1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 21 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 22 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 23 24 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 25 26 static bool kernfs_active(struct kernfs_node *kn) 27 { 28 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); 29 return atomic_read(&kn->active) >= 0; 30 } 31 32 static bool kernfs_lockdep(struct kernfs_node *kn) 33 { 34 #ifdef CONFIG_DEBUG_LOCK_ALLOC 35 return kn->flags & KERNFS_LOCKDEP; 36 #else 37 return false; 38 #endif 39 } 40 41 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 42 { 43 if (!kn) 44 return strlcpy(buf, "(null)", buflen); 45 46 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 47 } 48 49 /* kernfs_node_depth - compute depth from @from to @to */ 50 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 51 { 52 size_t depth = 0; 53 54 while (to->parent && to != from) { 55 depth++; 56 to = to->parent; 57 } 58 return depth; 59 } 60 61 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 62 struct kernfs_node *b) 63 { 64 size_t da, db; 65 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 66 67 if (ra != rb) 68 return NULL; 69 70 da = kernfs_depth(ra->kn, a); 71 db = kernfs_depth(rb->kn, b); 72 73 while (da > db) { 74 a = a->parent; 75 da--; 76 } 77 while (db > da) { 78 b = b->parent; 79 db--; 80 } 81 82 /* worst case b and a will be the same at root */ 83 while (b != a) { 84 b = b->parent; 85 a = a->parent; 86 } 87 88 return a; 89 } 90 91 /** 92 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 93 * where kn_from is treated as root of the path. 94 * @kn_from: kernfs node which should be treated as root for the path 95 * @kn_to: kernfs node to which path is needed 96 * @buf: buffer to copy the path into 97 * @buflen: size of @buf 98 * 99 * We need to handle couple of scenarios here: 100 * [1] when @kn_from is an ancestor of @kn_to at some level 101 * kn_from: /n1/n2/n3 102 * kn_to: /n1/n2/n3/n4/n5 103 * result: /n4/n5 104 * 105 * [2] when @kn_from is on a different hierarchy and we need to find common 106 * ancestor between @kn_from and @kn_to. 107 * kn_from: /n1/n2/n3/n4 108 * kn_to: /n1/n2/n5 109 * result: /../../n5 110 * OR 111 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 112 * kn_to: /n1/n2/n3 [depth=3] 113 * result: /../.. 114 * 115 * [3] when @kn_to is NULL result will be "(null)" 116 * 117 * Returns the length of the full path. If the full length is equal to or 118 * greater than @buflen, @buf contains the truncated path with the trailing 119 * '\0'. On error, -errno is returned. 120 */ 121 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 122 struct kernfs_node *kn_from, 123 char *buf, size_t buflen) 124 { 125 struct kernfs_node *kn, *common; 126 const char parent_str[] = "/.."; 127 size_t depth_from, depth_to, len = 0; 128 int i, j; 129 130 if (!kn_to) 131 return strlcpy(buf, "(null)", buflen); 132 133 if (!kn_from) 134 kn_from = kernfs_root(kn_to)->kn; 135 136 if (kn_from == kn_to) 137 return strlcpy(buf, "/", buflen); 138 139 if (!buf) 140 return -EINVAL; 141 142 common = kernfs_common_ancestor(kn_from, kn_to); 143 if (WARN_ON(!common)) 144 return -EINVAL; 145 146 depth_to = kernfs_depth(common, kn_to); 147 depth_from = kernfs_depth(common, kn_from); 148 149 buf[0] = '\0'; 150 151 for (i = 0; i < depth_from; i++) 152 len += strlcpy(buf + len, parent_str, 153 len < buflen ? buflen - len : 0); 154 155 /* Calculate how many bytes we need for the rest */ 156 for (i = depth_to - 1; i >= 0; i--) { 157 for (kn = kn_to, j = 0; j < i; j++) 158 kn = kn->parent; 159 len += strlcpy(buf + len, "/", 160 len < buflen ? buflen - len : 0); 161 len += strlcpy(buf + len, kn->name, 162 len < buflen ? buflen - len : 0); 163 } 164 165 return len; 166 } 167 168 /** 169 * kernfs_name - obtain the name of a given node 170 * @kn: kernfs_node of interest 171 * @buf: buffer to copy @kn's name into 172 * @buflen: size of @buf 173 * 174 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 175 * similar to strlcpy(). It returns the length of @kn's name and if @buf 176 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 177 * 178 * Fills buffer with "(null)" if @kn is NULL. 179 * 180 * This function can be called from any context. 181 */ 182 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 183 { 184 unsigned long flags; 185 int ret; 186 187 spin_lock_irqsave(&kernfs_rename_lock, flags); 188 ret = kernfs_name_locked(kn, buf, buflen); 189 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 190 return ret; 191 } 192 193 /** 194 * kernfs_path_from_node - build path of node @to relative to @from. 195 * @from: parent kernfs_node relative to which we need to build the path 196 * @to: kernfs_node of interest 197 * @buf: buffer to copy @to's path into 198 * @buflen: size of @buf 199 * 200 * Builds @to's path relative to @from in @buf. @from and @to must 201 * be on the same kernfs-root. If @from is not parent of @to, then a relative 202 * path (which includes '..'s) as needed to reach from @from to @to is 203 * returned. 204 * 205 * Returns the length of the full path. If the full length is equal to or 206 * greater than @buflen, @buf contains the truncated path with the trailing 207 * '\0'. On error, -errno is returned. 208 */ 209 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 210 char *buf, size_t buflen) 211 { 212 unsigned long flags; 213 int ret; 214 215 spin_lock_irqsave(&kernfs_rename_lock, flags); 216 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 217 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 218 return ret; 219 } 220 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 221 222 /** 223 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 224 * @kn: kernfs_node of interest 225 * 226 * This function can be called from any context. 227 */ 228 void pr_cont_kernfs_name(struct kernfs_node *kn) 229 { 230 unsigned long flags; 231 232 spin_lock_irqsave(&kernfs_rename_lock, flags); 233 234 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 235 pr_cont("%s", kernfs_pr_cont_buf); 236 237 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 238 } 239 240 /** 241 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 242 * @kn: kernfs_node of interest 243 * 244 * This function can be called from any context. 245 */ 246 void pr_cont_kernfs_path(struct kernfs_node *kn) 247 { 248 unsigned long flags; 249 int sz; 250 251 spin_lock_irqsave(&kernfs_rename_lock, flags); 252 253 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf, 254 sizeof(kernfs_pr_cont_buf)); 255 if (sz < 0) { 256 pr_cont("(error)"); 257 goto out; 258 } 259 260 if (sz >= sizeof(kernfs_pr_cont_buf)) { 261 pr_cont("(name too long)"); 262 goto out; 263 } 264 265 pr_cont("%s", kernfs_pr_cont_buf); 266 267 out: 268 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 269 } 270 271 /** 272 * kernfs_get_parent - determine the parent node and pin it 273 * @kn: kernfs_node of interest 274 * 275 * Determines @kn's parent, pins and returns it. This function can be 276 * called from any context. 277 */ 278 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 279 { 280 struct kernfs_node *parent; 281 unsigned long flags; 282 283 spin_lock_irqsave(&kernfs_rename_lock, flags); 284 parent = kn->parent; 285 kernfs_get(parent); 286 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 287 288 return parent; 289 } 290 291 /** 292 * kernfs_name_hash 293 * @name: Null terminated string to hash 294 * @ns: Namespace tag to hash 295 * 296 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 297 */ 298 static unsigned int kernfs_name_hash(const char *name, const void *ns) 299 { 300 unsigned long hash = init_name_hash(ns); 301 unsigned int len = strlen(name); 302 while (len--) 303 hash = partial_name_hash(*name++, hash); 304 hash = end_name_hash(hash); 305 hash &= 0x7fffffffU; 306 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 307 if (hash < 2) 308 hash += 2; 309 if (hash >= INT_MAX) 310 hash = INT_MAX - 1; 311 return hash; 312 } 313 314 static int kernfs_name_compare(unsigned int hash, const char *name, 315 const void *ns, const struct kernfs_node *kn) 316 { 317 if (hash < kn->hash) 318 return -1; 319 if (hash > kn->hash) 320 return 1; 321 if (ns < kn->ns) 322 return -1; 323 if (ns > kn->ns) 324 return 1; 325 return strcmp(name, kn->name); 326 } 327 328 static int kernfs_sd_compare(const struct kernfs_node *left, 329 const struct kernfs_node *right) 330 { 331 return kernfs_name_compare(left->hash, left->name, left->ns, right); 332 } 333 334 /** 335 * kernfs_link_sibling - link kernfs_node into sibling rbtree 336 * @kn: kernfs_node of interest 337 * 338 * Link @kn into its sibling rbtree which starts from 339 * @kn->parent->dir.children. 340 * 341 * Locking: 342 * kernfs_rwsem held exclusive 343 * 344 * RETURNS: 345 * 0 on susccess -EEXIST on failure. 346 */ 347 static int kernfs_link_sibling(struct kernfs_node *kn) 348 { 349 struct rb_node **node = &kn->parent->dir.children.rb_node; 350 struct rb_node *parent = NULL; 351 352 while (*node) { 353 struct kernfs_node *pos; 354 int result; 355 356 pos = rb_to_kn(*node); 357 parent = *node; 358 result = kernfs_sd_compare(kn, pos); 359 if (result < 0) 360 node = &pos->rb.rb_left; 361 else if (result > 0) 362 node = &pos->rb.rb_right; 363 else 364 return -EEXIST; 365 } 366 367 /* add new node and rebalance the tree */ 368 rb_link_node(&kn->rb, parent, node); 369 rb_insert_color(&kn->rb, &kn->parent->dir.children); 370 371 /* successfully added, account subdir number */ 372 if (kernfs_type(kn) == KERNFS_DIR) 373 kn->parent->dir.subdirs++; 374 kernfs_inc_rev(kn->parent); 375 376 return 0; 377 } 378 379 /** 380 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 381 * @kn: kernfs_node of interest 382 * 383 * Try to unlink @kn from its sibling rbtree which starts from 384 * kn->parent->dir.children. Returns %true if @kn was actually 385 * removed, %false if @kn wasn't on the rbtree. 386 * 387 * Locking: 388 * kernfs_rwsem held exclusive 389 */ 390 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 391 { 392 if (RB_EMPTY_NODE(&kn->rb)) 393 return false; 394 395 if (kernfs_type(kn) == KERNFS_DIR) 396 kn->parent->dir.subdirs--; 397 kernfs_inc_rev(kn->parent); 398 399 rb_erase(&kn->rb, &kn->parent->dir.children); 400 RB_CLEAR_NODE(&kn->rb); 401 return true; 402 } 403 404 /** 405 * kernfs_get_active - get an active reference to kernfs_node 406 * @kn: kernfs_node to get an active reference to 407 * 408 * Get an active reference of @kn. This function is noop if @kn 409 * is NULL. 410 * 411 * RETURNS: 412 * Pointer to @kn on success, NULL on failure. 413 */ 414 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 415 { 416 if (unlikely(!kn)) 417 return NULL; 418 419 if (!atomic_inc_unless_negative(&kn->active)) 420 return NULL; 421 422 if (kernfs_lockdep(kn)) 423 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 424 return kn; 425 } 426 427 /** 428 * kernfs_put_active - put an active reference to kernfs_node 429 * @kn: kernfs_node to put an active reference to 430 * 431 * Put an active reference to @kn. This function is noop if @kn 432 * is NULL. 433 */ 434 void kernfs_put_active(struct kernfs_node *kn) 435 { 436 int v; 437 438 if (unlikely(!kn)) 439 return; 440 441 if (kernfs_lockdep(kn)) 442 rwsem_release(&kn->dep_map, _RET_IP_); 443 v = atomic_dec_return(&kn->active); 444 if (likely(v != KN_DEACTIVATED_BIAS)) 445 return; 446 447 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 448 } 449 450 /** 451 * kernfs_drain - drain kernfs_node 452 * @kn: kernfs_node to drain 453 * 454 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 455 * removers may invoke this function concurrently on @kn and all will 456 * return after draining is complete. 457 */ 458 static void kernfs_drain(struct kernfs_node *kn) 459 __releases(&kernfs_root(kn)->kernfs_rwsem) 460 __acquires(&kernfs_root(kn)->kernfs_rwsem) 461 { 462 struct kernfs_root *root = kernfs_root(kn); 463 464 lockdep_assert_held_write(&root->kernfs_rwsem); 465 WARN_ON_ONCE(kernfs_active(kn)); 466 467 up_write(&root->kernfs_rwsem); 468 469 if (kernfs_lockdep(kn)) { 470 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 471 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 472 lock_contended(&kn->dep_map, _RET_IP_); 473 } 474 475 /* but everyone should wait for draining */ 476 wait_event(root->deactivate_waitq, 477 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 478 479 if (kernfs_lockdep(kn)) { 480 lock_acquired(&kn->dep_map, _RET_IP_); 481 rwsem_release(&kn->dep_map, _RET_IP_); 482 } 483 484 kernfs_drain_open_files(kn); 485 486 down_write(&root->kernfs_rwsem); 487 } 488 489 /** 490 * kernfs_get - get a reference count on a kernfs_node 491 * @kn: the target kernfs_node 492 */ 493 void kernfs_get(struct kernfs_node *kn) 494 { 495 if (kn) { 496 WARN_ON(!atomic_read(&kn->count)); 497 atomic_inc(&kn->count); 498 } 499 } 500 EXPORT_SYMBOL_GPL(kernfs_get); 501 502 /** 503 * kernfs_put - put a reference count on a kernfs_node 504 * @kn: the target kernfs_node 505 * 506 * Put a reference count of @kn and destroy it if it reached zero. 507 */ 508 void kernfs_put(struct kernfs_node *kn) 509 { 510 struct kernfs_node *parent; 511 struct kernfs_root *root; 512 513 if (!kn || !atomic_dec_and_test(&kn->count)) 514 return; 515 root = kernfs_root(kn); 516 repeat: 517 /* 518 * Moving/renaming is always done while holding reference. 519 * kn->parent won't change beneath us. 520 */ 521 parent = kn->parent; 522 523 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 524 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 525 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 526 527 if (kernfs_type(kn) == KERNFS_LINK) 528 kernfs_put(kn->symlink.target_kn); 529 530 kfree_const(kn->name); 531 532 if (kn->iattr) { 533 simple_xattrs_free(&kn->iattr->xattrs); 534 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 535 } 536 spin_lock(&kernfs_idr_lock); 537 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 538 spin_unlock(&kernfs_idr_lock); 539 kmem_cache_free(kernfs_node_cache, kn); 540 541 kn = parent; 542 if (kn) { 543 if (atomic_dec_and_test(&kn->count)) 544 goto repeat; 545 } else { 546 /* just released the root kn, free @root too */ 547 idr_destroy(&root->ino_idr); 548 kfree(root); 549 } 550 } 551 EXPORT_SYMBOL_GPL(kernfs_put); 552 553 /** 554 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 555 * @dentry: the dentry in question 556 * 557 * Return the kernfs_node associated with @dentry. If @dentry is not a 558 * kernfs one, %NULL is returned. 559 * 560 * While the returned kernfs_node will stay accessible as long as @dentry 561 * is accessible, the returned node can be in any state and the caller is 562 * fully responsible for determining what's accessible. 563 */ 564 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 565 { 566 if (dentry->d_sb->s_op == &kernfs_sops) 567 return kernfs_dentry_node(dentry); 568 return NULL; 569 } 570 571 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 572 struct kernfs_node *parent, 573 const char *name, umode_t mode, 574 kuid_t uid, kgid_t gid, 575 unsigned flags) 576 { 577 struct kernfs_node *kn; 578 u32 id_highbits; 579 int ret; 580 581 name = kstrdup_const(name, GFP_KERNEL); 582 if (!name) 583 return NULL; 584 585 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 586 if (!kn) 587 goto err_out1; 588 589 idr_preload(GFP_KERNEL); 590 spin_lock(&kernfs_idr_lock); 591 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 592 if (ret >= 0 && ret < root->last_id_lowbits) 593 root->id_highbits++; 594 id_highbits = root->id_highbits; 595 root->last_id_lowbits = ret; 596 spin_unlock(&kernfs_idr_lock); 597 idr_preload_end(); 598 if (ret < 0) 599 goto err_out2; 600 601 kn->id = (u64)id_highbits << 32 | ret; 602 603 atomic_set(&kn->count, 1); 604 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 605 RB_CLEAR_NODE(&kn->rb); 606 607 kn->name = name; 608 kn->mode = mode; 609 kn->flags = flags; 610 611 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 612 struct iattr iattr = { 613 .ia_valid = ATTR_UID | ATTR_GID, 614 .ia_uid = uid, 615 .ia_gid = gid, 616 }; 617 618 ret = __kernfs_setattr(kn, &iattr); 619 if (ret < 0) 620 goto err_out3; 621 } 622 623 if (parent) { 624 ret = security_kernfs_init_security(parent, kn); 625 if (ret) 626 goto err_out3; 627 } 628 629 return kn; 630 631 err_out3: 632 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 633 err_out2: 634 kmem_cache_free(kernfs_node_cache, kn); 635 err_out1: 636 kfree_const(name); 637 return NULL; 638 } 639 640 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 641 const char *name, umode_t mode, 642 kuid_t uid, kgid_t gid, 643 unsigned flags) 644 { 645 struct kernfs_node *kn; 646 647 kn = __kernfs_new_node(kernfs_root(parent), parent, 648 name, mode, uid, gid, flags); 649 if (kn) { 650 kernfs_get(parent); 651 kn->parent = parent; 652 } 653 return kn; 654 } 655 656 /* 657 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 658 * @root: the kernfs root 659 * @id: the target node id 660 * 661 * @id's lower 32bits encode ino and upper gen. If the gen portion is 662 * zero, all generations are matched. 663 * 664 * RETURNS: 665 * NULL on failure. Return a kernfs node with reference counter incremented 666 */ 667 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 668 u64 id) 669 { 670 struct kernfs_node *kn; 671 ino_t ino = kernfs_id_ino(id); 672 u32 gen = kernfs_id_gen(id); 673 674 spin_lock(&kernfs_idr_lock); 675 676 kn = idr_find(&root->ino_idr, (u32)ino); 677 if (!kn) 678 goto err_unlock; 679 680 if (sizeof(ino_t) >= sizeof(u64)) { 681 /* we looked up with the low 32bits, compare the whole */ 682 if (kernfs_ino(kn) != ino) 683 goto err_unlock; 684 } else { 685 /* 0 matches all generations */ 686 if (unlikely(gen && kernfs_gen(kn) != gen)) 687 goto err_unlock; 688 } 689 690 /* 691 * ACTIVATED is protected with kernfs_mutex but it was clear when 692 * @kn was added to idr and we just wanna see it set. No need to 693 * grab kernfs_mutex. 694 */ 695 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) || 696 !atomic_inc_not_zero(&kn->count))) 697 goto err_unlock; 698 699 spin_unlock(&kernfs_idr_lock); 700 return kn; 701 err_unlock: 702 spin_unlock(&kernfs_idr_lock); 703 return NULL; 704 } 705 706 /** 707 * kernfs_add_one - add kernfs_node to parent without warning 708 * @kn: kernfs_node to be added 709 * 710 * The caller must already have initialized @kn->parent. This 711 * function increments nlink of the parent's inode if @kn is a 712 * directory and link into the children list of the parent. 713 * 714 * RETURNS: 715 * 0 on success, -EEXIST if entry with the given name already 716 * exists. 717 */ 718 int kernfs_add_one(struct kernfs_node *kn) 719 { 720 struct kernfs_node *parent = kn->parent; 721 struct kernfs_root *root = kernfs_root(parent); 722 struct kernfs_iattrs *ps_iattr; 723 bool has_ns; 724 int ret; 725 726 down_write(&root->kernfs_rwsem); 727 728 ret = -EINVAL; 729 has_ns = kernfs_ns_enabled(parent); 730 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 731 has_ns ? "required" : "invalid", parent->name, kn->name)) 732 goto out_unlock; 733 734 if (kernfs_type(parent) != KERNFS_DIR) 735 goto out_unlock; 736 737 ret = -ENOENT; 738 if (parent->flags & KERNFS_EMPTY_DIR) 739 goto out_unlock; 740 741 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 742 goto out_unlock; 743 744 kn->hash = kernfs_name_hash(kn->name, kn->ns); 745 746 ret = kernfs_link_sibling(kn); 747 if (ret) 748 goto out_unlock; 749 750 /* Update timestamps on the parent */ 751 ps_iattr = parent->iattr; 752 if (ps_iattr) { 753 ktime_get_real_ts64(&ps_iattr->ia_ctime); 754 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 755 } 756 757 up_write(&root->kernfs_rwsem); 758 759 /* 760 * Activate the new node unless CREATE_DEACTIVATED is requested. 761 * If not activated here, the kernfs user is responsible for 762 * activating the node with kernfs_activate(). A node which hasn't 763 * been activated is not visible to userland and its removal won't 764 * trigger deactivation. 765 */ 766 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 767 kernfs_activate(kn); 768 return 0; 769 770 out_unlock: 771 up_write(&root->kernfs_rwsem); 772 return ret; 773 } 774 775 /** 776 * kernfs_find_ns - find kernfs_node with the given name 777 * @parent: kernfs_node to search under 778 * @name: name to look for 779 * @ns: the namespace tag to use 780 * 781 * Look for kernfs_node with name @name under @parent. Returns pointer to 782 * the found kernfs_node on success, %NULL on failure. 783 */ 784 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 785 const unsigned char *name, 786 const void *ns) 787 { 788 struct rb_node *node = parent->dir.children.rb_node; 789 bool has_ns = kernfs_ns_enabled(parent); 790 unsigned int hash; 791 792 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); 793 794 if (has_ns != (bool)ns) { 795 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 796 has_ns ? "required" : "invalid", parent->name, name); 797 return NULL; 798 } 799 800 hash = kernfs_name_hash(name, ns); 801 while (node) { 802 struct kernfs_node *kn; 803 int result; 804 805 kn = rb_to_kn(node); 806 result = kernfs_name_compare(hash, name, ns, kn); 807 if (result < 0) 808 node = node->rb_left; 809 else if (result > 0) 810 node = node->rb_right; 811 else 812 return kn; 813 } 814 return NULL; 815 } 816 817 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 818 const unsigned char *path, 819 const void *ns) 820 { 821 size_t len; 822 char *p, *name; 823 824 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); 825 826 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */ 827 spin_lock_irq(&kernfs_rename_lock); 828 829 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 830 831 if (len >= sizeof(kernfs_pr_cont_buf)) { 832 spin_unlock_irq(&kernfs_rename_lock); 833 return NULL; 834 } 835 836 p = kernfs_pr_cont_buf; 837 838 while ((name = strsep(&p, "/")) && parent) { 839 if (*name == '\0') 840 continue; 841 parent = kernfs_find_ns(parent, name, ns); 842 } 843 844 spin_unlock_irq(&kernfs_rename_lock); 845 846 return parent; 847 } 848 849 /** 850 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 851 * @parent: kernfs_node to search under 852 * @name: name to look for 853 * @ns: the namespace tag to use 854 * 855 * Look for kernfs_node with name @name under @parent and get a reference 856 * if found. This function may sleep and returns pointer to the found 857 * kernfs_node on success, %NULL on failure. 858 */ 859 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 860 const char *name, const void *ns) 861 { 862 struct kernfs_node *kn; 863 struct kernfs_root *root = kernfs_root(parent); 864 865 down_read(&root->kernfs_rwsem); 866 kn = kernfs_find_ns(parent, name, ns); 867 kernfs_get(kn); 868 up_read(&root->kernfs_rwsem); 869 870 return kn; 871 } 872 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 873 874 /** 875 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 876 * @parent: kernfs_node to search under 877 * @path: path to look for 878 * @ns: the namespace tag to use 879 * 880 * Look for kernfs_node with path @path under @parent and get a reference 881 * if found. This function may sleep and returns pointer to the found 882 * kernfs_node on success, %NULL on failure. 883 */ 884 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 885 const char *path, const void *ns) 886 { 887 struct kernfs_node *kn; 888 struct kernfs_root *root = kernfs_root(parent); 889 890 down_read(&root->kernfs_rwsem); 891 kn = kernfs_walk_ns(parent, path, ns); 892 kernfs_get(kn); 893 up_read(&root->kernfs_rwsem); 894 895 return kn; 896 } 897 898 /** 899 * kernfs_create_root - create a new kernfs hierarchy 900 * @scops: optional syscall operations for the hierarchy 901 * @flags: KERNFS_ROOT_* flags 902 * @priv: opaque data associated with the new directory 903 * 904 * Returns the root of the new hierarchy on success, ERR_PTR() value on 905 * failure. 906 */ 907 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 908 unsigned int flags, void *priv) 909 { 910 struct kernfs_root *root; 911 struct kernfs_node *kn; 912 913 root = kzalloc(sizeof(*root), GFP_KERNEL); 914 if (!root) 915 return ERR_PTR(-ENOMEM); 916 917 idr_init(&root->ino_idr); 918 init_rwsem(&root->kernfs_rwsem); 919 INIT_LIST_HEAD(&root->supers); 920 921 /* 922 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 923 * High bits generation. The starting value for both ino and 924 * genenration is 1. Initialize upper 32bit allocation 925 * accordingly. 926 */ 927 if (sizeof(ino_t) >= sizeof(u64)) 928 root->id_highbits = 0; 929 else 930 root->id_highbits = 1; 931 932 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 933 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 934 KERNFS_DIR); 935 if (!kn) { 936 idr_destroy(&root->ino_idr); 937 kfree(root); 938 return ERR_PTR(-ENOMEM); 939 } 940 941 kn->priv = priv; 942 kn->dir.root = root; 943 944 root->syscall_ops = scops; 945 root->flags = flags; 946 root->kn = kn; 947 init_waitqueue_head(&root->deactivate_waitq); 948 949 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 950 kernfs_activate(kn); 951 952 return root; 953 } 954 955 /** 956 * kernfs_destroy_root - destroy a kernfs hierarchy 957 * @root: root of the hierarchy to destroy 958 * 959 * Destroy the hierarchy anchored at @root by removing all existing 960 * directories and destroying @root. 961 */ 962 void kernfs_destroy_root(struct kernfs_root *root) 963 { 964 /* 965 * kernfs_remove holds kernfs_rwsem from the root so the root 966 * shouldn't be freed during the operation. 967 */ 968 kernfs_get(root->kn); 969 kernfs_remove(root->kn); 970 kernfs_put(root->kn); /* will also free @root */ 971 } 972 973 /** 974 * kernfs_create_dir_ns - create a directory 975 * @parent: parent in which to create a new directory 976 * @name: name of the new directory 977 * @mode: mode of the new directory 978 * @uid: uid of the new directory 979 * @gid: gid of the new directory 980 * @priv: opaque data associated with the new directory 981 * @ns: optional namespace tag of the directory 982 * 983 * Returns the created node on success, ERR_PTR() value on failure. 984 */ 985 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 986 const char *name, umode_t mode, 987 kuid_t uid, kgid_t gid, 988 void *priv, const void *ns) 989 { 990 struct kernfs_node *kn; 991 int rc; 992 993 /* allocate */ 994 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 995 uid, gid, KERNFS_DIR); 996 if (!kn) 997 return ERR_PTR(-ENOMEM); 998 999 kn->dir.root = parent->dir.root; 1000 kn->ns = ns; 1001 kn->priv = priv; 1002 1003 /* link in */ 1004 rc = kernfs_add_one(kn); 1005 if (!rc) 1006 return kn; 1007 1008 kernfs_put(kn); 1009 return ERR_PTR(rc); 1010 } 1011 1012 /** 1013 * kernfs_create_empty_dir - create an always empty directory 1014 * @parent: parent in which to create a new directory 1015 * @name: name of the new directory 1016 * 1017 * Returns the created node on success, ERR_PTR() value on failure. 1018 */ 1019 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1020 const char *name) 1021 { 1022 struct kernfs_node *kn; 1023 int rc; 1024 1025 /* allocate */ 1026 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1027 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1028 if (!kn) 1029 return ERR_PTR(-ENOMEM); 1030 1031 kn->flags |= KERNFS_EMPTY_DIR; 1032 kn->dir.root = parent->dir.root; 1033 kn->ns = NULL; 1034 kn->priv = NULL; 1035 1036 /* link in */ 1037 rc = kernfs_add_one(kn); 1038 if (!rc) 1039 return kn; 1040 1041 kernfs_put(kn); 1042 return ERR_PTR(rc); 1043 } 1044 1045 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 1046 { 1047 struct kernfs_node *kn; 1048 struct kernfs_root *root; 1049 1050 if (flags & LOOKUP_RCU) 1051 return -ECHILD; 1052 1053 /* Negative hashed dentry? */ 1054 if (d_really_is_negative(dentry)) { 1055 struct kernfs_node *parent; 1056 1057 /* If the kernfs parent node has changed discard and 1058 * proceed to ->lookup. 1059 */ 1060 spin_lock(&dentry->d_lock); 1061 parent = kernfs_dentry_node(dentry->d_parent); 1062 if (parent) { 1063 spin_unlock(&dentry->d_lock); 1064 root = kernfs_root(parent); 1065 down_read(&root->kernfs_rwsem); 1066 if (kernfs_dir_changed(parent, dentry)) { 1067 up_read(&root->kernfs_rwsem); 1068 return 0; 1069 } 1070 up_read(&root->kernfs_rwsem); 1071 } else 1072 spin_unlock(&dentry->d_lock); 1073 1074 /* The kernfs parent node hasn't changed, leave the 1075 * dentry negative and return success. 1076 */ 1077 return 1; 1078 } 1079 1080 kn = kernfs_dentry_node(dentry); 1081 root = kernfs_root(kn); 1082 down_read(&root->kernfs_rwsem); 1083 1084 /* The kernfs node has been deactivated */ 1085 if (!kernfs_active(kn)) 1086 goto out_bad; 1087 1088 /* The kernfs node has been moved? */ 1089 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 1090 goto out_bad; 1091 1092 /* The kernfs node has been renamed */ 1093 if (strcmp(dentry->d_name.name, kn->name) != 0) 1094 goto out_bad; 1095 1096 /* The kernfs node has been moved to a different namespace */ 1097 if (kn->parent && kernfs_ns_enabled(kn->parent) && 1098 kernfs_info(dentry->d_sb)->ns != kn->ns) 1099 goto out_bad; 1100 1101 up_read(&root->kernfs_rwsem); 1102 return 1; 1103 out_bad: 1104 up_read(&root->kernfs_rwsem); 1105 return 0; 1106 } 1107 1108 const struct dentry_operations kernfs_dops = { 1109 .d_revalidate = kernfs_dop_revalidate, 1110 }; 1111 1112 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1113 struct dentry *dentry, 1114 unsigned int flags) 1115 { 1116 struct kernfs_node *parent = dir->i_private; 1117 struct kernfs_node *kn; 1118 struct kernfs_root *root; 1119 struct inode *inode = NULL; 1120 const void *ns = NULL; 1121 1122 root = kernfs_root(parent); 1123 down_read(&root->kernfs_rwsem); 1124 if (kernfs_ns_enabled(parent)) 1125 ns = kernfs_info(dir->i_sb)->ns; 1126 1127 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1128 /* attach dentry and inode */ 1129 if (kn) { 1130 /* Inactive nodes are invisible to the VFS so don't 1131 * create a negative. 1132 */ 1133 if (!kernfs_active(kn)) { 1134 up_read(&root->kernfs_rwsem); 1135 return NULL; 1136 } 1137 inode = kernfs_get_inode(dir->i_sb, kn); 1138 if (!inode) 1139 inode = ERR_PTR(-ENOMEM); 1140 } 1141 /* 1142 * Needed for negative dentry validation. 1143 * The negative dentry can be created in kernfs_iop_lookup() 1144 * or transforms from positive dentry in dentry_unlink_inode() 1145 * called from vfs_rmdir(). 1146 */ 1147 if (!IS_ERR(inode)) 1148 kernfs_set_rev(parent, dentry); 1149 up_read(&root->kernfs_rwsem); 1150 1151 /* instantiate and hash (possibly negative) dentry */ 1152 return d_splice_alias(inode, dentry); 1153 } 1154 1155 static int kernfs_iop_mkdir(struct user_namespace *mnt_userns, 1156 struct inode *dir, struct dentry *dentry, 1157 umode_t mode) 1158 { 1159 struct kernfs_node *parent = dir->i_private; 1160 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1161 int ret; 1162 1163 if (!scops || !scops->mkdir) 1164 return -EPERM; 1165 1166 if (!kernfs_get_active(parent)) 1167 return -ENODEV; 1168 1169 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1170 1171 kernfs_put_active(parent); 1172 return ret; 1173 } 1174 1175 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1176 { 1177 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1178 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1179 int ret; 1180 1181 if (!scops || !scops->rmdir) 1182 return -EPERM; 1183 1184 if (!kernfs_get_active(kn)) 1185 return -ENODEV; 1186 1187 ret = scops->rmdir(kn); 1188 1189 kernfs_put_active(kn); 1190 return ret; 1191 } 1192 1193 static int kernfs_iop_rename(struct user_namespace *mnt_userns, 1194 struct inode *old_dir, struct dentry *old_dentry, 1195 struct inode *new_dir, struct dentry *new_dentry, 1196 unsigned int flags) 1197 { 1198 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1199 struct kernfs_node *new_parent = new_dir->i_private; 1200 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1201 int ret; 1202 1203 if (flags) 1204 return -EINVAL; 1205 1206 if (!scops || !scops->rename) 1207 return -EPERM; 1208 1209 if (!kernfs_get_active(kn)) 1210 return -ENODEV; 1211 1212 if (!kernfs_get_active(new_parent)) { 1213 kernfs_put_active(kn); 1214 return -ENODEV; 1215 } 1216 1217 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1218 1219 kernfs_put_active(new_parent); 1220 kernfs_put_active(kn); 1221 return ret; 1222 } 1223 1224 const struct inode_operations kernfs_dir_iops = { 1225 .lookup = kernfs_iop_lookup, 1226 .permission = kernfs_iop_permission, 1227 .setattr = kernfs_iop_setattr, 1228 .getattr = kernfs_iop_getattr, 1229 .listxattr = kernfs_iop_listxattr, 1230 1231 .mkdir = kernfs_iop_mkdir, 1232 .rmdir = kernfs_iop_rmdir, 1233 .rename = kernfs_iop_rename, 1234 }; 1235 1236 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1237 { 1238 struct kernfs_node *last; 1239 1240 while (true) { 1241 struct rb_node *rbn; 1242 1243 last = pos; 1244 1245 if (kernfs_type(pos) != KERNFS_DIR) 1246 break; 1247 1248 rbn = rb_first(&pos->dir.children); 1249 if (!rbn) 1250 break; 1251 1252 pos = rb_to_kn(rbn); 1253 } 1254 1255 return last; 1256 } 1257 1258 /** 1259 * kernfs_next_descendant_post - find the next descendant for post-order walk 1260 * @pos: the current position (%NULL to initiate traversal) 1261 * @root: kernfs_node whose descendants to walk 1262 * 1263 * Find the next descendant to visit for post-order traversal of @root's 1264 * descendants. @root is included in the iteration and the last node to be 1265 * visited. 1266 */ 1267 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1268 struct kernfs_node *root) 1269 { 1270 struct rb_node *rbn; 1271 1272 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); 1273 1274 /* if first iteration, visit leftmost descendant which may be root */ 1275 if (!pos) 1276 return kernfs_leftmost_descendant(root); 1277 1278 /* if we visited @root, we're done */ 1279 if (pos == root) 1280 return NULL; 1281 1282 /* if there's an unvisited sibling, visit its leftmost descendant */ 1283 rbn = rb_next(&pos->rb); 1284 if (rbn) 1285 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1286 1287 /* no sibling left, visit parent */ 1288 return pos->parent; 1289 } 1290 1291 /** 1292 * kernfs_activate - activate a node which started deactivated 1293 * @kn: kernfs_node whose subtree is to be activated 1294 * 1295 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1296 * needs to be explicitly activated. A node which hasn't been activated 1297 * isn't visible to userland and deactivation is skipped during its 1298 * removal. This is useful to construct atomic init sequences where 1299 * creation of multiple nodes should either succeed or fail atomically. 1300 * 1301 * The caller is responsible for ensuring that this function is not called 1302 * after kernfs_remove*() is invoked on @kn. 1303 */ 1304 void kernfs_activate(struct kernfs_node *kn) 1305 { 1306 struct kernfs_node *pos; 1307 struct kernfs_root *root = kernfs_root(kn); 1308 1309 down_write(&root->kernfs_rwsem); 1310 1311 pos = NULL; 1312 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1313 if (pos->flags & KERNFS_ACTIVATED) 1314 continue; 1315 1316 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1317 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1318 1319 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1320 pos->flags |= KERNFS_ACTIVATED; 1321 } 1322 1323 up_write(&root->kernfs_rwsem); 1324 } 1325 1326 static void __kernfs_remove(struct kernfs_node *kn) 1327 { 1328 struct kernfs_node *pos; 1329 1330 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1331 1332 /* 1333 * Short-circuit if non-root @kn has already finished removal. 1334 * This is for kernfs_remove_self() which plays with active ref 1335 * after removal. 1336 */ 1337 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1338 return; 1339 1340 pr_debug("kernfs %s: removing\n", kn->name); 1341 1342 /* prevent any new usage under @kn by deactivating all nodes */ 1343 pos = NULL; 1344 while ((pos = kernfs_next_descendant_post(pos, kn))) 1345 if (kernfs_active(pos)) 1346 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1347 1348 /* deactivate and unlink the subtree node-by-node */ 1349 do { 1350 pos = kernfs_leftmost_descendant(kn); 1351 1352 /* 1353 * kernfs_drain() drops kernfs_rwsem temporarily and @pos's 1354 * base ref could have been put by someone else by the time 1355 * the function returns. Make sure it doesn't go away 1356 * underneath us. 1357 */ 1358 kernfs_get(pos); 1359 1360 /* 1361 * Drain iff @kn was activated. This avoids draining and 1362 * its lockdep annotations for nodes which have never been 1363 * activated and allows embedding kernfs_remove() in create 1364 * error paths without worrying about draining. 1365 */ 1366 if (kn->flags & KERNFS_ACTIVATED) 1367 kernfs_drain(pos); 1368 else 1369 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1370 1371 /* 1372 * kernfs_unlink_sibling() succeeds once per node. Use it 1373 * to decide who's responsible for cleanups. 1374 */ 1375 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1376 struct kernfs_iattrs *ps_iattr = 1377 pos->parent ? pos->parent->iattr : NULL; 1378 1379 /* update timestamps on the parent */ 1380 if (ps_iattr) { 1381 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1382 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1383 } 1384 1385 kernfs_put(pos); 1386 } 1387 1388 kernfs_put(pos); 1389 } while (pos != kn); 1390 } 1391 1392 /** 1393 * kernfs_remove - remove a kernfs_node recursively 1394 * @kn: the kernfs_node to remove 1395 * 1396 * Remove @kn along with all its subdirectories and files. 1397 */ 1398 void kernfs_remove(struct kernfs_node *kn) 1399 { 1400 struct kernfs_root *root = kernfs_root(kn); 1401 1402 down_write(&root->kernfs_rwsem); 1403 __kernfs_remove(kn); 1404 up_write(&root->kernfs_rwsem); 1405 } 1406 1407 /** 1408 * kernfs_break_active_protection - break out of active protection 1409 * @kn: the self kernfs_node 1410 * 1411 * The caller must be running off of a kernfs operation which is invoked 1412 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1413 * this function must also be matched with an invocation of 1414 * kernfs_unbreak_active_protection(). 1415 * 1416 * This function releases the active reference of @kn the caller is 1417 * holding. Once this function is called, @kn may be removed at any point 1418 * and the caller is solely responsible for ensuring that the objects it 1419 * dereferences are accessible. 1420 */ 1421 void kernfs_break_active_protection(struct kernfs_node *kn) 1422 { 1423 /* 1424 * Take out ourself out of the active ref dependency chain. If 1425 * we're called without an active ref, lockdep will complain. 1426 */ 1427 kernfs_put_active(kn); 1428 } 1429 1430 /** 1431 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1432 * @kn: the self kernfs_node 1433 * 1434 * If kernfs_break_active_protection() was called, this function must be 1435 * invoked before finishing the kernfs operation. Note that while this 1436 * function restores the active reference, it doesn't and can't actually 1437 * restore the active protection - @kn may already or be in the process of 1438 * being removed. Once kernfs_break_active_protection() is invoked, that 1439 * protection is irreversibly gone for the kernfs operation instance. 1440 * 1441 * While this function may be called at any point after 1442 * kernfs_break_active_protection() is invoked, its most useful location 1443 * would be right before the enclosing kernfs operation returns. 1444 */ 1445 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1446 { 1447 /* 1448 * @kn->active could be in any state; however, the increment we do 1449 * here will be undone as soon as the enclosing kernfs operation 1450 * finishes and this temporary bump can't break anything. If @kn 1451 * is alive, nothing changes. If @kn is being deactivated, the 1452 * soon-to-follow put will either finish deactivation or restore 1453 * deactivated state. If @kn is already removed, the temporary 1454 * bump is guaranteed to be gone before @kn is released. 1455 */ 1456 atomic_inc(&kn->active); 1457 if (kernfs_lockdep(kn)) 1458 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1459 } 1460 1461 /** 1462 * kernfs_remove_self - remove a kernfs_node from its own method 1463 * @kn: the self kernfs_node to remove 1464 * 1465 * The caller must be running off of a kernfs operation which is invoked 1466 * with an active reference - e.g. one of kernfs_ops. This can be used to 1467 * implement a file operation which deletes itself. 1468 * 1469 * For example, the "delete" file for a sysfs device directory can be 1470 * implemented by invoking kernfs_remove_self() on the "delete" file 1471 * itself. This function breaks the circular dependency of trying to 1472 * deactivate self while holding an active ref itself. It isn't necessary 1473 * to modify the usual removal path to use kernfs_remove_self(). The 1474 * "delete" implementation can simply invoke kernfs_remove_self() on self 1475 * before proceeding with the usual removal path. kernfs will ignore later 1476 * kernfs_remove() on self. 1477 * 1478 * kernfs_remove_self() can be called multiple times concurrently on the 1479 * same kernfs_node. Only the first one actually performs removal and 1480 * returns %true. All others will wait until the kernfs operation which 1481 * won self-removal finishes and return %false. Note that the losers wait 1482 * for the completion of not only the winning kernfs_remove_self() but also 1483 * the whole kernfs_ops which won the arbitration. This can be used to 1484 * guarantee, for example, all concurrent writes to a "delete" file to 1485 * finish only after the whole operation is complete. 1486 */ 1487 bool kernfs_remove_self(struct kernfs_node *kn) 1488 { 1489 bool ret; 1490 struct kernfs_root *root = kernfs_root(kn); 1491 1492 down_write(&root->kernfs_rwsem); 1493 kernfs_break_active_protection(kn); 1494 1495 /* 1496 * SUICIDAL is used to arbitrate among competing invocations. Only 1497 * the first one will actually perform removal. When the removal 1498 * is complete, SUICIDED is set and the active ref is restored 1499 * while kernfs_rwsem for held exclusive. The ones which lost 1500 * arbitration waits for SUICIDED && drained which can happen only 1501 * after the enclosing kernfs operation which executed the winning 1502 * instance of kernfs_remove_self() finished. 1503 */ 1504 if (!(kn->flags & KERNFS_SUICIDAL)) { 1505 kn->flags |= KERNFS_SUICIDAL; 1506 __kernfs_remove(kn); 1507 kn->flags |= KERNFS_SUICIDED; 1508 ret = true; 1509 } else { 1510 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1511 DEFINE_WAIT(wait); 1512 1513 while (true) { 1514 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1515 1516 if ((kn->flags & KERNFS_SUICIDED) && 1517 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1518 break; 1519 1520 up_write(&root->kernfs_rwsem); 1521 schedule(); 1522 down_write(&root->kernfs_rwsem); 1523 } 1524 finish_wait(waitq, &wait); 1525 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1526 ret = false; 1527 } 1528 1529 /* 1530 * This must be done while kernfs_rwsem held exclusive; otherwise, 1531 * waiting for SUICIDED && deactivated could finish prematurely. 1532 */ 1533 kernfs_unbreak_active_protection(kn); 1534 1535 up_write(&root->kernfs_rwsem); 1536 return ret; 1537 } 1538 1539 /** 1540 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1541 * @parent: parent of the target 1542 * @name: name of the kernfs_node to remove 1543 * @ns: namespace tag of the kernfs_node to remove 1544 * 1545 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1546 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1547 */ 1548 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1549 const void *ns) 1550 { 1551 struct kernfs_node *kn; 1552 struct kernfs_root *root; 1553 1554 if (!parent) { 1555 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1556 name); 1557 return -ENOENT; 1558 } 1559 1560 root = kernfs_root(parent); 1561 down_write(&root->kernfs_rwsem); 1562 1563 kn = kernfs_find_ns(parent, name, ns); 1564 if (kn) 1565 __kernfs_remove(kn); 1566 1567 up_write(&root->kernfs_rwsem); 1568 1569 if (kn) 1570 return 0; 1571 else 1572 return -ENOENT; 1573 } 1574 1575 /** 1576 * kernfs_rename_ns - move and rename a kernfs_node 1577 * @kn: target node 1578 * @new_parent: new parent to put @sd under 1579 * @new_name: new name 1580 * @new_ns: new namespace tag 1581 */ 1582 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1583 const char *new_name, const void *new_ns) 1584 { 1585 struct kernfs_node *old_parent; 1586 struct kernfs_root *root; 1587 const char *old_name = NULL; 1588 int error; 1589 1590 /* can't move or rename root */ 1591 if (!kn->parent) 1592 return -EINVAL; 1593 1594 root = kernfs_root(kn); 1595 down_write(&root->kernfs_rwsem); 1596 1597 error = -ENOENT; 1598 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1599 (new_parent->flags & KERNFS_EMPTY_DIR)) 1600 goto out; 1601 1602 error = 0; 1603 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1604 (strcmp(kn->name, new_name) == 0)) 1605 goto out; /* nothing to rename */ 1606 1607 error = -EEXIST; 1608 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1609 goto out; 1610 1611 /* rename kernfs_node */ 1612 if (strcmp(kn->name, new_name) != 0) { 1613 error = -ENOMEM; 1614 new_name = kstrdup_const(new_name, GFP_KERNEL); 1615 if (!new_name) 1616 goto out; 1617 } else { 1618 new_name = NULL; 1619 } 1620 1621 /* 1622 * Move to the appropriate place in the appropriate directories rbtree. 1623 */ 1624 kernfs_unlink_sibling(kn); 1625 kernfs_get(new_parent); 1626 1627 /* rename_lock protects ->parent and ->name accessors */ 1628 spin_lock_irq(&kernfs_rename_lock); 1629 1630 old_parent = kn->parent; 1631 kn->parent = new_parent; 1632 1633 kn->ns = new_ns; 1634 if (new_name) { 1635 old_name = kn->name; 1636 kn->name = new_name; 1637 } 1638 1639 spin_unlock_irq(&kernfs_rename_lock); 1640 1641 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1642 kernfs_link_sibling(kn); 1643 1644 kernfs_put(old_parent); 1645 kfree_const(old_name); 1646 1647 error = 0; 1648 out: 1649 up_write(&root->kernfs_rwsem); 1650 return error; 1651 } 1652 1653 /* Relationship between mode and the DT_xxx types */ 1654 static inline unsigned char dt_type(struct kernfs_node *kn) 1655 { 1656 return (kn->mode >> 12) & 15; 1657 } 1658 1659 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1660 { 1661 kernfs_put(filp->private_data); 1662 return 0; 1663 } 1664 1665 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1666 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1667 { 1668 if (pos) { 1669 int valid = kernfs_active(pos) && 1670 pos->parent == parent && hash == pos->hash; 1671 kernfs_put(pos); 1672 if (!valid) 1673 pos = NULL; 1674 } 1675 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1676 struct rb_node *node = parent->dir.children.rb_node; 1677 while (node) { 1678 pos = rb_to_kn(node); 1679 1680 if (hash < pos->hash) 1681 node = node->rb_left; 1682 else if (hash > pos->hash) 1683 node = node->rb_right; 1684 else 1685 break; 1686 } 1687 } 1688 /* Skip over entries which are dying/dead or in the wrong namespace */ 1689 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1690 struct rb_node *node = rb_next(&pos->rb); 1691 if (!node) 1692 pos = NULL; 1693 else 1694 pos = rb_to_kn(node); 1695 } 1696 return pos; 1697 } 1698 1699 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1700 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1701 { 1702 pos = kernfs_dir_pos(ns, parent, ino, pos); 1703 if (pos) { 1704 do { 1705 struct rb_node *node = rb_next(&pos->rb); 1706 if (!node) 1707 pos = NULL; 1708 else 1709 pos = rb_to_kn(node); 1710 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1711 } 1712 return pos; 1713 } 1714 1715 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1716 { 1717 struct dentry *dentry = file->f_path.dentry; 1718 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1719 struct kernfs_node *pos = file->private_data; 1720 struct kernfs_root *root; 1721 const void *ns = NULL; 1722 1723 if (!dir_emit_dots(file, ctx)) 1724 return 0; 1725 1726 root = kernfs_root(parent); 1727 down_read(&root->kernfs_rwsem); 1728 1729 if (kernfs_ns_enabled(parent)) 1730 ns = kernfs_info(dentry->d_sb)->ns; 1731 1732 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1733 pos; 1734 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1735 const char *name = pos->name; 1736 unsigned int type = dt_type(pos); 1737 int len = strlen(name); 1738 ino_t ino = kernfs_ino(pos); 1739 1740 ctx->pos = pos->hash; 1741 file->private_data = pos; 1742 kernfs_get(pos); 1743 1744 up_read(&root->kernfs_rwsem); 1745 if (!dir_emit(ctx, name, len, ino, type)) 1746 return 0; 1747 down_read(&root->kernfs_rwsem); 1748 } 1749 up_read(&root->kernfs_rwsem); 1750 file->private_data = NULL; 1751 ctx->pos = INT_MAX; 1752 return 0; 1753 } 1754 1755 const struct file_operations kernfs_dir_fops = { 1756 .read = generic_read_dir, 1757 .iterate_shared = kernfs_fop_readdir, 1758 .release = kernfs_dir_fop_release, 1759 .llseek = generic_file_llseek, 1760 }; 1761