1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 static DEFINE_RWLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 21 /* 22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to 23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont() 24 * will perform wakeups when releasing console_sem. Holding rename_lock 25 * will introduce deadlock if the scheduler reads the kernfs_name in the 26 * wakeup path. 27 */ 28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock); 29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ 30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 31 32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 33 34 static bool __kernfs_active(struct kernfs_node *kn) 35 { 36 return atomic_read(&kn->active) >= 0; 37 } 38 39 static bool kernfs_active(struct kernfs_node *kn) 40 { 41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); 42 return __kernfs_active(kn); 43 } 44 45 static bool kernfs_lockdep(struct kernfs_node *kn) 46 { 47 #ifdef CONFIG_DEBUG_LOCK_ALLOC 48 return kn->flags & KERNFS_LOCKDEP; 49 #else 50 return false; 51 #endif 52 } 53 54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 55 { 56 if (!kn) 57 return strlcpy(buf, "(null)", buflen); 58 59 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 60 } 61 62 /* kernfs_node_depth - compute depth from @from to @to */ 63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 64 { 65 size_t depth = 0; 66 67 while (to->parent && to != from) { 68 depth++; 69 to = to->parent; 70 } 71 return depth; 72 } 73 74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 75 struct kernfs_node *b) 76 { 77 size_t da, db; 78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 79 80 if (ra != rb) 81 return NULL; 82 83 da = kernfs_depth(ra->kn, a); 84 db = kernfs_depth(rb->kn, b); 85 86 while (da > db) { 87 a = a->parent; 88 da--; 89 } 90 while (db > da) { 91 b = b->parent; 92 db--; 93 } 94 95 /* worst case b and a will be the same at root */ 96 while (b != a) { 97 b = b->parent; 98 a = a->parent; 99 } 100 101 return a; 102 } 103 104 /** 105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 106 * where kn_from is treated as root of the path. 107 * @kn_from: kernfs node which should be treated as root for the path 108 * @kn_to: kernfs node to which path is needed 109 * @buf: buffer to copy the path into 110 * @buflen: size of @buf 111 * 112 * We need to handle couple of scenarios here: 113 * [1] when @kn_from is an ancestor of @kn_to at some level 114 * kn_from: /n1/n2/n3 115 * kn_to: /n1/n2/n3/n4/n5 116 * result: /n4/n5 117 * 118 * [2] when @kn_from is on a different hierarchy and we need to find common 119 * ancestor between @kn_from and @kn_to. 120 * kn_from: /n1/n2/n3/n4 121 * kn_to: /n1/n2/n5 122 * result: /../../n5 123 * OR 124 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 125 * kn_to: /n1/n2/n3 [depth=3] 126 * result: /../.. 127 * 128 * [3] when @kn_to is %NULL result will be "(null)" 129 * 130 * Return: the length of the full path. If the full length is equal to or 131 * greater than @buflen, @buf contains the truncated path with the trailing 132 * '\0'. On error, -errno is returned. 133 */ 134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 135 struct kernfs_node *kn_from, 136 char *buf, size_t buflen) 137 { 138 struct kernfs_node *kn, *common; 139 const char parent_str[] = "/.."; 140 size_t depth_from, depth_to, len = 0; 141 int i, j; 142 143 if (!kn_to) 144 return strlcpy(buf, "(null)", buflen); 145 146 if (!kn_from) 147 kn_from = kernfs_root(kn_to)->kn; 148 149 if (kn_from == kn_to) 150 return strlcpy(buf, "/", buflen); 151 152 common = kernfs_common_ancestor(kn_from, kn_to); 153 if (WARN_ON(!common)) 154 return -EINVAL; 155 156 depth_to = kernfs_depth(common, kn_to); 157 depth_from = kernfs_depth(common, kn_from); 158 159 buf[0] = '\0'; 160 161 for (i = 0; i < depth_from; i++) 162 len += strlcpy(buf + len, parent_str, 163 len < buflen ? buflen - len : 0); 164 165 /* Calculate how many bytes we need for the rest */ 166 for (i = depth_to - 1; i >= 0; i--) { 167 for (kn = kn_to, j = 0; j < i; j++) 168 kn = kn->parent; 169 len += strlcpy(buf + len, "/", 170 len < buflen ? buflen - len : 0); 171 len += strlcpy(buf + len, kn->name, 172 len < buflen ? buflen - len : 0); 173 } 174 175 return len; 176 } 177 178 /** 179 * kernfs_name - obtain the name of a given node 180 * @kn: kernfs_node of interest 181 * @buf: buffer to copy @kn's name into 182 * @buflen: size of @buf 183 * 184 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 185 * similar to strlcpy(). 186 * 187 * Fills buffer with "(null)" if @kn is %NULL. 188 * 189 * Return: the length of @kn's name and if @buf isn't long enough, 190 * it's filled up to @buflen-1 and nul terminated. 191 * 192 * This function can be called from any context. 193 */ 194 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 195 { 196 unsigned long flags; 197 int ret; 198 199 read_lock_irqsave(&kernfs_rename_lock, flags); 200 ret = kernfs_name_locked(kn, buf, buflen); 201 read_unlock_irqrestore(&kernfs_rename_lock, flags); 202 return ret; 203 } 204 205 /** 206 * kernfs_path_from_node - build path of node @to relative to @from. 207 * @from: parent kernfs_node relative to which we need to build the path 208 * @to: kernfs_node of interest 209 * @buf: buffer to copy @to's path into 210 * @buflen: size of @buf 211 * 212 * Builds @to's path relative to @from in @buf. @from and @to must 213 * be on the same kernfs-root. If @from is not parent of @to, then a relative 214 * path (which includes '..'s) as needed to reach from @from to @to is 215 * returned. 216 * 217 * Return: the length of the full path. If the full length is equal to or 218 * greater than @buflen, @buf contains the truncated path with the trailing 219 * '\0'. On error, -errno is returned. 220 */ 221 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 222 char *buf, size_t buflen) 223 { 224 unsigned long flags; 225 int ret; 226 227 read_lock_irqsave(&kernfs_rename_lock, flags); 228 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 229 read_unlock_irqrestore(&kernfs_rename_lock, flags); 230 return ret; 231 } 232 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 233 234 /** 235 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 236 * @kn: kernfs_node of interest 237 * 238 * This function can be called from any context. 239 */ 240 void pr_cont_kernfs_name(struct kernfs_node *kn) 241 { 242 unsigned long flags; 243 244 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 245 246 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 247 pr_cont("%s", kernfs_pr_cont_buf); 248 249 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 250 } 251 252 /** 253 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 254 * @kn: kernfs_node of interest 255 * 256 * This function can be called from any context. 257 */ 258 void pr_cont_kernfs_path(struct kernfs_node *kn) 259 { 260 unsigned long flags; 261 int sz; 262 263 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 264 265 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, 266 sizeof(kernfs_pr_cont_buf)); 267 if (sz < 0) { 268 pr_cont("(error)"); 269 goto out; 270 } 271 272 if (sz >= sizeof(kernfs_pr_cont_buf)) { 273 pr_cont("(name too long)"); 274 goto out; 275 } 276 277 pr_cont("%s", kernfs_pr_cont_buf); 278 279 out: 280 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 281 } 282 283 /** 284 * kernfs_get_parent - determine the parent node and pin it 285 * @kn: kernfs_node of interest 286 * 287 * Determines @kn's parent, pins and returns it. This function can be 288 * called from any context. 289 * 290 * Return: parent node of @kn 291 */ 292 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 293 { 294 struct kernfs_node *parent; 295 unsigned long flags; 296 297 read_lock_irqsave(&kernfs_rename_lock, flags); 298 parent = kn->parent; 299 kernfs_get(parent); 300 read_unlock_irqrestore(&kernfs_rename_lock, flags); 301 302 return parent; 303 } 304 305 /** 306 * kernfs_name_hash - calculate hash of @ns + @name 307 * @name: Null terminated string to hash 308 * @ns: Namespace tag to hash 309 * 310 * Return: 31-bit hash of ns + name (so it fits in an off_t) 311 */ 312 static unsigned int kernfs_name_hash(const char *name, const void *ns) 313 { 314 unsigned long hash = init_name_hash(ns); 315 unsigned int len = strlen(name); 316 while (len--) 317 hash = partial_name_hash(*name++, hash); 318 hash = end_name_hash(hash); 319 hash &= 0x7fffffffU; 320 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 321 if (hash < 2) 322 hash += 2; 323 if (hash >= INT_MAX) 324 hash = INT_MAX - 1; 325 return hash; 326 } 327 328 static int kernfs_name_compare(unsigned int hash, const char *name, 329 const void *ns, const struct kernfs_node *kn) 330 { 331 if (hash < kn->hash) 332 return -1; 333 if (hash > kn->hash) 334 return 1; 335 if (ns < kn->ns) 336 return -1; 337 if (ns > kn->ns) 338 return 1; 339 return strcmp(name, kn->name); 340 } 341 342 static int kernfs_sd_compare(const struct kernfs_node *left, 343 const struct kernfs_node *right) 344 { 345 return kernfs_name_compare(left->hash, left->name, left->ns, right); 346 } 347 348 /** 349 * kernfs_link_sibling - link kernfs_node into sibling rbtree 350 * @kn: kernfs_node of interest 351 * 352 * Link @kn into its sibling rbtree which starts from 353 * @kn->parent->dir.children. 354 * 355 * Locking: 356 * kernfs_rwsem held exclusive 357 * 358 * Return: 359 * %0 on success, -EEXIST on failure. 360 */ 361 static int kernfs_link_sibling(struct kernfs_node *kn) 362 { 363 struct rb_node **node = &kn->parent->dir.children.rb_node; 364 struct rb_node *parent = NULL; 365 366 while (*node) { 367 struct kernfs_node *pos; 368 int result; 369 370 pos = rb_to_kn(*node); 371 parent = *node; 372 result = kernfs_sd_compare(kn, pos); 373 if (result < 0) 374 node = &pos->rb.rb_left; 375 else if (result > 0) 376 node = &pos->rb.rb_right; 377 else 378 return -EEXIST; 379 } 380 381 /* add new node and rebalance the tree */ 382 rb_link_node(&kn->rb, parent, node); 383 rb_insert_color(&kn->rb, &kn->parent->dir.children); 384 385 /* successfully added, account subdir number */ 386 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 387 if (kernfs_type(kn) == KERNFS_DIR) 388 kn->parent->dir.subdirs++; 389 kernfs_inc_rev(kn->parent); 390 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 391 392 return 0; 393 } 394 395 /** 396 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 397 * @kn: kernfs_node of interest 398 * 399 * Try to unlink @kn from its sibling rbtree which starts from 400 * kn->parent->dir.children. 401 * 402 * Return: %true if @kn was actually removed, 403 * %false if @kn wasn't on the rbtree. 404 * 405 * Locking: 406 * kernfs_rwsem held exclusive 407 */ 408 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 409 { 410 if (RB_EMPTY_NODE(&kn->rb)) 411 return false; 412 413 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 414 if (kernfs_type(kn) == KERNFS_DIR) 415 kn->parent->dir.subdirs--; 416 kernfs_inc_rev(kn->parent); 417 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 418 419 rb_erase(&kn->rb, &kn->parent->dir.children); 420 RB_CLEAR_NODE(&kn->rb); 421 return true; 422 } 423 424 /** 425 * kernfs_get_active - get an active reference to kernfs_node 426 * @kn: kernfs_node to get an active reference to 427 * 428 * Get an active reference of @kn. This function is noop if @kn 429 * is %NULL. 430 * 431 * Return: 432 * Pointer to @kn on success, %NULL on failure. 433 */ 434 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 435 { 436 if (unlikely(!kn)) 437 return NULL; 438 439 if (!atomic_inc_unless_negative(&kn->active)) 440 return NULL; 441 442 if (kernfs_lockdep(kn)) 443 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 444 return kn; 445 } 446 447 /** 448 * kernfs_put_active - put an active reference to kernfs_node 449 * @kn: kernfs_node to put an active reference to 450 * 451 * Put an active reference to @kn. This function is noop if @kn 452 * is %NULL. 453 */ 454 void kernfs_put_active(struct kernfs_node *kn) 455 { 456 int v; 457 458 if (unlikely(!kn)) 459 return; 460 461 if (kernfs_lockdep(kn)) 462 rwsem_release(&kn->dep_map, _RET_IP_); 463 v = atomic_dec_return(&kn->active); 464 if (likely(v != KN_DEACTIVATED_BIAS)) 465 return; 466 467 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 468 } 469 470 /** 471 * kernfs_drain - drain kernfs_node 472 * @kn: kernfs_node to drain 473 * 474 * Drain existing usages and nuke all existing mmaps of @kn. Multiple 475 * removers may invoke this function concurrently on @kn and all will 476 * return after draining is complete. 477 */ 478 static void kernfs_drain(struct kernfs_node *kn) 479 __releases(&kernfs_root(kn)->kernfs_rwsem) 480 __acquires(&kernfs_root(kn)->kernfs_rwsem) 481 { 482 struct kernfs_root *root = kernfs_root(kn); 483 484 lockdep_assert_held_write(&root->kernfs_rwsem); 485 WARN_ON_ONCE(kernfs_active(kn)); 486 487 /* 488 * Skip draining if already fully drained. This avoids draining and its 489 * lockdep annotations for nodes which have never been activated 490 * allowing embedding kernfs_remove() in create error paths without 491 * worrying about draining. 492 */ 493 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS && 494 !kernfs_should_drain_open_files(kn)) 495 return; 496 497 up_write(&root->kernfs_rwsem); 498 499 if (kernfs_lockdep(kn)) { 500 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 501 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 502 lock_contended(&kn->dep_map, _RET_IP_); 503 } 504 505 wait_event(root->deactivate_waitq, 506 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 507 508 if (kernfs_lockdep(kn)) { 509 lock_acquired(&kn->dep_map, _RET_IP_); 510 rwsem_release(&kn->dep_map, _RET_IP_); 511 } 512 513 if (kernfs_should_drain_open_files(kn)) 514 kernfs_drain_open_files(kn); 515 516 down_write(&root->kernfs_rwsem); 517 } 518 519 /** 520 * kernfs_get - get a reference count on a kernfs_node 521 * @kn: the target kernfs_node 522 */ 523 void kernfs_get(struct kernfs_node *kn) 524 { 525 if (kn) { 526 WARN_ON(!atomic_read(&kn->count)); 527 atomic_inc(&kn->count); 528 } 529 } 530 EXPORT_SYMBOL_GPL(kernfs_get); 531 532 /** 533 * kernfs_put - put a reference count on a kernfs_node 534 * @kn: the target kernfs_node 535 * 536 * Put a reference count of @kn and destroy it if it reached zero. 537 */ 538 void kernfs_put(struct kernfs_node *kn) 539 { 540 struct kernfs_node *parent; 541 struct kernfs_root *root; 542 543 if (!kn || !atomic_dec_and_test(&kn->count)) 544 return; 545 root = kernfs_root(kn); 546 repeat: 547 /* 548 * Moving/renaming is always done while holding reference. 549 * kn->parent won't change beneath us. 550 */ 551 parent = kn->parent; 552 553 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 554 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 555 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 556 557 if (kernfs_type(kn) == KERNFS_LINK) 558 kernfs_put(kn->symlink.target_kn); 559 560 kfree_const(kn->name); 561 562 if (kn->iattr) { 563 simple_xattrs_free(&kn->iattr->xattrs, NULL); 564 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 565 } 566 spin_lock(&kernfs_idr_lock); 567 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 568 spin_unlock(&kernfs_idr_lock); 569 kmem_cache_free(kernfs_node_cache, kn); 570 571 kn = parent; 572 if (kn) { 573 if (atomic_dec_and_test(&kn->count)) 574 goto repeat; 575 } else { 576 /* just released the root kn, free @root too */ 577 idr_destroy(&root->ino_idr); 578 kfree(root); 579 } 580 } 581 EXPORT_SYMBOL_GPL(kernfs_put); 582 583 /** 584 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 585 * @dentry: the dentry in question 586 * 587 * Return: the kernfs_node associated with @dentry. If @dentry is not a 588 * kernfs one, %NULL is returned. 589 * 590 * While the returned kernfs_node will stay accessible as long as @dentry 591 * is accessible, the returned node can be in any state and the caller is 592 * fully responsible for determining what's accessible. 593 */ 594 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 595 { 596 if (dentry->d_sb->s_op == &kernfs_sops) 597 return kernfs_dentry_node(dentry); 598 return NULL; 599 } 600 601 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 602 struct kernfs_node *parent, 603 const char *name, umode_t mode, 604 kuid_t uid, kgid_t gid, 605 unsigned flags) 606 { 607 struct kernfs_node *kn; 608 u32 id_highbits; 609 int ret; 610 611 name = kstrdup_const(name, GFP_KERNEL); 612 if (!name) 613 return NULL; 614 615 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 616 if (!kn) 617 goto err_out1; 618 619 idr_preload(GFP_KERNEL); 620 spin_lock(&kernfs_idr_lock); 621 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 622 if (ret >= 0 && ret < root->last_id_lowbits) 623 root->id_highbits++; 624 id_highbits = root->id_highbits; 625 root->last_id_lowbits = ret; 626 spin_unlock(&kernfs_idr_lock); 627 idr_preload_end(); 628 if (ret < 0) 629 goto err_out2; 630 631 kn->id = (u64)id_highbits << 32 | ret; 632 633 atomic_set(&kn->count, 1); 634 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 635 RB_CLEAR_NODE(&kn->rb); 636 637 kn->name = name; 638 kn->mode = mode; 639 kn->flags = flags; 640 641 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 642 struct iattr iattr = { 643 .ia_valid = ATTR_UID | ATTR_GID, 644 .ia_uid = uid, 645 .ia_gid = gid, 646 }; 647 648 ret = __kernfs_setattr(kn, &iattr); 649 if (ret < 0) 650 goto err_out3; 651 } 652 653 if (parent) { 654 ret = security_kernfs_init_security(parent, kn); 655 if (ret) 656 goto err_out3; 657 } 658 659 return kn; 660 661 err_out3: 662 spin_lock(&kernfs_idr_lock); 663 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 664 spin_unlock(&kernfs_idr_lock); 665 err_out2: 666 kmem_cache_free(kernfs_node_cache, kn); 667 err_out1: 668 kfree_const(name); 669 return NULL; 670 } 671 672 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 673 const char *name, umode_t mode, 674 kuid_t uid, kgid_t gid, 675 unsigned flags) 676 { 677 struct kernfs_node *kn; 678 679 if (parent->mode & S_ISGID) { 680 /* this code block imitates inode_init_owner() for 681 * kernfs 682 */ 683 684 if (parent->iattr) 685 gid = parent->iattr->ia_gid; 686 687 if (flags & KERNFS_DIR) 688 mode |= S_ISGID; 689 } 690 691 kn = __kernfs_new_node(kernfs_root(parent), parent, 692 name, mode, uid, gid, flags); 693 if (kn) { 694 kernfs_get(parent); 695 kn->parent = parent; 696 } 697 return kn; 698 } 699 700 /* 701 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 702 * @root: the kernfs root 703 * @id: the target node id 704 * 705 * @id's lower 32bits encode ino and upper gen. If the gen portion is 706 * zero, all generations are matched. 707 * 708 * Return: %NULL on failure, 709 * otherwise a kernfs node with reference counter incremented. 710 */ 711 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 712 u64 id) 713 { 714 struct kernfs_node *kn; 715 ino_t ino = kernfs_id_ino(id); 716 u32 gen = kernfs_id_gen(id); 717 718 spin_lock(&kernfs_idr_lock); 719 720 kn = idr_find(&root->ino_idr, (u32)ino); 721 if (!kn) 722 goto err_unlock; 723 724 if (sizeof(ino_t) >= sizeof(u64)) { 725 /* we looked up with the low 32bits, compare the whole */ 726 if (kernfs_ino(kn) != ino) 727 goto err_unlock; 728 } else { 729 /* 0 matches all generations */ 730 if (unlikely(gen && kernfs_gen(kn) != gen)) 731 goto err_unlock; 732 } 733 734 /* 735 * We should fail if @kn has never been activated and guarantee success 736 * if the caller knows that @kn is active. Both can be achieved by 737 * __kernfs_active() which tests @kn->active without kernfs_rwsem. 738 */ 739 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count))) 740 goto err_unlock; 741 742 spin_unlock(&kernfs_idr_lock); 743 return kn; 744 err_unlock: 745 spin_unlock(&kernfs_idr_lock); 746 return NULL; 747 } 748 749 /** 750 * kernfs_add_one - add kernfs_node to parent without warning 751 * @kn: kernfs_node to be added 752 * 753 * The caller must already have initialized @kn->parent. This 754 * function increments nlink of the parent's inode if @kn is a 755 * directory and link into the children list of the parent. 756 * 757 * Return: 758 * %0 on success, -EEXIST if entry with the given name already 759 * exists. 760 */ 761 int kernfs_add_one(struct kernfs_node *kn) 762 { 763 struct kernfs_node *parent = kn->parent; 764 struct kernfs_root *root = kernfs_root(parent); 765 struct kernfs_iattrs *ps_iattr; 766 bool has_ns; 767 int ret; 768 769 down_write(&root->kernfs_rwsem); 770 771 ret = -EINVAL; 772 has_ns = kernfs_ns_enabled(parent); 773 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 774 has_ns ? "required" : "invalid", parent->name, kn->name)) 775 goto out_unlock; 776 777 if (kernfs_type(parent) != KERNFS_DIR) 778 goto out_unlock; 779 780 ret = -ENOENT; 781 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR)) 782 goto out_unlock; 783 784 kn->hash = kernfs_name_hash(kn->name, kn->ns); 785 786 ret = kernfs_link_sibling(kn); 787 if (ret) 788 goto out_unlock; 789 790 /* Update timestamps on the parent */ 791 down_write(&root->kernfs_iattr_rwsem); 792 793 ps_iattr = parent->iattr; 794 if (ps_iattr) { 795 ktime_get_real_ts64(&ps_iattr->ia_ctime); 796 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 797 } 798 799 up_write(&root->kernfs_iattr_rwsem); 800 up_write(&root->kernfs_rwsem); 801 802 /* 803 * Activate the new node unless CREATE_DEACTIVATED is requested. 804 * If not activated here, the kernfs user is responsible for 805 * activating the node with kernfs_activate(). A node which hasn't 806 * been activated is not visible to userland and its removal won't 807 * trigger deactivation. 808 */ 809 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 810 kernfs_activate(kn); 811 return 0; 812 813 out_unlock: 814 up_write(&root->kernfs_rwsem); 815 return ret; 816 } 817 818 /** 819 * kernfs_find_ns - find kernfs_node with the given name 820 * @parent: kernfs_node to search under 821 * @name: name to look for 822 * @ns: the namespace tag to use 823 * 824 * Look for kernfs_node with name @name under @parent. 825 * 826 * Return: pointer to the found kernfs_node on success, %NULL on failure. 827 */ 828 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 829 const unsigned char *name, 830 const void *ns) 831 { 832 struct rb_node *node = parent->dir.children.rb_node; 833 bool has_ns = kernfs_ns_enabled(parent); 834 unsigned int hash; 835 836 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); 837 838 if (has_ns != (bool)ns) { 839 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 840 has_ns ? "required" : "invalid", parent->name, name); 841 return NULL; 842 } 843 844 hash = kernfs_name_hash(name, ns); 845 while (node) { 846 struct kernfs_node *kn; 847 int result; 848 849 kn = rb_to_kn(node); 850 result = kernfs_name_compare(hash, name, ns, kn); 851 if (result < 0) 852 node = node->rb_left; 853 else if (result > 0) 854 node = node->rb_right; 855 else 856 return kn; 857 } 858 return NULL; 859 } 860 861 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 862 const unsigned char *path, 863 const void *ns) 864 { 865 size_t len; 866 char *p, *name; 867 868 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); 869 870 spin_lock_irq(&kernfs_pr_cont_lock); 871 872 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 873 874 if (len >= sizeof(kernfs_pr_cont_buf)) { 875 spin_unlock_irq(&kernfs_pr_cont_lock); 876 return NULL; 877 } 878 879 p = kernfs_pr_cont_buf; 880 881 while ((name = strsep(&p, "/")) && parent) { 882 if (*name == '\0') 883 continue; 884 parent = kernfs_find_ns(parent, name, ns); 885 } 886 887 spin_unlock_irq(&kernfs_pr_cont_lock); 888 889 return parent; 890 } 891 892 /** 893 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 894 * @parent: kernfs_node to search under 895 * @name: name to look for 896 * @ns: the namespace tag to use 897 * 898 * Look for kernfs_node with name @name under @parent and get a reference 899 * if found. This function may sleep. 900 * 901 * Return: pointer to the found kernfs_node on success, %NULL on failure. 902 */ 903 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 904 const char *name, const void *ns) 905 { 906 struct kernfs_node *kn; 907 struct kernfs_root *root = kernfs_root(parent); 908 909 down_read(&root->kernfs_rwsem); 910 kn = kernfs_find_ns(parent, name, ns); 911 kernfs_get(kn); 912 up_read(&root->kernfs_rwsem); 913 914 return kn; 915 } 916 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 917 918 /** 919 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 920 * @parent: kernfs_node to search under 921 * @path: path to look for 922 * @ns: the namespace tag to use 923 * 924 * Look for kernfs_node with path @path under @parent and get a reference 925 * if found. This function may sleep. 926 * 927 * Return: pointer to the found kernfs_node on success, %NULL on failure. 928 */ 929 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 930 const char *path, const void *ns) 931 { 932 struct kernfs_node *kn; 933 struct kernfs_root *root = kernfs_root(parent); 934 935 down_read(&root->kernfs_rwsem); 936 kn = kernfs_walk_ns(parent, path, ns); 937 kernfs_get(kn); 938 up_read(&root->kernfs_rwsem); 939 940 return kn; 941 } 942 943 /** 944 * kernfs_create_root - create a new kernfs hierarchy 945 * @scops: optional syscall operations for the hierarchy 946 * @flags: KERNFS_ROOT_* flags 947 * @priv: opaque data associated with the new directory 948 * 949 * Return: the root of the new hierarchy on success, ERR_PTR() value on 950 * failure. 951 */ 952 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 953 unsigned int flags, void *priv) 954 { 955 struct kernfs_root *root; 956 struct kernfs_node *kn; 957 958 root = kzalloc(sizeof(*root), GFP_KERNEL); 959 if (!root) 960 return ERR_PTR(-ENOMEM); 961 962 idr_init(&root->ino_idr); 963 init_rwsem(&root->kernfs_rwsem); 964 init_rwsem(&root->kernfs_iattr_rwsem); 965 init_rwsem(&root->kernfs_supers_rwsem); 966 INIT_LIST_HEAD(&root->supers); 967 968 /* 969 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 970 * High bits generation. The starting value for both ino and 971 * genenration is 1. Initialize upper 32bit allocation 972 * accordingly. 973 */ 974 if (sizeof(ino_t) >= sizeof(u64)) 975 root->id_highbits = 0; 976 else 977 root->id_highbits = 1; 978 979 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 980 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 981 KERNFS_DIR); 982 if (!kn) { 983 idr_destroy(&root->ino_idr); 984 kfree(root); 985 return ERR_PTR(-ENOMEM); 986 } 987 988 kn->priv = priv; 989 kn->dir.root = root; 990 991 root->syscall_ops = scops; 992 root->flags = flags; 993 root->kn = kn; 994 init_waitqueue_head(&root->deactivate_waitq); 995 996 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 997 kernfs_activate(kn); 998 999 return root; 1000 } 1001 1002 /** 1003 * kernfs_destroy_root - destroy a kernfs hierarchy 1004 * @root: root of the hierarchy to destroy 1005 * 1006 * Destroy the hierarchy anchored at @root by removing all existing 1007 * directories and destroying @root. 1008 */ 1009 void kernfs_destroy_root(struct kernfs_root *root) 1010 { 1011 /* 1012 * kernfs_remove holds kernfs_rwsem from the root so the root 1013 * shouldn't be freed during the operation. 1014 */ 1015 kernfs_get(root->kn); 1016 kernfs_remove(root->kn); 1017 kernfs_put(root->kn); /* will also free @root */ 1018 } 1019 1020 /** 1021 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root 1022 * @root: root to use to lookup 1023 * 1024 * Return: @root's kernfs_node 1025 */ 1026 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root) 1027 { 1028 return root->kn; 1029 } 1030 1031 /** 1032 * kernfs_create_dir_ns - create a directory 1033 * @parent: parent in which to create a new directory 1034 * @name: name of the new directory 1035 * @mode: mode of the new directory 1036 * @uid: uid of the new directory 1037 * @gid: gid of the new directory 1038 * @priv: opaque data associated with the new directory 1039 * @ns: optional namespace tag of the directory 1040 * 1041 * Return: the created node on success, ERR_PTR() value on failure. 1042 */ 1043 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1044 const char *name, umode_t mode, 1045 kuid_t uid, kgid_t gid, 1046 void *priv, const void *ns) 1047 { 1048 struct kernfs_node *kn; 1049 int rc; 1050 1051 /* allocate */ 1052 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1053 uid, gid, KERNFS_DIR); 1054 if (!kn) 1055 return ERR_PTR(-ENOMEM); 1056 1057 kn->dir.root = parent->dir.root; 1058 kn->ns = ns; 1059 kn->priv = priv; 1060 1061 /* link in */ 1062 rc = kernfs_add_one(kn); 1063 if (!rc) 1064 return kn; 1065 1066 kernfs_put(kn); 1067 return ERR_PTR(rc); 1068 } 1069 1070 /** 1071 * kernfs_create_empty_dir - create an always empty directory 1072 * @parent: parent in which to create a new directory 1073 * @name: name of the new directory 1074 * 1075 * Return: the created node on success, ERR_PTR() value on failure. 1076 */ 1077 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1078 const char *name) 1079 { 1080 struct kernfs_node *kn; 1081 int rc; 1082 1083 /* allocate */ 1084 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1085 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1086 if (!kn) 1087 return ERR_PTR(-ENOMEM); 1088 1089 kn->flags |= KERNFS_EMPTY_DIR; 1090 kn->dir.root = parent->dir.root; 1091 kn->ns = NULL; 1092 kn->priv = NULL; 1093 1094 /* link in */ 1095 rc = kernfs_add_one(kn); 1096 if (!rc) 1097 return kn; 1098 1099 kernfs_put(kn); 1100 return ERR_PTR(rc); 1101 } 1102 1103 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 1104 { 1105 struct kernfs_node *kn; 1106 struct kernfs_root *root; 1107 1108 if (flags & LOOKUP_RCU) 1109 return -ECHILD; 1110 1111 /* Negative hashed dentry? */ 1112 if (d_really_is_negative(dentry)) { 1113 struct kernfs_node *parent; 1114 1115 /* If the kernfs parent node has changed discard and 1116 * proceed to ->lookup. 1117 * 1118 * There's nothing special needed here when getting the 1119 * dentry parent, even if a concurrent rename is in 1120 * progress. That's because the dentry is negative so 1121 * it can only be the target of the rename and it will 1122 * be doing a d_move() not a replace. Consequently the 1123 * dentry d_parent won't change over the d_move(). 1124 * 1125 * Also kernfs negative dentries transitioning from 1126 * negative to positive during revalidate won't happen 1127 * because they are invalidated on containing directory 1128 * changes and the lookup re-done so that a new positive 1129 * dentry can be properly created. 1130 */ 1131 root = kernfs_root_from_sb(dentry->d_sb); 1132 down_read(&root->kernfs_rwsem); 1133 parent = kernfs_dentry_node(dentry->d_parent); 1134 if (parent) { 1135 if (kernfs_dir_changed(parent, dentry)) { 1136 up_read(&root->kernfs_rwsem); 1137 return 0; 1138 } 1139 } 1140 up_read(&root->kernfs_rwsem); 1141 1142 /* The kernfs parent node hasn't changed, leave the 1143 * dentry negative and return success. 1144 */ 1145 return 1; 1146 } 1147 1148 kn = kernfs_dentry_node(dentry); 1149 root = kernfs_root(kn); 1150 down_read(&root->kernfs_rwsem); 1151 1152 /* The kernfs node has been deactivated */ 1153 if (!kernfs_active(kn)) 1154 goto out_bad; 1155 1156 /* The kernfs node has been moved? */ 1157 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 1158 goto out_bad; 1159 1160 /* The kernfs node has been renamed */ 1161 if (strcmp(dentry->d_name.name, kn->name) != 0) 1162 goto out_bad; 1163 1164 /* The kernfs node has been moved to a different namespace */ 1165 if (kn->parent && kernfs_ns_enabled(kn->parent) && 1166 kernfs_info(dentry->d_sb)->ns != kn->ns) 1167 goto out_bad; 1168 1169 up_read(&root->kernfs_rwsem); 1170 return 1; 1171 out_bad: 1172 up_read(&root->kernfs_rwsem); 1173 return 0; 1174 } 1175 1176 const struct dentry_operations kernfs_dops = { 1177 .d_revalidate = kernfs_dop_revalidate, 1178 }; 1179 1180 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1181 struct dentry *dentry, 1182 unsigned int flags) 1183 { 1184 struct kernfs_node *parent = dir->i_private; 1185 struct kernfs_node *kn; 1186 struct kernfs_root *root; 1187 struct inode *inode = NULL; 1188 const void *ns = NULL; 1189 1190 root = kernfs_root(parent); 1191 down_read(&root->kernfs_rwsem); 1192 if (kernfs_ns_enabled(parent)) 1193 ns = kernfs_info(dir->i_sb)->ns; 1194 1195 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1196 /* attach dentry and inode */ 1197 if (kn) { 1198 /* Inactive nodes are invisible to the VFS so don't 1199 * create a negative. 1200 */ 1201 if (!kernfs_active(kn)) { 1202 up_read(&root->kernfs_rwsem); 1203 return NULL; 1204 } 1205 inode = kernfs_get_inode(dir->i_sb, kn); 1206 if (!inode) 1207 inode = ERR_PTR(-ENOMEM); 1208 } 1209 /* 1210 * Needed for negative dentry validation. 1211 * The negative dentry can be created in kernfs_iop_lookup() 1212 * or transforms from positive dentry in dentry_unlink_inode() 1213 * called from vfs_rmdir(). 1214 */ 1215 if (!IS_ERR(inode)) 1216 kernfs_set_rev(parent, dentry); 1217 up_read(&root->kernfs_rwsem); 1218 1219 /* instantiate and hash (possibly negative) dentry */ 1220 return d_splice_alias(inode, dentry); 1221 } 1222 1223 static int kernfs_iop_mkdir(struct mnt_idmap *idmap, 1224 struct inode *dir, struct dentry *dentry, 1225 umode_t mode) 1226 { 1227 struct kernfs_node *parent = dir->i_private; 1228 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1229 int ret; 1230 1231 if (!scops || !scops->mkdir) 1232 return -EPERM; 1233 1234 if (!kernfs_get_active(parent)) 1235 return -ENODEV; 1236 1237 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1238 1239 kernfs_put_active(parent); 1240 return ret; 1241 } 1242 1243 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1244 { 1245 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1246 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1247 int ret; 1248 1249 if (!scops || !scops->rmdir) 1250 return -EPERM; 1251 1252 if (!kernfs_get_active(kn)) 1253 return -ENODEV; 1254 1255 ret = scops->rmdir(kn); 1256 1257 kernfs_put_active(kn); 1258 return ret; 1259 } 1260 1261 static int kernfs_iop_rename(struct mnt_idmap *idmap, 1262 struct inode *old_dir, struct dentry *old_dentry, 1263 struct inode *new_dir, struct dentry *new_dentry, 1264 unsigned int flags) 1265 { 1266 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1267 struct kernfs_node *new_parent = new_dir->i_private; 1268 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1269 int ret; 1270 1271 if (flags) 1272 return -EINVAL; 1273 1274 if (!scops || !scops->rename) 1275 return -EPERM; 1276 1277 if (!kernfs_get_active(kn)) 1278 return -ENODEV; 1279 1280 if (!kernfs_get_active(new_parent)) { 1281 kernfs_put_active(kn); 1282 return -ENODEV; 1283 } 1284 1285 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1286 1287 kernfs_put_active(new_parent); 1288 kernfs_put_active(kn); 1289 return ret; 1290 } 1291 1292 const struct inode_operations kernfs_dir_iops = { 1293 .lookup = kernfs_iop_lookup, 1294 .permission = kernfs_iop_permission, 1295 .setattr = kernfs_iop_setattr, 1296 .getattr = kernfs_iop_getattr, 1297 .listxattr = kernfs_iop_listxattr, 1298 1299 .mkdir = kernfs_iop_mkdir, 1300 .rmdir = kernfs_iop_rmdir, 1301 .rename = kernfs_iop_rename, 1302 }; 1303 1304 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1305 { 1306 struct kernfs_node *last; 1307 1308 while (true) { 1309 struct rb_node *rbn; 1310 1311 last = pos; 1312 1313 if (kernfs_type(pos) != KERNFS_DIR) 1314 break; 1315 1316 rbn = rb_first(&pos->dir.children); 1317 if (!rbn) 1318 break; 1319 1320 pos = rb_to_kn(rbn); 1321 } 1322 1323 return last; 1324 } 1325 1326 /** 1327 * kernfs_next_descendant_post - find the next descendant for post-order walk 1328 * @pos: the current position (%NULL to initiate traversal) 1329 * @root: kernfs_node whose descendants to walk 1330 * 1331 * Find the next descendant to visit for post-order traversal of @root's 1332 * descendants. @root is included in the iteration and the last node to be 1333 * visited. 1334 * 1335 * Return: the next descendant to visit or %NULL when done. 1336 */ 1337 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1338 struct kernfs_node *root) 1339 { 1340 struct rb_node *rbn; 1341 1342 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); 1343 1344 /* if first iteration, visit leftmost descendant which may be root */ 1345 if (!pos) 1346 return kernfs_leftmost_descendant(root); 1347 1348 /* if we visited @root, we're done */ 1349 if (pos == root) 1350 return NULL; 1351 1352 /* if there's an unvisited sibling, visit its leftmost descendant */ 1353 rbn = rb_next(&pos->rb); 1354 if (rbn) 1355 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1356 1357 /* no sibling left, visit parent */ 1358 return pos->parent; 1359 } 1360 1361 static void kernfs_activate_one(struct kernfs_node *kn) 1362 { 1363 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1364 1365 kn->flags |= KERNFS_ACTIVATED; 1366 1367 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING))) 1368 return; 1369 1370 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb)); 1371 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1372 1373 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active); 1374 } 1375 1376 /** 1377 * kernfs_activate - activate a node which started deactivated 1378 * @kn: kernfs_node whose subtree is to be activated 1379 * 1380 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1381 * needs to be explicitly activated. A node which hasn't been activated 1382 * isn't visible to userland and deactivation is skipped during its 1383 * removal. This is useful to construct atomic init sequences where 1384 * creation of multiple nodes should either succeed or fail atomically. 1385 * 1386 * The caller is responsible for ensuring that this function is not called 1387 * after kernfs_remove*() is invoked on @kn. 1388 */ 1389 void kernfs_activate(struct kernfs_node *kn) 1390 { 1391 struct kernfs_node *pos; 1392 struct kernfs_root *root = kernfs_root(kn); 1393 1394 down_write(&root->kernfs_rwsem); 1395 1396 pos = NULL; 1397 while ((pos = kernfs_next_descendant_post(pos, kn))) 1398 kernfs_activate_one(pos); 1399 1400 up_write(&root->kernfs_rwsem); 1401 } 1402 1403 /** 1404 * kernfs_show - show or hide a node 1405 * @kn: kernfs_node to show or hide 1406 * @show: whether to show or hide 1407 * 1408 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is 1409 * ignored in future activaitons. If %true, the mark is removed and activation 1410 * state is restored. This function won't implicitly activate a new node in a 1411 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet. 1412 * 1413 * To avoid recursion complexities, directories aren't supported for now. 1414 */ 1415 void kernfs_show(struct kernfs_node *kn, bool show) 1416 { 1417 struct kernfs_root *root = kernfs_root(kn); 1418 1419 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR)) 1420 return; 1421 1422 down_write(&root->kernfs_rwsem); 1423 1424 if (show) { 1425 kn->flags &= ~KERNFS_HIDDEN; 1426 if (kn->flags & KERNFS_ACTIVATED) 1427 kernfs_activate_one(kn); 1428 } else { 1429 kn->flags |= KERNFS_HIDDEN; 1430 if (kernfs_active(kn)) 1431 atomic_add(KN_DEACTIVATED_BIAS, &kn->active); 1432 kernfs_drain(kn); 1433 } 1434 1435 up_write(&root->kernfs_rwsem); 1436 } 1437 1438 static void __kernfs_remove(struct kernfs_node *kn) 1439 { 1440 struct kernfs_node *pos; 1441 1442 /* Short-circuit if non-root @kn has already finished removal. */ 1443 if (!kn) 1444 return; 1445 1446 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1447 1448 /* 1449 * This is for kernfs_remove_self() which plays with active ref 1450 * after removal. 1451 */ 1452 if (kn->parent && RB_EMPTY_NODE(&kn->rb)) 1453 return; 1454 1455 pr_debug("kernfs %s: removing\n", kn->name); 1456 1457 /* prevent new usage by marking all nodes removing and deactivating */ 1458 pos = NULL; 1459 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1460 pos->flags |= KERNFS_REMOVING; 1461 if (kernfs_active(pos)) 1462 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1463 } 1464 1465 /* deactivate and unlink the subtree node-by-node */ 1466 do { 1467 pos = kernfs_leftmost_descendant(kn); 1468 1469 /* 1470 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's 1471 * base ref could have been put by someone else by the time 1472 * the function returns. Make sure it doesn't go away 1473 * underneath us. 1474 */ 1475 kernfs_get(pos); 1476 1477 kernfs_drain(pos); 1478 1479 /* 1480 * kernfs_unlink_sibling() succeeds once per node. Use it 1481 * to decide who's responsible for cleanups. 1482 */ 1483 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1484 struct kernfs_iattrs *ps_iattr = 1485 pos->parent ? pos->parent->iattr : NULL; 1486 1487 /* update timestamps on the parent */ 1488 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1489 1490 if (ps_iattr) { 1491 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1492 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1493 } 1494 1495 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1496 kernfs_put(pos); 1497 } 1498 1499 kernfs_put(pos); 1500 } while (pos != kn); 1501 } 1502 1503 /** 1504 * kernfs_remove - remove a kernfs_node recursively 1505 * @kn: the kernfs_node to remove 1506 * 1507 * Remove @kn along with all its subdirectories and files. 1508 */ 1509 void kernfs_remove(struct kernfs_node *kn) 1510 { 1511 struct kernfs_root *root; 1512 1513 if (!kn) 1514 return; 1515 1516 root = kernfs_root(kn); 1517 1518 down_write(&root->kernfs_rwsem); 1519 __kernfs_remove(kn); 1520 up_write(&root->kernfs_rwsem); 1521 } 1522 1523 /** 1524 * kernfs_break_active_protection - break out of active protection 1525 * @kn: the self kernfs_node 1526 * 1527 * The caller must be running off of a kernfs operation which is invoked 1528 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1529 * this function must also be matched with an invocation of 1530 * kernfs_unbreak_active_protection(). 1531 * 1532 * This function releases the active reference of @kn the caller is 1533 * holding. Once this function is called, @kn may be removed at any point 1534 * and the caller is solely responsible for ensuring that the objects it 1535 * dereferences are accessible. 1536 */ 1537 void kernfs_break_active_protection(struct kernfs_node *kn) 1538 { 1539 /* 1540 * Take out ourself out of the active ref dependency chain. If 1541 * we're called without an active ref, lockdep will complain. 1542 */ 1543 kernfs_put_active(kn); 1544 } 1545 1546 /** 1547 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1548 * @kn: the self kernfs_node 1549 * 1550 * If kernfs_break_active_protection() was called, this function must be 1551 * invoked before finishing the kernfs operation. Note that while this 1552 * function restores the active reference, it doesn't and can't actually 1553 * restore the active protection - @kn may already or be in the process of 1554 * being removed. Once kernfs_break_active_protection() is invoked, that 1555 * protection is irreversibly gone for the kernfs operation instance. 1556 * 1557 * While this function may be called at any point after 1558 * kernfs_break_active_protection() is invoked, its most useful location 1559 * would be right before the enclosing kernfs operation returns. 1560 */ 1561 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1562 { 1563 /* 1564 * @kn->active could be in any state; however, the increment we do 1565 * here will be undone as soon as the enclosing kernfs operation 1566 * finishes and this temporary bump can't break anything. If @kn 1567 * is alive, nothing changes. If @kn is being deactivated, the 1568 * soon-to-follow put will either finish deactivation or restore 1569 * deactivated state. If @kn is already removed, the temporary 1570 * bump is guaranteed to be gone before @kn is released. 1571 */ 1572 atomic_inc(&kn->active); 1573 if (kernfs_lockdep(kn)) 1574 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1575 } 1576 1577 /** 1578 * kernfs_remove_self - remove a kernfs_node from its own method 1579 * @kn: the self kernfs_node to remove 1580 * 1581 * The caller must be running off of a kernfs operation which is invoked 1582 * with an active reference - e.g. one of kernfs_ops. This can be used to 1583 * implement a file operation which deletes itself. 1584 * 1585 * For example, the "delete" file for a sysfs device directory can be 1586 * implemented by invoking kernfs_remove_self() on the "delete" file 1587 * itself. This function breaks the circular dependency of trying to 1588 * deactivate self while holding an active ref itself. It isn't necessary 1589 * to modify the usual removal path to use kernfs_remove_self(). The 1590 * "delete" implementation can simply invoke kernfs_remove_self() on self 1591 * before proceeding with the usual removal path. kernfs will ignore later 1592 * kernfs_remove() on self. 1593 * 1594 * kernfs_remove_self() can be called multiple times concurrently on the 1595 * same kernfs_node. Only the first one actually performs removal and 1596 * returns %true. All others will wait until the kernfs operation which 1597 * won self-removal finishes and return %false. Note that the losers wait 1598 * for the completion of not only the winning kernfs_remove_self() but also 1599 * the whole kernfs_ops which won the arbitration. This can be used to 1600 * guarantee, for example, all concurrent writes to a "delete" file to 1601 * finish only after the whole operation is complete. 1602 * 1603 * Return: %true if @kn is removed by this call, otherwise %false. 1604 */ 1605 bool kernfs_remove_self(struct kernfs_node *kn) 1606 { 1607 bool ret; 1608 struct kernfs_root *root = kernfs_root(kn); 1609 1610 down_write(&root->kernfs_rwsem); 1611 kernfs_break_active_protection(kn); 1612 1613 /* 1614 * SUICIDAL is used to arbitrate among competing invocations. Only 1615 * the first one will actually perform removal. When the removal 1616 * is complete, SUICIDED is set and the active ref is restored 1617 * while kernfs_rwsem for held exclusive. The ones which lost 1618 * arbitration waits for SUICIDED && drained which can happen only 1619 * after the enclosing kernfs operation which executed the winning 1620 * instance of kernfs_remove_self() finished. 1621 */ 1622 if (!(kn->flags & KERNFS_SUICIDAL)) { 1623 kn->flags |= KERNFS_SUICIDAL; 1624 __kernfs_remove(kn); 1625 kn->flags |= KERNFS_SUICIDED; 1626 ret = true; 1627 } else { 1628 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1629 DEFINE_WAIT(wait); 1630 1631 while (true) { 1632 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1633 1634 if ((kn->flags & KERNFS_SUICIDED) && 1635 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1636 break; 1637 1638 up_write(&root->kernfs_rwsem); 1639 schedule(); 1640 down_write(&root->kernfs_rwsem); 1641 } 1642 finish_wait(waitq, &wait); 1643 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1644 ret = false; 1645 } 1646 1647 /* 1648 * This must be done while kernfs_rwsem held exclusive; otherwise, 1649 * waiting for SUICIDED && deactivated could finish prematurely. 1650 */ 1651 kernfs_unbreak_active_protection(kn); 1652 1653 up_write(&root->kernfs_rwsem); 1654 return ret; 1655 } 1656 1657 /** 1658 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1659 * @parent: parent of the target 1660 * @name: name of the kernfs_node to remove 1661 * @ns: namespace tag of the kernfs_node to remove 1662 * 1663 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1664 * 1665 * Return: %0 on success, -ENOENT if such entry doesn't exist. 1666 */ 1667 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1668 const void *ns) 1669 { 1670 struct kernfs_node *kn; 1671 struct kernfs_root *root; 1672 1673 if (!parent) { 1674 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1675 name); 1676 return -ENOENT; 1677 } 1678 1679 root = kernfs_root(parent); 1680 down_write(&root->kernfs_rwsem); 1681 1682 kn = kernfs_find_ns(parent, name, ns); 1683 if (kn) { 1684 kernfs_get(kn); 1685 __kernfs_remove(kn); 1686 kernfs_put(kn); 1687 } 1688 1689 up_write(&root->kernfs_rwsem); 1690 1691 if (kn) 1692 return 0; 1693 else 1694 return -ENOENT; 1695 } 1696 1697 /** 1698 * kernfs_rename_ns - move and rename a kernfs_node 1699 * @kn: target node 1700 * @new_parent: new parent to put @sd under 1701 * @new_name: new name 1702 * @new_ns: new namespace tag 1703 * 1704 * Return: %0 on success, -errno on failure. 1705 */ 1706 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1707 const char *new_name, const void *new_ns) 1708 { 1709 struct kernfs_node *old_parent; 1710 struct kernfs_root *root; 1711 const char *old_name = NULL; 1712 int error; 1713 1714 /* can't move or rename root */ 1715 if (!kn->parent) 1716 return -EINVAL; 1717 1718 root = kernfs_root(kn); 1719 down_write(&root->kernfs_rwsem); 1720 1721 error = -ENOENT; 1722 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1723 (new_parent->flags & KERNFS_EMPTY_DIR)) 1724 goto out; 1725 1726 error = 0; 1727 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1728 (strcmp(kn->name, new_name) == 0)) 1729 goto out; /* nothing to rename */ 1730 1731 error = -EEXIST; 1732 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1733 goto out; 1734 1735 /* rename kernfs_node */ 1736 if (strcmp(kn->name, new_name) != 0) { 1737 error = -ENOMEM; 1738 new_name = kstrdup_const(new_name, GFP_KERNEL); 1739 if (!new_name) 1740 goto out; 1741 } else { 1742 new_name = NULL; 1743 } 1744 1745 /* 1746 * Move to the appropriate place in the appropriate directories rbtree. 1747 */ 1748 kernfs_unlink_sibling(kn); 1749 kernfs_get(new_parent); 1750 1751 /* rename_lock protects ->parent and ->name accessors */ 1752 write_lock_irq(&kernfs_rename_lock); 1753 1754 old_parent = kn->parent; 1755 kn->parent = new_parent; 1756 1757 kn->ns = new_ns; 1758 if (new_name) { 1759 old_name = kn->name; 1760 kn->name = new_name; 1761 } 1762 1763 write_unlock_irq(&kernfs_rename_lock); 1764 1765 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1766 kernfs_link_sibling(kn); 1767 1768 kernfs_put(old_parent); 1769 kfree_const(old_name); 1770 1771 error = 0; 1772 out: 1773 up_write(&root->kernfs_rwsem); 1774 return error; 1775 } 1776 1777 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1778 { 1779 kernfs_put(filp->private_data); 1780 return 0; 1781 } 1782 1783 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1784 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1785 { 1786 if (pos) { 1787 int valid = kernfs_active(pos) && 1788 pos->parent == parent && hash == pos->hash; 1789 kernfs_put(pos); 1790 if (!valid) 1791 pos = NULL; 1792 } 1793 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1794 struct rb_node *node = parent->dir.children.rb_node; 1795 while (node) { 1796 pos = rb_to_kn(node); 1797 1798 if (hash < pos->hash) 1799 node = node->rb_left; 1800 else if (hash > pos->hash) 1801 node = node->rb_right; 1802 else 1803 break; 1804 } 1805 } 1806 /* Skip over entries which are dying/dead or in the wrong namespace */ 1807 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1808 struct rb_node *node = rb_next(&pos->rb); 1809 if (!node) 1810 pos = NULL; 1811 else 1812 pos = rb_to_kn(node); 1813 } 1814 return pos; 1815 } 1816 1817 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1818 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1819 { 1820 pos = kernfs_dir_pos(ns, parent, ino, pos); 1821 if (pos) { 1822 do { 1823 struct rb_node *node = rb_next(&pos->rb); 1824 if (!node) 1825 pos = NULL; 1826 else 1827 pos = rb_to_kn(node); 1828 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1829 } 1830 return pos; 1831 } 1832 1833 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1834 { 1835 struct dentry *dentry = file->f_path.dentry; 1836 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1837 struct kernfs_node *pos = file->private_data; 1838 struct kernfs_root *root; 1839 const void *ns = NULL; 1840 1841 if (!dir_emit_dots(file, ctx)) 1842 return 0; 1843 1844 root = kernfs_root(parent); 1845 down_read(&root->kernfs_rwsem); 1846 1847 if (kernfs_ns_enabled(parent)) 1848 ns = kernfs_info(dentry->d_sb)->ns; 1849 1850 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1851 pos; 1852 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1853 const char *name = pos->name; 1854 unsigned int type = fs_umode_to_dtype(pos->mode); 1855 int len = strlen(name); 1856 ino_t ino = kernfs_ino(pos); 1857 1858 ctx->pos = pos->hash; 1859 file->private_data = pos; 1860 kernfs_get(pos); 1861 1862 up_read(&root->kernfs_rwsem); 1863 if (!dir_emit(ctx, name, len, ino, type)) 1864 return 0; 1865 down_read(&root->kernfs_rwsem); 1866 } 1867 up_read(&root->kernfs_rwsem); 1868 file->private_data = NULL; 1869 ctx->pos = INT_MAX; 1870 return 0; 1871 } 1872 1873 const struct file_operations kernfs_dir_fops = { 1874 .read = generic_read_dir, 1875 .iterate_shared = kernfs_fop_readdir, 1876 .release = kernfs_dir_fop_release, 1877 .llseek = generic_file_llseek, 1878 }; 1879