1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/fs.h> 13 #include <linux/namei.h> 14 #include <linux/idr.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/hash.h> 18 19 #include "kernfs-internal.h" 20 21 DEFINE_MUTEX(kernfs_mutex); 22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 24 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 25 26 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 27 28 static bool kernfs_active(struct kernfs_node *kn) 29 { 30 lockdep_assert_held(&kernfs_mutex); 31 return atomic_read(&kn->active) >= 0; 32 } 33 34 static bool kernfs_lockdep(struct kernfs_node *kn) 35 { 36 #ifdef CONFIG_DEBUG_LOCK_ALLOC 37 return kn->flags & KERNFS_LOCKDEP; 38 #else 39 return false; 40 #endif 41 } 42 43 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 44 { 45 if (!kn) 46 return strlcpy(buf, "(null)", buflen); 47 48 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 49 } 50 51 /* kernfs_node_depth - compute depth from @from to @to */ 52 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 53 { 54 size_t depth = 0; 55 56 while (to->parent && to != from) { 57 depth++; 58 to = to->parent; 59 } 60 return depth; 61 } 62 63 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 64 struct kernfs_node *b) 65 { 66 size_t da, db; 67 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 68 69 if (ra != rb) 70 return NULL; 71 72 da = kernfs_depth(ra->kn, a); 73 db = kernfs_depth(rb->kn, b); 74 75 while (da > db) { 76 a = a->parent; 77 da--; 78 } 79 while (db > da) { 80 b = b->parent; 81 db--; 82 } 83 84 /* worst case b and a will be the same at root */ 85 while (b != a) { 86 b = b->parent; 87 a = a->parent; 88 } 89 90 return a; 91 } 92 93 /** 94 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 95 * where kn_from is treated as root of the path. 96 * @kn_from: kernfs node which should be treated as root for the path 97 * @kn_to: kernfs node to which path is needed 98 * @buf: buffer to copy the path into 99 * @buflen: size of @buf 100 * 101 * We need to handle couple of scenarios here: 102 * [1] when @kn_from is an ancestor of @kn_to at some level 103 * kn_from: /n1/n2/n3 104 * kn_to: /n1/n2/n3/n4/n5 105 * result: /n4/n5 106 * 107 * [2] when @kn_from is on a different hierarchy and we need to find common 108 * ancestor between @kn_from and @kn_to. 109 * kn_from: /n1/n2/n3/n4 110 * kn_to: /n1/n2/n5 111 * result: /../../n5 112 * OR 113 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 114 * kn_to: /n1/n2/n3 [depth=3] 115 * result: /../.. 116 * 117 * [3] when @kn_to is NULL result will be "(null)" 118 * 119 * Returns the length of the full path. If the full length is equal to or 120 * greater than @buflen, @buf contains the truncated path with the trailing 121 * '\0'. On error, -errno is returned. 122 */ 123 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 124 struct kernfs_node *kn_from, 125 char *buf, size_t buflen) 126 { 127 struct kernfs_node *kn, *common; 128 const char parent_str[] = "/.."; 129 size_t depth_from, depth_to, len = 0; 130 int i, j; 131 132 if (!kn_to) 133 return strlcpy(buf, "(null)", buflen); 134 135 if (!kn_from) 136 kn_from = kernfs_root(kn_to)->kn; 137 138 if (kn_from == kn_to) 139 return strlcpy(buf, "/", buflen); 140 141 common = kernfs_common_ancestor(kn_from, kn_to); 142 if (WARN_ON(!common)) 143 return -EINVAL; 144 145 depth_to = kernfs_depth(common, kn_to); 146 depth_from = kernfs_depth(common, kn_from); 147 148 if (buf) 149 buf[0] = '\0'; 150 151 for (i = 0; i < depth_from; i++) 152 len += strlcpy(buf + len, parent_str, 153 len < buflen ? buflen - len : 0); 154 155 /* Calculate how many bytes we need for the rest */ 156 for (i = depth_to - 1; i >= 0; i--) { 157 for (kn = kn_to, j = 0; j < i; j++) 158 kn = kn->parent; 159 len += strlcpy(buf + len, "/", 160 len < buflen ? buflen - len : 0); 161 len += strlcpy(buf + len, kn->name, 162 len < buflen ? buflen - len : 0); 163 } 164 165 return len; 166 } 167 168 /** 169 * kernfs_name - obtain the name of a given node 170 * @kn: kernfs_node of interest 171 * @buf: buffer to copy @kn's name into 172 * @buflen: size of @buf 173 * 174 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 175 * similar to strlcpy(). It returns the length of @kn's name and if @buf 176 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 177 * 178 * Fills buffer with "(null)" if @kn is NULL. 179 * 180 * This function can be called from any context. 181 */ 182 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 183 { 184 unsigned long flags; 185 int ret; 186 187 spin_lock_irqsave(&kernfs_rename_lock, flags); 188 ret = kernfs_name_locked(kn, buf, buflen); 189 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 190 return ret; 191 } 192 193 /** 194 * kernfs_path_from_node - build path of node @to relative to @from. 195 * @from: parent kernfs_node relative to which we need to build the path 196 * @to: kernfs_node of interest 197 * @buf: buffer to copy @to's path into 198 * @buflen: size of @buf 199 * 200 * Builds @to's path relative to @from in @buf. @from and @to must 201 * be on the same kernfs-root. If @from is not parent of @to, then a relative 202 * path (which includes '..'s) as needed to reach from @from to @to is 203 * returned. 204 * 205 * Returns the length of the full path. If the full length is equal to or 206 * greater than @buflen, @buf contains the truncated path with the trailing 207 * '\0'. On error, -errno is returned. 208 */ 209 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 210 char *buf, size_t buflen) 211 { 212 unsigned long flags; 213 int ret; 214 215 spin_lock_irqsave(&kernfs_rename_lock, flags); 216 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 217 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 218 return ret; 219 } 220 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 221 222 /** 223 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 224 * @kn: kernfs_node of interest 225 * 226 * This function can be called from any context. 227 */ 228 void pr_cont_kernfs_name(struct kernfs_node *kn) 229 { 230 unsigned long flags; 231 232 spin_lock_irqsave(&kernfs_rename_lock, flags); 233 234 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 235 pr_cont("%s", kernfs_pr_cont_buf); 236 237 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 238 } 239 240 /** 241 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 242 * @kn: kernfs_node of interest 243 * 244 * This function can be called from any context. 245 */ 246 void pr_cont_kernfs_path(struct kernfs_node *kn) 247 { 248 unsigned long flags; 249 int sz; 250 251 spin_lock_irqsave(&kernfs_rename_lock, flags); 252 253 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf, 254 sizeof(kernfs_pr_cont_buf)); 255 if (sz < 0) { 256 pr_cont("(error)"); 257 goto out; 258 } 259 260 if (sz >= sizeof(kernfs_pr_cont_buf)) { 261 pr_cont("(name too long)"); 262 goto out; 263 } 264 265 pr_cont("%s", kernfs_pr_cont_buf); 266 267 out: 268 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 269 } 270 271 /** 272 * kernfs_get_parent - determine the parent node and pin it 273 * @kn: kernfs_node of interest 274 * 275 * Determines @kn's parent, pins and returns it. This function can be 276 * called from any context. 277 */ 278 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 279 { 280 struct kernfs_node *parent; 281 unsigned long flags; 282 283 spin_lock_irqsave(&kernfs_rename_lock, flags); 284 parent = kn->parent; 285 kernfs_get(parent); 286 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 287 288 return parent; 289 } 290 291 /** 292 * kernfs_name_hash 293 * @name: Null terminated string to hash 294 * @ns: Namespace tag to hash 295 * 296 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 297 */ 298 static unsigned int kernfs_name_hash(const char *name, const void *ns) 299 { 300 unsigned long hash = init_name_hash(ns); 301 unsigned int len = strlen(name); 302 while (len--) 303 hash = partial_name_hash(*name++, hash); 304 hash = end_name_hash(hash); 305 hash &= 0x7fffffffU; 306 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 307 if (hash < 2) 308 hash += 2; 309 if (hash >= INT_MAX) 310 hash = INT_MAX - 1; 311 return hash; 312 } 313 314 static int kernfs_name_compare(unsigned int hash, const char *name, 315 const void *ns, const struct kernfs_node *kn) 316 { 317 if (hash < kn->hash) 318 return -1; 319 if (hash > kn->hash) 320 return 1; 321 if (ns < kn->ns) 322 return -1; 323 if (ns > kn->ns) 324 return 1; 325 return strcmp(name, kn->name); 326 } 327 328 static int kernfs_sd_compare(const struct kernfs_node *left, 329 const struct kernfs_node *right) 330 { 331 return kernfs_name_compare(left->hash, left->name, left->ns, right); 332 } 333 334 /** 335 * kernfs_link_sibling - link kernfs_node into sibling rbtree 336 * @kn: kernfs_node of interest 337 * 338 * Link @kn into its sibling rbtree which starts from 339 * @kn->parent->dir.children. 340 * 341 * Locking: 342 * mutex_lock(kernfs_mutex) 343 * 344 * RETURNS: 345 * 0 on susccess -EEXIST on failure. 346 */ 347 static int kernfs_link_sibling(struct kernfs_node *kn) 348 { 349 struct rb_node **node = &kn->parent->dir.children.rb_node; 350 struct rb_node *parent = NULL; 351 352 while (*node) { 353 struct kernfs_node *pos; 354 int result; 355 356 pos = rb_to_kn(*node); 357 parent = *node; 358 result = kernfs_sd_compare(kn, pos); 359 if (result < 0) 360 node = &pos->rb.rb_left; 361 else if (result > 0) 362 node = &pos->rb.rb_right; 363 else 364 return -EEXIST; 365 } 366 367 /* add new node and rebalance the tree */ 368 rb_link_node(&kn->rb, parent, node); 369 rb_insert_color(&kn->rb, &kn->parent->dir.children); 370 371 /* successfully added, account subdir number */ 372 if (kernfs_type(kn) == KERNFS_DIR) 373 kn->parent->dir.subdirs++; 374 375 return 0; 376 } 377 378 /** 379 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 380 * @kn: kernfs_node of interest 381 * 382 * Try to unlink @kn from its sibling rbtree which starts from 383 * kn->parent->dir.children. Returns %true if @kn was actually 384 * removed, %false if @kn wasn't on the rbtree. 385 * 386 * Locking: 387 * mutex_lock(kernfs_mutex) 388 */ 389 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 390 { 391 if (RB_EMPTY_NODE(&kn->rb)) 392 return false; 393 394 if (kernfs_type(kn) == KERNFS_DIR) 395 kn->parent->dir.subdirs--; 396 397 rb_erase(&kn->rb, &kn->parent->dir.children); 398 RB_CLEAR_NODE(&kn->rb); 399 return true; 400 } 401 402 /** 403 * kernfs_get_active - get an active reference to kernfs_node 404 * @kn: kernfs_node to get an active reference to 405 * 406 * Get an active reference of @kn. This function is noop if @kn 407 * is NULL. 408 * 409 * RETURNS: 410 * Pointer to @kn on success, NULL on failure. 411 */ 412 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 413 { 414 if (unlikely(!kn)) 415 return NULL; 416 417 if (!atomic_inc_unless_negative(&kn->active)) 418 return NULL; 419 420 if (kernfs_lockdep(kn)) 421 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 422 return kn; 423 } 424 425 /** 426 * kernfs_put_active - put an active reference to kernfs_node 427 * @kn: kernfs_node to put an active reference to 428 * 429 * Put an active reference to @kn. This function is noop if @kn 430 * is NULL. 431 */ 432 void kernfs_put_active(struct kernfs_node *kn) 433 { 434 struct kernfs_root *root = kernfs_root(kn); 435 int v; 436 437 if (unlikely(!kn)) 438 return; 439 440 if (kernfs_lockdep(kn)) 441 rwsem_release(&kn->dep_map, 1, _RET_IP_); 442 v = atomic_dec_return(&kn->active); 443 if (likely(v != KN_DEACTIVATED_BIAS)) 444 return; 445 446 wake_up_all(&root->deactivate_waitq); 447 } 448 449 /** 450 * kernfs_drain - drain kernfs_node 451 * @kn: kernfs_node to drain 452 * 453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 454 * removers may invoke this function concurrently on @kn and all will 455 * return after draining is complete. 456 */ 457 static void kernfs_drain(struct kernfs_node *kn) 458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 459 { 460 struct kernfs_root *root = kernfs_root(kn); 461 462 lockdep_assert_held(&kernfs_mutex); 463 WARN_ON_ONCE(kernfs_active(kn)); 464 465 mutex_unlock(&kernfs_mutex); 466 467 if (kernfs_lockdep(kn)) { 468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 470 lock_contended(&kn->dep_map, _RET_IP_); 471 } 472 473 /* but everyone should wait for draining */ 474 wait_event(root->deactivate_waitq, 475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 476 477 if (kernfs_lockdep(kn)) { 478 lock_acquired(&kn->dep_map, _RET_IP_); 479 rwsem_release(&kn->dep_map, 1, _RET_IP_); 480 } 481 482 kernfs_drain_open_files(kn); 483 484 mutex_lock(&kernfs_mutex); 485 } 486 487 /** 488 * kernfs_get - get a reference count on a kernfs_node 489 * @kn: the target kernfs_node 490 */ 491 void kernfs_get(struct kernfs_node *kn) 492 { 493 if (kn) { 494 WARN_ON(!atomic_read(&kn->count)); 495 atomic_inc(&kn->count); 496 } 497 } 498 EXPORT_SYMBOL_GPL(kernfs_get); 499 500 /** 501 * kernfs_put - put a reference count on a kernfs_node 502 * @kn: the target kernfs_node 503 * 504 * Put a reference count of @kn and destroy it if it reached zero. 505 */ 506 void kernfs_put(struct kernfs_node *kn) 507 { 508 struct kernfs_node *parent; 509 struct kernfs_root *root; 510 511 /* 512 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino 513 * depends on this to filter reused stale node 514 */ 515 if (!kn || !atomic_dec_and_test(&kn->count)) 516 return; 517 root = kernfs_root(kn); 518 repeat: 519 /* 520 * Moving/renaming is always done while holding reference. 521 * kn->parent won't change beneath us. 522 */ 523 parent = kn->parent; 524 525 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 526 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 527 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 528 529 if (kernfs_type(kn) == KERNFS_LINK) 530 kernfs_put(kn->symlink.target_kn); 531 532 kfree_const(kn->name); 533 534 if (kn->iattr) { 535 if (kn->iattr->ia_secdata) 536 security_release_secctx(kn->iattr->ia_secdata, 537 kn->iattr->ia_secdata_len); 538 simple_xattrs_free(&kn->iattr->xattrs); 539 } 540 kfree(kn->iattr); 541 spin_lock(&kernfs_idr_lock); 542 idr_remove(&root->ino_idr, kn->id.ino); 543 spin_unlock(&kernfs_idr_lock); 544 kmem_cache_free(kernfs_node_cache, kn); 545 546 kn = parent; 547 if (kn) { 548 if (atomic_dec_and_test(&kn->count)) 549 goto repeat; 550 } else { 551 /* just released the root kn, free @root too */ 552 idr_destroy(&root->ino_idr); 553 kfree(root); 554 } 555 } 556 EXPORT_SYMBOL_GPL(kernfs_put); 557 558 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 559 { 560 struct kernfs_node *kn; 561 562 if (flags & LOOKUP_RCU) 563 return -ECHILD; 564 565 /* Always perform fresh lookup for negatives */ 566 if (d_really_is_negative(dentry)) 567 goto out_bad_unlocked; 568 569 kn = kernfs_dentry_node(dentry); 570 mutex_lock(&kernfs_mutex); 571 572 /* The kernfs node has been deactivated */ 573 if (!kernfs_active(kn)) 574 goto out_bad; 575 576 /* The kernfs node has been moved? */ 577 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 578 goto out_bad; 579 580 /* The kernfs node has been renamed */ 581 if (strcmp(dentry->d_name.name, kn->name) != 0) 582 goto out_bad; 583 584 /* The kernfs node has been moved to a different namespace */ 585 if (kn->parent && kernfs_ns_enabled(kn->parent) && 586 kernfs_info(dentry->d_sb)->ns != kn->ns) 587 goto out_bad; 588 589 mutex_unlock(&kernfs_mutex); 590 return 1; 591 out_bad: 592 mutex_unlock(&kernfs_mutex); 593 out_bad_unlocked: 594 return 0; 595 } 596 597 const struct dentry_operations kernfs_dops = { 598 .d_revalidate = kernfs_dop_revalidate, 599 }; 600 601 /** 602 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 603 * @dentry: the dentry in question 604 * 605 * Return the kernfs_node associated with @dentry. If @dentry is not a 606 * kernfs one, %NULL is returned. 607 * 608 * While the returned kernfs_node will stay accessible as long as @dentry 609 * is accessible, the returned node can be in any state and the caller is 610 * fully responsible for determining what's accessible. 611 */ 612 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 613 { 614 if (dentry->d_sb->s_op == &kernfs_sops && 615 !d_really_is_negative(dentry)) 616 return kernfs_dentry_node(dentry); 617 return NULL; 618 } 619 620 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 621 const char *name, umode_t mode, 622 kuid_t uid, kgid_t gid, 623 unsigned flags) 624 { 625 struct kernfs_node *kn; 626 u32 gen; 627 int cursor; 628 int ret; 629 630 name = kstrdup_const(name, GFP_KERNEL); 631 if (!name) 632 return NULL; 633 634 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 635 if (!kn) 636 goto err_out1; 637 638 idr_preload(GFP_KERNEL); 639 spin_lock(&kernfs_idr_lock); 640 cursor = idr_get_cursor(&root->ino_idr); 641 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 642 if (ret >= 0 && ret < cursor) 643 root->next_generation++; 644 gen = root->next_generation; 645 spin_unlock(&kernfs_idr_lock); 646 idr_preload_end(); 647 if (ret < 0) 648 goto err_out2; 649 kn->id.ino = ret; 650 kn->id.generation = gen; 651 652 /* 653 * set ino first. This barrier is paired with atomic_inc_not_zero in 654 * kernfs_find_and_get_node_by_ino 655 */ 656 smp_mb__before_atomic(); 657 atomic_set(&kn->count, 1); 658 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 659 RB_CLEAR_NODE(&kn->rb); 660 661 kn->name = name; 662 kn->mode = mode; 663 kn->flags = flags; 664 665 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 666 struct iattr iattr = { 667 .ia_valid = ATTR_UID | ATTR_GID, 668 .ia_uid = uid, 669 .ia_gid = gid, 670 }; 671 672 ret = __kernfs_setattr(kn, &iattr); 673 if (ret < 0) 674 goto err_out3; 675 } 676 677 return kn; 678 679 err_out3: 680 idr_remove(&root->ino_idr, kn->id.ino); 681 err_out2: 682 kmem_cache_free(kernfs_node_cache, kn); 683 err_out1: 684 kfree_const(name); 685 return NULL; 686 } 687 688 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 689 const char *name, umode_t mode, 690 kuid_t uid, kgid_t gid, 691 unsigned flags) 692 { 693 struct kernfs_node *kn; 694 695 kn = __kernfs_new_node(kernfs_root(parent), 696 name, mode, uid, gid, flags); 697 if (kn) { 698 kernfs_get(parent); 699 kn->parent = parent; 700 } 701 return kn; 702 } 703 704 /* 705 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number 706 * @root: the kernfs root 707 * @ino: inode number 708 * 709 * RETURNS: 710 * NULL on failure. Return a kernfs node with reference counter incremented 711 */ 712 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root, 713 unsigned int ino) 714 { 715 struct kernfs_node *kn; 716 717 rcu_read_lock(); 718 kn = idr_find(&root->ino_idr, ino); 719 if (!kn) 720 goto out; 721 722 /* 723 * Since kernfs_node is freed in RCU, it's possible an old node for ino 724 * is freed, but reused before RCU grace period. But a freed node (see 725 * kernfs_put) or an incompletedly initialized node (see 726 * __kernfs_new_node) should have 'count' 0. We can use this fact to 727 * filter out such node. 728 */ 729 if (!atomic_inc_not_zero(&kn->count)) { 730 kn = NULL; 731 goto out; 732 } 733 734 /* 735 * The node could be a new node or a reused node. If it's a new node, 736 * we are ok. If it's reused because of RCU (because of 737 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino' 738 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate, 739 * hence we can use 'ino' to filter stale node. 740 */ 741 if (kn->id.ino != ino) 742 goto out; 743 rcu_read_unlock(); 744 745 return kn; 746 out: 747 rcu_read_unlock(); 748 kernfs_put(kn); 749 return NULL; 750 } 751 752 /** 753 * kernfs_add_one - add kernfs_node to parent without warning 754 * @kn: kernfs_node to be added 755 * 756 * The caller must already have initialized @kn->parent. This 757 * function increments nlink of the parent's inode if @kn is a 758 * directory and link into the children list of the parent. 759 * 760 * RETURNS: 761 * 0 on success, -EEXIST if entry with the given name already 762 * exists. 763 */ 764 int kernfs_add_one(struct kernfs_node *kn) 765 { 766 struct kernfs_node *parent = kn->parent; 767 struct kernfs_iattrs *ps_iattr; 768 bool has_ns; 769 int ret; 770 771 mutex_lock(&kernfs_mutex); 772 773 ret = -EINVAL; 774 has_ns = kernfs_ns_enabled(parent); 775 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 776 has_ns ? "required" : "invalid", parent->name, kn->name)) 777 goto out_unlock; 778 779 if (kernfs_type(parent) != KERNFS_DIR) 780 goto out_unlock; 781 782 ret = -ENOENT; 783 if (parent->flags & KERNFS_EMPTY_DIR) 784 goto out_unlock; 785 786 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 787 goto out_unlock; 788 789 kn->hash = kernfs_name_hash(kn->name, kn->ns); 790 791 ret = kernfs_link_sibling(kn); 792 if (ret) 793 goto out_unlock; 794 795 /* Update timestamps on the parent */ 796 ps_iattr = parent->iattr; 797 if (ps_iattr) { 798 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 799 ktime_get_real_ts64(&ps_iattrs->ia_ctime); 800 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime; 801 } 802 803 mutex_unlock(&kernfs_mutex); 804 805 /* 806 * Activate the new node unless CREATE_DEACTIVATED is requested. 807 * If not activated here, the kernfs user is responsible for 808 * activating the node with kernfs_activate(). A node which hasn't 809 * been activated is not visible to userland and its removal won't 810 * trigger deactivation. 811 */ 812 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 813 kernfs_activate(kn); 814 return 0; 815 816 out_unlock: 817 mutex_unlock(&kernfs_mutex); 818 return ret; 819 } 820 821 /** 822 * kernfs_find_ns - find kernfs_node with the given name 823 * @parent: kernfs_node to search under 824 * @name: name to look for 825 * @ns: the namespace tag to use 826 * 827 * Look for kernfs_node with name @name under @parent. Returns pointer to 828 * the found kernfs_node on success, %NULL on failure. 829 */ 830 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 831 const unsigned char *name, 832 const void *ns) 833 { 834 struct rb_node *node = parent->dir.children.rb_node; 835 bool has_ns = kernfs_ns_enabled(parent); 836 unsigned int hash; 837 838 lockdep_assert_held(&kernfs_mutex); 839 840 if (has_ns != (bool)ns) { 841 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 842 has_ns ? "required" : "invalid", parent->name, name); 843 return NULL; 844 } 845 846 hash = kernfs_name_hash(name, ns); 847 while (node) { 848 struct kernfs_node *kn; 849 int result; 850 851 kn = rb_to_kn(node); 852 result = kernfs_name_compare(hash, name, ns, kn); 853 if (result < 0) 854 node = node->rb_left; 855 else if (result > 0) 856 node = node->rb_right; 857 else 858 return kn; 859 } 860 return NULL; 861 } 862 863 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 864 const unsigned char *path, 865 const void *ns) 866 { 867 size_t len; 868 char *p, *name; 869 870 lockdep_assert_held(&kernfs_mutex); 871 872 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */ 873 spin_lock_irq(&kernfs_rename_lock); 874 875 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 876 877 if (len >= sizeof(kernfs_pr_cont_buf)) { 878 spin_unlock_irq(&kernfs_rename_lock); 879 return NULL; 880 } 881 882 p = kernfs_pr_cont_buf; 883 884 while ((name = strsep(&p, "/")) && parent) { 885 if (*name == '\0') 886 continue; 887 parent = kernfs_find_ns(parent, name, ns); 888 } 889 890 spin_unlock_irq(&kernfs_rename_lock); 891 892 return parent; 893 } 894 895 /** 896 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 897 * @parent: kernfs_node to search under 898 * @name: name to look for 899 * @ns: the namespace tag to use 900 * 901 * Look for kernfs_node with name @name under @parent and get a reference 902 * if found. This function may sleep and returns pointer to the found 903 * kernfs_node on success, %NULL on failure. 904 */ 905 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 906 const char *name, const void *ns) 907 { 908 struct kernfs_node *kn; 909 910 mutex_lock(&kernfs_mutex); 911 kn = kernfs_find_ns(parent, name, ns); 912 kernfs_get(kn); 913 mutex_unlock(&kernfs_mutex); 914 915 return kn; 916 } 917 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 918 919 /** 920 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 921 * @parent: kernfs_node to search under 922 * @path: path to look for 923 * @ns: the namespace tag to use 924 * 925 * Look for kernfs_node with path @path under @parent and get a reference 926 * if found. This function may sleep and returns pointer to the found 927 * kernfs_node on success, %NULL on failure. 928 */ 929 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 930 const char *path, const void *ns) 931 { 932 struct kernfs_node *kn; 933 934 mutex_lock(&kernfs_mutex); 935 kn = kernfs_walk_ns(parent, path, ns); 936 kernfs_get(kn); 937 mutex_unlock(&kernfs_mutex); 938 939 return kn; 940 } 941 942 /** 943 * kernfs_create_root - create a new kernfs hierarchy 944 * @scops: optional syscall operations for the hierarchy 945 * @flags: KERNFS_ROOT_* flags 946 * @priv: opaque data associated with the new directory 947 * 948 * Returns the root of the new hierarchy on success, ERR_PTR() value on 949 * failure. 950 */ 951 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 952 unsigned int flags, void *priv) 953 { 954 struct kernfs_root *root; 955 struct kernfs_node *kn; 956 957 root = kzalloc(sizeof(*root), GFP_KERNEL); 958 if (!root) 959 return ERR_PTR(-ENOMEM); 960 961 idr_init(&root->ino_idr); 962 INIT_LIST_HEAD(&root->supers); 963 root->next_generation = 1; 964 965 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 966 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 967 KERNFS_DIR); 968 if (!kn) { 969 idr_destroy(&root->ino_idr); 970 kfree(root); 971 return ERR_PTR(-ENOMEM); 972 } 973 974 kn->priv = priv; 975 kn->dir.root = root; 976 977 root->syscall_ops = scops; 978 root->flags = flags; 979 root->kn = kn; 980 init_waitqueue_head(&root->deactivate_waitq); 981 982 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 983 kernfs_activate(kn); 984 985 return root; 986 } 987 988 /** 989 * kernfs_destroy_root - destroy a kernfs hierarchy 990 * @root: root of the hierarchy to destroy 991 * 992 * Destroy the hierarchy anchored at @root by removing all existing 993 * directories and destroying @root. 994 */ 995 void kernfs_destroy_root(struct kernfs_root *root) 996 { 997 kernfs_remove(root->kn); /* will also free @root */ 998 } 999 1000 /** 1001 * kernfs_create_dir_ns - create a directory 1002 * @parent: parent in which to create a new directory 1003 * @name: name of the new directory 1004 * @mode: mode of the new directory 1005 * @uid: uid of the new directory 1006 * @gid: gid of the new directory 1007 * @priv: opaque data associated with the new directory 1008 * @ns: optional namespace tag of the directory 1009 * 1010 * Returns the created node on success, ERR_PTR() value on failure. 1011 */ 1012 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1013 const char *name, umode_t mode, 1014 kuid_t uid, kgid_t gid, 1015 void *priv, const void *ns) 1016 { 1017 struct kernfs_node *kn; 1018 int rc; 1019 1020 /* allocate */ 1021 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1022 uid, gid, KERNFS_DIR); 1023 if (!kn) 1024 return ERR_PTR(-ENOMEM); 1025 1026 kn->dir.root = parent->dir.root; 1027 kn->ns = ns; 1028 kn->priv = priv; 1029 1030 /* link in */ 1031 rc = kernfs_add_one(kn); 1032 if (!rc) 1033 return kn; 1034 1035 kernfs_put(kn); 1036 return ERR_PTR(rc); 1037 } 1038 1039 /** 1040 * kernfs_create_empty_dir - create an always empty directory 1041 * @parent: parent in which to create a new directory 1042 * @name: name of the new directory 1043 * 1044 * Returns the created node on success, ERR_PTR() value on failure. 1045 */ 1046 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1047 const char *name) 1048 { 1049 struct kernfs_node *kn; 1050 int rc; 1051 1052 /* allocate */ 1053 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1054 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1055 if (!kn) 1056 return ERR_PTR(-ENOMEM); 1057 1058 kn->flags |= KERNFS_EMPTY_DIR; 1059 kn->dir.root = parent->dir.root; 1060 kn->ns = NULL; 1061 kn->priv = NULL; 1062 1063 /* link in */ 1064 rc = kernfs_add_one(kn); 1065 if (!rc) 1066 return kn; 1067 1068 kernfs_put(kn); 1069 return ERR_PTR(rc); 1070 } 1071 1072 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1073 struct dentry *dentry, 1074 unsigned int flags) 1075 { 1076 struct dentry *ret; 1077 struct kernfs_node *parent = dir->i_private; 1078 struct kernfs_node *kn; 1079 struct inode *inode; 1080 const void *ns = NULL; 1081 1082 mutex_lock(&kernfs_mutex); 1083 1084 if (kernfs_ns_enabled(parent)) 1085 ns = kernfs_info(dir->i_sb)->ns; 1086 1087 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1088 1089 /* no such entry */ 1090 if (!kn || !kernfs_active(kn)) { 1091 ret = NULL; 1092 goto out_unlock; 1093 } 1094 1095 /* attach dentry and inode */ 1096 inode = kernfs_get_inode(dir->i_sb, kn); 1097 if (!inode) { 1098 ret = ERR_PTR(-ENOMEM); 1099 goto out_unlock; 1100 } 1101 1102 /* instantiate and hash dentry */ 1103 ret = d_splice_alias(inode, dentry); 1104 out_unlock: 1105 mutex_unlock(&kernfs_mutex); 1106 return ret; 1107 } 1108 1109 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 1110 umode_t mode) 1111 { 1112 struct kernfs_node *parent = dir->i_private; 1113 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1114 int ret; 1115 1116 if (!scops || !scops->mkdir) 1117 return -EPERM; 1118 1119 if (!kernfs_get_active(parent)) 1120 return -ENODEV; 1121 1122 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1123 1124 kernfs_put_active(parent); 1125 return ret; 1126 } 1127 1128 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1129 { 1130 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1131 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1132 int ret; 1133 1134 if (!scops || !scops->rmdir) 1135 return -EPERM; 1136 1137 if (!kernfs_get_active(kn)) 1138 return -ENODEV; 1139 1140 ret = scops->rmdir(kn); 1141 1142 kernfs_put_active(kn); 1143 return ret; 1144 } 1145 1146 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 1147 struct inode *new_dir, struct dentry *new_dentry, 1148 unsigned int flags) 1149 { 1150 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1151 struct kernfs_node *new_parent = new_dir->i_private; 1152 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1153 int ret; 1154 1155 if (flags) 1156 return -EINVAL; 1157 1158 if (!scops || !scops->rename) 1159 return -EPERM; 1160 1161 if (!kernfs_get_active(kn)) 1162 return -ENODEV; 1163 1164 if (!kernfs_get_active(new_parent)) { 1165 kernfs_put_active(kn); 1166 return -ENODEV; 1167 } 1168 1169 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1170 1171 kernfs_put_active(new_parent); 1172 kernfs_put_active(kn); 1173 return ret; 1174 } 1175 1176 const struct inode_operations kernfs_dir_iops = { 1177 .lookup = kernfs_iop_lookup, 1178 .permission = kernfs_iop_permission, 1179 .setattr = kernfs_iop_setattr, 1180 .getattr = kernfs_iop_getattr, 1181 .listxattr = kernfs_iop_listxattr, 1182 1183 .mkdir = kernfs_iop_mkdir, 1184 .rmdir = kernfs_iop_rmdir, 1185 .rename = kernfs_iop_rename, 1186 }; 1187 1188 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1189 { 1190 struct kernfs_node *last; 1191 1192 while (true) { 1193 struct rb_node *rbn; 1194 1195 last = pos; 1196 1197 if (kernfs_type(pos) != KERNFS_DIR) 1198 break; 1199 1200 rbn = rb_first(&pos->dir.children); 1201 if (!rbn) 1202 break; 1203 1204 pos = rb_to_kn(rbn); 1205 } 1206 1207 return last; 1208 } 1209 1210 /** 1211 * kernfs_next_descendant_post - find the next descendant for post-order walk 1212 * @pos: the current position (%NULL to initiate traversal) 1213 * @root: kernfs_node whose descendants to walk 1214 * 1215 * Find the next descendant to visit for post-order traversal of @root's 1216 * descendants. @root is included in the iteration and the last node to be 1217 * visited. 1218 */ 1219 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1220 struct kernfs_node *root) 1221 { 1222 struct rb_node *rbn; 1223 1224 lockdep_assert_held(&kernfs_mutex); 1225 1226 /* if first iteration, visit leftmost descendant which may be root */ 1227 if (!pos) 1228 return kernfs_leftmost_descendant(root); 1229 1230 /* if we visited @root, we're done */ 1231 if (pos == root) 1232 return NULL; 1233 1234 /* if there's an unvisited sibling, visit its leftmost descendant */ 1235 rbn = rb_next(&pos->rb); 1236 if (rbn) 1237 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1238 1239 /* no sibling left, visit parent */ 1240 return pos->parent; 1241 } 1242 1243 /** 1244 * kernfs_activate - activate a node which started deactivated 1245 * @kn: kernfs_node whose subtree is to be activated 1246 * 1247 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1248 * needs to be explicitly activated. A node which hasn't been activated 1249 * isn't visible to userland and deactivation is skipped during its 1250 * removal. This is useful to construct atomic init sequences where 1251 * creation of multiple nodes should either succeed or fail atomically. 1252 * 1253 * The caller is responsible for ensuring that this function is not called 1254 * after kernfs_remove*() is invoked on @kn. 1255 */ 1256 void kernfs_activate(struct kernfs_node *kn) 1257 { 1258 struct kernfs_node *pos; 1259 1260 mutex_lock(&kernfs_mutex); 1261 1262 pos = NULL; 1263 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1264 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 1265 continue; 1266 1267 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1268 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1269 1270 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1271 pos->flags |= KERNFS_ACTIVATED; 1272 } 1273 1274 mutex_unlock(&kernfs_mutex); 1275 } 1276 1277 static void __kernfs_remove(struct kernfs_node *kn) 1278 { 1279 struct kernfs_node *pos; 1280 1281 lockdep_assert_held(&kernfs_mutex); 1282 1283 /* 1284 * Short-circuit if non-root @kn has already finished removal. 1285 * This is for kernfs_remove_self() which plays with active ref 1286 * after removal. 1287 */ 1288 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1289 return; 1290 1291 pr_debug("kernfs %s: removing\n", kn->name); 1292 1293 /* prevent any new usage under @kn by deactivating all nodes */ 1294 pos = NULL; 1295 while ((pos = kernfs_next_descendant_post(pos, kn))) 1296 if (kernfs_active(pos)) 1297 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1298 1299 /* deactivate and unlink the subtree node-by-node */ 1300 do { 1301 pos = kernfs_leftmost_descendant(kn); 1302 1303 /* 1304 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1305 * base ref could have been put by someone else by the time 1306 * the function returns. Make sure it doesn't go away 1307 * underneath us. 1308 */ 1309 kernfs_get(pos); 1310 1311 /* 1312 * Drain iff @kn was activated. This avoids draining and 1313 * its lockdep annotations for nodes which have never been 1314 * activated and allows embedding kernfs_remove() in create 1315 * error paths without worrying about draining. 1316 */ 1317 if (kn->flags & KERNFS_ACTIVATED) 1318 kernfs_drain(pos); 1319 else 1320 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1321 1322 /* 1323 * kernfs_unlink_sibling() succeeds once per node. Use it 1324 * to decide who's responsible for cleanups. 1325 */ 1326 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1327 struct kernfs_iattrs *ps_iattr = 1328 pos->parent ? pos->parent->iattr : NULL; 1329 1330 /* update timestamps on the parent */ 1331 if (ps_iattr) { 1332 ktime_get_real_ts64(&ps_iattr->ia_iattr.ia_ctime); 1333 ps_iattr->ia_iattr.ia_mtime = 1334 ps_iattr->ia_iattr.ia_ctime; 1335 } 1336 1337 kernfs_put(pos); 1338 } 1339 1340 kernfs_put(pos); 1341 } while (pos != kn); 1342 } 1343 1344 /** 1345 * kernfs_remove - remove a kernfs_node recursively 1346 * @kn: the kernfs_node to remove 1347 * 1348 * Remove @kn along with all its subdirectories and files. 1349 */ 1350 void kernfs_remove(struct kernfs_node *kn) 1351 { 1352 mutex_lock(&kernfs_mutex); 1353 __kernfs_remove(kn); 1354 mutex_unlock(&kernfs_mutex); 1355 } 1356 1357 /** 1358 * kernfs_break_active_protection - break out of active protection 1359 * @kn: the self kernfs_node 1360 * 1361 * The caller must be running off of a kernfs operation which is invoked 1362 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1363 * this function must also be matched with an invocation of 1364 * kernfs_unbreak_active_protection(). 1365 * 1366 * This function releases the active reference of @kn the caller is 1367 * holding. Once this function is called, @kn may be removed at any point 1368 * and the caller is solely responsible for ensuring that the objects it 1369 * dereferences are accessible. 1370 */ 1371 void kernfs_break_active_protection(struct kernfs_node *kn) 1372 { 1373 /* 1374 * Take out ourself out of the active ref dependency chain. If 1375 * we're called without an active ref, lockdep will complain. 1376 */ 1377 kernfs_put_active(kn); 1378 } 1379 1380 /** 1381 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1382 * @kn: the self kernfs_node 1383 * 1384 * If kernfs_break_active_protection() was called, this function must be 1385 * invoked before finishing the kernfs operation. Note that while this 1386 * function restores the active reference, it doesn't and can't actually 1387 * restore the active protection - @kn may already or be in the process of 1388 * being removed. Once kernfs_break_active_protection() is invoked, that 1389 * protection is irreversibly gone for the kernfs operation instance. 1390 * 1391 * While this function may be called at any point after 1392 * kernfs_break_active_protection() is invoked, its most useful location 1393 * would be right before the enclosing kernfs operation returns. 1394 */ 1395 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1396 { 1397 /* 1398 * @kn->active could be in any state; however, the increment we do 1399 * here will be undone as soon as the enclosing kernfs operation 1400 * finishes and this temporary bump can't break anything. If @kn 1401 * is alive, nothing changes. If @kn is being deactivated, the 1402 * soon-to-follow put will either finish deactivation or restore 1403 * deactivated state. If @kn is already removed, the temporary 1404 * bump is guaranteed to be gone before @kn is released. 1405 */ 1406 atomic_inc(&kn->active); 1407 if (kernfs_lockdep(kn)) 1408 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1409 } 1410 1411 /** 1412 * kernfs_remove_self - remove a kernfs_node from its own method 1413 * @kn: the self kernfs_node to remove 1414 * 1415 * The caller must be running off of a kernfs operation which is invoked 1416 * with an active reference - e.g. one of kernfs_ops. This can be used to 1417 * implement a file operation which deletes itself. 1418 * 1419 * For example, the "delete" file for a sysfs device directory can be 1420 * implemented by invoking kernfs_remove_self() on the "delete" file 1421 * itself. This function breaks the circular dependency of trying to 1422 * deactivate self while holding an active ref itself. It isn't necessary 1423 * to modify the usual removal path to use kernfs_remove_self(). The 1424 * "delete" implementation can simply invoke kernfs_remove_self() on self 1425 * before proceeding with the usual removal path. kernfs will ignore later 1426 * kernfs_remove() on self. 1427 * 1428 * kernfs_remove_self() can be called multiple times concurrently on the 1429 * same kernfs_node. Only the first one actually performs removal and 1430 * returns %true. All others will wait until the kernfs operation which 1431 * won self-removal finishes and return %false. Note that the losers wait 1432 * for the completion of not only the winning kernfs_remove_self() but also 1433 * the whole kernfs_ops which won the arbitration. This can be used to 1434 * guarantee, for example, all concurrent writes to a "delete" file to 1435 * finish only after the whole operation is complete. 1436 */ 1437 bool kernfs_remove_self(struct kernfs_node *kn) 1438 { 1439 bool ret; 1440 1441 mutex_lock(&kernfs_mutex); 1442 kernfs_break_active_protection(kn); 1443 1444 /* 1445 * SUICIDAL is used to arbitrate among competing invocations. Only 1446 * the first one will actually perform removal. When the removal 1447 * is complete, SUICIDED is set and the active ref is restored 1448 * while holding kernfs_mutex. The ones which lost arbitration 1449 * waits for SUICDED && drained which can happen only after the 1450 * enclosing kernfs operation which executed the winning instance 1451 * of kernfs_remove_self() finished. 1452 */ 1453 if (!(kn->flags & KERNFS_SUICIDAL)) { 1454 kn->flags |= KERNFS_SUICIDAL; 1455 __kernfs_remove(kn); 1456 kn->flags |= KERNFS_SUICIDED; 1457 ret = true; 1458 } else { 1459 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1460 DEFINE_WAIT(wait); 1461 1462 while (true) { 1463 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1464 1465 if ((kn->flags & KERNFS_SUICIDED) && 1466 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1467 break; 1468 1469 mutex_unlock(&kernfs_mutex); 1470 schedule(); 1471 mutex_lock(&kernfs_mutex); 1472 } 1473 finish_wait(waitq, &wait); 1474 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1475 ret = false; 1476 } 1477 1478 /* 1479 * This must be done while holding kernfs_mutex; otherwise, waiting 1480 * for SUICIDED && deactivated could finish prematurely. 1481 */ 1482 kernfs_unbreak_active_protection(kn); 1483 1484 mutex_unlock(&kernfs_mutex); 1485 return ret; 1486 } 1487 1488 /** 1489 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1490 * @parent: parent of the target 1491 * @name: name of the kernfs_node to remove 1492 * @ns: namespace tag of the kernfs_node to remove 1493 * 1494 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1495 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1496 */ 1497 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1498 const void *ns) 1499 { 1500 struct kernfs_node *kn; 1501 1502 if (!parent) { 1503 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1504 name); 1505 return -ENOENT; 1506 } 1507 1508 mutex_lock(&kernfs_mutex); 1509 1510 kn = kernfs_find_ns(parent, name, ns); 1511 if (kn) 1512 __kernfs_remove(kn); 1513 1514 mutex_unlock(&kernfs_mutex); 1515 1516 if (kn) 1517 return 0; 1518 else 1519 return -ENOENT; 1520 } 1521 1522 /** 1523 * kernfs_rename_ns - move and rename a kernfs_node 1524 * @kn: target node 1525 * @new_parent: new parent to put @sd under 1526 * @new_name: new name 1527 * @new_ns: new namespace tag 1528 */ 1529 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1530 const char *new_name, const void *new_ns) 1531 { 1532 struct kernfs_node *old_parent; 1533 const char *old_name = NULL; 1534 int error; 1535 1536 /* can't move or rename root */ 1537 if (!kn->parent) 1538 return -EINVAL; 1539 1540 mutex_lock(&kernfs_mutex); 1541 1542 error = -ENOENT; 1543 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1544 (new_parent->flags & KERNFS_EMPTY_DIR)) 1545 goto out; 1546 1547 error = 0; 1548 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1549 (strcmp(kn->name, new_name) == 0)) 1550 goto out; /* nothing to rename */ 1551 1552 error = -EEXIST; 1553 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1554 goto out; 1555 1556 /* rename kernfs_node */ 1557 if (strcmp(kn->name, new_name) != 0) { 1558 error = -ENOMEM; 1559 new_name = kstrdup_const(new_name, GFP_KERNEL); 1560 if (!new_name) 1561 goto out; 1562 } else { 1563 new_name = NULL; 1564 } 1565 1566 /* 1567 * Move to the appropriate place in the appropriate directories rbtree. 1568 */ 1569 kernfs_unlink_sibling(kn); 1570 kernfs_get(new_parent); 1571 1572 /* rename_lock protects ->parent and ->name accessors */ 1573 spin_lock_irq(&kernfs_rename_lock); 1574 1575 old_parent = kn->parent; 1576 kn->parent = new_parent; 1577 1578 kn->ns = new_ns; 1579 if (new_name) { 1580 old_name = kn->name; 1581 kn->name = new_name; 1582 } 1583 1584 spin_unlock_irq(&kernfs_rename_lock); 1585 1586 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1587 kernfs_link_sibling(kn); 1588 1589 kernfs_put(old_parent); 1590 kfree_const(old_name); 1591 1592 error = 0; 1593 out: 1594 mutex_unlock(&kernfs_mutex); 1595 return error; 1596 } 1597 1598 /* Relationship between s_mode and the DT_xxx types */ 1599 static inline unsigned char dt_type(struct kernfs_node *kn) 1600 { 1601 return (kn->mode >> 12) & 15; 1602 } 1603 1604 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1605 { 1606 kernfs_put(filp->private_data); 1607 return 0; 1608 } 1609 1610 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1611 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1612 { 1613 if (pos) { 1614 int valid = kernfs_active(pos) && 1615 pos->parent == parent && hash == pos->hash; 1616 kernfs_put(pos); 1617 if (!valid) 1618 pos = NULL; 1619 } 1620 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1621 struct rb_node *node = parent->dir.children.rb_node; 1622 while (node) { 1623 pos = rb_to_kn(node); 1624 1625 if (hash < pos->hash) 1626 node = node->rb_left; 1627 else if (hash > pos->hash) 1628 node = node->rb_right; 1629 else 1630 break; 1631 } 1632 } 1633 /* Skip over entries which are dying/dead or in the wrong namespace */ 1634 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1635 struct rb_node *node = rb_next(&pos->rb); 1636 if (!node) 1637 pos = NULL; 1638 else 1639 pos = rb_to_kn(node); 1640 } 1641 return pos; 1642 } 1643 1644 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1645 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1646 { 1647 pos = kernfs_dir_pos(ns, parent, ino, pos); 1648 if (pos) { 1649 do { 1650 struct rb_node *node = rb_next(&pos->rb); 1651 if (!node) 1652 pos = NULL; 1653 else 1654 pos = rb_to_kn(node); 1655 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1656 } 1657 return pos; 1658 } 1659 1660 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1661 { 1662 struct dentry *dentry = file->f_path.dentry; 1663 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1664 struct kernfs_node *pos = file->private_data; 1665 const void *ns = NULL; 1666 1667 if (!dir_emit_dots(file, ctx)) 1668 return 0; 1669 mutex_lock(&kernfs_mutex); 1670 1671 if (kernfs_ns_enabled(parent)) 1672 ns = kernfs_info(dentry->d_sb)->ns; 1673 1674 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1675 pos; 1676 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1677 const char *name = pos->name; 1678 unsigned int type = dt_type(pos); 1679 int len = strlen(name); 1680 ino_t ino = pos->id.ino; 1681 1682 ctx->pos = pos->hash; 1683 file->private_data = pos; 1684 kernfs_get(pos); 1685 1686 mutex_unlock(&kernfs_mutex); 1687 if (!dir_emit(ctx, name, len, ino, type)) 1688 return 0; 1689 mutex_lock(&kernfs_mutex); 1690 } 1691 mutex_unlock(&kernfs_mutex); 1692 file->private_data = NULL; 1693 ctx->pos = INT_MAX; 1694 return 0; 1695 } 1696 1697 const struct file_operations kernfs_dir_fops = { 1698 .read = generic_read_dir, 1699 .iterate_shared = kernfs_fop_readdir, 1700 .release = kernfs_dir_fop_release, 1701 .llseek = generic_file_llseek, 1702 }; 1703