xref: /openbmc/linux/fs/kernfs/dir.c (revision 4aea96f4)
1 /*
2  * fs/kernfs/dir.c - kernfs directory implementation
3  *
4  * Copyright (c) 2001-3 Patrick Mochel
5  * Copyright (c) 2007 SUSE Linux Products GmbH
6  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7  *
8  * This file is released under the GPLv2.
9  */
10 
11 #include <linux/sched.h>
12 #include <linux/fs.h>
13 #include <linux/namei.h>
14 #include <linux/idr.h>
15 #include <linux/slab.h>
16 #include <linux/security.h>
17 #include <linux/hash.h>
18 
19 #include "kernfs-internal.h"
20 
21 DEFINE_MUTEX(kernfs_mutex);
22 static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23 static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24 static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
25 
26 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 
28 static bool kernfs_active(struct kernfs_node *kn)
29 {
30 	lockdep_assert_held(&kernfs_mutex);
31 	return atomic_read(&kn->active) >= 0;
32 }
33 
34 static bool kernfs_lockdep(struct kernfs_node *kn)
35 {
36 #ifdef CONFIG_DEBUG_LOCK_ALLOC
37 	return kn->flags & KERNFS_LOCKDEP;
38 #else
39 	return false;
40 #endif
41 }
42 
43 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
44 {
45 	if (!kn)
46 		return strlcpy(buf, "(null)", buflen);
47 
48 	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
49 }
50 
51 /* kernfs_node_depth - compute depth from @from to @to */
52 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
53 {
54 	size_t depth = 0;
55 
56 	while (to->parent && to != from) {
57 		depth++;
58 		to = to->parent;
59 	}
60 	return depth;
61 }
62 
63 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
64 						  struct kernfs_node *b)
65 {
66 	size_t da, db;
67 	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
68 
69 	if (ra != rb)
70 		return NULL;
71 
72 	da = kernfs_depth(ra->kn, a);
73 	db = kernfs_depth(rb->kn, b);
74 
75 	while (da > db) {
76 		a = a->parent;
77 		da--;
78 	}
79 	while (db > da) {
80 		b = b->parent;
81 		db--;
82 	}
83 
84 	/* worst case b and a will be the same at root */
85 	while (b != a) {
86 		b = b->parent;
87 		a = a->parent;
88 	}
89 
90 	return a;
91 }
92 
93 /**
94  * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
95  * where kn_from is treated as root of the path.
96  * @kn_from: kernfs node which should be treated as root for the path
97  * @kn_to: kernfs node to which path is needed
98  * @buf: buffer to copy the path into
99  * @buflen: size of @buf
100  *
101  * We need to handle couple of scenarios here:
102  * [1] when @kn_from is an ancestor of @kn_to at some level
103  * kn_from: /n1/n2/n3
104  * kn_to:   /n1/n2/n3/n4/n5
105  * result:  /n4/n5
106  *
107  * [2] when @kn_from is on a different hierarchy and we need to find common
108  * ancestor between @kn_from and @kn_to.
109  * kn_from: /n1/n2/n3/n4
110  * kn_to:   /n1/n2/n5
111  * result:  /../../n5
112  * OR
113  * kn_from: /n1/n2/n3/n4/n5   [depth=5]
114  * kn_to:   /n1/n2/n3         [depth=3]
115  * result:  /../..
116  *
117  * [3] when @kn_to is NULL result will be "(null)"
118  *
119  * Returns the length of the full path.  If the full length is equal to or
120  * greater than @buflen, @buf contains the truncated path with the trailing
121  * '\0'.  On error, -errno is returned.
122  */
123 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
124 					struct kernfs_node *kn_from,
125 					char *buf, size_t buflen)
126 {
127 	struct kernfs_node *kn, *common;
128 	const char parent_str[] = "/..";
129 	size_t depth_from, depth_to, len = 0;
130 	int i, j;
131 
132 	if (!kn_to)
133 		return strlcpy(buf, "(null)", buflen);
134 
135 	if (!kn_from)
136 		kn_from = kernfs_root(kn_to)->kn;
137 
138 	if (kn_from == kn_to)
139 		return strlcpy(buf, "/", buflen);
140 
141 	common = kernfs_common_ancestor(kn_from, kn_to);
142 	if (WARN_ON(!common))
143 		return -EINVAL;
144 
145 	depth_to = kernfs_depth(common, kn_to);
146 	depth_from = kernfs_depth(common, kn_from);
147 
148 	if (buf)
149 		buf[0] = '\0';
150 
151 	for (i = 0; i < depth_from; i++)
152 		len += strlcpy(buf + len, parent_str,
153 			       len < buflen ? buflen - len : 0);
154 
155 	/* Calculate how many bytes we need for the rest */
156 	for (i = depth_to - 1; i >= 0; i--) {
157 		for (kn = kn_to, j = 0; j < i; j++)
158 			kn = kn->parent;
159 		len += strlcpy(buf + len, "/",
160 			       len < buflen ? buflen - len : 0);
161 		len += strlcpy(buf + len, kn->name,
162 			       len < buflen ? buflen - len : 0);
163 	}
164 
165 	return len;
166 }
167 
168 /**
169  * kernfs_name - obtain the name of a given node
170  * @kn: kernfs_node of interest
171  * @buf: buffer to copy @kn's name into
172  * @buflen: size of @buf
173  *
174  * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
175  * similar to strlcpy().  It returns the length of @kn's name and if @buf
176  * isn't long enough, it's filled upto @buflen-1 and nul terminated.
177  *
178  * Fills buffer with "(null)" if @kn is NULL.
179  *
180  * This function can be called from any context.
181  */
182 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
183 {
184 	unsigned long flags;
185 	int ret;
186 
187 	spin_lock_irqsave(&kernfs_rename_lock, flags);
188 	ret = kernfs_name_locked(kn, buf, buflen);
189 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
190 	return ret;
191 }
192 
193 /**
194  * kernfs_path_from_node - build path of node @to relative to @from.
195  * @from: parent kernfs_node relative to which we need to build the path
196  * @to: kernfs_node of interest
197  * @buf: buffer to copy @to's path into
198  * @buflen: size of @buf
199  *
200  * Builds @to's path relative to @from in @buf. @from and @to must
201  * be on the same kernfs-root. If @from is not parent of @to, then a relative
202  * path (which includes '..'s) as needed to reach from @from to @to is
203  * returned.
204  *
205  * Returns the length of the full path.  If the full length is equal to or
206  * greater than @buflen, @buf contains the truncated path with the trailing
207  * '\0'.  On error, -errno is returned.
208  */
209 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
210 			  char *buf, size_t buflen)
211 {
212 	unsigned long flags;
213 	int ret;
214 
215 	spin_lock_irqsave(&kernfs_rename_lock, flags);
216 	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
217 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
218 	return ret;
219 }
220 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
221 
222 /**
223  * pr_cont_kernfs_name - pr_cont name of a kernfs_node
224  * @kn: kernfs_node of interest
225  *
226  * This function can be called from any context.
227  */
228 void pr_cont_kernfs_name(struct kernfs_node *kn)
229 {
230 	unsigned long flags;
231 
232 	spin_lock_irqsave(&kernfs_rename_lock, flags);
233 
234 	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
235 	pr_cont("%s", kernfs_pr_cont_buf);
236 
237 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
238 }
239 
240 /**
241  * pr_cont_kernfs_path - pr_cont path of a kernfs_node
242  * @kn: kernfs_node of interest
243  *
244  * This function can be called from any context.
245  */
246 void pr_cont_kernfs_path(struct kernfs_node *kn)
247 {
248 	unsigned long flags;
249 	int sz;
250 
251 	spin_lock_irqsave(&kernfs_rename_lock, flags);
252 
253 	sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
254 					  sizeof(kernfs_pr_cont_buf));
255 	if (sz < 0) {
256 		pr_cont("(error)");
257 		goto out;
258 	}
259 
260 	if (sz >= sizeof(kernfs_pr_cont_buf)) {
261 		pr_cont("(name too long)");
262 		goto out;
263 	}
264 
265 	pr_cont("%s", kernfs_pr_cont_buf);
266 
267 out:
268 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
269 }
270 
271 /**
272  * kernfs_get_parent - determine the parent node and pin it
273  * @kn: kernfs_node of interest
274  *
275  * Determines @kn's parent, pins and returns it.  This function can be
276  * called from any context.
277  */
278 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
279 {
280 	struct kernfs_node *parent;
281 	unsigned long flags;
282 
283 	spin_lock_irqsave(&kernfs_rename_lock, flags);
284 	parent = kn->parent;
285 	kernfs_get(parent);
286 	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
287 
288 	return parent;
289 }
290 
291 /**
292  *	kernfs_name_hash
293  *	@name: Null terminated string to hash
294  *	@ns:   Namespace tag to hash
295  *
296  *	Returns 31 bit hash of ns + name (so it fits in an off_t )
297  */
298 static unsigned int kernfs_name_hash(const char *name, const void *ns)
299 {
300 	unsigned long hash = init_name_hash(ns);
301 	unsigned int len = strlen(name);
302 	while (len--)
303 		hash = partial_name_hash(*name++, hash);
304 	hash = end_name_hash(hash);
305 	hash &= 0x7fffffffU;
306 	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
307 	if (hash < 2)
308 		hash += 2;
309 	if (hash >= INT_MAX)
310 		hash = INT_MAX - 1;
311 	return hash;
312 }
313 
314 static int kernfs_name_compare(unsigned int hash, const char *name,
315 			       const void *ns, const struct kernfs_node *kn)
316 {
317 	if (hash < kn->hash)
318 		return -1;
319 	if (hash > kn->hash)
320 		return 1;
321 	if (ns < kn->ns)
322 		return -1;
323 	if (ns > kn->ns)
324 		return 1;
325 	return strcmp(name, kn->name);
326 }
327 
328 static int kernfs_sd_compare(const struct kernfs_node *left,
329 			     const struct kernfs_node *right)
330 {
331 	return kernfs_name_compare(left->hash, left->name, left->ns, right);
332 }
333 
334 /**
335  *	kernfs_link_sibling - link kernfs_node into sibling rbtree
336  *	@kn: kernfs_node of interest
337  *
338  *	Link @kn into its sibling rbtree which starts from
339  *	@kn->parent->dir.children.
340  *
341  *	Locking:
342  *	mutex_lock(kernfs_mutex)
343  *
344  *	RETURNS:
345  *	0 on susccess -EEXIST on failure.
346  */
347 static int kernfs_link_sibling(struct kernfs_node *kn)
348 {
349 	struct rb_node **node = &kn->parent->dir.children.rb_node;
350 	struct rb_node *parent = NULL;
351 
352 	while (*node) {
353 		struct kernfs_node *pos;
354 		int result;
355 
356 		pos = rb_to_kn(*node);
357 		parent = *node;
358 		result = kernfs_sd_compare(kn, pos);
359 		if (result < 0)
360 			node = &pos->rb.rb_left;
361 		else if (result > 0)
362 			node = &pos->rb.rb_right;
363 		else
364 			return -EEXIST;
365 	}
366 
367 	/* add new node and rebalance the tree */
368 	rb_link_node(&kn->rb, parent, node);
369 	rb_insert_color(&kn->rb, &kn->parent->dir.children);
370 
371 	/* successfully added, account subdir number */
372 	if (kernfs_type(kn) == KERNFS_DIR)
373 		kn->parent->dir.subdirs++;
374 
375 	return 0;
376 }
377 
378 /**
379  *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
380  *	@kn: kernfs_node of interest
381  *
382  *	Try to unlink @kn from its sibling rbtree which starts from
383  *	kn->parent->dir.children.  Returns %true if @kn was actually
384  *	removed, %false if @kn wasn't on the rbtree.
385  *
386  *	Locking:
387  *	mutex_lock(kernfs_mutex)
388  */
389 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
390 {
391 	if (RB_EMPTY_NODE(&kn->rb))
392 		return false;
393 
394 	if (kernfs_type(kn) == KERNFS_DIR)
395 		kn->parent->dir.subdirs--;
396 
397 	rb_erase(&kn->rb, &kn->parent->dir.children);
398 	RB_CLEAR_NODE(&kn->rb);
399 	return true;
400 }
401 
402 /**
403  *	kernfs_get_active - get an active reference to kernfs_node
404  *	@kn: kernfs_node to get an active reference to
405  *
406  *	Get an active reference of @kn.  This function is noop if @kn
407  *	is NULL.
408  *
409  *	RETURNS:
410  *	Pointer to @kn on success, NULL on failure.
411  */
412 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
413 {
414 	if (unlikely(!kn))
415 		return NULL;
416 
417 	if (!atomic_inc_unless_negative(&kn->active))
418 		return NULL;
419 
420 	if (kernfs_lockdep(kn))
421 		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
422 	return kn;
423 }
424 
425 /**
426  *	kernfs_put_active - put an active reference to kernfs_node
427  *	@kn: kernfs_node to put an active reference to
428  *
429  *	Put an active reference to @kn.  This function is noop if @kn
430  *	is NULL.
431  */
432 void kernfs_put_active(struct kernfs_node *kn)
433 {
434 	struct kernfs_root *root = kernfs_root(kn);
435 	int v;
436 
437 	if (unlikely(!kn))
438 		return;
439 
440 	if (kernfs_lockdep(kn))
441 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
442 	v = atomic_dec_return(&kn->active);
443 	if (likely(v != KN_DEACTIVATED_BIAS))
444 		return;
445 
446 	wake_up_all(&root->deactivate_waitq);
447 }
448 
449 /**
450  * kernfs_drain - drain kernfs_node
451  * @kn: kernfs_node to drain
452  *
453  * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
454  * removers may invoke this function concurrently on @kn and all will
455  * return after draining is complete.
456  */
457 static void kernfs_drain(struct kernfs_node *kn)
458 	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
459 {
460 	struct kernfs_root *root = kernfs_root(kn);
461 
462 	lockdep_assert_held(&kernfs_mutex);
463 	WARN_ON_ONCE(kernfs_active(kn));
464 
465 	mutex_unlock(&kernfs_mutex);
466 
467 	if (kernfs_lockdep(kn)) {
468 		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 			lock_contended(&kn->dep_map, _RET_IP_);
471 	}
472 
473 	/* but everyone should wait for draining */
474 	wait_event(root->deactivate_waitq,
475 		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
476 
477 	if (kernfs_lockdep(kn)) {
478 		lock_acquired(&kn->dep_map, _RET_IP_);
479 		rwsem_release(&kn->dep_map, 1, _RET_IP_);
480 	}
481 
482 	kernfs_drain_open_files(kn);
483 
484 	mutex_lock(&kernfs_mutex);
485 }
486 
487 /**
488  * kernfs_get - get a reference count on a kernfs_node
489  * @kn: the target kernfs_node
490  */
491 void kernfs_get(struct kernfs_node *kn)
492 {
493 	if (kn) {
494 		WARN_ON(!atomic_read(&kn->count));
495 		atomic_inc(&kn->count);
496 	}
497 }
498 EXPORT_SYMBOL_GPL(kernfs_get);
499 
500 /**
501  * kernfs_put - put a reference count on a kernfs_node
502  * @kn: the target kernfs_node
503  *
504  * Put a reference count of @kn and destroy it if it reached zero.
505  */
506 void kernfs_put(struct kernfs_node *kn)
507 {
508 	struct kernfs_node *parent;
509 	struct kernfs_root *root;
510 
511 	/*
512 	 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino
513 	 * depends on this to filter reused stale node
514 	 */
515 	if (!kn || !atomic_dec_and_test(&kn->count))
516 		return;
517 	root = kernfs_root(kn);
518  repeat:
519 	/*
520 	 * Moving/renaming is always done while holding reference.
521 	 * kn->parent won't change beneath us.
522 	 */
523 	parent = kn->parent;
524 
525 	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
526 		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
527 		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
528 
529 	if (kernfs_type(kn) == KERNFS_LINK)
530 		kernfs_put(kn->symlink.target_kn);
531 
532 	kfree_const(kn->name);
533 
534 	if (kn->iattr) {
535 		if (kn->iattr->ia_secdata)
536 			security_release_secctx(kn->iattr->ia_secdata,
537 						kn->iattr->ia_secdata_len);
538 		simple_xattrs_free(&kn->iattr->xattrs);
539 	}
540 	kfree(kn->iattr);
541 	spin_lock(&kernfs_idr_lock);
542 	idr_remove(&root->ino_idr, kn->id.ino);
543 	spin_unlock(&kernfs_idr_lock);
544 	kmem_cache_free(kernfs_node_cache, kn);
545 
546 	kn = parent;
547 	if (kn) {
548 		if (atomic_dec_and_test(&kn->count))
549 			goto repeat;
550 	} else {
551 		/* just released the root kn, free @root too */
552 		idr_destroy(&root->ino_idr);
553 		kfree(root);
554 	}
555 }
556 EXPORT_SYMBOL_GPL(kernfs_put);
557 
558 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
559 {
560 	struct kernfs_node *kn;
561 
562 	if (flags & LOOKUP_RCU)
563 		return -ECHILD;
564 
565 	/* Always perform fresh lookup for negatives */
566 	if (d_really_is_negative(dentry))
567 		goto out_bad_unlocked;
568 
569 	kn = kernfs_dentry_node(dentry);
570 	mutex_lock(&kernfs_mutex);
571 
572 	/* The kernfs node has been deactivated */
573 	if (!kernfs_active(kn))
574 		goto out_bad;
575 
576 	/* The kernfs node has been moved? */
577 	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
578 		goto out_bad;
579 
580 	/* The kernfs node has been renamed */
581 	if (strcmp(dentry->d_name.name, kn->name) != 0)
582 		goto out_bad;
583 
584 	/* The kernfs node has been moved to a different namespace */
585 	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
586 	    kernfs_info(dentry->d_sb)->ns != kn->ns)
587 		goto out_bad;
588 
589 	mutex_unlock(&kernfs_mutex);
590 	return 1;
591 out_bad:
592 	mutex_unlock(&kernfs_mutex);
593 out_bad_unlocked:
594 	return 0;
595 }
596 
597 const struct dentry_operations kernfs_dops = {
598 	.d_revalidate	= kernfs_dop_revalidate,
599 };
600 
601 /**
602  * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
603  * @dentry: the dentry in question
604  *
605  * Return the kernfs_node associated with @dentry.  If @dentry is not a
606  * kernfs one, %NULL is returned.
607  *
608  * While the returned kernfs_node will stay accessible as long as @dentry
609  * is accessible, the returned node can be in any state and the caller is
610  * fully responsible for determining what's accessible.
611  */
612 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
613 {
614 	if (dentry->d_sb->s_op == &kernfs_sops &&
615 	    !d_really_is_negative(dentry))
616 		return kernfs_dentry_node(dentry);
617 	return NULL;
618 }
619 
620 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
621 					     const char *name, umode_t mode,
622 					     kuid_t uid, kgid_t gid,
623 					     unsigned flags)
624 {
625 	struct kernfs_node *kn;
626 	u32 gen;
627 	int cursor;
628 	int ret;
629 
630 	name = kstrdup_const(name, GFP_KERNEL);
631 	if (!name)
632 		return NULL;
633 
634 	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
635 	if (!kn)
636 		goto err_out1;
637 
638 	idr_preload(GFP_KERNEL);
639 	spin_lock(&kernfs_idr_lock);
640 	cursor = idr_get_cursor(&root->ino_idr);
641 	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
642 	if (ret >= 0 && ret < cursor)
643 		root->next_generation++;
644 	gen = root->next_generation;
645 	spin_unlock(&kernfs_idr_lock);
646 	idr_preload_end();
647 	if (ret < 0)
648 		goto err_out2;
649 	kn->id.ino = ret;
650 	kn->id.generation = gen;
651 
652 	/*
653 	 * set ino first. This barrier is paired with atomic_inc_not_zero in
654 	 * kernfs_find_and_get_node_by_ino
655 	 */
656 	smp_mb__before_atomic();
657 	atomic_set(&kn->count, 1);
658 	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
659 	RB_CLEAR_NODE(&kn->rb);
660 
661 	kn->name = name;
662 	kn->mode = mode;
663 	kn->flags = flags;
664 
665 	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
666 		struct iattr iattr = {
667 			.ia_valid = ATTR_UID | ATTR_GID,
668 			.ia_uid = uid,
669 			.ia_gid = gid,
670 		};
671 
672 		ret = __kernfs_setattr(kn, &iattr);
673 		if (ret < 0)
674 			goto err_out3;
675 	}
676 
677 	return kn;
678 
679  err_out3:
680 	idr_remove(&root->ino_idr, kn->id.ino);
681  err_out2:
682 	kmem_cache_free(kernfs_node_cache, kn);
683  err_out1:
684 	kfree_const(name);
685 	return NULL;
686 }
687 
688 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
689 				    const char *name, umode_t mode,
690 				    kuid_t uid, kgid_t gid,
691 				    unsigned flags)
692 {
693 	struct kernfs_node *kn;
694 
695 	kn = __kernfs_new_node(kernfs_root(parent),
696 			       name, mode, uid, gid, flags);
697 	if (kn) {
698 		kernfs_get(parent);
699 		kn->parent = parent;
700 	}
701 	return kn;
702 }
703 
704 /*
705  * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number
706  * @root: the kernfs root
707  * @ino: inode number
708  *
709  * RETURNS:
710  * NULL on failure. Return a kernfs node with reference counter incremented
711  */
712 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root,
713 						    unsigned int ino)
714 {
715 	struct kernfs_node *kn;
716 
717 	rcu_read_lock();
718 	kn = idr_find(&root->ino_idr, ino);
719 	if (!kn)
720 		goto out;
721 
722 	/*
723 	 * Since kernfs_node is freed in RCU, it's possible an old node for ino
724 	 * is freed, but reused before RCU grace period. But a freed node (see
725 	 * kernfs_put) or an incompletedly initialized node (see
726 	 * __kernfs_new_node) should have 'count' 0. We can use this fact to
727 	 * filter out such node.
728 	 */
729 	if (!atomic_inc_not_zero(&kn->count)) {
730 		kn = NULL;
731 		goto out;
732 	}
733 
734 	/*
735 	 * The node could be a new node or a reused node. If it's a new node,
736 	 * we are ok. If it's reused because of RCU (because of
737 	 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino'
738 	 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate,
739 	 * hence we can use 'ino' to filter stale node.
740 	 */
741 	if (kn->id.ino != ino)
742 		goto out;
743 	rcu_read_unlock();
744 
745 	return kn;
746 out:
747 	rcu_read_unlock();
748 	kernfs_put(kn);
749 	return NULL;
750 }
751 
752 /**
753  *	kernfs_add_one - add kernfs_node to parent without warning
754  *	@kn: kernfs_node to be added
755  *
756  *	The caller must already have initialized @kn->parent.  This
757  *	function increments nlink of the parent's inode if @kn is a
758  *	directory and link into the children list of the parent.
759  *
760  *	RETURNS:
761  *	0 on success, -EEXIST if entry with the given name already
762  *	exists.
763  */
764 int kernfs_add_one(struct kernfs_node *kn)
765 {
766 	struct kernfs_node *parent = kn->parent;
767 	struct kernfs_iattrs *ps_iattr;
768 	bool has_ns;
769 	int ret;
770 
771 	mutex_lock(&kernfs_mutex);
772 
773 	ret = -EINVAL;
774 	has_ns = kernfs_ns_enabled(parent);
775 	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
776 		 has_ns ? "required" : "invalid", parent->name, kn->name))
777 		goto out_unlock;
778 
779 	if (kernfs_type(parent) != KERNFS_DIR)
780 		goto out_unlock;
781 
782 	ret = -ENOENT;
783 	if (parent->flags & KERNFS_EMPTY_DIR)
784 		goto out_unlock;
785 
786 	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
787 		goto out_unlock;
788 
789 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
790 
791 	ret = kernfs_link_sibling(kn);
792 	if (ret)
793 		goto out_unlock;
794 
795 	/* Update timestamps on the parent */
796 	ps_iattr = parent->iattr;
797 	if (ps_iattr) {
798 		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
799 		ktime_get_real_ts64(&ps_iattrs->ia_ctime);
800 		ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
801 	}
802 
803 	mutex_unlock(&kernfs_mutex);
804 
805 	/*
806 	 * Activate the new node unless CREATE_DEACTIVATED is requested.
807 	 * If not activated here, the kernfs user is responsible for
808 	 * activating the node with kernfs_activate().  A node which hasn't
809 	 * been activated is not visible to userland and its removal won't
810 	 * trigger deactivation.
811 	 */
812 	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
813 		kernfs_activate(kn);
814 	return 0;
815 
816 out_unlock:
817 	mutex_unlock(&kernfs_mutex);
818 	return ret;
819 }
820 
821 /**
822  * kernfs_find_ns - find kernfs_node with the given name
823  * @parent: kernfs_node to search under
824  * @name: name to look for
825  * @ns: the namespace tag to use
826  *
827  * Look for kernfs_node with name @name under @parent.  Returns pointer to
828  * the found kernfs_node on success, %NULL on failure.
829  */
830 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
831 					  const unsigned char *name,
832 					  const void *ns)
833 {
834 	struct rb_node *node = parent->dir.children.rb_node;
835 	bool has_ns = kernfs_ns_enabled(parent);
836 	unsigned int hash;
837 
838 	lockdep_assert_held(&kernfs_mutex);
839 
840 	if (has_ns != (bool)ns) {
841 		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
842 		     has_ns ? "required" : "invalid", parent->name, name);
843 		return NULL;
844 	}
845 
846 	hash = kernfs_name_hash(name, ns);
847 	while (node) {
848 		struct kernfs_node *kn;
849 		int result;
850 
851 		kn = rb_to_kn(node);
852 		result = kernfs_name_compare(hash, name, ns, kn);
853 		if (result < 0)
854 			node = node->rb_left;
855 		else if (result > 0)
856 			node = node->rb_right;
857 		else
858 			return kn;
859 	}
860 	return NULL;
861 }
862 
863 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
864 					  const unsigned char *path,
865 					  const void *ns)
866 {
867 	size_t len;
868 	char *p, *name;
869 
870 	lockdep_assert_held(&kernfs_mutex);
871 
872 	/* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
873 	spin_lock_irq(&kernfs_rename_lock);
874 
875 	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
876 
877 	if (len >= sizeof(kernfs_pr_cont_buf)) {
878 		spin_unlock_irq(&kernfs_rename_lock);
879 		return NULL;
880 	}
881 
882 	p = kernfs_pr_cont_buf;
883 
884 	while ((name = strsep(&p, "/")) && parent) {
885 		if (*name == '\0')
886 			continue;
887 		parent = kernfs_find_ns(parent, name, ns);
888 	}
889 
890 	spin_unlock_irq(&kernfs_rename_lock);
891 
892 	return parent;
893 }
894 
895 /**
896  * kernfs_find_and_get_ns - find and get kernfs_node with the given name
897  * @parent: kernfs_node to search under
898  * @name: name to look for
899  * @ns: the namespace tag to use
900  *
901  * Look for kernfs_node with name @name under @parent and get a reference
902  * if found.  This function may sleep and returns pointer to the found
903  * kernfs_node on success, %NULL on failure.
904  */
905 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
906 					   const char *name, const void *ns)
907 {
908 	struct kernfs_node *kn;
909 
910 	mutex_lock(&kernfs_mutex);
911 	kn = kernfs_find_ns(parent, name, ns);
912 	kernfs_get(kn);
913 	mutex_unlock(&kernfs_mutex);
914 
915 	return kn;
916 }
917 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
918 
919 /**
920  * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
921  * @parent: kernfs_node to search under
922  * @path: path to look for
923  * @ns: the namespace tag to use
924  *
925  * Look for kernfs_node with path @path under @parent and get a reference
926  * if found.  This function may sleep and returns pointer to the found
927  * kernfs_node on success, %NULL on failure.
928  */
929 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
930 					   const char *path, const void *ns)
931 {
932 	struct kernfs_node *kn;
933 
934 	mutex_lock(&kernfs_mutex);
935 	kn = kernfs_walk_ns(parent, path, ns);
936 	kernfs_get(kn);
937 	mutex_unlock(&kernfs_mutex);
938 
939 	return kn;
940 }
941 
942 /**
943  * kernfs_create_root - create a new kernfs hierarchy
944  * @scops: optional syscall operations for the hierarchy
945  * @flags: KERNFS_ROOT_* flags
946  * @priv: opaque data associated with the new directory
947  *
948  * Returns the root of the new hierarchy on success, ERR_PTR() value on
949  * failure.
950  */
951 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
952 				       unsigned int flags, void *priv)
953 {
954 	struct kernfs_root *root;
955 	struct kernfs_node *kn;
956 
957 	root = kzalloc(sizeof(*root), GFP_KERNEL);
958 	if (!root)
959 		return ERR_PTR(-ENOMEM);
960 
961 	idr_init(&root->ino_idr);
962 	INIT_LIST_HEAD(&root->supers);
963 	root->next_generation = 1;
964 
965 	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
966 			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
967 			       KERNFS_DIR);
968 	if (!kn) {
969 		idr_destroy(&root->ino_idr);
970 		kfree(root);
971 		return ERR_PTR(-ENOMEM);
972 	}
973 
974 	kn->priv = priv;
975 	kn->dir.root = root;
976 
977 	root->syscall_ops = scops;
978 	root->flags = flags;
979 	root->kn = kn;
980 	init_waitqueue_head(&root->deactivate_waitq);
981 
982 	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
983 		kernfs_activate(kn);
984 
985 	return root;
986 }
987 
988 /**
989  * kernfs_destroy_root - destroy a kernfs hierarchy
990  * @root: root of the hierarchy to destroy
991  *
992  * Destroy the hierarchy anchored at @root by removing all existing
993  * directories and destroying @root.
994  */
995 void kernfs_destroy_root(struct kernfs_root *root)
996 {
997 	kernfs_remove(root->kn);	/* will also free @root */
998 }
999 
1000 /**
1001  * kernfs_create_dir_ns - create a directory
1002  * @parent: parent in which to create a new directory
1003  * @name: name of the new directory
1004  * @mode: mode of the new directory
1005  * @uid: uid of the new directory
1006  * @gid: gid of the new directory
1007  * @priv: opaque data associated with the new directory
1008  * @ns: optional namespace tag of the directory
1009  *
1010  * Returns the created node on success, ERR_PTR() value on failure.
1011  */
1012 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1013 					 const char *name, umode_t mode,
1014 					 kuid_t uid, kgid_t gid,
1015 					 void *priv, const void *ns)
1016 {
1017 	struct kernfs_node *kn;
1018 	int rc;
1019 
1020 	/* allocate */
1021 	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1022 			     uid, gid, KERNFS_DIR);
1023 	if (!kn)
1024 		return ERR_PTR(-ENOMEM);
1025 
1026 	kn->dir.root = parent->dir.root;
1027 	kn->ns = ns;
1028 	kn->priv = priv;
1029 
1030 	/* link in */
1031 	rc = kernfs_add_one(kn);
1032 	if (!rc)
1033 		return kn;
1034 
1035 	kernfs_put(kn);
1036 	return ERR_PTR(rc);
1037 }
1038 
1039 /**
1040  * kernfs_create_empty_dir - create an always empty directory
1041  * @parent: parent in which to create a new directory
1042  * @name: name of the new directory
1043  *
1044  * Returns the created node on success, ERR_PTR() value on failure.
1045  */
1046 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1047 					    const char *name)
1048 {
1049 	struct kernfs_node *kn;
1050 	int rc;
1051 
1052 	/* allocate */
1053 	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1054 			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1055 	if (!kn)
1056 		return ERR_PTR(-ENOMEM);
1057 
1058 	kn->flags |= KERNFS_EMPTY_DIR;
1059 	kn->dir.root = parent->dir.root;
1060 	kn->ns = NULL;
1061 	kn->priv = NULL;
1062 
1063 	/* link in */
1064 	rc = kernfs_add_one(kn);
1065 	if (!rc)
1066 		return kn;
1067 
1068 	kernfs_put(kn);
1069 	return ERR_PTR(rc);
1070 }
1071 
1072 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1073 					struct dentry *dentry,
1074 					unsigned int flags)
1075 {
1076 	struct dentry *ret;
1077 	struct kernfs_node *parent = dir->i_private;
1078 	struct kernfs_node *kn;
1079 	struct inode *inode;
1080 	const void *ns = NULL;
1081 
1082 	mutex_lock(&kernfs_mutex);
1083 
1084 	if (kernfs_ns_enabled(parent))
1085 		ns = kernfs_info(dir->i_sb)->ns;
1086 
1087 	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1088 
1089 	/* no such entry */
1090 	if (!kn || !kernfs_active(kn)) {
1091 		ret = NULL;
1092 		goto out_unlock;
1093 	}
1094 
1095 	/* attach dentry and inode */
1096 	inode = kernfs_get_inode(dir->i_sb, kn);
1097 	if (!inode) {
1098 		ret = ERR_PTR(-ENOMEM);
1099 		goto out_unlock;
1100 	}
1101 
1102 	/* instantiate and hash dentry */
1103 	ret = d_splice_alias(inode, dentry);
1104  out_unlock:
1105 	mutex_unlock(&kernfs_mutex);
1106 	return ret;
1107 }
1108 
1109 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1110 			    umode_t mode)
1111 {
1112 	struct kernfs_node *parent = dir->i_private;
1113 	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1114 	int ret;
1115 
1116 	if (!scops || !scops->mkdir)
1117 		return -EPERM;
1118 
1119 	if (!kernfs_get_active(parent))
1120 		return -ENODEV;
1121 
1122 	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1123 
1124 	kernfs_put_active(parent);
1125 	return ret;
1126 }
1127 
1128 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1129 {
1130 	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1131 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1132 	int ret;
1133 
1134 	if (!scops || !scops->rmdir)
1135 		return -EPERM;
1136 
1137 	if (!kernfs_get_active(kn))
1138 		return -ENODEV;
1139 
1140 	ret = scops->rmdir(kn);
1141 
1142 	kernfs_put_active(kn);
1143 	return ret;
1144 }
1145 
1146 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1147 			     struct inode *new_dir, struct dentry *new_dentry,
1148 			     unsigned int flags)
1149 {
1150 	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1151 	struct kernfs_node *new_parent = new_dir->i_private;
1152 	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1153 	int ret;
1154 
1155 	if (flags)
1156 		return -EINVAL;
1157 
1158 	if (!scops || !scops->rename)
1159 		return -EPERM;
1160 
1161 	if (!kernfs_get_active(kn))
1162 		return -ENODEV;
1163 
1164 	if (!kernfs_get_active(new_parent)) {
1165 		kernfs_put_active(kn);
1166 		return -ENODEV;
1167 	}
1168 
1169 	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1170 
1171 	kernfs_put_active(new_parent);
1172 	kernfs_put_active(kn);
1173 	return ret;
1174 }
1175 
1176 const struct inode_operations kernfs_dir_iops = {
1177 	.lookup		= kernfs_iop_lookup,
1178 	.permission	= kernfs_iop_permission,
1179 	.setattr	= kernfs_iop_setattr,
1180 	.getattr	= kernfs_iop_getattr,
1181 	.listxattr	= kernfs_iop_listxattr,
1182 
1183 	.mkdir		= kernfs_iop_mkdir,
1184 	.rmdir		= kernfs_iop_rmdir,
1185 	.rename		= kernfs_iop_rename,
1186 };
1187 
1188 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1189 {
1190 	struct kernfs_node *last;
1191 
1192 	while (true) {
1193 		struct rb_node *rbn;
1194 
1195 		last = pos;
1196 
1197 		if (kernfs_type(pos) != KERNFS_DIR)
1198 			break;
1199 
1200 		rbn = rb_first(&pos->dir.children);
1201 		if (!rbn)
1202 			break;
1203 
1204 		pos = rb_to_kn(rbn);
1205 	}
1206 
1207 	return last;
1208 }
1209 
1210 /**
1211  * kernfs_next_descendant_post - find the next descendant for post-order walk
1212  * @pos: the current position (%NULL to initiate traversal)
1213  * @root: kernfs_node whose descendants to walk
1214  *
1215  * Find the next descendant to visit for post-order traversal of @root's
1216  * descendants.  @root is included in the iteration and the last node to be
1217  * visited.
1218  */
1219 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1220 						       struct kernfs_node *root)
1221 {
1222 	struct rb_node *rbn;
1223 
1224 	lockdep_assert_held(&kernfs_mutex);
1225 
1226 	/* if first iteration, visit leftmost descendant which may be root */
1227 	if (!pos)
1228 		return kernfs_leftmost_descendant(root);
1229 
1230 	/* if we visited @root, we're done */
1231 	if (pos == root)
1232 		return NULL;
1233 
1234 	/* if there's an unvisited sibling, visit its leftmost descendant */
1235 	rbn = rb_next(&pos->rb);
1236 	if (rbn)
1237 		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1238 
1239 	/* no sibling left, visit parent */
1240 	return pos->parent;
1241 }
1242 
1243 /**
1244  * kernfs_activate - activate a node which started deactivated
1245  * @kn: kernfs_node whose subtree is to be activated
1246  *
1247  * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1248  * needs to be explicitly activated.  A node which hasn't been activated
1249  * isn't visible to userland and deactivation is skipped during its
1250  * removal.  This is useful to construct atomic init sequences where
1251  * creation of multiple nodes should either succeed or fail atomically.
1252  *
1253  * The caller is responsible for ensuring that this function is not called
1254  * after kernfs_remove*() is invoked on @kn.
1255  */
1256 void kernfs_activate(struct kernfs_node *kn)
1257 {
1258 	struct kernfs_node *pos;
1259 
1260 	mutex_lock(&kernfs_mutex);
1261 
1262 	pos = NULL;
1263 	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1264 		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1265 			continue;
1266 
1267 		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1268 		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1269 
1270 		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1271 		pos->flags |= KERNFS_ACTIVATED;
1272 	}
1273 
1274 	mutex_unlock(&kernfs_mutex);
1275 }
1276 
1277 static void __kernfs_remove(struct kernfs_node *kn)
1278 {
1279 	struct kernfs_node *pos;
1280 
1281 	lockdep_assert_held(&kernfs_mutex);
1282 
1283 	/*
1284 	 * Short-circuit if non-root @kn has already finished removal.
1285 	 * This is for kernfs_remove_self() which plays with active ref
1286 	 * after removal.
1287 	 */
1288 	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1289 		return;
1290 
1291 	pr_debug("kernfs %s: removing\n", kn->name);
1292 
1293 	/* prevent any new usage under @kn by deactivating all nodes */
1294 	pos = NULL;
1295 	while ((pos = kernfs_next_descendant_post(pos, kn)))
1296 		if (kernfs_active(pos))
1297 			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1298 
1299 	/* deactivate and unlink the subtree node-by-node */
1300 	do {
1301 		pos = kernfs_leftmost_descendant(kn);
1302 
1303 		/*
1304 		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1305 		 * base ref could have been put by someone else by the time
1306 		 * the function returns.  Make sure it doesn't go away
1307 		 * underneath us.
1308 		 */
1309 		kernfs_get(pos);
1310 
1311 		/*
1312 		 * Drain iff @kn was activated.  This avoids draining and
1313 		 * its lockdep annotations for nodes which have never been
1314 		 * activated and allows embedding kernfs_remove() in create
1315 		 * error paths without worrying about draining.
1316 		 */
1317 		if (kn->flags & KERNFS_ACTIVATED)
1318 			kernfs_drain(pos);
1319 		else
1320 			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1321 
1322 		/*
1323 		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1324 		 * to decide who's responsible for cleanups.
1325 		 */
1326 		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1327 			struct kernfs_iattrs *ps_iattr =
1328 				pos->parent ? pos->parent->iattr : NULL;
1329 
1330 			/* update timestamps on the parent */
1331 			if (ps_iattr) {
1332 				ktime_get_real_ts64(&ps_iattr->ia_iattr.ia_ctime);
1333 				ps_iattr->ia_iattr.ia_mtime =
1334 					ps_iattr->ia_iattr.ia_ctime;
1335 			}
1336 
1337 			kernfs_put(pos);
1338 		}
1339 
1340 		kernfs_put(pos);
1341 	} while (pos != kn);
1342 }
1343 
1344 /**
1345  * kernfs_remove - remove a kernfs_node recursively
1346  * @kn: the kernfs_node to remove
1347  *
1348  * Remove @kn along with all its subdirectories and files.
1349  */
1350 void kernfs_remove(struct kernfs_node *kn)
1351 {
1352 	mutex_lock(&kernfs_mutex);
1353 	__kernfs_remove(kn);
1354 	mutex_unlock(&kernfs_mutex);
1355 }
1356 
1357 /**
1358  * kernfs_break_active_protection - break out of active protection
1359  * @kn: the self kernfs_node
1360  *
1361  * The caller must be running off of a kernfs operation which is invoked
1362  * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1363  * this function must also be matched with an invocation of
1364  * kernfs_unbreak_active_protection().
1365  *
1366  * This function releases the active reference of @kn the caller is
1367  * holding.  Once this function is called, @kn may be removed at any point
1368  * and the caller is solely responsible for ensuring that the objects it
1369  * dereferences are accessible.
1370  */
1371 void kernfs_break_active_protection(struct kernfs_node *kn)
1372 {
1373 	/*
1374 	 * Take out ourself out of the active ref dependency chain.  If
1375 	 * we're called without an active ref, lockdep will complain.
1376 	 */
1377 	kernfs_put_active(kn);
1378 }
1379 
1380 /**
1381  * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1382  * @kn: the self kernfs_node
1383  *
1384  * If kernfs_break_active_protection() was called, this function must be
1385  * invoked before finishing the kernfs operation.  Note that while this
1386  * function restores the active reference, it doesn't and can't actually
1387  * restore the active protection - @kn may already or be in the process of
1388  * being removed.  Once kernfs_break_active_protection() is invoked, that
1389  * protection is irreversibly gone for the kernfs operation instance.
1390  *
1391  * While this function may be called at any point after
1392  * kernfs_break_active_protection() is invoked, its most useful location
1393  * would be right before the enclosing kernfs operation returns.
1394  */
1395 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1396 {
1397 	/*
1398 	 * @kn->active could be in any state; however, the increment we do
1399 	 * here will be undone as soon as the enclosing kernfs operation
1400 	 * finishes and this temporary bump can't break anything.  If @kn
1401 	 * is alive, nothing changes.  If @kn is being deactivated, the
1402 	 * soon-to-follow put will either finish deactivation or restore
1403 	 * deactivated state.  If @kn is already removed, the temporary
1404 	 * bump is guaranteed to be gone before @kn is released.
1405 	 */
1406 	atomic_inc(&kn->active);
1407 	if (kernfs_lockdep(kn))
1408 		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1409 }
1410 
1411 /**
1412  * kernfs_remove_self - remove a kernfs_node from its own method
1413  * @kn: the self kernfs_node to remove
1414  *
1415  * The caller must be running off of a kernfs operation which is invoked
1416  * with an active reference - e.g. one of kernfs_ops.  This can be used to
1417  * implement a file operation which deletes itself.
1418  *
1419  * For example, the "delete" file for a sysfs device directory can be
1420  * implemented by invoking kernfs_remove_self() on the "delete" file
1421  * itself.  This function breaks the circular dependency of trying to
1422  * deactivate self while holding an active ref itself.  It isn't necessary
1423  * to modify the usual removal path to use kernfs_remove_self().  The
1424  * "delete" implementation can simply invoke kernfs_remove_self() on self
1425  * before proceeding with the usual removal path.  kernfs will ignore later
1426  * kernfs_remove() on self.
1427  *
1428  * kernfs_remove_self() can be called multiple times concurrently on the
1429  * same kernfs_node.  Only the first one actually performs removal and
1430  * returns %true.  All others will wait until the kernfs operation which
1431  * won self-removal finishes and return %false.  Note that the losers wait
1432  * for the completion of not only the winning kernfs_remove_self() but also
1433  * the whole kernfs_ops which won the arbitration.  This can be used to
1434  * guarantee, for example, all concurrent writes to a "delete" file to
1435  * finish only after the whole operation is complete.
1436  */
1437 bool kernfs_remove_self(struct kernfs_node *kn)
1438 {
1439 	bool ret;
1440 
1441 	mutex_lock(&kernfs_mutex);
1442 	kernfs_break_active_protection(kn);
1443 
1444 	/*
1445 	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1446 	 * the first one will actually perform removal.  When the removal
1447 	 * is complete, SUICIDED is set and the active ref is restored
1448 	 * while holding kernfs_mutex.  The ones which lost arbitration
1449 	 * waits for SUICDED && drained which can happen only after the
1450 	 * enclosing kernfs operation which executed the winning instance
1451 	 * of kernfs_remove_self() finished.
1452 	 */
1453 	if (!(kn->flags & KERNFS_SUICIDAL)) {
1454 		kn->flags |= KERNFS_SUICIDAL;
1455 		__kernfs_remove(kn);
1456 		kn->flags |= KERNFS_SUICIDED;
1457 		ret = true;
1458 	} else {
1459 		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1460 		DEFINE_WAIT(wait);
1461 
1462 		while (true) {
1463 			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1464 
1465 			if ((kn->flags & KERNFS_SUICIDED) &&
1466 			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1467 				break;
1468 
1469 			mutex_unlock(&kernfs_mutex);
1470 			schedule();
1471 			mutex_lock(&kernfs_mutex);
1472 		}
1473 		finish_wait(waitq, &wait);
1474 		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1475 		ret = false;
1476 	}
1477 
1478 	/*
1479 	 * This must be done while holding kernfs_mutex; otherwise, waiting
1480 	 * for SUICIDED && deactivated could finish prematurely.
1481 	 */
1482 	kernfs_unbreak_active_protection(kn);
1483 
1484 	mutex_unlock(&kernfs_mutex);
1485 	return ret;
1486 }
1487 
1488 /**
1489  * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1490  * @parent: parent of the target
1491  * @name: name of the kernfs_node to remove
1492  * @ns: namespace tag of the kernfs_node to remove
1493  *
1494  * Look for the kernfs_node with @name and @ns under @parent and remove it.
1495  * Returns 0 on success, -ENOENT if such entry doesn't exist.
1496  */
1497 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1498 			     const void *ns)
1499 {
1500 	struct kernfs_node *kn;
1501 
1502 	if (!parent) {
1503 		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1504 			name);
1505 		return -ENOENT;
1506 	}
1507 
1508 	mutex_lock(&kernfs_mutex);
1509 
1510 	kn = kernfs_find_ns(parent, name, ns);
1511 	if (kn)
1512 		__kernfs_remove(kn);
1513 
1514 	mutex_unlock(&kernfs_mutex);
1515 
1516 	if (kn)
1517 		return 0;
1518 	else
1519 		return -ENOENT;
1520 }
1521 
1522 /**
1523  * kernfs_rename_ns - move and rename a kernfs_node
1524  * @kn: target node
1525  * @new_parent: new parent to put @sd under
1526  * @new_name: new name
1527  * @new_ns: new namespace tag
1528  */
1529 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1530 		     const char *new_name, const void *new_ns)
1531 {
1532 	struct kernfs_node *old_parent;
1533 	const char *old_name = NULL;
1534 	int error;
1535 
1536 	/* can't move or rename root */
1537 	if (!kn->parent)
1538 		return -EINVAL;
1539 
1540 	mutex_lock(&kernfs_mutex);
1541 
1542 	error = -ENOENT;
1543 	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1544 	    (new_parent->flags & KERNFS_EMPTY_DIR))
1545 		goto out;
1546 
1547 	error = 0;
1548 	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1549 	    (strcmp(kn->name, new_name) == 0))
1550 		goto out;	/* nothing to rename */
1551 
1552 	error = -EEXIST;
1553 	if (kernfs_find_ns(new_parent, new_name, new_ns))
1554 		goto out;
1555 
1556 	/* rename kernfs_node */
1557 	if (strcmp(kn->name, new_name) != 0) {
1558 		error = -ENOMEM;
1559 		new_name = kstrdup_const(new_name, GFP_KERNEL);
1560 		if (!new_name)
1561 			goto out;
1562 	} else {
1563 		new_name = NULL;
1564 	}
1565 
1566 	/*
1567 	 * Move to the appropriate place in the appropriate directories rbtree.
1568 	 */
1569 	kernfs_unlink_sibling(kn);
1570 	kernfs_get(new_parent);
1571 
1572 	/* rename_lock protects ->parent and ->name accessors */
1573 	spin_lock_irq(&kernfs_rename_lock);
1574 
1575 	old_parent = kn->parent;
1576 	kn->parent = new_parent;
1577 
1578 	kn->ns = new_ns;
1579 	if (new_name) {
1580 		old_name = kn->name;
1581 		kn->name = new_name;
1582 	}
1583 
1584 	spin_unlock_irq(&kernfs_rename_lock);
1585 
1586 	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1587 	kernfs_link_sibling(kn);
1588 
1589 	kernfs_put(old_parent);
1590 	kfree_const(old_name);
1591 
1592 	error = 0;
1593  out:
1594 	mutex_unlock(&kernfs_mutex);
1595 	return error;
1596 }
1597 
1598 /* Relationship between s_mode and the DT_xxx types */
1599 static inline unsigned char dt_type(struct kernfs_node *kn)
1600 {
1601 	return (kn->mode >> 12) & 15;
1602 }
1603 
1604 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1605 {
1606 	kernfs_put(filp->private_data);
1607 	return 0;
1608 }
1609 
1610 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1611 	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1612 {
1613 	if (pos) {
1614 		int valid = kernfs_active(pos) &&
1615 			pos->parent == parent && hash == pos->hash;
1616 		kernfs_put(pos);
1617 		if (!valid)
1618 			pos = NULL;
1619 	}
1620 	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1621 		struct rb_node *node = parent->dir.children.rb_node;
1622 		while (node) {
1623 			pos = rb_to_kn(node);
1624 
1625 			if (hash < pos->hash)
1626 				node = node->rb_left;
1627 			else if (hash > pos->hash)
1628 				node = node->rb_right;
1629 			else
1630 				break;
1631 		}
1632 	}
1633 	/* Skip over entries which are dying/dead or in the wrong namespace */
1634 	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1635 		struct rb_node *node = rb_next(&pos->rb);
1636 		if (!node)
1637 			pos = NULL;
1638 		else
1639 			pos = rb_to_kn(node);
1640 	}
1641 	return pos;
1642 }
1643 
1644 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1645 	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1646 {
1647 	pos = kernfs_dir_pos(ns, parent, ino, pos);
1648 	if (pos) {
1649 		do {
1650 			struct rb_node *node = rb_next(&pos->rb);
1651 			if (!node)
1652 				pos = NULL;
1653 			else
1654 				pos = rb_to_kn(node);
1655 		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1656 	}
1657 	return pos;
1658 }
1659 
1660 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1661 {
1662 	struct dentry *dentry = file->f_path.dentry;
1663 	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1664 	struct kernfs_node *pos = file->private_data;
1665 	const void *ns = NULL;
1666 
1667 	if (!dir_emit_dots(file, ctx))
1668 		return 0;
1669 	mutex_lock(&kernfs_mutex);
1670 
1671 	if (kernfs_ns_enabled(parent))
1672 		ns = kernfs_info(dentry->d_sb)->ns;
1673 
1674 	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1675 	     pos;
1676 	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1677 		const char *name = pos->name;
1678 		unsigned int type = dt_type(pos);
1679 		int len = strlen(name);
1680 		ino_t ino = pos->id.ino;
1681 
1682 		ctx->pos = pos->hash;
1683 		file->private_data = pos;
1684 		kernfs_get(pos);
1685 
1686 		mutex_unlock(&kernfs_mutex);
1687 		if (!dir_emit(ctx, name, len, ino, type))
1688 			return 0;
1689 		mutex_lock(&kernfs_mutex);
1690 	}
1691 	mutex_unlock(&kernfs_mutex);
1692 	file->private_data = NULL;
1693 	ctx->pos = INT_MAX;
1694 	return 0;
1695 }
1696 
1697 const struct file_operations kernfs_dir_fops = {
1698 	.read		= generic_read_dir,
1699 	.iterate_shared	= kernfs_fop_readdir,
1700 	.release	= kernfs_dir_fop_release,
1701 	.llseek		= generic_file_llseek,
1702 };
1703