xref: /openbmc/linux/fs/kernfs/dir.c (revision 82003e04)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46 
47 /* kernfs_node_depth - compute depth from @from to @to */
48 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
49 {
50 	size_t depth = 0;
51 
52 	while (to->parent && to != from) {
53 		depth++;
54 		to = to->parent;
55 	}
56 	return depth;
57 }
58 
59 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
60 						  struct kernfs_node *b)
61 {
62 	size_t da, db;
63 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
64 
65 	if (ra != rb)
66 		return NULL;
67 
68 	da = kernfs_depth(ra->kn, a);
69 	db = kernfs_depth(rb->kn, b);
70 
71 	while (da > db) {
72 		a = a->parent;
73 		da--;
74 	}
75 	while (db > da) {
76 		b = b->parent;
77 		db--;
78 	}
79 
80 	/* worst case b and a will be the same at root */
81 	while (b != a) {
82 		b = b->parent;
83 		a = a->parent;
84 	}
85 
86 	return a;
87 }
88 
89 /**
90  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
91  * where kn_from is treated as root of the path.
92  * @kn_from: kernfs node which should be treated as root for the path
93  * @kn_to: kernfs node to which path is needed
94  * @buf: buffer to copy the path into
95  * @buflen: size of @buf
96  *
97  * We need to handle couple of scenarios here:
98  * [1] when @kn_from is an ancestor of @kn_to at some level
99  * kn_from: /n1/n2/n3
100  * kn_to:   /n1/n2/n3/n4/n5
101  * result:  /n4/n5
102  *
103  * [2] when @kn_from is on a different hierarchy and we need to find common
104  * ancestor between @kn_from and @kn_to.
105  * kn_from: /n1/n2/n3/n4
106  * kn_to:   /n1/n2/n5
107  * result:  /../../n5
108  * OR
109  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
110  * kn_to:   /n1/n2/n3         [depth=3]
111  * result:  /../..
112  *
113  * Returns the length of the full path.  If the full length is equal to or
114  * greater than @buflen, @buf contains the truncated path with the trailing
115  * '\0'.  On error, -errno is returned.
116  */
117 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
118 					struct kernfs_node *kn_from,
119 					char *buf, size_t buflen)
120 {
121 	struct kernfs_node *kn, *common;
122 	const char parent_str[] = "/..";
123 	size_t depth_from, depth_to, len = 0;
124 	int i, j;
125 
126 	if (!kn_from)
127 		kn_from = kernfs_root(kn_to)->kn;
128 
129 	if (kn_from == kn_to)
130 		return strlcpy(buf, "/", buflen);
131 
132 	common = kernfs_common_ancestor(kn_from, kn_to);
133 	if (WARN_ON(!common))
134 		return -EINVAL;
135 
136 	depth_to = kernfs_depth(common, kn_to);
137 	depth_from = kernfs_depth(common, kn_from);
138 
139 	if (buf)
140 		buf[0] = '\0';
141 
142 	for (i = 0; i < depth_from; i++)
143 		len += strlcpy(buf + len, parent_str,
144 			       len < buflen ? buflen - len : 0);
145 
146 	/* Calculate how many bytes we need for the rest */
147 	for (i = depth_to - 1; i >= 0; i--) {
148 		for (kn = kn_to, j = 0; j < i; j++)
149 			kn = kn->parent;
150 		len += strlcpy(buf + len, "/",
151 			       len < buflen ? buflen - len : 0);
152 		len += strlcpy(buf + len, kn->name,
153 			       len < buflen ? buflen - len : 0);
154 	}
155 
156 	return len;
157 }
158 
159 /**
160  * kernfs_name - obtain the name of a given node
161  * @kn: kernfs_node of interest
162  * @buf: buffer to copy @kn's name into
163  * @buflen: size of @buf
164  *
165  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
166  * similar to strlcpy().  It returns the length of @kn's name and if @buf
167  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
168  *
169  * This function can be called from any context.
170  */
171 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
172 {
173 	unsigned long flags;
174 	int ret;
175 
176 	spin_lock_irqsave(&kernfs_rename_lock, flags);
177 	ret = kernfs_name_locked(kn, buf, buflen);
178 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
179 	return ret;
180 }
181 
182 /**
183  * kernfs_path_from_node - build path of node @to relative to @from.
184  * @from: parent kernfs_node relative to which we need to build the path
185  * @to: kernfs_node of interest
186  * @buf: buffer to copy @to's path into
187  * @buflen: size of @buf
188  *
189  * Builds @to's path relative to @from in @buf. @from and @to must
190  * be on the same kernfs-root. If @from is not parent of @to, then a relative
191  * path (which includes '..'s) as needed to reach from @from to @to is
192  * returned.
193  *
194  * Returns the length of the full path.  If the full length is equal to or
195  * greater than @buflen, @buf contains the truncated path with the trailing
196  * '\0'.  On error, -errno is returned.
197  */
198 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
199 			  char *buf, size_t buflen)
200 {
201 	unsigned long flags;
202 	int ret;
203 
204 	spin_lock_irqsave(&kernfs_rename_lock, flags);
205 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
206 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
207 	return ret;
208 }
209 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
210 
211 /**
212  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
213  * @kn: kernfs_node of interest
214  *
215  * This function can be called from any context.
216  */
217 void pr_cont_kernfs_name(struct kernfs_node *kn)
218 {
219 	unsigned long flags;
220 
221 	spin_lock_irqsave(&kernfs_rename_lock, flags);
222 
223 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
224 	pr_cont("%s", kernfs_pr_cont_buf);
225 
226 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
227 }
228 
229 /**
230  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
231  * @kn: kernfs_node of interest
232  *
233  * This function can be called from any context.
234  */
235 void pr_cont_kernfs_path(struct kernfs_node *kn)
236 {
237 	unsigned long flags;
238 	int sz;
239 
240 	spin_lock_irqsave(&kernfs_rename_lock, flags);
241 
242 	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
243 					  sizeof(kernfs_pr_cont_buf));
244 	if (sz < 0) {
245 		pr_cont("(error)");
246 		goto out;
247 	}
248 
249 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
250 		pr_cont("(name too long)");
251 		goto out;
252 	}
253 
254 	pr_cont("%s", kernfs_pr_cont_buf);
255 
256 out:
257 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
258 }
259 
260 /**
261  * kernfs_get_parent - determine the parent node and pin it
262  * @kn: kernfs_node of interest
263  *
264  * Determines @kn's parent, pins and returns it.  This function can be
265  * called from any context.
266  */
267 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
268 {
269 	struct kernfs_node *parent;
270 	unsigned long flags;
271 
272 	spin_lock_irqsave(&kernfs_rename_lock, flags);
273 	parent = kn->parent;
274 	kernfs_get(parent);
275 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
276 
277 	return parent;
278 }
279 
280 /**
281  *	kernfs_name_hash
282  *	@name: Null terminated string to hash
283  *	@ns:   Namespace tag to hash
284  *
285  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
286  */
287 static unsigned int kernfs_name_hash(const char *name, const void *ns)
288 {
289 	unsigned long hash = init_name_hash(ns);
290 	unsigned int len = strlen(name);
291 	while (len--)
292 		hash = partial_name_hash(*name++, hash);
293 	hash = end_name_hash(hash);
294 	hash &= 0x7fffffffU;
295 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
296 	if (hash < 2)
297 		hash += 2;
298 	if (hash >= INT_MAX)
299 		hash = INT_MAX - 1;
300 	return hash;
301 }
302 
303 static int kernfs_name_compare(unsigned int hash, const char *name,
304 			       const void *ns, const struct kernfs_node *kn)
305 {
306 	if (hash < kn->hash)
307 		return -1;
308 	if (hash > kn->hash)
309 		return 1;
310 	if (ns < kn->ns)
311 		return -1;
312 	if (ns > kn->ns)
313 		return 1;
314 	return strcmp(name, kn->name);
315 }
316 
317 static int kernfs_sd_compare(const struct kernfs_node *left,
318 			     const struct kernfs_node *right)
319 {
320 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
321 }
322 
323 /**
324  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
325  *	@kn: kernfs_node of interest
326  *
327  *	Link @kn into its sibling rbtree which starts from
328  *	@kn->parent->dir.children.
329  *
330  *	Locking:
331  *	mutex_lock(kernfs_mutex)
332  *
333  *	RETURNS:
334  *	0 on susccess -EEXIST on failure.
335  */
336 static int kernfs_link_sibling(struct kernfs_node *kn)
337 {
338 	struct rb_node **node = &kn->parent->dir.children.rb_node;
339 	struct rb_node *parent = NULL;
340 
341 	while (*node) {
342 		struct kernfs_node *pos;
343 		int result;
344 
345 		pos = rb_to_kn(*node);
346 		parent = *node;
347 		result = kernfs_sd_compare(kn, pos);
348 		if (result < 0)
349 			node = &pos->rb.rb_left;
350 		else if (result > 0)
351 			node = &pos->rb.rb_right;
352 		else
353 			return -EEXIST;
354 	}
355 
356 	/* add new node and rebalance the tree */
357 	rb_link_node(&kn->rb, parent, node);
358 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
359 
360 	/* successfully added, account subdir number */
361 	if (kernfs_type(kn) == KERNFS_DIR)
362 		kn->parent->dir.subdirs++;
363 
364 	return 0;
365 }
366 
367 /**
368  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
369  *	@kn: kernfs_node of interest
370  *
371  *	Try to unlink @kn from its sibling rbtree which starts from
372  *	kn->parent->dir.children.  Returns %true if @kn was actually
373  *	removed, %false if @kn wasn't on the rbtree.
374  *
375  *	Locking:
376  *	mutex_lock(kernfs_mutex)
377  */
378 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
379 {
380 	if (RB_EMPTY_NODE(&kn->rb))
381 		return false;
382 
383 	if (kernfs_type(kn) == KERNFS_DIR)
384 		kn->parent->dir.subdirs--;
385 
386 	rb_erase(&kn->rb, &kn->parent->dir.children);
387 	RB_CLEAR_NODE(&kn->rb);
388 	return true;
389 }
390 
391 /**
392  *	kernfs_get_active - get an active reference to kernfs_node
393  *	@kn: kernfs_node to get an active reference to
394  *
395  *	Get an active reference of @kn.  This function is noop if @kn
396  *	is NULL.
397  *
398  *	RETURNS:
399  *	Pointer to @kn on success, NULL on failure.
400  */
401 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
402 {
403 	if (unlikely(!kn))
404 		return NULL;
405 
406 	if (!atomic_inc_unless_negative(&kn->active))
407 		return NULL;
408 
409 	if (kernfs_lockdep(kn))
410 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
411 	return kn;
412 }
413 
414 /**
415  *	kernfs_put_active - put an active reference to kernfs_node
416  *	@kn: kernfs_node to put an active reference to
417  *
418  *	Put an active reference to @kn.  This function is noop if @kn
419  *	is NULL.
420  */
421 void kernfs_put_active(struct kernfs_node *kn)
422 {
423 	struct kernfs_root *root = kernfs_root(kn);
424 	int v;
425 
426 	if (unlikely(!kn))
427 		return;
428 
429 	if (kernfs_lockdep(kn))
430 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
431 	v = atomic_dec_return(&kn->active);
432 	if (likely(v != KN_DEACTIVATED_BIAS))
433 		return;
434 
435 	wake_up_all(&root->deactivate_waitq);
436 }
437 
438 /**
439  * kernfs_drain - drain kernfs_node
440  * @kn: kernfs_node to drain
441  *
442  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
443  * removers may invoke this function concurrently on @kn and all will
444  * return after draining is complete.
445  */
446 static void kernfs_drain(struct kernfs_node *kn)
447 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
448 {
449 	struct kernfs_root *root = kernfs_root(kn);
450 
451 	lockdep_assert_held(&kernfs_mutex);
452 	WARN_ON_ONCE(kernfs_active(kn));
453 
454 	mutex_unlock(&kernfs_mutex);
455 
456 	if (kernfs_lockdep(kn)) {
457 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
458 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
459 			lock_contended(&kn->dep_map, _RET_IP_);
460 	}
461 
462 	/* but everyone should wait for draining */
463 	wait_event(root->deactivate_waitq,
464 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
465 
466 	if (kernfs_lockdep(kn)) {
467 		lock_acquired(&kn->dep_map, _RET_IP_);
468 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
469 	}
470 
471 	kernfs_unmap_bin_file(kn);
472 
473 	mutex_lock(&kernfs_mutex);
474 }
475 
476 /**
477  * kernfs_get - get a reference count on a kernfs_node
478  * @kn: the target kernfs_node
479  */
480 void kernfs_get(struct kernfs_node *kn)
481 {
482 	if (kn) {
483 		WARN_ON(!atomic_read(&kn->count));
484 		atomic_inc(&kn->count);
485 	}
486 }
487 EXPORT_SYMBOL_GPL(kernfs_get);
488 
489 /**
490  * kernfs_put - put a reference count on a kernfs_node
491  * @kn: the target kernfs_node
492  *
493  * Put a reference count of @kn and destroy it if it reached zero.
494  */
495 void kernfs_put(struct kernfs_node *kn)
496 {
497 	struct kernfs_node *parent;
498 	struct kernfs_root *root;
499 
500 	if (!kn || !atomic_dec_and_test(&kn->count))
501 		return;
502 	root = kernfs_root(kn);
503  repeat:
504 	/*
505 	 * Moving/renaming is always done while holding reference.
506 	 * kn->parent won't change beneath us.
507 	 */
508 	parent = kn->parent;
509 
510 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
511 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
512 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
513 
514 	if (kernfs_type(kn) == KERNFS_LINK)
515 		kernfs_put(kn->symlink.target_kn);
516 
517 	kfree_const(kn->name);
518 
519 	if (kn->iattr) {
520 		if (kn->iattr->ia_secdata)
521 			security_release_secctx(kn->iattr->ia_secdata,
522 						kn->iattr->ia_secdata_len);
523 		simple_xattrs_free(&kn->iattr->xattrs);
524 	}
525 	kfree(kn->iattr);
526 	ida_simple_remove(&root->ino_ida, kn->ino);
527 	kmem_cache_free(kernfs_node_cache, kn);
528 
529 	kn = parent;
530 	if (kn) {
531 		if (atomic_dec_and_test(&kn->count))
532 			goto repeat;
533 	} else {
534 		/* just released the root kn, free @root too */
535 		ida_destroy(&root->ino_ida);
536 		kfree(root);
537 	}
538 }
539 EXPORT_SYMBOL_GPL(kernfs_put);
540 
541 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
542 {
543 	struct kernfs_node *kn;
544 
545 	if (flags & LOOKUP_RCU)
546 		return -ECHILD;
547 
548 	/* Always perform fresh lookup for negatives */
549 	if (d_really_is_negative(dentry))
550 		goto out_bad_unlocked;
551 
552 	kn = dentry->d_fsdata;
553 	mutex_lock(&kernfs_mutex);
554 
555 	/* The kernfs node has been deactivated */
556 	if (!kernfs_active(kn))
557 		goto out_bad;
558 
559 	/* The kernfs node has been moved? */
560 	if (dentry->d_parent->d_fsdata != kn->parent)
561 		goto out_bad;
562 
563 	/* The kernfs node has been renamed */
564 	if (strcmp(dentry->d_name.name, kn->name) != 0)
565 		goto out_bad;
566 
567 	/* The kernfs node has been moved to a different namespace */
568 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
569 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
570 		goto out_bad;
571 
572 	mutex_unlock(&kernfs_mutex);
573 	return 1;
574 out_bad:
575 	mutex_unlock(&kernfs_mutex);
576 out_bad_unlocked:
577 	return 0;
578 }
579 
580 static void kernfs_dop_release(struct dentry *dentry)
581 {
582 	kernfs_put(dentry->d_fsdata);
583 }
584 
585 const struct dentry_operations kernfs_dops = {
586 	.d_revalidate	= kernfs_dop_revalidate,
587 	.d_release	= kernfs_dop_release,
588 };
589 
590 /**
591  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
592  * @dentry: the dentry in question
593  *
594  * Return the kernfs_node associated with @dentry.  If @dentry is not a
595  * kernfs one, %NULL is returned.
596  *
597  * While the returned kernfs_node will stay accessible as long as @dentry
598  * is accessible, the returned node can be in any state and the caller is
599  * fully responsible for determining what's accessible.
600  */
601 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
602 {
603 	if (dentry->d_sb->s_op == &kernfs_sops)
604 		return dentry->d_fsdata;
605 	return NULL;
606 }
607 
608 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
609 					     const char *name, umode_t mode,
610 					     unsigned flags)
611 {
612 	struct kernfs_node *kn;
613 	int ret;
614 
615 	name = kstrdup_const(name, GFP_KERNEL);
616 	if (!name)
617 		return NULL;
618 
619 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
620 	if (!kn)
621 		goto err_out1;
622 
623 	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
624 	if (ret < 0)
625 		goto err_out2;
626 	kn->ino = ret;
627 
628 	atomic_set(&kn->count, 1);
629 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
630 	RB_CLEAR_NODE(&kn->rb);
631 
632 	kn->name = name;
633 	kn->mode = mode;
634 	kn->flags = flags;
635 
636 	return kn;
637 
638  err_out2:
639 	kmem_cache_free(kernfs_node_cache, kn);
640  err_out1:
641 	kfree_const(name);
642 	return NULL;
643 }
644 
645 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
646 				    const char *name, umode_t mode,
647 				    unsigned flags)
648 {
649 	struct kernfs_node *kn;
650 
651 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
652 	if (kn) {
653 		kernfs_get(parent);
654 		kn->parent = parent;
655 	}
656 	return kn;
657 }
658 
659 /**
660  *	kernfs_add_one - add kernfs_node to parent without warning
661  *	@kn: kernfs_node to be added
662  *
663  *	The caller must already have initialized @kn->parent.  This
664  *	function increments nlink of the parent's inode if @kn is a
665  *	directory and link into the children list of the parent.
666  *
667  *	RETURNS:
668  *	0 on success, -EEXIST if entry with the given name already
669  *	exists.
670  */
671 int kernfs_add_one(struct kernfs_node *kn)
672 {
673 	struct kernfs_node *parent = kn->parent;
674 	struct kernfs_iattrs *ps_iattr;
675 	bool has_ns;
676 	int ret;
677 
678 	mutex_lock(&kernfs_mutex);
679 
680 	ret = -EINVAL;
681 	has_ns = kernfs_ns_enabled(parent);
682 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
683 		 has_ns ? "required" : "invalid", parent->name, kn->name))
684 		goto out_unlock;
685 
686 	if (kernfs_type(parent) != KERNFS_DIR)
687 		goto out_unlock;
688 
689 	ret = -ENOENT;
690 	if (parent->flags & KERNFS_EMPTY_DIR)
691 		goto out_unlock;
692 
693 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
694 		goto out_unlock;
695 
696 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
697 
698 	ret = kernfs_link_sibling(kn);
699 	if (ret)
700 		goto out_unlock;
701 
702 	/* Update timestamps on the parent */
703 	ps_iattr = parent->iattr;
704 	if (ps_iattr) {
705 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
706 		ktime_get_real_ts(&ps_iattrs->ia_ctime);
707 		ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
708 	}
709 
710 	mutex_unlock(&kernfs_mutex);
711 
712 	/*
713 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
714 	 * If not activated here, the kernfs user is responsible for
715 	 * activating the node with kernfs_activate().  A node which hasn't
716 	 * been activated is not visible to userland and its removal won't
717 	 * trigger deactivation.
718 	 */
719 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
720 		kernfs_activate(kn);
721 	return 0;
722 
723 out_unlock:
724 	mutex_unlock(&kernfs_mutex);
725 	return ret;
726 }
727 
728 /**
729  * kernfs_find_ns - find kernfs_node with the given name
730  * @parent: kernfs_node to search under
731  * @name: name to look for
732  * @ns: the namespace tag to use
733  *
734  * Look for kernfs_node with name @name under @parent.  Returns pointer to
735  * the found kernfs_node on success, %NULL on failure.
736  */
737 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
738 					  const unsigned char *name,
739 					  const void *ns)
740 {
741 	struct rb_node *node = parent->dir.children.rb_node;
742 	bool has_ns = kernfs_ns_enabled(parent);
743 	unsigned int hash;
744 
745 	lockdep_assert_held(&kernfs_mutex);
746 
747 	if (has_ns != (bool)ns) {
748 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
749 		     has_ns ? "required" : "invalid", parent->name, name);
750 		return NULL;
751 	}
752 
753 	hash = kernfs_name_hash(name, ns);
754 	while (node) {
755 		struct kernfs_node *kn;
756 		int result;
757 
758 		kn = rb_to_kn(node);
759 		result = kernfs_name_compare(hash, name, ns, kn);
760 		if (result < 0)
761 			node = node->rb_left;
762 		else if (result > 0)
763 			node = node->rb_right;
764 		else
765 			return kn;
766 	}
767 	return NULL;
768 }
769 
770 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
771 					  const unsigned char *path,
772 					  const void *ns)
773 {
774 	size_t len;
775 	char *p, *name;
776 
777 	lockdep_assert_held(&kernfs_mutex);
778 
779 	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
780 	spin_lock_irq(&kernfs_rename_lock);
781 
782 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
783 
784 	if (len >= sizeof(kernfs_pr_cont_buf)) {
785 		spin_unlock_irq(&kernfs_rename_lock);
786 		return NULL;
787 	}
788 
789 	p = kernfs_pr_cont_buf;
790 
791 	while ((name = strsep(&p, "/")) && parent) {
792 		if (*name == '\0')
793 			continue;
794 		parent = kernfs_find_ns(parent, name, ns);
795 	}
796 
797 	spin_unlock_irq(&kernfs_rename_lock);
798 
799 	return parent;
800 }
801 
802 /**
803  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
804  * @parent: kernfs_node to search under
805  * @name: name to look for
806  * @ns: the namespace tag to use
807  *
808  * Look for kernfs_node with name @name under @parent and get a reference
809  * if found.  This function may sleep and returns pointer to the found
810  * kernfs_node on success, %NULL on failure.
811  */
812 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
813 					   const char *name, const void *ns)
814 {
815 	struct kernfs_node *kn;
816 
817 	mutex_lock(&kernfs_mutex);
818 	kn = kernfs_find_ns(parent, name, ns);
819 	kernfs_get(kn);
820 	mutex_unlock(&kernfs_mutex);
821 
822 	return kn;
823 }
824 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
825 
826 /**
827  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
828  * @parent: kernfs_node to search under
829  * @path: path to look for
830  * @ns: the namespace tag to use
831  *
832  * Look for kernfs_node with path @path under @parent and get a reference
833  * if found.  This function may sleep and returns pointer to the found
834  * kernfs_node on success, %NULL on failure.
835  */
836 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
837 					   const char *path, const void *ns)
838 {
839 	struct kernfs_node *kn;
840 
841 	mutex_lock(&kernfs_mutex);
842 	kn = kernfs_walk_ns(parent, path, ns);
843 	kernfs_get(kn);
844 	mutex_unlock(&kernfs_mutex);
845 
846 	return kn;
847 }
848 
849 /**
850  * kernfs_create_root - create a new kernfs hierarchy
851  * @scops: optional syscall operations for the hierarchy
852  * @flags: KERNFS_ROOT_* flags
853  * @priv: opaque data associated with the new directory
854  *
855  * Returns the root of the new hierarchy on success, ERR_PTR() value on
856  * failure.
857  */
858 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
859 				       unsigned int flags, void *priv)
860 {
861 	struct kernfs_root *root;
862 	struct kernfs_node *kn;
863 
864 	root = kzalloc(sizeof(*root), GFP_KERNEL);
865 	if (!root)
866 		return ERR_PTR(-ENOMEM);
867 
868 	ida_init(&root->ino_ida);
869 	INIT_LIST_HEAD(&root->supers);
870 
871 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
872 			       KERNFS_DIR);
873 	if (!kn) {
874 		ida_destroy(&root->ino_ida);
875 		kfree(root);
876 		return ERR_PTR(-ENOMEM);
877 	}
878 
879 	kn->priv = priv;
880 	kn->dir.root = root;
881 
882 	root->syscall_ops = scops;
883 	root->flags = flags;
884 	root->kn = kn;
885 	init_waitqueue_head(&root->deactivate_waitq);
886 
887 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
888 		kernfs_activate(kn);
889 
890 	return root;
891 }
892 
893 /**
894  * kernfs_destroy_root - destroy a kernfs hierarchy
895  * @root: root of the hierarchy to destroy
896  *
897  * Destroy the hierarchy anchored at @root by removing all existing
898  * directories and destroying @root.
899  */
900 void kernfs_destroy_root(struct kernfs_root *root)
901 {
902 	kernfs_remove(root->kn);	/* will also free @root */
903 }
904 
905 /**
906  * kernfs_create_dir_ns - create a directory
907  * @parent: parent in which to create a new directory
908  * @name: name of the new directory
909  * @mode: mode of the new directory
910  * @priv: opaque data associated with the new directory
911  * @ns: optional namespace tag of the directory
912  *
913  * Returns the created node on success, ERR_PTR() value on failure.
914  */
915 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
916 					 const char *name, umode_t mode,
917 					 void *priv, const void *ns)
918 {
919 	struct kernfs_node *kn;
920 	int rc;
921 
922 	/* allocate */
923 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
924 	if (!kn)
925 		return ERR_PTR(-ENOMEM);
926 
927 	kn->dir.root = parent->dir.root;
928 	kn->ns = ns;
929 	kn->priv = priv;
930 
931 	/* link in */
932 	rc = kernfs_add_one(kn);
933 	if (!rc)
934 		return kn;
935 
936 	kernfs_put(kn);
937 	return ERR_PTR(rc);
938 }
939 
940 /**
941  * kernfs_create_empty_dir - create an always empty directory
942  * @parent: parent in which to create a new directory
943  * @name: name of the new directory
944  *
945  * Returns the created node on success, ERR_PTR() value on failure.
946  */
947 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
948 					    const char *name)
949 {
950 	struct kernfs_node *kn;
951 	int rc;
952 
953 	/* allocate */
954 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
955 	if (!kn)
956 		return ERR_PTR(-ENOMEM);
957 
958 	kn->flags |= KERNFS_EMPTY_DIR;
959 	kn->dir.root = parent->dir.root;
960 	kn->ns = NULL;
961 	kn->priv = NULL;
962 
963 	/* link in */
964 	rc = kernfs_add_one(kn);
965 	if (!rc)
966 		return kn;
967 
968 	kernfs_put(kn);
969 	return ERR_PTR(rc);
970 }
971 
972 static struct dentry *kernfs_iop_lookup(struct inode *dir,
973 					struct dentry *dentry,
974 					unsigned int flags)
975 {
976 	struct dentry *ret;
977 	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
978 	struct kernfs_node *kn;
979 	struct inode *inode;
980 	const void *ns = NULL;
981 
982 	mutex_lock(&kernfs_mutex);
983 
984 	if (kernfs_ns_enabled(parent))
985 		ns = kernfs_info(dir->i_sb)->ns;
986 
987 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
988 
989 	/* no such entry */
990 	if (!kn || !kernfs_active(kn)) {
991 		ret = NULL;
992 		goto out_unlock;
993 	}
994 	kernfs_get(kn);
995 	dentry->d_fsdata = kn;
996 
997 	/* attach dentry and inode */
998 	inode = kernfs_get_inode(dir->i_sb, kn);
999 	if (!inode) {
1000 		ret = ERR_PTR(-ENOMEM);
1001 		goto out_unlock;
1002 	}
1003 
1004 	/* instantiate and hash dentry */
1005 	ret = d_splice_alias(inode, dentry);
1006  out_unlock:
1007 	mutex_unlock(&kernfs_mutex);
1008 	return ret;
1009 }
1010 
1011 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1012 			    umode_t mode)
1013 {
1014 	struct kernfs_node *parent = dir->i_private;
1015 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1016 	int ret;
1017 
1018 	if (!scops || !scops->mkdir)
1019 		return -EPERM;
1020 
1021 	if (!kernfs_get_active(parent))
1022 		return -ENODEV;
1023 
1024 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1025 
1026 	kernfs_put_active(parent);
1027 	return ret;
1028 }
1029 
1030 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1031 {
1032 	struct kernfs_node *kn  = dentry->d_fsdata;
1033 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1034 	int ret;
1035 
1036 	if (!scops || !scops->rmdir)
1037 		return -EPERM;
1038 
1039 	if (!kernfs_get_active(kn))
1040 		return -ENODEV;
1041 
1042 	ret = scops->rmdir(kn);
1043 
1044 	kernfs_put_active(kn);
1045 	return ret;
1046 }
1047 
1048 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1049 			     struct inode *new_dir, struct dentry *new_dentry,
1050 			     unsigned int flags)
1051 {
1052 	struct kernfs_node *kn  = old_dentry->d_fsdata;
1053 	struct kernfs_node *new_parent = new_dir->i_private;
1054 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1055 	int ret;
1056 
1057 	if (flags)
1058 		return -EINVAL;
1059 
1060 	if (!scops || !scops->rename)
1061 		return -EPERM;
1062 
1063 	if (!kernfs_get_active(kn))
1064 		return -ENODEV;
1065 
1066 	if (!kernfs_get_active(new_parent)) {
1067 		kernfs_put_active(kn);
1068 		return -ENODEV;
1069 	}
1070 
1071 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1072 
1073 	kernfs_put_active(new_parent);
1074 	kernfs_put_active(kn);
1075 	return ret;
1076 }
1077 
1078 const struct inode_operations kernfs_dir_iops = {
1079 	.lookup		= kernfs_iop_lookup,
1080 	.permission	= kernfs_iop_permission,
1081 	.setattr	= kernfs_iop_setattr,
1082 	.getattr	= kernfs_iop_getattr,
1083 	.listxattr	= kernfs_iop_listxattr,
1084 
1085 	.mkdir		= kernfs_iop_mkdir,
1086 	.rmdir		= kernfs_iop_rmdir,
1087 	.rename		= kernfs_iop_rename,
1088 };
1089 
1090 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1091 {
1092 	struct kernfs_node *last;
1093 
1094 	while (true) {
1095 		struct rb_node *rbn;
1096 
1097 		last = pos;
1098 
1099 		if (kernfs_type(pos) != KERNFS_DIR)
1100 			break;
1101 
1102 		rbn = rb_first(&pos->dir.children);
1103 		if (!rbn)
1104 			break;
1105 
1106 		pos = rb_to_kn(rbn);
1107 	}
1108 
1109 	return last;
1110 }
1111 
1112 /**
1113  * kernfs_next_descendant_post - find the next descendant for post-order walk
1114  * @pos: the current position (%NULL to initiate traversal)
1115  * @root: kernfs_node whose descendants to walk
1116  *
1117  * Find the next descendant to visit for post-order traversal of @root's
1118  * descendants.  @root is included in the iteration and the last node to be
1119  * visited.
1120  */
1121 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1122 						       struct kernfs_node *root)
1123 {
1124 	struct rb_node *rbn;
1125 
1126 	lockdep_assert_held(&kernfs_mutex);
1127 
1128 	/* if first iteration, visit leftmost descendant which may be root */
1129 	if (!pos)
1130 		return kernfs_leftmost_descendant(root);
1131 
1132 	/* if we visited @root, we're done */
1133 	if (pos == root)
1134 		return NULL;
1135 
1136 	/* if there's an unvisited sibling, visit its leftmost descendant */
1137 	rbn = rb_next(&pos->rb);
1138 	if (rbn)
1139 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1140 
1141 	/* no sibling left, visit parent */
1142 	return pos->parent;
1143 }
1144 
1145 /**
1146  * kernfs_activate - activate a node which started deactivated
1147  * @kn: kernfs_node whose subtree is to be activated
1148  *
1149  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1150  * needs to be explicitly activated.  A node which hasn't been activated
1151  * isn't visible to userland and deactivation is skipped during its
1152  * removal.  This is useful to construct atomic init sequences where
1153  * creation of multiple nodes should either succeed or fail atomically.
1154  *
1155  * The caller is responsible for ensuring that this function is not called
1156  * after kernfs_remove*() is invoked on @kn.
1157  */
1158 void kernfs_activate(struct kernfs_node *kn)
1159 {
1160 	struct kernfs_node *pos;
1161 
1162 	mutex_lock(&kernfs_mutex);
1163 
1164 	pos = NULL;
1165 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1166 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1167 			continue;
1168 
1169 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1170 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1171 
1172 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1173 		pos->flags |= KERNFS_ACTIVATED;
1174 	}
1175 
1176 	mutex_unlock(&kernfs_mutex);
1177 }
1178 
1179 static void __kernfs_remove(struct kernfs_node *kn)
1180 {
1181 	struct kernfs_node *pos;
1182 
1183 	lockdep_assert_held(&kernfs_mutex);
1184 
1185 	/*
1186 	 * Short-circuit if non-root @kn has already finished removal.
1187 	 * This is for kernfs_remove_self() which plays with active ref
1188 	 * after removal.
1189 	 */
1190 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1191 		return;
1192 
1193 	pr_debug("kernfs %s: removing\n", kn->name);
1194 
1195 	/* prevent any new usage under @kn by deactivating all nodes */
1196 	pos = NULL;
1197 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1198 		if (kernfs_active(pos))
1199 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1200 
1201 	/* deactivate and unlink the subtree node-by-node */
1202 	do {
1203 		pos = kernfs_leftmost_descendant(kn);
1204 
1205 		/*
1206 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1207 		 * base ref could have been put by someone else by the time
1208 		 * the function returns.  Make sure it doesn't go away
1209 		 * underneath us.
1210 		 */
1211 		kernfs_get(pos);
1212 
1213 		/*
1214 		 * Drain iff @kn was activated.  This avoids draining and
1215 		 * its lockdep annotations for nodes which have never been
1216 		 * activated and allows embedding kernfs_remove() in create
1217 		 * error paths without worrying about draining.
1218 		 */
1219 		if (kn->flags & KERNFS_ACTIVATED)
1220 			kernfs_drain(pos);
1221 		else
1222 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1223 
1224 		/*
1225 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1226 		 * to decide who's responsible for cleanups.
1227 		 */
1228 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1229 			struct kernfs_iattrs *ps_iattr =
1230 				pos->parent ? pos->parent->iattr : NULL;
1231 
1232 			/* update timestamps on the parent */
1233 			if (ps_iattr) {
1234 				ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1235 				ps_iattr->ia_iattr.ia_mtime =
1236 					ps_iattr->ia_iattr.ia_ctime;
1237 			}
1238 
1239 			kernfs_put(pos);
1240 		}
1241 
1242 		kernfs_put(pos);
1243 	} while (pos != kn);
1244 }
1245 
1246 /**
1247  * kernfs_remove - remove a kernfs_node recursively
1248  * @kn: the kernfs_node to remove
1249  *
1250  * Remove @kn along with all its subdirectories and files.
1251  */
1252 void kernfs_remove(struct kernfs_node *kn)
1253 {
1254 	mutex_lock(&kernfs_mutex);
1255 	__kernfs_remove(kn);
1256 	mutex_unlock(&kernfs_mutex);
1257 }
1258 
1259 /**
1260  * kernfs_break_active_protection - break out of active protection
1261  * @kn: the self kernfs_node
1262  *
1263  * The caller must be running off of a kernfs operation which is invoked
1264  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1265  * this function must also be matched with an invocation of
1266  * kernfs_unbreak_active_protection().
1267  *
1268  * This function releases the active reference of @kn the caller is
1269  * holding.  Once this function is called, @kn may be removed at any point
1270  * and the caller is solely responsible for ensuring that the objects it
1271  * dereferences are accessible.
1272  */
1273 void kernfs_break_active_protection(struct kernfs_node *kn)
1274 {
1275 	/*
1276 	 * Take out ourself out of the active ref dependency chain.  If
1277 	 * we're called without an active ref, lockdep will complain.
1278 	 */
1279 	kernfs_put_active(kn);
1280 }
1281 
1282 /**
1283  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1284  * @kn: the self kernfs_node
1285  *
1286  * If kernfs_break_active_protection() was called, this function must be
1287  * invoked before finishing the kernfs operation.  Note that while this
1288  * function restores the active reference, it doesn't and can't actually
1289  * restore the active protection - @kn may already or be in the process of
1290  * being removed.  Once kernfs_break_active_protection() is invoked, that
1291  * protection is irreversibly gone for the kernfs operation instance.
1292  *
1293  * While this function may be called at any point after
1294  * kernfs_break_active_protection() is invoked, its most useful location
1295  * would be right before the enclosing kernfs operation returns.
1296  */
1297 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1298 {
1299 	/*
1300 	 * @kn->active could be in any state; however, the increment we do
1301 	 * here will be undone as soon as the enclosing kernfs operation
1302 	 * finishes and this temporary bump can't break anything.  If @kn
1303 	 * is alive, nothing changes.  If @kn is being deactivated, the
1304 	 * soon-to-follow put will either finish deactivation or restore
1305 	 * deactivated state.  If @kn is already removed, the temporary
1306 	 * bump is guaranteed to be gone before @kn is released.
1307 	 */
1308 	atomic_inc(&kn->active);
1309 	if (kernfs_lockdep(kn))
1310 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1311 }
1312 
1313 /**
1314  * kernfs_remove_self - remove a kernfs_node from its own method
1315  * @kn: the self kernfs_node to remove
1316  *
1317  * The caller must be running off of a kernfs operation which is invoked
1318  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1319  * implement a file operation which deletes itself.
1320  *
1321  * For example, the "delete" file for a sysfs device directory can be
1322  * implemented by invoking kernfs_remove_self() on the "delete" file
1323  * itself.  This function breaks the circular dependency of trying to
1324  * deactivate self while holding an active ref itself.  It isn't necessary
1325  * to modify the usual removal path to use kernfs_remove_self().  The
1326  * "delete" implementation can simply invoke kernfs_remove_self() on self
1327  * before proceeding with the usual removal path.  kernfs will ignore later
1328  * kernfs_remove() on self.
1329  *
1330  * kernfs_remove_self() can be called multiple times concurrently on the
1331  * same kernfs_node.  Only the first one actually performs removal and
1332  * returns %true.  All others will wait until the kernfs operation which
1333  * won self-removal finishes and return %false.  Note that the losers wait
1334  * for the completion of not only the winning kernfs_remove_self() but also
1335  * the whole kernfs_ops which won the arbitration.  This can be used to
1336  * guarantee, for example, all concurrent writes to a "delete" file to
1337  * finish only after the whole operation is complete.
1338  */
1339 bool kernfs_remove_self(struct kernfs_node *kn)
1340 {
1341 	bool ret;
1342 
1343 	mutex_lock(&kernfs_mutex);
1344 	kernfs_break_active_protection(kn);
1345 
1346 	/*
1347 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1348 	 * the first one will actually perform removal.  When the removal
1349 	 * is complete, SUICIDED is set and the active ref is restored
1350 	 * while holding kernfs_mutex.  The ones which lost arbitration
1351 	 * waits for SUICDED && drained which can happen only after the
1352 	 * enclosing kernfs operation which executed the winning instance
1353 	 * of kernfs_remove_self() finished.
1354 	 */
1355 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1356 		kn->flags |= KERNFS_SUICIDAL;
1357 		__kernfs_remove(kn);
1358 		kn->flags |= KERNFS_SUICIDED;
1359 		ret = true;
1360 	} else {
1361 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1362 		DEFINE_WAIT(wait);
1363 
1364 		while (true) {
1365 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1366 
1367 			if ((kn->flags & KERNFS_SUICIDED) &&
1368 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1369 				break;
1370 
1371 			mutex_unlock(&kernfs_mutex);
1372 			schedule();
1373 			mutex_lock(&kernfs_mutex);
1374 		}
1375 		finish_wait(waitq, &wait);
1376 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1377 		ret = false;
1378 	}
1379 
1380 	/*
1381 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1382 	 * for SUICIDED && deactivated could finish prematurely.
1383 	 */
1384 	kernfs_unbreak_active_protection(kn);
1385 
1386 	mutex_unlock(&kernfs_mutex);
1387 	return ret;
1388 }
1389 
1390 /**
1391  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1392  * @parent: parent of the target
1393  * @name: name of the kernfs_node to remove
1394  * @ns: namespace tag of the kernfs_node to remove
1395  *
1396  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1397  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1398  */
1399 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1400 			     const void *ns)
1401 {
1402 	struct kernfs_node *kn;
1403 
1404 	if (!parent) {
1405 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1406 			name);
1407 		return -ENOENT;
1408 	}
1409 
1410 	mutex_lock(&kernfs_mutex);
1411 
1412 	kn = kernfs_find_ns(parent, name, ns);
1413 	if (kn)
1414 		__kernfs_remove(kn);
1415 
1416 	mutex_unlock(&kernfs_mutex);
1417 
1418 	if (kn)
1419 		return 0;
1420 	else
1421 		return -ENOENT;
1422 }
1423 
1424 /**
1425  * kernfs_rename_ns - move and rename a kernfs_node
1426  * @kn: target node
1427  * @new_parent: new parent to put @sd under
1428  * @new_name: new name
1429  * @new_ns: new namespace tag
1430  */
1431 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1432 		     const char *new_name, const void *new_ns)
1433 {
1434 	struct kernfs_node *old_parent;
1435 	const char *old_name = NULL;
1436 	int error;
1437 
1438 	/* can't move or rename root */
1439 	if (!kn->parent)
1440 		return -EINVAL;
1441 
1442 	mutex_lock(&kernfs_mutex);
1443 
1444 	error = -ENOENT;
1445 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1446 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1447 		goto out;
1448 
1449 	error = 0;
1450 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1451 	    (strcmp(kn->name, new_name) == 0))
1452 		goto out;	/* nothing to rename */
1453 
1454 	error = -EEXIST;
1455 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1456 		goto out;
1457 
1458 	/* rename kernfs_node */
1459 	if (strcmp(kn->name, new_name) != 0) {
1460 		error = -ENOMEM;
1461 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1462 		if (!new_name)
1463 			goto out;
1464 	} else {
1465 		new_name = NULL;
1466 	}
1467 
1468 	/*
1469 	 * Move to the appropriate place in the appropriate directories rbtree.
1470 	 */
1471 	kernfs_unlink_sibling(kn);
1472 	kernfs_get(new_parent);
1473 
1474 	/* rename_lock protects ->parent and ->name accessors */
1475 	spin_lock_irq(&kernfs_rename_lock);
1476 
1477 	old_parent = kn->parent;
1478 	kn->parent = new_parent;
1479 
1480 	kn->ns = new_ns;
1481 	if (new_name) {
1482 		old_name = kn->name;
1483 		kn->name = new_name;
1484 	}
1485 
1486 	spin_unlock_irq(&kernfs_rename_lock);
1487 
1488 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1489 	kernfs_link_sibling(kn);
1490 
1491 	kernfs_put(old_parent);
1492 	kfree_const(old_name);
1493 
1494 	error = 0;
1495  out:
1496 	mutex_unlock(&kernfs_mutex);
1497 	return error;
1498 }
1499 
1500 /* Relationship between s_mode and the DT_xxx types */
1501 static inline unsigned char dt_type(struct kernfs_node *kn)
1502 {
1503 	return (kn->mode >> 12) & 15;
1504 }
1505 
1506 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1507 {
1508 	kernfs_put(filp->private_data);
1509 	return 0;
1510 }
1511 
1512 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1513 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1514 {
1515 	if (pos) {
1516 		int valid = kernfs_active(pos) &&
1517 			pos->parent == parent && hash == pos->hash;
1518 		kernfs_put(pos);
1519 		if (!valid)
1520 			pos = NULL;
1521 	}
1522 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1523 		struct rb_node *node = parent->dir.children.rb_node;
1524 		while (node) {
1525 			pos = rb_to_kn(node);
1526 
1527 			if (hash < pos->hash)
1528 				node = node->rb_left;
1529 			else if (hash > pos->hash)
1530 				node = node->rb_right;
1531 			else
1532 				break;
1533 		}
1534 	}
1535 	/* Skip over entries which are dying/dead or in the wrong namespace */
1536 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1537 		struct rb_node *node = rb_next(&pos->rb);
1538 		if (!node)
1539 			pos = NULL;
1540 		else
1541 			pos = rb_to_kn(node);
1542 	}
1543 	return pos;
1544 }
1545 
1546 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1547 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1548 {
1549 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1550 	if (pos) {
1551 		do {
1552 			struct rb_node *node = rb_next(&pos->rb);
1553 			if (!node)
1554 				pos = NULL;
1555 			else
1556 				pos = rb_to_kn(node);
1557 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1558 	}
1559 	return pos;
1560 }
1561 
1562 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1563 {
1564 	struct dentry *dentry = file->f_path.dentry;
1565 	struct kernfs_node *parent = dentry->d_fsdata;
1566 	struct kernfs_node *pos = file->private_data;
1567 	const void *ns = NULL;
1568 
1569 	if (!dir_emit_dots(file, ctx))
1570 		return 0;
1571 	mutex_lock(&kernfs_mutex);
1572 
1573 	if (kernfs_ns_enabled(parent))
1574 		ns = kernfs_info(dentry->d_sb)->ns;
1575 
1576 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1577 	     pos;
1578 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1579 		const char *name = pos->name;
1580 		unsigned int type = dt_type(pos);
1581 		int len = strlen(name);
1582 		ino_t ino = pos->ino;
1583 
1584 		ctx->pos = pos->hash;
1585 		file->private_data = pos;
1586 		kernfs_get(pos);
1587 
1588 		mutex_unlock(&kernfs_mutex);
1589 		if (!dir_emit(ctx, name, len, ino, type))
1590 			return 0;
1591 		mutex_lock(&kernfs_mutex);
1592 	}
1593 	mutex_unlock(&kernfs_mutex);
1594 	file->private_data = NULL;
1595 	ctx->pos = INT_MAX;
1596 	return 0;
1597 }
1598 
1599 const struct file_operations kernfs_dir_fops = {
1600 	.read		= generic_read_dir,
1601 	.iterate_shared	= kernfs_fop_readdir,
1602 	.release	= kernfs_dir_fop_release,
1603 	.llseek		= generic_file_llseek,
1604 };
1605