1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/fs.h> 13 #include <linux/namei.h> 14 #include <linux/idr.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/hash.h> 18 19 #include "kernfs-internal.h" 20 21 DEFINE_MUTEX(kernfs_mutex); 22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 45 } 46 47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf, 48 size_t buflen) 49 { 50 char *p = buf + buflen; 51 int len; 52 53 *--p = '\0'; 54 55 do { 56 len = strlen(kn->name); 57 if (p - buf < len + 1) { 58 buf[0] = '\0'; 59 p = NULL; 60 break; 61 } 62 p -= len; 63 memcpy(p, kn->name, len); 64 *--p = '/'; 65 kn = kn->parent; 66 } while (kn && kn->parent); 67 68 return p; 69 } 70 71 /** 72 * kernfs_name - obtain the name of a given node 73 * @kn: kernfs_node of interest 74 * @buf: buffer to copy @kn's name into 75 * @buflen: size of @buf 76 * 77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 78 * similar to strlcpy(). It returns the length of @kn's name and if @buf 79 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 80 * 81 * This function can be called from any context. 82 */ 83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 84 { 85 unsigned long flags; 86 int ret; 87 88 spin_lock_irqsave(&kernfs_rename_lock, flags); 89 ret = kernfs_name_locked(kn, buf, buflen); 90 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 91 return ret; 92 } 93 94 /** 95 * kernfs_path - build full path of a given node 96 * @kn: kernfs_node of interest 97 * @buf: buffer to copy @kn's name into 98 * @buflen: size of @buf 99 * 100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The 101 * path is built from the end of @buf so the returned pointer usually 102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated 103 * and %NULL is returned. 104 */ 105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen) 106 { 107 unsigned long flags; 108 char *p; 109 110 spin_lock_irqsave(&kernfs_rename_lock, flags); 111 p = kernfs_path_locked(kn, buf, buflen); 112 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 113 return p; 114 } 115 EXPORT_SYMBOL_GPL(kernfs_path); 116 117 /** 118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 119 * @kn: kernfs_node of interest 120 * 121 * This function can be called from any context. 122 */ 123 void pr_cont_kernfs_name(struct kernfs_node *kn) 124 { 125 unsigned long flags; 126 127 spin_lock_irqsave(&kernfs_rename_lock, flags); 128 129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 130 pr_cont("%s", kernfs_pr_cont_buf); 131 132 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 133 } 134 135 /** 136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 137 * @kn: kernfs_node of interest 138 * 139 * This function can be called from any context. 140 */ 141 void pr_cont_kernfs_path(struct kernfs_node *kn) 142 { 143 unsigned long flags; 144 char *p; 145 146 spin_lock_irqsave(&kernfs_rename_lock, flags); 147 148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf, 149 sizeof(kernfs_pr_cont_buf)); 150 if (p) 151 pr_cont("%s", p); 152 else 153 pr_cont("<name too long>"); 154 155 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 156 } 157 158 /** 159 * kernfs_get_parent - determine the parent node and pin it 160 * @kn: kernfs_node of interest 161 * 162 * Determines @kn's parent, pins and returns it. This function can be 163 * called from any context. 164 */ 165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 166 { 167 struct kernfs_node *parent; 168 unsigned long flags; 169 170 spin_lock_irqsave(&kernfs_rename_lock, flags); 171 parent = kn->parent; 172 kernfs_get(parent); 173 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 174 175 return parent; 176 } 177 178 /** 179 * kernfs_name_hash 180 * @name: Null terminated string to hash 181 * @ns: Namespace tag to hash 182 * 183 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 184 */ 185 static unsigned int kernfs_name_hash(const char *name, const void *ns) 186 { 187 unsigned long hash = init_name_hash(); 188 unsigned int len = strlen(name); 189 while (len--) 190 hash = partial_name_hash(*name++, hash); 191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31)); 192 hash &= 0x7fffffffU; 193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 194 if (hash < 2) 195 hash += 2; 196 if (hash >= INT_MAX) 197 hash = INT_MAX - 1; 198 return hash; 199 } 200 201 static int kernfs_name_compare(unsigned int hash, const char *name, 202 const void *ns, const struct kernfs_node *kn) 203 { 204 if (hash < kn->hash) 205 return -1; 206 if (hash > kn->hash) 207 return 1; 208 if (ns < kn->ns) 209 return -1; 210 if (ns > kn->ns) 211 return 1; 212 return strcmp(name, kn->name); 213 } 214 215 static int kernfs_sd_compare(const struct kernfs_node *left, 216 const struct kernfs_node *right) 217 { 218 return kernfs_name_compare(left->hash, left->name, left->ns, right); 219 } 220 221 /** 222 * kernfs_link_sibling - link kernfs_node into sibling rbtree 223 * @kn: kernfs_node of interest 224 * 225 * Link @kn into its sibling rbtree which starts from 226 * @kn->parent->dir.children. 227 * 228 * Locking: 229 * mutex_lock(kernfs_mutex) 230 * 231 * RETURNS: 232 * 0 on susccess -EEXIST on failure. 233 */ 234 static int kernfs_link_sibling(struct kernfs_node *kn) 235 { 236 struct rb_node **node = &kn->parent->dir.children.rb_node; 237 struct rb_node *parent = NULL; 238 239 while (*node) { 240 struct kernfs_node *pos; 241 int result; 242 243 pos = rb_to_kn(*node); 244 parent = *node; 245 result = kernfs_sd_compare(kn, pos); 246 if (result < 0) 247 node = &pos->rb.rb_left; 248 else if (result > 0) 249 node = &pos->rb.rb_right; 250 else 251 return -EEXIST; 252 } 253 254 /* add new node and rebalance the tree */ 255 rb_link_node(&kn->rb, parent, node); 256 rb_insert_color(&kn->rb, &kn->parent->dir.children); 257 258 /* successfully added, account subdir number */ 259 if (kernfs_type(kn) == KERNFS_DIR) 260 kn->parent->dir.subdirs++; 261 262 return 0; 263 } 264 265 /** 266 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 267 * @kn: kernfs_node of interest 268 * 269 * Try to unlink @kn from its sibling rbtree which starts from 270 * kn->parent->dir.children. Returns %true if @kn was actually 271 * removed, %false if @kn wasn't on the rbtree. 272 * 273 * Locking: 274 * mutex_lock(kernfs_mutex) 275 */ 276 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 277 { 278 if (RB_EMPTY_NODE(&kn->rb)) 279 return false; 280 281 if (kernfs_type(kn) == KERNFS_DIR) 282 kn->parent->dir.subdirs--; 283 284 rb_erase(&kn->rb, &kn->parent->dir.children); 285 RB_CLEAR_NODE(&kn->rb); 286 return true; 287 } 288 289 /** 290 * kernfs_get_active - get an active reference to kernfs_node 291 * @kn: kernfs_node to get an active reference to 292 * 293 * Get an active reference of @kn. This function is noop if @kn 294 * is NULL. 295 * 296 * RETURNS: 297 * Pointer to @kn on success, NULL on failure. 298 */ 299 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 300 { 301 if (unlikely(!kn)) 302 return NULL; 303 304 if (!atomic_inc_unless_negative(&kn->active)) 305 return NULL; 306 307 if (kernfs_lockdep(kn)) 308 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 309 return kn; 310 } 311 312 /** 313 * kernfs_put_active - put an active reference to kernfs_node 314 * @kn: kernfs_node to put an active reference to 315 * 316 * Put an active reference to @kn. This function is noop if @kn 317 * is NULL. 318 */ 319 void kernfs_put_active(struct kernfs_node *kn) 320 { 321 struct kernfs_root *root = kernfs_root(kn); 322 int v; 323 324 if (unlikely(!kn)) 325 return; 326 327 if (kernfs_lockdep(kn)) 328 rwsem_release(&kn->dep_map, 1, _RET_IP_); 329 v = atomic_dec_return(&kn->active); 330 if (likely(v != KN_DEACTIVATED_BIAS)) 331 return; 332 333 wake_up_all(&root->deactivate_waitq); 334 } 335 336 /** 337 * kernfs_drain - drain kernfs_node 338 * @kn: kernfs_node to drain 339 * 340 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 341 * removers may invoke this function concurrently on @kn and all will 342 * return after draining is complete. 343 */ 344 static void kernfs_drain(struct kernfs_node *kn) 345 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 346 { 347 struct kernfs_root *root = kernfs_root(kn); 348 349 lockdep_assert_held(&kernfs_mutex); 350 WARN_ON_ONCE(kernfs_active(kn)); 351 352 mutex_unlock(&kernfs_mutex); 353 354 if (kernfs_lockdep(kn)) { 355 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 356 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 357 lock_contended(&kn->dep_map, _RET_IP_); 358 } 359 360 /* but everyone should wait for draining */ 361 wait_event(root->deactivate_waitq, 362 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 363 364 if (kernfs_lockdep(kn)) { 365 lock_acquired(&kn->dep_map, _RET_IP_); 366 rwsem_release(&kn->dep_map, 1, _RET_IP_); 367 } 368 369 kernfs_unmap_bin_file(kn); 370 371 mutex_lock(&kernfs_mutex); 372 } 373 374 /** 375 * kernfs_get - get a reference count on a kernfs_node 376 * @kn: the target kernfs_node 377 */ 378 void kernfs_get(struct kernfs_node *kn) 379 { 380 if (kn) { 381 WARN_ON(!atomic_read(&kn->count)); 382 atomic_inc(&kn->count); 383 } 384 } 385 EXPORT_SYMBOL_GPL(kernfs_get); 386 387 /** 388 * kernfs_put - put a reference count on a kernfs_node 389 * @kn: the target kernfs_node 390 * 391 * Put a reference count of @kn and destroy it if it reached zero. 392 */ 393 void kernfs_put(struct kernfs_node *kn) 394 { 395 struct kernfs_node *parent; 396 struct kernfs_root *root; 397 398 if (!kn || !atomic_dec_and_test(&kn->count)) 399 return; 400 root = kernfs_root(kn); 401 repeat: 402 /* 403 * Moving/renaming is always done while holding reference. 404 * kn->parent won't change beneath us. 405 */ 406 parent = kn->parent; 407 408 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 409 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 410 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 411 412 if (kernfs_type(kn) == KERNFS_LINK) 413 kernfs_put(kn->symlink.target_kn); 414 415 kfree_const(kn->name); 416 417 if (kn->iattr) { 418 if (kn->iattr->ia_secdata) 419 security_release_secctx(kn->iattr->ia_secdata, 420 kn->iattr->ia_secdata_len); 421 simple_xattrs_free(&kn->iattr->xattrs); 422 } 423 kfree(kn->iattr); 424 ida_simple_remove(&root->ino_ida, kn->ino); 425 kmem_cache_free(kernfs_node_cache, kn); 426 427 kn = parent; 428 if (kn) { 429 if (atomic_dec_and_test(&kn->count)) 430 goto repeat; 431 } else { 432 /* just released the root kn, free @root too */ 433 ida_destroy(&root->ino_ida); 434 kfree(root); 435 } 436 } 437 EXPORT_SYMBOL_GPL(kernfs_put); 438 439 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 440 { 441 struct kernfs_node *kn; 442 443 if (flags & LOOKUP_RCU) 444 return -ECHILD; 445 446 /* Always perform fresh lookup for negatives */ 447 if (d_really_is_negative(dentry)) 448 goto out_bad_unlocked; 449 450 kn = dentry->d_fsdata; 451 mutex_lock(&kernfs_mutex); 452 453 /* The kernfs node has been deactivated */ 454 if (!kernfs_active(kn)) 455 goto out_bad; 456 457 /* The kernfs node has been moved? */ 458 if (dentry->d_parent->d_fsdata != kn->parent) 459 goto out_bad; 460 461 /* The kernfs node has been renamed */ 462 if (strcmp(dentry->d_name.name, kn->name) != 0) 463 goto out_bad; 464 465 /* The kernfs node has been moved to a different namespace */ 466 if (kn->parent && kernfs_ns_enabled(kn->parent) && 467 kernfs_info(dentry->d_sb)->ns != kn->ns) 468 goto out_bad; 469 470 mutex_unlock(&kernfs_mutex); 471 return 1; 472 out_bad: 473 mutex_unlock(&kernfs_mutex); 474 out_bad_unlocked: 475 return 0; 476 } 477 478 static void kernfs_dop_release(struct dentry *dentry) 479 { 480 kernfs_put(dentry->d_fsdata); 481 } 482 483 const struct dentry_operations kernfs_dops = { 484 .d_revalidate = kernfs_dop_revalidate, 485 .d_release = kernfs_dop_release, 486 }; 487 488 /** 489 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 490 * @dentry: the dentry in question 491 * 492 * Return the kernfs_node associated with @dentry. If @dentry is not a 493 * kernfs one, %NULL is returned. 494 * 495 * While the returned kernfs_node will stay accessible as long as @dentry 496 * is accessible, the returned node can be in any state and the caller is 497 * fully responsible for determining what's accessible. 498 */ 499 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 500 { 501 if (dentry->d_sb->s_op == &kernfs_sops) 502 return dentry->d_fsdata; 503 return NULL; 504 } 505 506 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 507 const char *name, umode_t mode, 508 unsigned flags) 509 { 510 struct kernfs_node *kn; 511 int ret; 512 513 name = kstrdup_const(name, GFP_KERNEL); 514 if (!name) 515 return NULL; 516 517 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 518 if (!kn) 519 goto err_out1; 520 521 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL); 522 if (ret < 0) 523 goto err_out2; 524 kn->ino = ret; 525 526 atomic_set(&kn->count, 1); 527 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 528 RB_CLEAR_NODE(&kn->rb); 529 530 kn->name = name; 531 kn->mode = mode; 532 kn->flags = flags; 533 534 return kn; 535 536 err_out2: 537 kmem_cache_free(kernfs_node_cache, kn); 538 err_out1: 539 kfree_const(name); 540 return NULL; 541 } 542 543 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 544 const char *name, umode_t mode, 545 unsigned flags) 546 { 547 struct kernfs_node *kn; 548 549 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags); 550 if (kn) { 551 kernfs_get(parent); 552 kn->parent = parent; 553 } 554 return kn; 555 } 556 557 /** 558 * kernfs_add_one - add kernfs_node to parent without warning 559 * @kn: kernfs_node to be added 560 * 561 * The caller must already have initialized @kn->parent. This 562 * function increments nlink of the parent's inode if @kn is a 563 * directory and link into the children list of the parent. 564 * 565 * RETURNS: 566 * 0 on success, -EEXIST if entry with the given name already 567 * exists. 568 */ 569 int kernfs_add_one(struct kernfs_node *kn) 570 { 571 struct kernfs_node *parent = kn->parent; 572 struct kernfs_iattrs *ps_iattr; 573 bool has_ns; 574 int ret; 575 576 mutex_lock(&kernfs_mutex); 577 578 ret = -EINVAL; 579 has_ns = kernfs_ns_enabled(parent); 580 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 581 has_ns ? "required" : "invalid", parent->name, kn->name)) 582 goto out_unlock; 583 584 if (kernfs_type(parent) != KERNFS_DIR) 585 goto out_unlock; 586 587 ret = -ENOENT; 588 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 589 goto out_unlock; 590 591 kn->hash = kernfs_name_hash(kn->name, kn->ns); 592 593 ret = kernfs_link_sibling(kn); 594 if (ret) 595 goto out_unlock; 596 597 /* Update timestamps on the parent */ 598 ps_iattr = parent->iattr; 599 if (ps_iattr) { 600 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 601 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME; 602 } 603 604 mutex_unlock(&kernfs_mutex); 605 606 /* 607 * Activate the new node unless CREATE_DEACTIVATED is requested. 608 * If not activated here, the kernfs user is responsible for 609 * activating the node with kernfs_activate(). A node which hasn't 610 * been activated is not visible to userland and its removal won't 611 * trigger deactivation. 612 */ 613 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 614 kernfs_activate(kn); 615 return 0; 616 617 out_unlock: 618 mutex_unlock(&kernfs_mutex); 619 return ret; 620 } 621 622 /** 623 * kernfs_find_ns - find kernfs_node with the given name 624 * @parent: kernfs_node to search under 625 * @name: name to look for 626 * @ns: the namespace tag to use 627 * 628 * Look for kernfs_node with name @name under @parent. Returns pointer to 629 * the found kernfs_node on success, %NULL on failure. 630 */ 631 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 632 const unsigned char *name, 633 const void *ns) 634 { 635 struct rb_node *node = parent->dir.children.rb_node; 636 bool has_ns = kernfs_ns_enabled(parent); 637 unsigned int hash; 638 639 lockdep_assert_held(&kernfs_mutex); 640 641 if (has_ns != (bool)ns) { 642 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 643 has_ns ? "required" : "invalid", parent->name, name); 644 return NULL; 645 } 646 647 hash = kernfs_name_hash(name, ns); 648 while (node) { 649 struct kernfs_node *kn; 650 int result; 651 652 kn = rb_to_kn(node); 653 result = kernfs_name_compare(hash, name, ns, kn); 654 if (result < 0) 655 node = node->rb_left; 656 else if (result > 0) 657 node = node->rb_right; 658 else 659 return kn; 660 } 661 return NULL; 662 } 663 664 /** 665 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 666 * @parent: kernfs_node to search under 667 * @name: name to look for 668 * @ns: the namespace tag to use 669 * 670 * Look for kernfs_node with name @name under @parent and get a reference 671 * if found. This function may sleep and returns pointer to the found 672 * kernfs_node on success, %NULL on failure. 673 */ 674 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 675 const char *name, const void *ns) 676 { 677 struct kernfs_node *kn; 678 679 mutex_lock(&kernfs_mutex); 680 kn = kernfs_find_ns(parent, name, ns); 681 kernfs_get(kn); 682 mutex_unlock(&kernfs_mutex); 683 684 return kn; 685 } 686 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 687 688 /** 689 * kernfs_create_root - create a new kernfs hierarchy 690 * @scops: optional syscall operations for the hierarchy 691 * @flags: KERNFS_ROOT_* flags 692 * @priv: opaque data associated with the new directory 693 * 694 * Returns the root of the new hierarchy on success, ERR_PTR() value on 695 * failure. 696 */ 697 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 698 unsigned int flags, void *priv) 699 { 700 struct kernfs_root *root; 701 struct kernfs_node *kn; 702 703 root = kzalloc(sizeof(*root), GFP_KERNEL); 704 if (!root) 705 return ERR_PTR(-ENOMEM); 706 707 ida_init(&root->ino_ida); 708 INIT_LIST_HEAD(&root->supers); 709 710 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 711 KERNFS_DIR); 712 if (!kn) { 713 ida_destroy(&root->ino_ida); 714 kfree(root); 715 return ERR_PTR(-ENOMEM); 716 } 717 718 kn->priv = priv; 719 kn->dir.root = root; 720 721 root->syscall_ops = scops; 722 root->flags = flags; 723 root->kn = kn; 724 init_waitqueue_head(&root->deactivate_waitq); 725 726 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 727 kernfs_activate(kn); 728 729 return root; 730 } 731 732 /** 733 * kernfs_destroy_root - destroy a kernfs hierarchy 734 * @root: root of the hierarchy to destroy 735 * 736 * Destroy the hierarchy anchored at @root by removing all existing 737 * directories and destroying @root. 738 */ 739 void kernfs_destroy_root(struct kernfs_root *root) 740 { 741 kernfs_remove(root->kn); /* will also free @root */ 742 } 743 744 /** 745 * kernfs_create_dir_ns - create a directory 746 * @parent: parent in which to create a new directory 747 * @name: name of the new directory 748 * @mode: mode of the new directory 749 * @priv: opaque data associated with the new directory 750 * @ns: optional namespace tag of the directory 751 * 752 * Returns the created node on success, ERR_PTR() value on failure. 753 */ 754 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 755 const char *name, umode_t mode, 756 void *priv, const void *ns) 757 { 758 struct kernfs_node *kn; 759 int rc; 760 761 /* allocate */ 762 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR); 763 if (!kn) 764 return ERR_PTR(-ENOMEM); 765 766 kn->dir.root = parent->dir.root; 767 kn->ns = ns; 768 kn->priv = priv; 769 770 /* link in */ 771 rc = kernfs_add_one(kn); 772 if (!rc) 773 return kn; 774 775 kernfs_put(kn); 776 return ERR_PTR(rc); 777 } 778 779 static struct dentry *kernfs_iop_lookup(struct inode *dir, 780 struct dentry *dentry, 781 unsigned int flags) 782 { 783 struct dentry *ret; 784 struct kernfs_node *parent = dentry->d_parent->d_fsdata; 785 struct kernfs_node *kn; 786 struct inode *inode; 787 const void *ns = NULL; 788 789 mutex_lock(&kernfs_mutex); 790 791 if (kernfs_ns_enabled(parent)) 792 ns = kernfs_info(dir->i_sb)->ns; 793 794 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 795 796 /* no such entry */ 797 if (!kn || !kernfs_active(kn)) { 798 ret = NULL; 799 goto out_unlock; 800 } 801 kernfs_get(kn); 802 dentry->d_fsdata = kn; 803 804 /* attach dentry and inode */ 805 inode = kernfs_get_inode(dir->i_sb, kn); 806 if (!inode) { 807 ret = ERR_PTR(-ENOMEM); 808 goto out_unlock; 809 } 810 811 /* instantiate and hash dentry */ 812 ret = d_splice_alias(inode, dentry); 813 out_unlock: 814 mutex_unlock(&kernfs_mutex); 815 return ret; 816 } 817 818 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 819 umode_t mode) 820 { 821 struct kernfs_node *parent = dir->i_private; 822 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 823 int ret; 824 825 if (!scops || !scops->mkdir) 826 return -EPERM; 827 828 if (!kernfs_get_active(parent)) 829 return -ENODEV; 830 831 ret = scops->mkdir(parent, dentry->d_name.name, mode); 832 833 kernfs_put_active(parent); 834 return ret; 835 } 836 837 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 838 { 839 struct kernfs_node *kn = dentry->d_fsdata; 840 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 841 int ret; 842 843 if (!scops || !scops->rmdir) 844 return -EPERM; 845 846 if (!kernfs_get_active(kn)) 847 return -ENODEV; 848 849 ret = scops->rmdir(kn); 850 851 kernfs_put_active(kn); 852 return ret; 853 } 854 855 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 856 struct inode *new_dir, struct dentry *new_dentry) 857 { 858 struct kernfs_node *kn = old_dentry->d_fsdata; 859 struct kernfs_node *new_parent = new_dir->i_private; 860 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 861 int ret; 862 863 if (!scops || !scops->rename) 864 return -EPERM; 865 866 if (!kernfs_get_active(kn)) 867 return -ENODEV; 868 869 if (!kernfs_get_active(new_parent)) { 870 kernfs_put_active(kn); 871 return -ENODEV; 872 } 873 874 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 875 876 kernfs_put_active(new_parent); 877 kernfs_put_active(kn); 878 return ret; 879 } 880 881 const struct inode_operations kernfs_dir_iops = { 882 .lookup = kernfs_iop_lookup, 883 .permission = kernfs_iop_permission, 884 .setattr = kernfs_iop_setattr, 885 .getattr = kernfs_iop_getattr, 886 .setxattr = kernfs_iop_setxattr, 887 .removexattr = kernfs_iop_removexattr, 888 .getxattr = kernfs_iop_getxattr, 889 .listxattr = kernfs_iop_listxattr, 890 891 .mkdir = kernfs_iop_mkdir, 892 .rmdir = kernfs_iop_rmdir, 893 .rename = kernfs_iop_rename, 894 }; 895 896 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 897 { 898 struct kernfs_node *last; 899 900 while (true) { 901 struct rb_node *rbn; 902 903 last = pos; 904 905 if (kernfs_type(pos) != KERNFS_DIR) 906 break; 907 908 rbn = rb_first(&pos->dir.children); 909 if (!rbn) 910 break; 911 912 pos = rb_to_kn(rbn); 913 } 914 915 return last; 916 } 917 918 /** 919 * kernfs_next_descendant_post - find the next descendant for post-order walk 920 * @pos: the current position (%NULL to initiate traversal) 921 * @root: kernfs_node whose descendants to walk 922 * 923 * Find the next descendant to visit for post-order traversal of @root's 924 * descendants. @root is included in the iteration and the last node to be 925 * visited. 926 */ 927 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 928 struct kernfs_node *root) 929 { 930 struct rb_node *rbn; 931 932 lockdep_assert_held(&kernfs_mutex); 933 934 /* if first iteration, visit leftmost descendant which may be root */ 935 if (!pos) 936 return kernfs_leftmost_descendant(root); 937 938 /* if we visited @root, we're done */ 939 if (pos == root) 940 return NULL; 941 942 /* if there's an unvisited sibling, visit its leftmost descendant */ 943 rbn = rb_next(&pos->rb); 944 if (rbn) 945 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 946 947 /* no sibling left, visit parent */ 948 return pos->parent; 949 } 950 951 /** 952 * kernfs_activate - activate a node which started deactivated 953 * @kn: kernfs_node whose subtree is to be activated 954 * 955 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 956 * needs to be explicitly activated. A node which hasn't been activated 957 * isn't visible to userland and deactivation is skipped during its 958 * removal. This is useful to construct atomic init sequences where 959 * creation of multiple nodes should either succeed or fail atomically. 960 * 961 * The caller is responsible for ensuring that this function is not called 962 * after kernfs_remove*() is invoked on @kn. 963 */ 964 void kernfs_activate(struct kernfs_node *kn) 965 { 966 struct kernfs_node *pos; 967 968 mutex_lock(&kernfs_mutex); 969 970 pos = NULL; 971 while ((pos = kernfs_next_descendant_post(pos, kn))) { 972 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 973 continue; 974 975 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 976 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 977 978 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 979 pos->flags |= KERNFS_ACTIVATED; 980 } 981 982 mutex_unlock(&kernfs_mutex); 983 } 984 985 static void __kernfs_remove(struct kernfs_node *kn) 986 { 987 struct kernfs_node *pos; 988 989 lockdep_assert_held(&kernfs_mutex); 990 991 /* 992 * Short-circuit if non-root @kn has already finished removal. 993 * This is for kernfs_remove_self() which plays with active ref 994 * after removal. 995 */ 996 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 997 return; 998 999 pr_debug("kernfs %s: removing\n", kn->name); 1000 1001 /* prevent any new usage under @kn by deactivating all nodes */ 1002 pos = NULL; 1003 while ((pos = kernfs_next_descendant_post(pos, kn))) 1004 if (kernfs_active(pos)) 1005 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1006 1007 /* deactivate and unlink the subtree node-by-node */ 1008 do { 1009 pos = kernfs_leftmost_descendant(kn); 1010 1011 /* 1012 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1013 * base ref could have been put by someone else by the time 1014 * the function returns. Make sure it doesn't go away 1015 * underneath us. 1016 */ 1017 kernfs_get(pos); 1018 1019 /* 1020 * Drain iff @kn was activated. This avoids draining and 1021 * its lockdep annotations for nodes which have never been 1022 * activated and allows embedding kernfs_remove() in create 1023 * error paths without worrying about draining. 1024 */ 1025 if (kn->flags & KERNFS_ACTIVATED) 1026 kernfs_drain(pos); 1027 else 1028 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1029 1030 /* 1031 * kernfs_unlink_sibling() succeeds once per node. Use it 1032 * to decide who's responsible for cleanups. 1033 */ 1034 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1035 struct kernfs_iattrs *ps_iattr = 1036 pos->parent ? pos->parent->iattr : NULL; 1037 1038 /* update timestamps on the parent */ 1039 if (ps_iattr) { 1040 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME; 1041 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME; 1042 } 1043 1044 kernfs_put(pos); 1045 } 1046 1047 kernfs_put(pos); 1048 } while (pos != kn); 1049 } 1050 1051 /** 1052 * kernfs_remove - remove a kernfs_node recursively 1053 * @kn: the kernfs_node to remove 1054 * 1055 * Remove @kn along with all its subdirectories and files. 1056 */ 1057 void kernfs_remove(struct kernfs_node *kn) 1058 { 1059 mutex_lock(&kernfs_mutex); 1060 __kernfs_remove(kn); 1061 mutex_unlock(&kernfs_mutex); 1062 } 1063 1064 /** 1065 * kernfs_break_active_protection - break out of active protection 1066 * @kn: the self kernfs_node 1067 * 1068 * The caller must be running off of a kernfs operation which is invoked 1069 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1070 * this function must also be matched with an invocation of 1071 * kernfs_unbreak_active_protection(). 1072 * 1073 * This function releases the active reference of @kn the caller is 1074 * holding. Once this function is called, @kn may be removed at any point 1075 * and the caller is solely responsible for ensuring that the objects it 1076 * dereferences are accessible. 1077 */ 1078 void kernfs_break_active_protection(struct kernfs_node *kn) 1079 { 1080 /* 1081 * Take out ourself out of the active ref dependency chain. If 1082 * we're called without an active ref, lockdep will complain. 1083 */ 1084 kernfs_put_active(kn); 1085 } 1086 1087 /** 1088 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1089 * @kn: the self kernfs_node 1090 * 1091 * If kernfs_break_active_protection() was called, this function must be 1092 * invoked before finishing the kernfs operation. Note that while this 1093 * function restores the active reference, it doesn't and can't actually 1094 * restore the active protection - @kn may already or be in the process of 1095 * being removed. Once kernfs_break_active_protection() is invoked, that 1096 * protection is irreversibly gone for the kernfs operation instance. 1097 * 1098 * While this function may be called at any point after 1099 * kernfs_break_active_protection() is invoked, its most useful location 1100 * would be right before the enclosing kernfs operation returns. 1101 */ 1102 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1103 { 1104 /* 1105 * @kn->active could be in any state; however, the increment we do 1106 * here will be undone as soon as the enclosing kernfs operation 1107 * finishes and this temporary bump can't break anything. If @kn 1108 * is alive, nothing changes. If @kn is being deactivated, the 1109 * soon-to-follow put will either finish deactivation or restore 1110 * deactivated state. If @kn is already removed, the temporary 1111 * bump is guaranteed to be gone before @kn is released. 1112 */ 1113 atomic_inc(&kn->active); 1114 if (kernfs_lockdep(kn)) 1115 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1116 } 1117 1118 /** 1119 * kernfs_remove_self - remove a kernfs_node from its own method 1120 * @kn: the self kernfs_node to remove 1121 * 1122 * The caller must be running off of a kernfs operation which is invoked 1123 * with an active reference - e.g. one of kernfs_ops. This can be used to 1124 * implement a file operation which deletes itself. 1125 * 1126 * For example, the "delete" file for a sysfs device directory can be 1127 * implemented by invoking kernfs_remove_self() on the "delete" file 1128 * itself. This function breaks the circular dependency of trying to 1129 * deactivate self while holding an active ref itself. It isn't necessary 1130 * to modify the usual removal path to use kernfs_remove_self(). The 1131 * "delete" implementation can simply invoke kernfs_remove_self() on self 1132 * before proceeding with the usual removal path. kernfs will ignore later 1133 * kernfs_remove() on self. 1134 * 1135 * kernfs_remove_self() can be called multiple times concurrently on the 1136 * same kernfs_node. Only the first one actually performs removal and 1137 * returns %true. All others will wait until the kernfs operation which 1138 * won self-removal finishes and return %false. Note that the losers wait 1139 * for the completion of not only the winning kernfs_remove_self() but also 1140 * the whole kernfs_ops which won the arbitration. This can be used to 1141 * guarantee, for example, all concurrent writes to a "delete" file to 1142 * finish only after the whole operation is complete. 1143 */ 1144 bool kernfs_remove_self(struct kernfs_node *kn) 1145 { 1146 bool ret; 1147 1148 mutex_lock(&kernfs_mutex); 1149 kernfs_break_active_protection(kn); 1150 1151 /* 1152 * SUICIDAL is used to arbitrate among competing invocations. Only 1153 * the first one will actually perform removal. When the removal 1154 * is complete, SUICIDED is set and the active ref is restored 1155 * while holding kernfs_mutex. The ones which lost arbitration 1156 * waits for SUICDED && drained which can happen only after the 1157 * enclosing kernfs operation which executed the winning instance 1158 * of kernfs_remove_self() finished. 1159 */ 1160 if (!(kn->flags & KERNFS_SUICIDAL)) { 1161 kn->flags |= KERNFS_SUICIDAL; 1162 __kernfs_remove(kn); 1163 kn->flags |= KERNFS_SUICIDED; 1164 ret = true; 1165 } else { 1166 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1167 DEFINE_WAIT(wait); 1168 1169 while (true) { 1170 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1171 1172 if ((kn->flags & KERNFS_SUICIDED) && 1173 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1174 break; 1175 1176 mutex_unlock(&kernfs_mutex); 1177 schedule(); 1178 mutex_lock(&kernfs_mutex); 1179 } 1180 finish_wait(waitq, &wait); 1181 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1182 ret = false; 1183 } 1184 1185 /* 1186 * This must be done while holding kernfs_mutex; otherwise, waiting 1187 * for SUICIDED && deactivated could finish prematurely. 1188 */ 1189 kernfs_unbreak_active_protection(kn); 1190 1191 mutex_unlock(&kernfs_mutex); 1192 return ret; 1193 } 1194 1195 /** 1196 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1197 * @parent: parent of the target 1198 * @name: name of the kernfs_node to remove 1199 * @ns: namespace tag of the kernfs_node to remove 1200 * 1201 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1202 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1203 */ 1204 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1205 const void *ns) 1206 { 1207 struct kernfs_node *kn; 1208 1209 if (!parent) { 1210 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1211 name); 1212 return -ENOENT; 1213 } 1214 1215 mutex_lock(&kernfs_mutex); 1216 1217 kn = kernfs_find_ns(parent, name, ns); 1218 if (kn) 1219 __kernfs_remove(kn); 1220 1221 mutex_unlock(&kernfs_mutex); 1222 1223 if (kn) 1224 return 0; 1225 else 1226 return -ENOENT; 1227 } 1228 1229 /** 1230 * kernfs_rename_ns - move and rename a kernfs_node 1231 * @kn: target node 1232 * @new_parent: new parent to put @sd under 1233 * @new_name: new name 1234 * @new_ns: new namespace tag 1235 */ 1236 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1237 const char *new_name, const void *new_ns) 1238 { 1239 struct kernfs_node *old_parent; 1240 const char *old_name = NULL; 1241 int error; 1242 1243 /* can't move or rename root */ 1244 if (!kn->parent) 1245 return -EINVAL; 1246 1247 mutex_lock(&kernfs_mutex); 1248 1249 error = -ENOENT; 1250 if (!kernfs_active(kn) || !kernfs_active(new_parent)) 1251 goto out; 1252 1253 error = 0; 1254 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1255 (strcmp(kn->name, new_name) == 0)) 1256 goto out; /* nothing to rename */ 1257 1258 error = -EEXIST; 1259 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1260 goto out; 1261 1262 /* rename kernfs_node */ 1263 if (strcmp(kn->name, new_name) != 0) { 1264 error = -ENOMEM; 1265 new_name = kstrdup_const(new_name, GFP_KERNEL); 1266 if (!new_name) 1267 goto out; 1268 } else { 1269 new_name = NULL; 1270 } 1271 1272 /* 1273 * Move to the appropriate place in the appropriate directories rbtree. 1274 */ 1275 kernfs_unlink_sibling(kn); 1276 kernfs_get(new_parent); 1277 1278 /* rename_lock protects ->parent and ->name accessors */ 1279 spin_lock_irq(&kernfs_rename_lock); 1280 1281 old_parent = kn->parent; 1282 kn->parent = new_parent; 1283 1284 kn->ns = new_ns; 1285 if (new_name) { 1286 old_name = kn->name; 1287 kn->name = new_name; 1288 } 1289 1290 spin_unlock_irq(&kernfs_rename_lock); 1291 1292 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1293 kernfs_link_sibling(kn); 1294 1295 kernfs_put(old_parent); 1296 kfree_const(old_name); 1297 1298 error = 0; 1299 out: 1300 mutex_unlock(&kernfs_mutex); 1301 return error; 1302 } 1303 1304 /* Relationship between s_mode and the DT_xxx types */ 1305 static inline unsigned char dt_type(struct kernfs_node *kn) 1306 { 1307 return (kn->mode >> 12) & 15; 1308 } 1309 1310 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1311 { 1312 kernfs_put(filp->private_data); 1313 return 0; 1314 } 1315 1316 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1317 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1318 { 1319 if (pos) { 1320 int valid = kernfs_active(pos) && 1321 pos->parent == parent && hash == pos->hash; 1322 kernfs_put(pos); 1323 if (!valid) 1324 pos = NULL; 1325 } 1326 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1327 struct rb_node *node = parent->dir.children.rb_node; 1328 while (node) { 1329 pos = rb_to_kn(node); 1330 1331 if (hash < pos->hash) 1332 node = node->rb_left; 1333 else if (hash > pos->hash) 1334 node = node->rb_right; 1335 else 1336 break; 1337 } 1338 } 1339 /* Skip over entries which are dying/dead or in the wrong namespace */ 1340 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1341 struct rb_node *node = rb_next(&pos->rb); 1342 if (!node) 1343 pos = NULL; 1344 else 1345 pos = rb_to_kn(node); 1346 } 1347 return pos; 1348 } 1349 1350 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1351 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1352 { 1353 pos = kernfs_dir_pos(ns, parent, ino, pos); 1354 if (pos) { 1355 do { 1356 struct rb_node *node = rb_next(&pos->rb); 1357 if (!node) 1358 pos = NULL; 1359 else 1360 pos = rb_to_kn(node); 1361 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1362 } 1363 return pos; 1364 } 1365 1366 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1367 { 1368 struct dentry *dentry = file->f_path.dentry; 1369 struct kernfs_node *parent = dentry->d_fsdata; 1370 struct kernfs_node *pos = file->private_data; 1371 const void *ns = NULL; 1372 1373 if (!dir_emit_dots(file, ctx)) 1374 return 0; 1375 mutex_lock(&kernfs_mutex); 1376 1377 if (kernfs_ns_enabled(parent)) 1378 ns = kernfs_info(dentry->d_sb)->ns; 1379 1380 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1381 pos; 1382 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1383 const char *name = pos->name; 1384 unsigned int type = dt_type(pos); 1385 int len = strlen(name); 1386 ino_t ino = pos->ino; 1387 1388 ctx->pos = pos->hash; 1389 file->private_data = pos; 1390 kernfs_get(pos); 1391 1392 mutex_unlock(&kernfs_mutex); 1393 if (!dir_emit(ctx, name, len, ino, type)) 1394 return 0; 1395 mutex_lock(&kernfs_mutex); 1396 } 1397 mutex_unlock(&kernfs_mutex); 1398 file->private_data = NULL; 1399 ctx->pos = INT_MAX; 1400 return 0; 1401 } 1402 1403 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset, 1404 int whence) 1405 { 1406 struct inode *inode = file_inode(file); 1407 loff_t ret; 1408 1409 mutex_lock(&inode->i_mutex); 1410 ret = generic_file_llseek(file, offset, whence); 1411 mutex_unlock(&inode->i_mutex); 1412 1413 return ret; 1414 } 1415 1416 const struct file_operations kernfs_dir_fops = { 1417 .read = generic_read_dir, 1418 .iterate = kernfs_fop_readdir, 1419 .release = kernfs_dir_fop_release, 1420 .llseek = kernfs_dir_fop_llseek, 1421 }; 1422