xref: /openbmc/linux/fs/kernfs/dir.c (revision 6774def6)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26 
27 static bool kernfs_active(struct kernfs_node *kn)
28 {
29 	lockdep_assert_held(&kernfs_mutex);
30 	return atomic_read(&kn->active) >= 0;
31 }
32 
33 static bool kernfs_lockdep(struct kernfs_node *kn)
34 {
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 	return kn->flags & KERNFS_LOCKDEP;
37 #else
38 	return false;
39 #endif
40 }
41 
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43 {
44 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45 }
46 
47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48 					      size_t buflen)
49 {
50 	char *p = buf + buflen;
51 	int len;
52 
53 	*--p = '\0';
54 
55 	do {
56 		len = strlen(kn->name);
57 		if (p - buf < len + 1) {
58 			buf[0] = '\0';
59 			p = NULL;
60 			break;
61 		}
62 		p -= len;
63 		memcpy(p, kn->name, len);
64 		*--p = '/';
65 		kn = kn->parent;
66 	} while (kn && kn->parent);
67 
68 	return p;
69 }
70 
71 /**
72  * kernfs_name - obtain the name of a given node
73  * @kn: kernfs_node of interest
74  * @buf: buffer to copy @kn's name into
75  * @buflen: size of @buf
76  *
77  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
78  * similar to strlcpy().  It returns the length of @kn's name and if @buf
79  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80  *
81  * This function can be called from any context.
82  */
83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84 {
85 	unsigned long flags;
86 	int ret;
87 
88 	spin_lock_irqsave(&kernfs_rename_lock, flags);
89 	ret = kernfs_name_locked(kn, buf, buflen);
90 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91 	return ret;
92 }
93 
94 /**
95  * kernfs_path - build full path of a given node
96  * @kn: kernfs_node of interest
97  * @buf: buffer to copy @kn's name into
98  * @buflen: size of @buf
99  *
100  * Builds and returns the full path of @kn in @buf of @buflen bytes.  The
101  * path is built from the end of @buf so the returned pointer usually
102  * doesn't match @buf.  If @buf isn't long enough, @buf is nul terminated
103  * and %NULL is returned.
104  */
105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
106 {
107 	unsigned long flags;
108 	char *p;
109 
110 	spin_lock_irqsave(&kernfs_rename_lock, flags);
111 	p = kernfs_path_locked(kn, buf, buflen);
112 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113 	return p;
114 }
115 EXPORT_SYMBOL_GPL(kernfs_path);
116 
117 /**
118  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119  * @kn: kernfs_node of interest
120  *
121  * This function can be called from any context.
122  */
123 void pr_cont_kernfs_name(struct kernfs_node *kn)
124 {
125 	unsigned long flags;
126 
127 	spin_lock_irqsave(&kernfs_rename_lock, flags);
128 
129 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130 	pr_cont("%s", kernfs_pr_cont_buf);
131 
132 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
133 }
134 
135 /**
136  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137  * @kn: kernfs_node of interest
138  *
139  * This function can be called from any context.
140  */
141 void pr_cont_kernfs_path(struct kernfs_node *kn)
142 {
143 	unsigned long flags;
144 	char *p;
145 
146 	spin_lock_irqsave(&kernfs_rename_lock, flags);
147 
148 	p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149 			       sizeof(kernfs_pr_cont_buf));
150 	if (p)
151 		pr_cont("%s", p);
152 	else
153 		pr_cont("<name too long>");
154 
155 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156 }
157 
158 /**
159  * kernfs_get_parent - determine the parent node and pin it
160  * @kn: kernfs_node of interest
161  *
162  * Determines @kn's parent, pins and returns it.  This function can be
163  * called from any context.
164  */
165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
166 {
167 	struct kernfs_node *parent;
168 	unsigned long flags;
169 
170 	spin_lock_irqsave(&kernfs_rename_lock, flags);
171 	parent = kn->parent;
172 	kernfs_get(parent);
173 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
174 
175 	return parent;
176 }
177 
178 /**
179  *	kernfs_name_hash
180  *	@name: Null terminated string to hash
181  *	@ns:   Namespace tag to hash
182  *
183  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
184  */
185 static unsigned int kernfs_name_hash(const char *name, const void *ns)
186 {
187 	unsigned long hash = init_name_hash();
188 	unsigned int len = strlen(name);
189 	while (len--)
190 		hash = partial_name_hash(*name++, hash);
191 	hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192 	hash &= 0x7fffffffU;
193 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
194 	if (hash < 2)
195 		hash += 2;
196 	if (hash >= INT_MAX)
197 		hash = INT_MAX - 1;
198 	return hash;
199 }
200 
201 static int kernfs_name_compare(unsigned int hash, const char *name,
202 			       const void *ns, const struct kernfs_node *kn)
203 {
204 	if (hash != kn->hash)
205 		return hash - kn->hash;
206 	if (ns != kn->ns)
207 		return ns - kn->ns;
208 	return strcmp(name, kn->name);
209 }
210 
211 static int kernfs_sd_compare(const struct kernfs_node *left,
212 			     const struct kernfs_node *right)
213 {
214 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
215 }
216 
217 /**
218  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
219  *	@kn: kernfs_node of interest
220  *
221  *	Link @kn into its sibling rbtree which starts from
222  *	@kn->parent->dir.children.
223  *
224  *	Locking:
225  *	mutex_lock(kernfs_mutex)
226  *
227  *	RETURNS:
228  *	0 on susccess -EEXIST on failure.
229  */
230 static int kernfs_link_sibling(struct kernfs_node *kn)
231 {
232 	struct rb_node **node = &kn->parent->dir.children.rb_node;
233 	struct rb_node *parent = NULL;
234 
235 	while (*node) {
236 		struct kernfs_node *pos;
237 		int result;
238 
239 		pos = rb_to_kn(*node);
240 		parent = *node;
241 		result = kernfs_sd_compare(kn, pos);
242 		if (result < 0)
243 			node = &pos->rb.rb_left;
244 		else if (result > 0)
245 			node = &pos->rb.rb_right;
246 		else
247 			return -EEXIST;
248 	}
249 
250 	/* add new node and rebalance the tree */
251 	rb_link_node(&kn->rb, parent, node);
252 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
253 
254 	/* successfully added, account subdir number */
255 	if (kernfs_type(kn) == KERNFS_DIR)
256 		kn->parent->dir.subdirs++;
257 
258 	return 0;
259 }
260 
261 /**
262  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
263  *	@kn: kernfs_node of interest
264  *
265  *	Try to unlink @kn from its sibling rbtree which starts from
266  *	kn->parent->dir.children.  Returns %true if @kn was actually
267  *	removed, %false if @kn wasn't on the rbtree.
268  *
269  *	Locking:
270  *	mutex_lock(kernfs_mutex)
271  */
272 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
273 {
274 	if (RB_EMPTY_NODE(&kn->rb))
275 		return false;
276 
277 	if (kernfs_type(kn) == KERNFS_DIR)
278 		kn->parent->dir.subdirs--;
279 
280 	rb_erase(&kn->rb, &kn->parent->dir.children);
281 	RB_CLEAR_NODE(&kn->rb);
282 	return true;
283 }
284 
285 /**
286  *	kernfs_get_active - get an active reference to kernfs_node
287  *	@kn: kernfs_node to get an active reference to
288  *
289  *	Get an active reference of @kn.  This function is noop if @kn
290  *	is NULL.
291  *
292  *	RETURNS:
293  *	Pointer to @kn on success, NULL on failure.
294  */
295 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
296 {
297 	if (unlikely(!kn))
298 		return NULL;
299 
300 	if (!atomic_inc_unless_negative(&kn->active))
301 		return NULL;
302 
303 	if (kernfs_lockdep(kn))
304 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
305 	return kn;
306 }
307 
308 /**
309  *	kernfs_put_active - put an active reference to kernfs_node
310  *	@kn: kernfs_node to put an active reference to
311  *
312  *	Put an active reference to @kn.  This function is noop if @kn
313  *	is NULL.
314  */
315 void kernfs_put_active(struct kernfs_node *kn)
316 {
317 	struct kernfs_root *root = kernfs_root(kn);
318 	int v;
319 
320 	if (unlikely(!kn))
321 		return;
322 
323 	if (kernfs_lockdep(kn))
324 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
325 	v = atomic_dec_return(&kn->active);
326 	if (likely(v != KN_DEACTIVATED_BIAS))
327 		return;
328 
329 	wake_up_all(&root->deactivate_waitq);
330 }
331 
332 /**
333  * kernfs_drain - drain kernfs_node
334  * @kn: kernfs_node to drain
335  *
336  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
337  * removers may invoke this function concurrently on @kn and all will
338  * return after draining is complete.
339  */
340 static void kernfs_drain(struct kernfs_node *kn)
341 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
342 {
343 	struct kernfs_root *root = kernfs_root(kn);
344 
345 	lockdep_assert_held(&kernfs_mutex);
346 	WARN_ON_ONCE(kernfs_active(kn));
347 
348 	mutex_unlock(&kernfs_mutex);
349 
350 	if (kernfs_lockdep(kn)) {
351 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
352 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
353 			lock_contended(&kn->dep_map, _RET_IP_);
354 	}
355 
356 	/* but everyone should wait for draining */
357 	wait_event(root->deactivate_waitq,
358 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
359 
360 	if (kernfs_lockdep(kn)) {
361 		lock_acquired(&kn->dep_map, _RET_IP_);
362 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
363 	}
364 
365 	kernfs_unmap_bin_file(kn);
366 
367 	mutex_lock(&kernfs_mutex);
368 }
369 
370 /**
371  * kernfs_get - get a reference count on a kernfs_node
372  * @kn: the target kernfs_node
373  */
374 void kernfs_get(struct kernfs_node *kn)
375 {
376 	if (kn) {
377 		WARN_ON(!atomic_read(&kn->count));
378 		atomic_inc(&kn->count);
379 	}
380 }
381 EXPORT_SYMBOL_GPL(kernfs_get);
382 
383 /**
384  * kernfs_put - put a reference count on a kernfs_node
385  * @kn: the target kernfs_node
386  *
387  * Put a reference count of @kn and destroy it if it reached zero.
388  */
389 void kernfs_put(struct kernfs_node *kn)
390 {
391 	struct kernfs_node *parent;
392 	struct kernfs_root *root;
393 
394 	if (!kn || !atomic_dec_and_test(&kn->count))
395 		return;
396 	root = kernfs_root(kn);
397  repeat:
398 	/*
399 	 * Moving/renaming is always done while holding reference.
400 	 * kn->parent won't change beneath us.
401 	 */
402 	parent = kn->parent;
403 
404 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
405 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
406 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
407 
408 	if (kernfs_type(kn) == KERNFS_LINK)
409 		kernfs_put(kn->symlink.target_kn);
410 	if (!(kn->flags & KERNFS_STATIC_NAME))
411 		kfree(kn->name);
412 	if (kn->iattr) {
413 		if (kn->iattr->ia_secdata)
414 			security_release_secctx(kn->iattr->ia_secdata,
415 						kn->iattr->ia_secdata_len);
416 		simple_xattrs_free(&kn->iattr->xattrs);
417 	}
418 	kfree(kn->iattr);
419 	ida_simple_remove(&root->ino_ida, kn->ino);
420 	kmem_cache_free(kernfs_node_cache, kn);
421 
422 	kn = parent;
423 	if (kn) {
424 		if (atomic_dec_and_test(&kn->count))
425 			goto repeat;
426 	} else {
427 		/* just released the root kn, free @root too */
428 		ida_destroy(&root->ino_ida);
429 		kfree(root);
430 	}
431 }
432 EXPORT_SYMBOL_GPL(kernfs_put);
433 
434 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
435 {
436 	struct kernfs_node *kn;
437 
438 	if (flags & LOOKUP_RCU)
439 		return -ECHILD;
440 
441 	/* Always perform fresh lookup for negatives */
442 	if (!dentry->d_inode)
443 		goto out_bad_unlocked;
444 
445 	kn = dentry->d_fsdata;
446 	mutex_lock(&kernfs_mutex);
447 
448 	/* The kernfs node has been deactivated */
449 	if (!kernfs_active(kn))
450 		goto out_bad;
451 
452 	/* The kernfs node has been moved? */
453 	if (dentry->d_parent->d_fsdata != kn->parent)
454 		goto out_bad;
455 
456 	/* The kernfs node has been renamed */
457 	if (strcmp(dentry->d_name.name, kn->name) != 0)
458 		goto out_bad;
459 
460 	/* The kernfs node has been moved to a different namespace */
461 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
462 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
463 		goto out_bad;
464 
465 	mutex_unlock(&kernfs_mutex);
466 	return 1;
467 out_bad:
468 	mutex_unlock(&kernfs_mutex);
469 out_bad_unlocked:
470 	return 0;
471 }
472 
473 static void kernfs_dop_release(struct dentry *dentry)
474 {
475 	kernfs_put(dentry->d_fsdata);
476 }
477 
478 const struct dentry_operations kernfs_dops = {
479 	.d_revalidate	= kernfs_dop_revalidate,
480 	.d_release	= kernfs_dop_release,
481 };
482 
483 /**
484  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
485  * @dentry: the dentry in question
486  *
487  * Return the kernfs_node associated with @dentry.  If @dentry is not a
488  * kernfs one, %NULL is returned.
489  *
490  * While the returned kernfs_node will stay accessible as long as @dentry
491  * is accessible, the returned node can be in any state and the caller is
492  * fully responsible for determining what's accessible.
493  */
494 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
495 {
496 	if (dentry->d_sb->s_op == &kernfs_sops)
497 		return dentry->d_fsdata;
498 	return NULL;
499 }
500 
501 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
502 					     const char *name, umode_t mode,
503 					     unsigned flags)
504 {
505 	char *dup_name = NULL;
506 	struct kernfs_node *kn;
507 	int ret;
508 
509 	if (!(flags & KERNFS_STATIC_NAME)) {
510 		name = dup_name = kstrdup(name, GFP_KERNEL);
511 		if (!name)
512 			return NULL;
513 	}
514 
515 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
516 	if (!kn)
517 		goto err_out1;
518 
519 	ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
520 	if (ret < 0)
521 		goto err_out2;
522 	kn->ino = ret;
523 
524 	atomic_set(&kn->count, 1);
525 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
526 	RB_CLEAR_NODE(&kn->rb);
527 
528 	kn->name = name;
529 	kn->mode = mode;
530 	kn->flags = flags;
531 
532 	return kn;
533 
534  err_out2:
535 	kmem_cache_free(kernfs_node_cache, kn);
536  err_out1:
537 	kfree(dup_name);
538 	return NULL;
539 }
540 
541 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
542 				    const char *name, umode_t mode,
543 				    unsigned flags)
544 {
545 	struct kernfs_node *kn;
546 
547 	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
548 	if (kn) {
549 		kernfs_get(parent);
550 		kn->parent = parent;
551 	}
552 	return kn;
553 }
554 
555 /**
556  *	kernfs_add_one - add kernfs_node to parent without warning
557  *	@kn: kernfs_node to be added
558  *
559  *	The caller must already have initialized @kn->parent.  This
560  *	function increments nlink of the parent's inode if @kn is a
561  *	directory and link into the children list of the parent.
562  *
563  *	RETURNS:
564  *	0 on success, -EEXIST if entry with the given name already
565  *	exists.
566  */
567 int kernfs_add_one(struct kernfs_node *kn)
568 {
569 	struct kernfs_node *parent = kn->parent;
570 	struct kernfs_iattrs *ps_iattr;
571 	bool has_ns;
572 	int ret;
573 
574 	mutex_lock(&kernfs_mutex);
575 
576 	ret = -EINVAL;
577 	has_ns = kernfs_ns_enabled(parent);
578 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
579 		 has_ns ? "required" : "invalid", parent->name, kn->name))
580 		goto out_unlock;
581 
582 	if (kernfs_type(parent) != KERNFS_DIR)
583 		goto out_unlock;
584 
585 	ret = -ENOENT;
586 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
587 		goto out_unlock;
588 
589 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
590 
591 	ret = kernfs_link_sibling(kn);
592 	if (ret)
593 		goto out_unlock;
594 
595 	/* Update timestamps on the parent */
596 	ps_iattr = parent->iattr;
597 	if (ps_iattr) {
598 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
599 		ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
600 	}
601 
602 	mutex_unlock(&kernfs_mutex);
603 
604 	/*
605 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
606 	 * If not activated here, the kernfs user is responsible for
607 	 * activating the node with kernfs_activate().  A node which hasn't
608 	 * been activated is not visible to userland and its removal won't
609 	 * trigger deactivation.
610 	 */
611 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
612 		kernfs_activate(kn);
613 	return 0;
614 
615 out_unlock:
616 	mutex_unlock(&kernfs_mutex);
617 	return ret;
618 }
619 
620 /**
621  * kernfs_find_ns - find kernfs_node with the given name
622  * @parent: kernfs_node to search under
623  * @name: name to look for
624  * @ns: the namespace tag to use
625  *
626  * Look for kernfs_node with name @name under @parent.  Returns pointer to
627  * the found kernfs_node on success, %NULL on failure.
628  */
629 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
630 					  const unsigned char *name,
631 					  const void *ns)
632 {
633 	struct rb_node *node = parent->dir.children.rb_node;
634 	bool has_ns = kernfs_ns_enabled(parent);
635 	unsigned int hash;
636 
637 	lockdep_assert_held(&kernfs_mutex);
638 
639 	if (has_ns != (bool)ns) {
640 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
641 		     has_ns ? "required" : "invalid", parent->name, name);
642 		return NULL;
643 	}
644 
645 	hash = kernfs_name_hash(name, ns);
646 	while (node) {
647 		struct kernfs_node *kn;
648 		int result;
649 
650 		kn = rb_to_kn(node);
651 		result = kernfs_name_compare(hash, name, ns, kn);
652 		if (result < 0)
653 			node = node->rb_left;
654 		else if (result > 0)
655 			node = node->rb_right;
656 		else
657 			return kn;
658 	}
659 	return NULL;
660 }
661 
662 /**
663  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
664  * @parent: kernfs_node to search under
665  * @name: name to look for
666  * @ns: the namespace tag to use
667  *
668  * Look for kernfs_node with name @name under @parent and get a reference
669  * if found.  This function may sleep and returns pointer to the found
670  * kernfs_node on success, %NULL on failure.
671  */
672 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
673 					   const char *name, const void *ns)
674 {
675 	struct kernfs_node *kn;
676 
677 	mutex_lock(&kernfs_mutex);
678 	kn = kernfs_find_ns(parent, name, ns);
679 	kernfs_get(kn);
680 	mutex_unlock(&kernfs_mutex);
681 
682 	return kn;
683 }
684 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
685 
686 /**
687  * kernfs_create_root - create a new kernfs hierarchy
688  * @scops: optional syscall operations for the hierarchy
689  * @flags: KERNFS_ROOT_* flags
690  * @priv: opaque data associated with the new directory
691  *
692  * Returns the root of the new hierarchy on success, ERR_PTR() value on
693  * failure.
694  */
695 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
696 				       unsigned int flags, void *priv)
697 {
698 	struct kernfs_root *root;
699 	struct kernfs_node *kn;
700 
701 	root = kzalloc(sizeof(*root), GFP_KERNEL);
702 	if (!root)
703 		return ERR_PTR(-ENOMEM);
704 
705 	ida_init(&root->ino_ida);
706 	INIT_LIST_HEAD(&root->supers);
707 
708 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
709 			       KERNFS_DIR);
710 	if (!kn) {
711 		ida_destroy(&root->ino_ida);
712 		kfree(root);
713 		return ERR_PTR(-ENOMEM);
714 	}
715 
716 	kn->priv = priv;
717 	kn->dir.root = root;
718 
719 	root->syscall_ops = scops;
720 	root->flags = flags;
721 	root->kn = kn;
722 	init_waitqueue_head(&root->deactivate_waitq);
723 
724 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
725 		kernfs_activate(kn);
726 
727 	return root;
728 }
729 
730 /**
731  * kernfs_destroy_root - destroy a kernfs hierarchy
732  * @root: root of the hierarchy to destroy
733  *
734  * Destroy the hierarchy anchored at @root by removing all existing
735  * directories and destroying @root.
736  */
737 void kernfs_destroy_root(struct kernfs_root *root)
738 {
739 	kernfs_remove(root->kn);	/* will also free @root */
740 }
741 
742 /**
743  * kernfs_create_dir_ns - create a directory
744  * @parent: parent in which to create a new directory
745  * @name: name of the new directory
746  * @mode: mode of the new directory
747  * @priv: opaque data associated with the new directory
748  * @ns: optional namespace tag of the directory
749  *
750  * Returns the created node on success, ERR_PTR() value on failure.
751  */
752 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
753 					 const char *name, umode_t mode,
754 					 void *priv, const void *ns)
755 {
756 	struct kernfs_node *kn;
757 	int rc;
758 
759 	/* allocate */
760 	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
761 	if (!kn)
762 		return ERR_PTR(-ENOMEM);
763 
764 	kn->dir.root = parent->dir.root;
765 	kn->ns = ns;
766 	kn->priv = priv;
767 
768 	/* link in */
769 	rc = kernfs_add_one(kn);
770 	if (!rc)
771 		return kn;
772 
773 	kernfs_put(kn);
774 	return ERR_PTR(rc);
775 }
776 
777 static struct dentry *kernfs_iop_lookup(struct inode *dir,
778 					struct dentry *dentry,
779 					unsigned int flags)
780 {
781 	struct dentry *ret;
782 	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
783 	struct kernfs_node *kn;
784 	struct inode *inode;
785 	const void *ns = NULL;
786 
787 	mutex_lock(&kernfs_mutex);
788 
789 	if (kernfs_ns_enabled(parent))
790 		ns = kernfs_info(dir->i_sb)->ns;
791 
792 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
793 
794 	/* no such entry */
795 	if (!kn || !kernfs_active(kn)) {
796 		ret = NULL;
797 		goto out_unlock;
798 	}
799 	kernfs_get(kn);
800 	dentry->d_fsdata = kn;
801 
802 	/* attach dentry and inode */
803 	inode = kernfs_get_inode(dir->i_sb, kn);
804 	if (!inode) {
805 		ret = ERR_PTR(-ENOMEM);
806 		goto out_unlock;
807 	}
808 
809 	/* instantiate and hash dentry */
810 	ret = d_materialise_unique(dentry, inode);
811  out_unlock:
812 	mutex_unlock(&kernfs_mutex);
813 	return ret;
814 }
815 
816 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
817 			    umode_t mode)
818 {
819 	struct kernfs_node *parent = dir->i_private;
820 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
821 	int ret;
822 
823 	if (!scops || !scops->mkdir)
824 		return -EPERM;
825 
826 	if (!kernfs_get_active(parent))
827 		return -ENODEV;
828 
829 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
830 
831 	kernfs_put_active(parent);
832 	return ret;
833 }
834 
835 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
836 {
837 	struct kernfs_node *kn  = dentry->d_fsdata;
838 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
839 	int ret;
840 
841 	if (!scops || !scops->rmdir)
842 		return -EPERM;
843 
844 	if (!kernfs_get_active(kn))
845 		return -ENODEV;
846 
847 	ret = scops->rmdir(kn);
848 
849 	kernfs_put_active(kn);
850 	return ret;
851 }
852 
853 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
854 			     struct inode *new_dir, struct dentry *new_dentry)
855 {
856 	struct kernfs_node *kn  = old_dentry->d_fsdata;
857 	struct kernfs_node *new_parent = new_dir->i_private;
858 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
859 	int ret;
860 
861 	if (!scops || !scops->rename)
862 		return -EPERM;
863 
864 	if (!kernfs_get_active(kn))
865 		return -ENODEV;
866 
867 	if (!kernfs_get_active(new_parent)) {
868 		kernfs_put_active(kn);
869 		return -ENODEV;
870 	}
871 
872 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
873 
874 	kernfs_put_active(new_parent);
875 	kernfs_put_active(kn);
876 	return ret;
877 }
878 
879 const struct inode_operations kernfs_dir_iops = {
880 	.lookup		= kernfs_iop_lookup,
881 	.permission	= kernfs_iop_permission,
882 	.setattr	= kernfs_iop_setattr,
883 	.getattr	= kernfs_iop_getattr,
884 	.setxattr	= kernfs_iop_setxattr,
885 	.removexattr	= kernfs_iop_removexattr,
886 	.getxattr	= kernfs_iop_getxattr,
887 	.listxattr	= kernfs_iop_listxattr,
888 
889 	.mkdir		= kernfs_iop_mkdir,
890 	.rmdir		= kernfs_iop_rmdir,
891 	.rename		= kernfs_iop_rename,
892 };
893 
894 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
895 {
896 	struct kernfs_node *last;
897 
898 	while (true) {
899 		struct rb_node *rbn;
900 
901 		last = pos;
902 
903 		if (kernfs_type(pos) != KERNFS_DIR)
904 			break;
905 
906 		rbn = rb_first(&pos->dir.children);
907 		if (!rbn)
908 			break;
909 
910 		pos = rb_to_kn(rbn);
911 	}
912 
913 	return last;
914 }
915 
916 /**
917  * kernfs_next_descendant_post - find the next descendant for post-order walk
918  * @pos: the current position (%NULL to initiate traversal)
919  * @root: kernfs_node whose descendants to walk
920  *
921  * Find the next descendant to visit for post-order traversal of @root's
922  * descendants.  @root is included in the iteration and the last node to be
923  * visited.
924  */
925 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
926 						       struct kernfs_node *root)
927 {
928 	struct rb_node *rbn;
929 
930 	lockdep_assert_held(&kernfs_mutex);
931 
932 	/* if first iteration, visit leftmost descendant which may be root */
933 	if (!pos)
934 		return kernfs_leftmost_descendant(root);
935 
936 	/* if we visited @root, we're done */
937 	if (pos == root)
938 		return NULL;
939 
940 	/* if there's an unvisited sibling, visit its leftmost descendant */
941 	rbn = rb_next(&pos->rb);
942 	if (rbn)
943 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
944 
945 	/* no sibling left, visit parent */
946 	return pos->parent;
947 }
948 
949 /**
950  * kernfs_activate - activate a node which started deactivated
951  * @kn: kernfs_node whose subtree is to be activated
952  *
953  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
954  * needs to be explicitly activated.  A node which hasn't been activated
955  * isn't visible to userland and deactivation is skipped during its
956  * removal.  This is useful to construct atomic init sequences where
957  * creation of multiple nodes should either succeed or fail atomically.
958  *
959  * The caller is responsible for ensuring that this function is not called
960  * after kernfs_remove*() is invoked on @kn.
961  */
962 void kernfs_activate(struct kernfs_node *kn)
963 {
964 	struct kernfs_node *pos;
965 
966 	mutex_lock(&kernfs_mutex);
967 
968 	pos = NULL;
969 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
970 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
971 			continue;
972 
973 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
974 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
975 
976 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
977 		pos->flags |= KERNFS_ACTIVATED;
978 	}
979 
980 	mutex_unlock(&kernfs_mutex);
981 }
982 
983 static void __kernfs_remove(struct kernfs_node *kn)
984 {
985 	struct kernfs_node *pos;
986 
987 	lockdep_assert_held(&kernfs_mutex);
988 
989 	/*
990 	 * Short-circuit if non-root @kn has already finished removal.
991 	 * This is for kernfs_remove_self() which plays with active ref
992 	 * after removal.
993 	 */
994 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
995 		return;
996 
997 	pr_debug("kernfs %s: removing\n", kn->name);
998 
999 	/* prevent any new usage under @kn by deactivating all nodes */
1000 	pos = NULL;
1001 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1002 		if (kernfs_active(pos))
1003 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1004 
1005 	/* deactivate and unlink the subtree node-by-node */
1006 	do {
1007 		pos = kernfs_leftmost_descendant(kn);
1008 
1009 		/*
1010 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1011 		 * base ref could have been put by someone else by the time
1012 		 * the function returns.  Make sure it doesn't go away
1013 		 * underneath us.
1014 		 */
1015 		kernfs_get(pos);
1016 
1017 		/*
1018 		 * Drain iff @kn was activated.  This avoids draining and
1019 		 * its lockdep annotations for nodes which have never been
1020 		 * activated and allows embedding kernfs_remove() in create
1021 		 * error paths without worrying about draining.
1022 		 */
1023 		if (kn->flags & KERNFS_ACTIVATED)
1024 			kernfs_drain(pos);
1025 		else
1026 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1027 
1028 		/*
1029 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1030 		 * to decide who's responsible for cleanups.
1031 		 */
1032 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1033 			struct kernfs_iattrs *ps_iattr =
1034 				pos->parent ? pos->parent->iattr : NULL;
1035 
1036 			/* update timestamps on the parent */
1037 			if (ps_iattr) {
1038 				ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1039 				ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1040 			}
1041 
1042 			kernfs_put(pos);
1043 		}
1044 
1045 		kernfs_put(pos);
1046 	} while (pos != kn);
1047 }
1048 
1049 /**
1050  * kernfs_remove - remove a kernfs_node recursively
1051  * @kn: the kernfs_node to remove
1052  *
1053  * Remove @kn along with all its subdirectories and files.
1054  */
1055 void kernfs_remove(struct kernfs_node *kn)
1056 {
1057 	mutex_lock(&kernfs_mutex);
1058 	__kernfs_remove(kn);
1059 	mutex_unlock(&kernfs_mutex);
1060 }
1061 
1062 /**
1063  * kernfs_break_active_protection - break out of active protection
1064  * @kn: the self kernfs_node
1065  *
1066  * The caller must be running off of a kernfs operation which is invoked
1067  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1068  * this function must also be matched with an invocation of
1069  * kernfs_unbreak_active_protection().
1070  *
1071  * This function releases the active reference of @kn the caller is
1072  * holding.  Once this function is called, @kn may be removed at any point
1073  * and the caller is solely responsible for ensuring that the objects it
1074  * dereferences are accessible.
1075  */
1076 void kernfs_break_active_protection(struct kernfs_node *kn)
1077 {
1078 	/*
1079 	 * Take out ourself out of the active ref dependency chain.  If
1080 	 * we're called without an active ref, lockdep will complain.
1081 	 */
1082 	kernfs_put_active(kn);
1083 }
1084 
1085 /**
1086  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1087  * @kn: the self kernfs_node
1088  *
1089  * If kernfs_break_active_protection() was called, this function must be
1090  * invoked before finishing the kernfs operation.  Note that while this
1091  * function restores the active reference, it doesn't and can't actually
1092  * restore the active protection - @kn may already or be in the process of
1093  * being removed.  Once kernfs_break_active_protection() is invoked, that
1094  * protection is irreversibly gone for the kernfs operation instance.
1095  *
1096  * While this function may be called at any point after
1097  * kernfs_break_active_protection() is invoked, its most useful location
1098  * would be right before the enclosing kernfs operation returns.
1099  */
1100 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1101 {
1102 	/*
1103 	 * @kn->active could be in any state; however, the increment we do
1104 	 * here will be undone as soon as the enclosing kernfs operation
1105 	 * finishes and this temporary bump can't break anything.  If @kn
1106 	 * is alive, nothing changes.  If @kn is being deactivated, the
1107 	 * soon-to-follow put will either finish deactivation or restore
1108 	 * deactivated state.  If @kn is already removed, the temporary
1109 	 * bump is guaranteed to be gone before @kn is released.
1110 	 */
1111 	atomic_inc(&kn->active);
1112 	if (kernfs_lockdep(kn))
1113 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1114 }
1115 
1116 /**
1117  * kernfs_remove_self - remove a kernfs_node from its own method
1118  * @kn: the self kernfs_node to remove
1119  *
1120  * The caller must be running off of a kernfs operation which is invoked
1121  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1122  * implement a file operation which deletes itself.
1123  *
1124  * For example, the "delete" file for a sysfs device directory can be
1125  * implemented by invoking kernfs_remove_self() on the "delete" file
1126  * itself.  This function breaks the circular dependency of trying to
1127  * deactivate self while holding an active ref itself.  It isn't necessary
1128  * to modify the usual removal path to use kernfs_remove_self().  The
1129  * "delete" implementation can simply invoke kernfs_remove_self() on self
1130  * before proceeding with the usual removal path.  kernfs will ignore later
1131  * kernfs_remove() on self.
1132  *
1133  * kernfs_remove_self() can be called multiple times concurrently on the
1134  * same kernfs_node.  Only the first one actually performs removal and
1135  * returns %true.  All others will wait until the kernfs operation which
1136  * won self-removal finishes and return %false.  Note that the losers wait
1137  * for the completion of not only the winning kernfs_remove_self() but also
1138  * the whole kernfs_ops which won the arbitration.  This can be used to
1139  * guarantee, for example, all concurrent writes to a "delete" file to
1140  * finish only after the whole operation is complete.
1141  */
1142 bool kernfs_remove_self(struct kernfs_node *kn)
1143 {
1144 	bool ret;
1145 
1146 	mutex_lock(&kernfs_mutex);
1147 	kernfs_break_active_protection(kn);
1148 
1149 	/*
1150 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1151 	 * the first one will actually perform removal.  When the removal
1152 	 * is complete, SUICIDED is set and the active ref is restored
1153 	 * while holding kernfs_mutex.  The ones which lost arbitration
1154 	 * waits for SUICDED && drained which can happen only after the
1155 	 * enclosing kernfs operation which executed the winning instance
1156 	 * of kernfs_remove_self() finished.
1157 	 */
1158 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1159 		kn->flags |= KERNFS_SUICIDAL;
1160 		__kernfs_remove(kn);
1161 		kn->flags |= KERNFS_SUICIDED;
1162 		ret = true;
1163 	} else {
1164 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1165 		DEFINE_WAIT(wait);
1166 
1167 		while (true) {
1168 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1169 
1170 			if ((kn->flags & KERNFS_SUICIDED) &&
1171 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1172 				break;
1173 
1174 			mutex_unlock(&kernfs_mutex);
1175 			schedule();
1176 			mutex_lock(&kernfs_mutex);
1177 		}
1178 		finish_wait(waitq, &wait);
1179 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1180 		ret = false;
1181 	}
1182 
1183 	/*
1184 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1185 	 * for SUICIDED && deactivated could finish prematurely.
1186 	 */
1187 	kernfs_unbreak_active_protection(kn);
1188 
1189 	mutex_unlock(&kernfs_mutex);
1190 	return ret;
1191 }
1192 
1193 /**
1194  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1195  * @parent: parent of the target
1196  * @name: name of the kernfs_node to remove
1197  * @ns: namespace tag of the kernfs_node to remove
1198  *
1199  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1200  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1201  */
1202 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1203 			     const void *ns)
1204 {
1205 	struct kernfs_node *kn;
1206 
1207 	if (!parent) {
1208 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1209 			name);
1210 		return -ENOENT;
1211 	}
1212 
1213 	mutex_lock(&kernfs_mutex);
1214 
1215 	kn = kernfs_find_ns(parent, name, ns);
1216 	if (kn)
1217 		__kernfs_remove(kn);
1218 
1219 	mutex_unlock(&kernfs_mutex);
1220 
1221 	if (kn)
1222 		return 0;
1223 	else
1224 		return -ENOENT;
1225 }
1226 
1227 /**
1228  * kernfs_rename_ns - move and rename a kernfs_node
1229  * @kn: target node
1230  * @new_parent: new parent to put @sd under
1231  * @new_name: new name
1232  * @new_ns: new namespace tag
1233  */
1234 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1235 		     const char *new_name, const void *new_ns)
1236 {
1237 	struct kernfs_node *old_parent;
1238 	const char *old_name = NULL;
1239 	int error;
1240 
1241 	/* can't move or rename root */
1242 	if (!kn->parent)
1243 		return -EINVAL;
1244 
1245 	mutex_lock(&kernfs_mutex);
1246 
1247 	error = -ENOENT;
1248 	if (!kernfs_active(kn) || !kernfs_active(new_parent))
1249 		goto out;
1250 
1251 	error = 0;
1252 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1253 	    (strcmp(kn->name, new_name) == 0))
1254 		goto out;	/* nothing to rename */
1255 
1256 	error = -EEXIST;
1257 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1258 		goto out;
1259 
1260 	/* rename kernfs_node */
1261 	if (strcmp(kn->name, new_name) != 0) {
1262 		error = -ENOMEM;
1263 		new_name = kstrdup(new_name, GFP_KERNEL);
1264 		if (!new_name)
1265 			goto out;
1266 	} else {
1267 		new_name = NULL;
1268 	}
1269 
1270 	/*
1271 	 * Move to the appropriate place in the appropriate directories rbtree.
1272 	 */
1273 	kernfs_unlink_sibling(kn);
1274 	kernfs_get(new_parent);
1275 
1276 	/* rename_lock protects ->parent and ->name accessors */
1277 	spin_lock_irq(&kernfs_rename_lock);
1278 
1279 	old_parent = kn->parent;
1280 	kn->parent = new_parent;
1281 
1282 	kn->ns = new_ns;
1283 	if (new_name) {
1284 		if (!(kn->flags & KERNFS_STATIC_NAME))
1285 			old_name = kn->name;
1286 		kn->flags &= ~KERNFS_STATIC_NAME;
1287 		kn->name = new_name;
1288 	}
1289 
1290 	spin_unlock_irq(&kernfs_rename_lock);
1291 
1292 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1293 	kernfs_link_sibling(kn);
1294 
1295 	kernfs_put(old_parent);
1296 	kfree(old_name);
1297 
1298 	error = 0;
1299  out:
1300 	mutex_unlock(&kernfs_mutex);
1301 	return error;
1302 }
1303 
1304 /* Relationship between s_mode and the DT_xxx types */
1305 static inline unsigned char dt_type(struct kernfs_node *kn)
1306 {
1307 	return (kn->mode >> 12) & 15;
1308 }
1309 
1310 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1311 {
1312 	kernfs_put(filp->private_data);
1313 	return 0;
1314 }
1315 
1316 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1317 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1318 {
1319 	if (pos) {
1320 		int valid = kernfs_active(pos) &&
1321 			pos->parent == parent && hash == pos->hash;
1322 		kernfs_put(pos);
1323 		if (!valid)
1324 			pos = NULL;
1325 	}
1326 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1327 		struct rb_node *node = parent->dir.children.rb_node;
1328 		while (node) {
1329 			pos = rb_to_kn(node);
1330 
1331 			if (hash < pos->hash)
1332 				node = node->rb_left;
1333 			else if (hash > pos->hash)
1334 				node = node->rb_right;
1335 			else
1336 				break;
1337 		}
1338 	}
1339 	/* Skip over entries which are dying/dead or in the wrong namespace */
1340 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1341 		struct rb_node *node = rb_next(&pos->rb);
1342 		if (!node)
1343 			pos = NULL;
1344 		else
1345 			pos = rb_to_kn(node);
1346 	}
1347 	return pos;
1348 }
1349 
1350 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1351 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1352 {
1353 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1354 	if (pos) {
1355 		do {
1356 			struct rb_node *node = rb_next(&pos->rb);
1357 			if (!node)
1358 				pos = NULL;
1359 			else
1360 				pos = rb_to_kn(node);
1361 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1362 	}
1363 	return pos;
1364 }
1365 
1366 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1367 {
1368 	struct dentry *dentry = file->f_path.dentry;
1369 	struct kernfs_node *parent = dentry->d_fsdata;
1370 	struct kernfs_node *pos = file->private_data;
1371 	const void *ns = NULL;
1372 
1373 	if (!dir_emit_dots(file, ctx))
1374 		return 0;
1375 	mutex_lock(&kernfs_mutex);
1376 
1377 	if (kernfs_ns_enabled(parent))
1378 		ns = kernfs_info(dentry->d_sb)->ns;
1379 
1380 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1381 	     pos;
1382 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1383 		const char *name = pos->name;
1384 		unsigned int type = dt_type(pos);
1385 		int len = strlen(name);
1386 		ino_t ino = pos->ino;
1387 
1388 		ctx->pos = pos->hash;
1389 		file->private_data = pos;
1390 		kernfs_get(pos);
1391 
1392 		mutex_unlock(&kernfs_mutex);
1393 		if (!dir_emit(ctx, name, len, ino, type))
1394 			return 0;
1395 		mutex_lock(&kernfs_mutex);
1396 	}
1397 	mutex_unlock(&kernfs_mutex);
1398 	file->private_data = NULL;
1399 	ctx->pos = INT_MAX;
1400 	return 0;
1401 }
1402 
1403 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1404 				    int whence)
1405 {
1406 	struct inode *inode = file_inode(file);
1407 	loff_t ret;
1408 
1409 	mutex_lock(&inode->i_mutex);
1410 	ret = generic_file_llseek(file, offset, whence);
1411 	mutex_unlock(&inode->i_mutex);
1412 
1413 	return ret;
1414 }
1415 
1416 const struct file_operations kernfs_dir_fops = {
1417 	.read		= generic_read_dir,
1418 	.iterate	= kernfs_fop_readdir,
1419 	.release	= kernfs_dir_fop_release,
1420 	.llseek		= kernfs_dir_fop_llseek,
1421 };
1422