inode_operations kernfs_dir_iops = {
1210 	.lookup		= kernfs_iop_lookup,
1211 	.permission	= kernfs_iop_permission,
1212 	.setattr	= kernfs_iop_setattr,
1213 	.getattr	= kernfs_iop_getattr,
1214 	.listxattr	= kernfs_iop_listxattr,
1215 
1216 	.mkdir		= kernfs_iop_mkdir,
1217 	.rmdir		= kernfs_iop_rmdir,
1218 	.rename		= kernfs_iop_rename,
1219 };
1220 
1221 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1222 {
1223 	struct kernfs_node *last;
1224 
1225 	while (true) {
1226 		struct rb_node *rbn;
1227 
1228 		last = pos;
1229 
1230 		if (kernfs_type(pos) != KERNFS_DIR)
1231 			break;
1232 
1233 		rbn = rb_first(&pos->dir.children);
1234 		if (!rbn)
1235 			break;
1236 
1237 		pos = rb_to_kn(rbn);
1238 	}
1239 
1240 	return last;
1241 }
1242 
1243 /**
1244  * kernfs_next_descendant_post - find the next descendant for post-order walk
1245  * @pos: the current position (%NULL to initiate traversal)
1246  * @root: kernfs_node whose descendants to walk
1247  *
1248  * Find the next descendant to visit for post-order traversal of @root's
1249  * descendants.  @root is included in the iteration and the last node to be
1250  * visited.
1251  */
1252 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1253 						       struct kernfs_node *root)
1254 {
1255 	struct rb_node *rbn;
1256 
1257 	lockdep_assert_held_write(&kernfs_rwsem);
1258 
1259 	/* if first iteration, visit leftmost descendant which may be root */
1260 	if (!pos)
1261 		return kernfs_leftmost_descendant(root);
1262 
1263 	/* if we visited @root, we're done */
1264 	if (pos == root)
1265 		return NULL;
1266 
1267 	/* if there's an unvisited sibling, visit its leftmost descendant */
1268 	rbn = rb_next(&pos->rb);
1269 	if (rbn)
1270 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1271 
1272 	/* no sibling left, visit parent */
1273 	return pos->parent;
1274 }
1275 
1276 /**
1277  * kernfs_activate - activate a node which started deactivated
1278  * @kn: kernfs_node whose subtree is to be activated
1279  *
1280  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1281  * needs to be explicitly activated.  A node which hasn't been activated
1282  * isn't visible to userland and deactivation is skipped during its
1283  * removal.  This is useful to construct atomic init sequences where
1284  * creation of multiple nodes should either succeed or fail atomically.
1285  *
1286  * The caller is responsible for ensuring that this function is not called
1287  * after kernfs_remove*() is invoked on @kn.
1288  */
1289 void kernfs_activate(struct kernfs_node *kn)
1290 {
1291 	struct kernfs_node *pos;
1292 
1293 	down_write(&kernfs_rwsem);
1294 
1295 	pos = NULL;
1296 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1297 		if (pos->flags & KERNFS_ACTIVATED)
1298 			continue;
1299 
1300 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1301 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1302 
1303 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1304 		pos->flags |= KERNFS_ACTIVATED;
1305 	}
1306 
1307 	up_write(&kernfs_rwsem);
1308 }
1309 
1310 static void __kernfs_remove(struct kernfs_node *kn)
1311 {
1312 	struct kernfs_node *pos;
1313 
1314 	lockdep_assert_held_write(&kernfs_rwsem);
1315 
1316 	/*
1317 	 * Short-circuit if non-root @kn has already finished removal.
1318 	 * This is for kernfs_remove_self() which plays with active ref
1319 	 * after removal.
1320 	 */
1321 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1322 		return;
1323 
1324 	pr_debug("kernfs %s: removing\n", kn->name);
1325 
1326 	/* prevent any new usage under @kn by deactivating all nodes */
1327 	pos = NULL;
1328 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1329 		if (kernfs_active(pos))
1330 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1331 
1332 	/* deactivate and unlink the subtree node-by-node */
1333 	do {
1334 		pos = kernfs_leftmost_descendant(kn);
1335 
1336 		/*
1337 		 * kernfs_drain() drops kernfs_rwsem temporarily and @pos's
1338 		 * base ref could have been put by someone else by the time
1339 		 * the function returns.  Make sure it doesn't go away
1340 		 * underneath us.
1341 		 */
1342 		kernfs_get(pos);
1343 
1344 		/*
1345 		 * Drain iff @kn was activated.  This avoids draining and
1346 		 * its lockdep annotations for nodes which have never been
1347 		 * activated and allows embedding kernfs_remove() in create
1348 		 * error paths without worrying about draining.
1349 		 */
1350 		if (kn->flags & KERNFS_ACTIVATED)
1351 			kernfs_drain(pos);
1352 		else
1353 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1354 
1355 		/*
1356 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1357 		 * to decide who's responsible for cleanups.
1358 		 */
1359 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1360 			struct kernfs_iattrs *ps_iattr =
1361 				pos->parent ? pos->parent->iattr : NULL;
1362 
1363 			/* update timestamps on the parent */
1364 			if (ps_iattr) {
1365 				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1366 				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1367 			}
1368 
1369 			kernfs_put(pos);
1370 		}
1371 
1372 		kernfs_put(pos);
1373 	} while (pos != kn);
1374 }
1375 
1376 /**
1377  * kernfs_remove - remove a kernfs_node recursively
1378  * @kn: the kernfs_node to remove
1379  *
1380  * Remove @kn along with all its subdirectories and files.
1381  */
1382 void kernfs_remove(struct kernfs_node *kn)
1383 {
1384 	down_write(&kernfs_rwsem);
1385 	__kernfs_remove(kn);
1386 	up_write(&kernfs_rwsem);
1387 }
1388 
1389 /**
1390  * kernfs_break_active_protection - break out of active protection
1391  * @kn: the self kernfs_node
1392  *
1393  * The caller must be running off of a kernfs operation which is invoked
1394  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1395  * this function must also be matched with an invocation of
1396  * kernfs_unbreak_active_protection().
1397  *
1398  * This function releases the active reference of @kn the caller is
1399  * holding.  Once this function is called, @kn may be removed at any point
1400  * and the caller is solely responsible for ensuring that the objects it
1401  * dereferences are accessible.
1402  */
1403 void kernfs_break_active_protection(struct kernfs_node *kn)
1404 {
1405 	/*
1406 	 * Take out ourself out of the active ref dependency chain.  If
1407 	 * we're called without an active ref, lockdep will complain.
1408 	 */
1409 	kernfs_put_active(kn);
1410 }
1411 
1412 /**
1413  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1414  * @kn: the self kernfs_node
1415  *
1416  * If kernfs_break_active_protection() was called, this function must be
1417  * invoked before finishing the kernfs operation.  Note that while this
1418  * function restores the active reference, it doesn't and can't actually
1419  * restore the active protection - @kn may already or be in the process of
1420  * being removed.  Once kernfs_break_active_protection() is invoked, that
1421  * protection is irreversibly gone for the kernfs operation instance.
1422  *
1423  * While this function may be called at any point after
1424  * kernfs_break_active_protection() is invoked, its most useful location
1425  * would be right before the enclosing kernfs operation returns.
1426  */
1427 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1428 {
1429 	/*
1430 	 * @kn->active could be in any state; however, the increment we do
1431 	 * here will be undone as soon as the enclosing kernfs operation
1432 	 * finishes and this temporary bump can't break anything.  If @kn
1433 	 * is alive, nothing changes.  If @kn is being deactivated, the
1434 	 * soon-to-follow put will either finish deactivation or restore
1435 	 * deactivated state.  If @kn is already removed, the temporary
1436 	 * bump is guaranteed to be gone before @kn is released.
1437 	 */
1438 	atomic_inc(&kn->active);
1439 	if (kernfs_lockdep(kn))
1440 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1441 }
1442 
1443 /**
1444  * kernfs_remove_self - remove a kernfs_node from its own method
1445  * @kn: the self kernfs_node to remove
1446  *
1447  * The caller must be running off of a kernfs operation which is invoked
1448  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1449  * implement a file operation which deletes itself.
1450  *
1451  * For example, the "delete" file for a sysfs device directory can be
1452  * implemented by invoking kernfs_remove_self() on the "delete" file
1453  * itself.  This function breaks the circular dependency of trying to
1454  * deactivate self while holding an active ref itself.  It isn't necessary
1455  * to modify the usual removal path to use kernfs_remove_self().  The
1456  * "delete" implementation can simply invoke kernfs_remove_self() on self
1457  * before proceeding with the usual removal path.  kernfs will ignore later
1458  * kernfs_remove() on self.
1459  *
1460  * kernfs_remove_self() can be called multiple times concurrently on the
1461  * same kernfs_node.  Only the first one actually performs removal and
1462  * returns %true.  All others will wait until the kernfs operation which
1463  * won self-removal finishes and return %false.  Note that the losers wait
1464  * for the completion of not only the winning kernfs_remove_self() but also
1465  * the whole kernfs_ops which won the arbitration.  This can be used to
1466  * guarantee, for example, all concurrent writes to a "delete" file to
1467  * finish only after the whole operation is complete.
1468  */
1469 bool kernfs_remove_self(struct kernfs_node *kn)
1470 {
1471 	bool ret;
1472 
1473 	down_write(&kernfs_rwsem);
1474 	kernfs_break_active_protection(kn);
1475 
1476 	/*
1477 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1478 	 * the first one will actually perform removal.  When the removal
1479 	 * is complete, SUICIDED is set and the active ref is restored
1480 	 * while kernfs_rwsem for held exclusive.  The ones which lost
1481 	 * arbitration waits for SUICIDED && drained which can happen only
1482 	 * after the enclosing kernfs operation which executed the winning
1483 	 * instance of kernfs_remove_self() finished.
1484 	 */
1485 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1486 		kn->flags |= KERNFS_SUICIDAL;
1487 		__kernfs_remove(kn);
1488 		kn->flags |= KERNFS_SUICIDED;
1489 		ret = true;
1490 	} else {
1491 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1492 		DEFINE_WAIT(wait);
1493 
1494 		while (true) {
1495 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1496 
1497 			if ((kn->flags & KERNFS_SUICIDED) &&
1498 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1499 				break;
1500 
1501 			up_write(&kernfs_rwsem);
1502 			schedule();
1503 			down_write(&kernfs_rwsem);
1504 		}
1505 		finish_wait(waitq, &wait);
1506 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1507 		ret = false;
1508 	}
1509 
1510 	/*
1511 	 * This must be done while kernfs_rwsem held exclusive; otherwise,
1512 	 * waiting for SUICIDED && deactivated could finish prematurely.
1513 	 */
1514 	kernfs_unbreak_active_protection(kn);
1515 
1516 	up_write(&kernfs_rwsem);
1517 	return ret;
1518 }
1519 
1520 /**
1521  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1522  * @parent: parent of the target
1523  * @name: name of the kernfs_node to remove
1524  * @ns: namespace tag of the kernfs_node to remove
1525  *
1526  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1527  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1528  */
1529 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1530 			     const void *ns)
1531 {
1532 	struct kernfs_node *kn;
1533 
1534 	if (!parent) {
1535 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1536 			name);
1537 		return -ENOENT;
1538 	}
1539 
1540 	down_write(&kernfs_rwsem);
1541 
1542 	kn = kernfs_find_ns(parent, name, ns);
1543 	if (kn)
1544 		__kernfs_remove(kn);
1545 
1546 	up_write(&kernfs_rwsem);
1547 
1548 	if (kn)
1549 		return 0;
1550 	else
1551 		return -ENOENT;
1552 }
1553 
1554 /**
1555  * kernfs_rename_ns - move and rename a kernfs_node
1556  * @kn: target node
1557  * @new_parent: new parent to put @sd under
1558  * @new_name: new name
1559  * @new_ns: new namespace tag
1560  */
1561 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1562 		     const char *new_name, const void *new_ns)
1563 {
1564 	struct kernfs_node *old_parent;
1565 	const char *old_name = NULL;
1566 	int error;
1567 
1568 	/* can't move or rename root */
1569 	if (!kn->parent)
1570 		return -EINVAL;
1571 
1572 	down_write(&kernfs_rwsem);
1573 
1574 	error = -ENOENT;
1575 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1576 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1577 		goto out;
1578 
1579 	error = 0;
1580 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1581 	    (strcmp(kn->name, new_name) == 0))
1582 		goto out;	/* nothing to rename */
1583 
1584 	error = -EEXIST;
1585 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1586 		goto out;
1587 
1588 	/* rename kernfs_node */
1589 	if (strcmp(kn->name, new_name) != 0) {
1590 		error = -ENOMEM;
1591 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1592 		if (!new_name)
1593 			goto out;
1594 	} else {
1595 		new_name = NULL;
1596 	}
1597 
1598 	/*
1599 	 * Move to the appropriate place in the appropriate directories rbtree.
1600 	 */
1601 	kernfs_unlink_sibling(kn);
1602 	kernfs_get(new_parent);
1603 
1604 	/* rename_lock protects ->parent and ->name accessors */
1605 	spin_lock_irq(&kernfs_rename_lock);
1606 
1607 	old_parent = kn->parent;
1608 	kn->parent = new_parent;
1609 
1610 	kn->ns = new_ns;
1611 	if (new_name) {
1612 		old_name = kn->name;
1613 		kn->name = new_name;
1614 	}
1615 
1616 	spin_unlock_irq(&kernfs_rename_lock);
1617 
1618 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1619 	kernfs_link_sibling(kn);
1620 
1621 	kernfs_put(old_parent);
1622 	kfree_const(old_name);
1623 
1624 	error = 0;
1625  out:
1626 	up_write(&kernfs_rwsem);
1627 	return error;
1628 }
1629 
1630 /* Relationship between mode and the DT_xxx types */
1631 static inline unsigned char dt_type(struct kernfs_node *kn)
1632 {
1633 	return (kn->mode >> 12) & 15;
1634 }
1635 
1636 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1637 {
1638 	kernfs_put(filp->private_data);
1639 	return 0;
1640 }
1641 
1642 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1643 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1644 {
1645 	if (pos) {
1646 		int valid = kernfs_active(pos) &&
1647 			pos->parent == parent && hash == pos->hash;
1648 		kernfs_put(pos);
1649 		if (!valid)
1650 			pos = NULL;
1651 	}
1652 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1653 		struct rb_node *node = parent->dir.children.rb_node;
1654 		while (node) {
1655 			pos = rb_to_kn(node);
1656 
1657 			if (hash < pos->hash)
1658 				node = node->rb_left;
1659 			else if (hash > pos->hash)
1660 				node = node->rb_right;
1661 			else
1662 				break;
1663 		}
1664 	}
1665 	/* Skip over entries which are dying/dead or in the wrong namespace */
1666 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1667 		struct rb_node *node = rb_next(&pos->rb);
1668 		if (!node)
1669 			pos = NULL;
1670 		else
1671 			pos = rb_to_kn(node);
1672 	}
1673 	return pos;
1674 }
1675 
1676 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1677 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1678 {
1679 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1680 	if (pos) {
1681 		do {
1682 			struct rb_node *node = rb_next(&pos->rb);
1683 			if (!node)
1684 				pos = NULL;
1685 			else
1686 				pos = rb_to_kn(node);
1687 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1688 	}
1689 	return pos;
1690 }
1691 
1692 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1693 {
1694 	struct dentry *dentry = file->f_path.dentry;
1695 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1696 	struct kernfs_node *pos = file->private_data;
1697 	const void *ns = NULL;
1698 
1699 	if (!dir_emit_dots(file, ctx))
1700 		return 0;
1701 	down_read(&kernfs_rwsem);
1702 
1703 	if (kernfs_ns_enabled(parent))
1704 		ns = kernfs_info(dentry->d_sb)->ns;
1705 
1706 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1707 	     pos;
1708 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1709 		const char *name = pos->name;
1710 		unsigned int type = dt_type(pos);
1711 		int len = strlen(name);
1712 		ino_t ino = kernfs_ino(pos);
1713 
1714 		ctx->pos = pos->hash;
1715 		file->private_data = pos;
1716 		kernfs_get(pos);
1717 
1718 		up_read(&kernfs_rwsem);
1719 		if (!dir_emit(ctx, name, len, ino, type))
1720 			return 0;
1721 		down_read(&kernfs_rwsem);
1722 	}
1723 	up_read(&kernfs_rwsem);
1724 	file->private_data = NULL;
1725 	ctx->pos = INT_MAX;
1726 	return 0;
1727 }
1728 
1729 const struct file_operations kernfs_dir_fops = {
1730 	.read		= generic_read_dir,
1731 	.iterate_shared	= kernfs_fop_readdir,
1732 	.release	= kernfs_dir_fop_release,
1733 	.llseek		= generic_file_llseek,
1734 };
1735