1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/fs.h> 13 #include <linux/namei.h> 14 #include <linux/idr.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/hash.h> 18 19 #include "kernfs-internal.h" 20 21 DEFINE_MUTEX(kernfs_mutex); 22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 24 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 25 26 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 27 28 static bool kernfs_active(struct kernfs_node *kn) 29 { 30 lockdep_assert_held(&kernfs_mutex); 31 return atomic_read(&kn->active) >= 0; 32 } 33 34 static bool kernfs_lockdep(struct kernfs_node *kn) 35 { 36 #ifdef CONFIG_DEBUG_LOCK_ALLOC 37 return kn->flags & KERNFS_LOCKDEP; 38 #else 39 return false; 40 #endif 41 } 42 43 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 44 { 45 if (!kn) 46 return strlcpy(buf, "(null)", buflen); 47 48 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 49 } 50 51 /* kernfs_node_depth - compute depth from @from to @to */ 52 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 53 { 54 size_t depth = 0; 55 56 while (to->parent && to != from) { 57 depth++; 58 to = to->parent; 59 } 60 return depth; 61 } 62 63 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 64 struct kernfs_node *b) 65 { 66 size_t da, db; 67 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 68 69 if (ra != rb) 70 return NULL; 71 72 da = kernfs_depth(ra->kn, a); 73 db = kernfs_depth(rb->kn, b); 74 75 while (da > db) { 76 a = a->parent; 77 da--; 78 } 79 while (db > da) { 80 b = b->parent; 81 db--; 82 } 83 84 /* worst case b and a will be the same at root */ 85 while (b != a) { 86 b = b->parent; 87 a = a->parent; 88 } 89 90 return a; 91 } 92 93 /** 94 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 95 * where kn_from is treated as root of the path. 96 * @kn_from: kernfs node which should be treated as root for the path 97 * @kn_to: kernfs node to which path is needed 98 * @buf: buffer to copy the path into 99 * @buflen: size of @buf 100 * 101 * We need to handle couple of scenarios here: 102 * [1] when @kn_from is an ancestor of @kn_to at some level 103 * kn_from: /n1/n2/n3 104 * kn_to: /n1/n2/n3/n4/n5 105 * result: /n4/n5 106 * 107 * [2] when @kn_from is on a different hierarchy and we need to find common 108 * ancestor between @kn_from and @kn_to. 109 * kn_from: /n1/n2/n3/n4 110 * kn_to: /n1/n2/n5 111 * result: /../../n5 112 * OR 113 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 114 * kn_to: /n1/n2/n3 [depth=3] 115 * result: /../.. 116 * 117 * [3] when @kn_to is NULL result will be "(null)" 118 * 119 * Returns the length of the full path. If the full length is equal to or 120 * greater than @buflen, @buf contains the truncated path with the trailing 121 * '\0'. On error, -errno is returned. 122 */ 123 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 124 struct kernfs_node *kn_from, 125 char *buf, size_t buflen) 126 { 127 struct kernfs_node *kn, *common; 128 const char parent_str[] = "/.."; 129 size_t depth_from, depth_to, len = 0; 130 int i, j; 131 132 if (!kn_to) 133 return strlcpy(buf, "(null)", buflen); 134 135 if (!kn_from) 136 kn_from = kernfs_root(kn_to)->kn; 137 138 if (kn_from == kn_to) 139 return strlcpy(buf, "/", buflen); 140 141 common = kernfs_common_ancestor(kn_from, kn_to); 142 if (WARN_ON(!common)) 143 return -EINVAL; 144 145 depth_to = kernfs_depth(common, kn_to); 146 depth_from = kernfs_depth(common, kn_from); 147 148 if (buf) 149 buf[0] = '\0'; 150 151 for (i = 0; i < depth_from; i++) 152 len += strlcpy(buf + len, parent_str, 153 len < buflen ? buflen - len : 0); 154 155 /* Calculate how many bytes we need for the rest */ 156 for (i = depth_to - 1; i >= 0; i--) { 157 for (kn = kn_to, j = 0; j < i; j++) 158 kn = kn->parent; 159 len += strlcpy(buf + len, "/", 160 len < buflen ? buflen - len : 0); 161 len += strlcpy(buf + len, kn->name, 162 len < buflen ? buflen - len : 0); 163 } 164 165 return len; 166 } 167 168 /** 169 * kernfs_name - obtain the name of a given node 170 * @kn: kernfs_node of interest 171 * @buf: buffer to copy @kn's name into 172 * @buflen: size of @buf 173 * 174 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 175 * similar to strlcpy(). It returns the length of @kn's name and if @buf 176 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 177 * 178 * Fills buffer with "(null)" if @kn is NULL. 179 * 180 * This function can be called from any context. 181 */ 182 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 183 { 184 unsigned long flags; 185 int ret; 186 187 spin_lock_irqsave(&kernfs_rename_lock, flags); 188 ret = kernfs_name_locked(kn, buf, buflen); 189 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 190 return ret; 191 } 192 193 /** 194 * kernfs_path_from_node - build path of node @to relative to @from. 195 * @from: parent kernfs_node relative to which we need to build the path 196 * @to: kernfs_node of interest 197 * @buf: buffer to copy @to's path into 198 * @buflen: size of @buf 199 * 200 * Builds @to's path relative to @from in @buf. @from and @to must 201 * be on the same kernfs-root. If @from is not parent of @to, then a relative 202 * path (which includes '..'s) as needed to reach from @from to @to is 203 * returned. 204 * 205 * Returns the length of the full path. If the full length is equal to or 206 * greater than @buflen, @buf contains the truncated path with the trailing 207 * '\0'. On error, -errno is returned. 208 */ 209 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 210 char *buf, size_t buflen) 211 { 212 unsigned long flags; 213 int ret; 214 215 spin_lock_irqsave(&kernfs_rename_lock, flags); 216 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 217 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 218 return ret; 219 } 220 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 221 222 /** 223 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 224 * @kn: kernfs_node of interest 225 * 226 * This function can be called from any context. 227 */ 228 void pr_cont_kernfs_name(struct kernfs_node *kn) 229 { 230 unsigned long flags; 231 232 spin_lock_irqsave(&kernfs_rename_lock, flags); 233 234 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 235 pr_cont("%s", kernfs_pr_cont_buf); 236 237 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 238 } 239 240 /** 241 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 242 * @kn: kernfs_node of interest 243 * 244 * This function can be called from any context. 245 */ 246 void pr_cont_kernfs_path(struct kernfs_node *kn) 247 { 248 unsigned long flags; 249 int sz; 250 251 spin_lock_irqsave(&kernfs_rename_lock, flags); 252 253 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf, 254 sizeof(kernfs_pr_cont_buf)); 255 if (sz < 0) { 256 pr_cont("(error)"); 257 goto out; 258 } 259 260 if (sz >= sizeof(kernfs_pr_cont_buf)) { 261 pr_cont("(name too long)"); 262 goto out; 263 } 264 265 pr_cont("%s", kernfs_pr_cont_buf); 266 267 out: 268 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 269 } 270 271 /** 272 * kernfs_get_parent - determine the parent node and pin it 273 * @kn: kernfs_node of interest 274 * 275 * Determines @kn's parent, pins and returns it. This function can be 276 * called from any context. 277 */ 278 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 279 { 280 struct kernfs_node *parent; 281 unsigned long flags; 282 283 spin_lock_irqsave(&kernfs_rename_lock, flags); 284 parent = kn->parent; 285 kernfs_get(parent); 286 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 287 288 return parent; 289 } 290 291 /** 292 * kernfs_name_hash 293 * @name: Null terminated string to hash 294 * @ns: Namespace tag to hash 295 * 296 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 297 */ 298 static unsigned int kernfs_name_hash(const char *name, const void *ns) 299 { 300 unsigned long hash = init_name_hash(ns); 301 unsigned int len = strlen(name); 302 while (len--) 303 hash = partial_name_hash(*name++, hash); 304 hash = end_name_hash(hash); 305 hash &= 0x7fffffffU; 306 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 307 if (hash < 2) 308 hash += 2; 309 if (hash >= INT_MAX) 310 hash = INT_MAX - 1; 311 return hash; 312 } 313 314 static int kernfs_name_compare(unsigned int hash, const char *name, 315 const void *ns, const struct kernfs_node *kn) 316 { 317 if (hash < kn->hash) 318 return -1; 319 if (hash > kn->hash) 320 return 1; 321 if (ns < kn->ns) 322 return -1; 323 if (ns > kn->ns) 324 return 1; 325 return strcmp(name, kn->name); 326 } 327 328 static int kernfs_sd_compare(const struct kernfs_node *left, 329 const struct kernfs_node *right) 330 { 331 return kernfs_name_compare(left->hash, left->name, left->ns, right); 332 } 333 334 /** 335 * kernfs_link_sibling - link kernfs_node into sibling rbtree 336 * @kn: kernfs_node of interest 337 * 338 * Link @kn into its sibling rbtree which starts from 339 * @kn->parent->dir.children. 340 * 341 * Locking: 342 * mutex_lock(kernfs_mutex) 343 * 344 * RETURNS: 345 * 0 on susccess -EEXIST on failure. 346 */ 347 static int kernfs_link_sibling(struct kernfs_node *kn) 348 { 349 struct rb_node **node = &kn->parent->dir.children.rb_node; 350 struct rb_node *parent = NULL; 351 352 while (*node) { 353 struct kernfs_node *pos; 354 int result; 355 356 pos = rb_to_kn(*node); 357 parent = *node; 358 result = kernfs_sd_compare(kn, pos); 359 if (result < 0) 360 node = &pos->rb.rb_left; 361 else if (result > 0) 362 node = &pos->rb.rb_right; 363 else 364 return -EEXIST; 365 } 366 367 /* add new node and rebalance the tree */ 368 rb_link_node(&kn->rb, parent, node); 369 rb_insert_color(&kn->rb, &kn->parent->dir.children); 370 371 /* successfully added, account subdir number */ 372 if (kernfs_type(kn) == KERNFS_DIR) 373 kn->parent->dir.subdirs++; 374 375 return 0; 376 } 377 378 /** 379 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 380 * @kn: kernfs_node of interest 381 * 382 * Try to unlink @kn from its sibling rbtree which starts from 383 * kn->parent->dir.children. Returns %true if @kn was actually 384 * removed, %false if @kn wasn't on the rbtree. 385 * 386 * Locking: 387 * mutex_lock(kernfs_mutex) 388 */ 389 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 390 { 391 if (RB_EMPTY_NODE(&kn->rb)) 392 return false; 393 394 if (kernfs_type(kn) == KERNFS_DIR) 395 kn->parent->dir.subdirs--; 396 397 rb_erase(&kn->rb, &kn->parent->dir.children); 398 RB_CLEAR_NODE(&kn->rb); 399 return true; 400 } 401 402 /** 403 * kernfs_get_active - get an active reference to kernfs_node 404 * @kn: kernfs_node to get an active reference to 405 * 406 * Get an active reference of @kn. This function is noop if @kn 407 * is NULL. 408 * 409 * RETURNS: 410 * Pointer to @kn on success, NULL on failure. 411 */ 412 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 413 { 414 if (unlikely(!kn)) 415 return NULL; 416 417 if (!atomic_inc_unless_negative(&kn->active)) 418 return NULL; 419 420 if (kernfs_lockdep(kn)) 421 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 422 return kn; 423 } 424 425 /** 426 * kernfs_put_active - put an active reference to kernfs_node 427 * @kn: kernfs_node to put an active reference to 428 * 429 * Put an active reference to @kn. This function is noop if @kn 430 * is NULL. 431 */ 432 void kernfs_put_active(struct kernfs_node *kn) 433 { 434 struct kernfs_root *root = kernfs_root(kn); 435 int v; 436 437 if (unlikely(!kn)) 438 return; 439 440 if (kernfs_lockdep(kn)) 441 rwsem_release(&kn->dep_map, 1, _RET_IP_); 442 v = atomic_dec_return(&kn->active); 443 if (likely(v != KN_DEACTIVATED_BIAS)) 444 return; 445 446 wake_up_all(&root->deactivate_waitq); 447 } 448 449 /** 450 * kernfs_drain - drain kernfs_node 451 * @kn: kernfs_node to drain 452 * 453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 454 * removers may invoke this function concurrently on @kn and all will 455 * return after draining is complete. 456 */ 457 static void kernfs_drain(struct kernfs_node *kn) 458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 459 { 460 struct kernfs_root *root = kernfs_root(kn); 461 462 lockdep_assert_held(&kernfs_mutex); 463 WARN_ON_ONCE(kernfs_active(kn)); 464 465 mutex_unlock(&kernfs_mutex); 466 467 if (kernfs_lockdep(kn)) { 468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 470 lock_contended(&kn->dep_map, _RET_IP_); 471 } 472 473 /* but everyone should wait for draining */ 474 wait_event(root->deactivate_waitq, 475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 476 477 if (kernfs_lockdep(kn)) { 478 lock_acquired(&kn->dep_map, _RET_IP_); 479 rwsem_release(&kn->dep_map, 1, _RET_IP_); 480 } 481 482 kernfs_drain_open_files(kn); 483 484 mutex_lock(&kernfs_mutex); 485 } 486 487 /** 488 * kernfs_get - get a reference count on a kernfs_node 489 * @kn: the target kernfs_node 490 */ 491 void kernfs_get(struct kernfs_node *kn) 492 { 493 if (kn) { 494 WARN_ON(!atomic_read(&kn->count)); 495 atomic_inc(&kn->count); 496 } 497 } 498 EXPORT_SYMBOL_GPL(kernfs_get); 499 500 /** 501 * kernfs_put - put a reference count on a kernfs_node 502 * @kn: the target kernfs_node 503 * 504 * Put a reference count of @kn and destroy it if it reached zero. 505 */ 506 void kernfs_put(struct kernfs_node *kn) 507 { 508 struct kernfs_node *parent; 509 struct kernfs_root *root; 510 511 /* 512 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino 513 * depends on this to filter reused stale node 514 */ 515 if (!kn || !atomic_dec_and_test(&kn->count)) 516 return; 517 root = kernfs_root(kn); 518 repeat: 519 /* 520 * Moving/renaming is always done while holding reference. 521 * kn->parent won't change beneath us. 522 */ 523 parent = kn->parent; 524 525 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 526 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 527 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 528 529 if (kernfs_type(kn) == KERNFS_LINK) 530 kernfs_put(kn->symlink.target_kn); 531 532 kfree_const(kn->name); 533 534 if (kn->iattr) { 535 if (kn->iattr->ia_secdata) 536 security_release_secctx(kn->iattr->ia_secdata, 537 kn->iattr->ia_secdata_len); 538 simple_xattrs_free(&kn->iattr->xattrs); 539 } 540 kfree(kn->iattr); 541 spin_lock(&kernfs_idr_lock); 542 idr_remove(&root->ino_idr, kn->id.ino); 543 spin_unlock(&kernfs_idr_lock); 544 kmem_cache_free(kernfs_node_cache, kn); 545 546 kn = parent; 547 if (kn) { 548 if (atomic_dec_and_test(&kn->count)) 549 goto repeat; 550 } else { 551 /* just released the root kn, free @root too */ 552 idr_destroy(&root->ino_idr); 553 kfree(root); 554 } 555 } 556 EXPORT_SYMBOL_GPL(kernfs_put); 557 558 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 559 { 560 struct kernfs_node *kn; 561 562 if (flags & LOOKUP_RCU) 563 return -ECHILD; 564 565 /* Always perform fresh lookup for negatives */ 566 if (d_really_is_negative(dentry)) 567 goto out_bad_unlocked; 568 569 kn = kernfs_dentry_node(dentry); 570 mutex_lock(&kernfs_mutex); 571 572 /* The kernfs node has been deactivated */ 573 if (!kernfs_active(kn)) 574 goto out_bad; 575 576 /* The kernfs node has been moved? */ 577 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 578 goto out_bad; 579 580 /* The kernfs node has been renamed */ 581 if (strcmp(dentry->d_name.name, kn->name) != 0) 582 goto out_bad; 583 584 /* The kernfs node has been moved to a different namespace */ 585 if (kn->parent && kernfs_ns_enabled(kn->parent) && 586 kernfs_info(dentry->d_sb)->ns != kn->ns) 587 goto out_bad; 588 589 mutex_unlock(&kernfs_mutex); 590 return 1; 591 out_bad: 592 mutex_unlock(&kernfs_mutex); 593 out_bad_unlocked: 594 return 0; 595 } 596 597 const struct dentry_operations kernfs_dops = { 598 .d_revalidate = kernfs_dop_revalidate, 599 }; 600 601 /** 602 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 603 * @dentry: the dentry in question 604 * 605 * Return the kernfs_node associated with @dentry. If @dentry is not a 606 * kernfs one, %NULL is returned. 607 * 608 * While the returned kernfs_node will stay accessible as long as @dentry 609 * is accessible, the returned node can be in any state and the caller is 610 * fully responsible for determining what's accessible. 611 */ 612 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 613 { 614 if (dentry->d_sb->s_op == &kernfs_sops && 615 !d_really_is_negative(dentry)) 616 return kernfs_dentry_node(dentry); 617 return NULL; 618 } 619 620 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 621 const char *name, umode_t mode, 622 unsigned flags) 623 { 624 struct kernfs_node *kn; 625 u32 gen; 626 int cursor; 627 int ret; 628 629 name = kstrdup_const(name, GFP_KERNEL); 630 if (!name) 631 return NULL; 632 633 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 634 if (!kn) 635 goto err_out1; 636 637 idr_preload(GFP_KERNEL); 638 spin_lock(&kernfs_idr_lock); 639 cursor = idr_get_cursor(&root->ino_idr); 640 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 641 if (ret >= 0 && ret < cursor) 642 root->next_generation++; 643 gen = root->next_generation; 644 spin_unlock(&kernfs_idr_lock); 645 idr_preload_end(); 646 if (ret < 0) 647 goto err_out2; 648 kn->id.ino = ret; 649 kn->id.generation = gen; 650 651 /* 652 * set ino first. This barrier is paired with atomic_inc_not_zero in 653 * kernfs_find_and_get_node_by_ino 654 */ 655 smp_mb__before_atomic(); 656 atomic_set(&kn->count, 1); 657 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 658 RB_CLEAR_NODE(&kn->rb); 659 660 kn->name = name; 661 kn->mode = mode; 662 kn->flags = flags; 663 664 return kn; 665 666 err_out2: 667 kmem_cache_free(kernfs_node_cache, kn); 668 err_out1: 669 kfree_const(name); 670 return NULL; 671 } 672 673 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 674 const char *name, umode_t mode, 675 unsigned flags) 676 { 677 struct kernfs_node *kn; 678 679 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags); 680 if (kn) { 681 kernfs_get(parent); 682 kn->parent = parent; 683 } 684 return kn; 685 } 686 687 /* 688 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number 689 * @root: the kernfs root 690 * @ino: inode number 691 * 692 * RETURNS: 693 * NULL on failure. Return a kernfs node with reference counter incremented 694 */ 695 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root, 696 unsigned int ino) 697 { 698 struct kernfs_node *kn; 699 700 rcu_read_lock(); 701 kn = idr_find(&root->ino_idr, ino); 702 if (!kn) 703 goto out; 704 705 /* 706 * Since kernfs_node is freed in RCU, it's possible an old node for ino 707 * is freed, but reused before RCU grace period. But a freed node (see 708 * kernfs_put) or an incompletedly initialized node (see 709 * __kernfs_new_node) should have 'count' 0. We can use this fact to 710 * filter out such node. 711 */ 712 if (!atomic_inc_not_zero(&kn->count)) { 713 kn = NULL; 714 goto out; 715 } 716 717 /* 718 * The node could be a new node or a reused node. If it's a new node, 719 * we are ok. If it's reused because of RCU (because of 720 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino' 721 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate, 722 * hence we can use 'ino' to filter stale node. 723 */ 724 if (kn->id.ino != ino) 725 goto out; 726 rcu_read_unlock(); 727 728 return kn; 729 out: 730 rcu_read_unlock(); 731 kernfs_put(kn); 732 return NULL; 733 } 734 735 /** 736 * kernfs_add_one - add kernfs_node to parent without warning 737 * @kn: kernfs_node to be added 738 * 739 * The caller must already have initialized @kn->parent. This 740 * function increments nlink of the parent's inode if @kn is a 741 * directory and link into the children list of the parent. 742 * 743 * RETURNS: 744 * 0 on success, -EEXIST if entry with the given name already 745 * exists. 746 */ 747 int kernfs_add_one(struct kernfs_node *kn) 748 { 749 struct kernfs_node *parent = kn->parent; 750 struct kernfs_iattrs *ps_iattr; 751 bool has_ns; 752 int ret; 753 754 mutex_lock(&kernfs_mutex); 755 756 ret = -EINVAL; 757 has_ns = kernfs_ns_enabled(parent); 758 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 759 has_ns ? "required" : "invalid", parent->name, kn->name)) 760 goto out_unlock; 761 762 if (kernfs_type(parent) != KERNFS_DIR) 763 goto out_unlock; 764 765 ret = -ENOENT; 766 if (parent->flags & KERNFS_EMPTY_DIR) 767 goto out_unlock; 768 769 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 770 goto out_unlock; 771 772 kn->hash = kernfs_name_hash(kn->name, kn->ns); 773 774 ret = kernfs_link_sibling(kn); 775 if (ret) 776 goto out_unlock; 777 778 /* Update timestamps on the parent */ 779 ps_iattr = parent->iattr; 780 if (ps_iattr) { 781 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 782 ktime_get_real_ts64(&ps_iattrs->ia_ctime); 783 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime; 784 } 785 786 mutex_unlock(&kernfs_mutex); 787 788 /* 789 * Activate the new node unless CREATE_DEACTIVATED is requested. 790 * If not activated here, the kernfs user is responsible for 791 * activating the node with kernfs_activate(). A node which hasn't 792 * been activated is not visible to userland and its removal won't 793 * trigger deactivation. 794 */ 795 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 796 kernfs_activate(kn); 797 return 0; 798 799 out_unlock: 800 mutex_unlock(&kernfs_mutex); 801 return ret; 802 } 803 804 /** 805 * kernfs_find_ns - find kernfs_node with the given name 806 * @parent: kernfs_node to search under 807 * @name: name to look for 808 * @ns: the namespace tag to use 809 * 810 * Look for kernfs_node with name @name under @parent. Returns pointer to 811 * the found kernfs_node on success, %NULL on failure. 812 */ 813 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 814 const unsigned char *name, 815 const void *ns) 816 { 817 struct rb_node *node = parent->dir.children.rb_node; 818 bool has_ns = kernfs_ns_enabled(parent); 819 unsigned int hash; 820 821 lockdep_assert_held(&kernfs_mutex); 822 823 if (has_ns != (bool)ns) { 824 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 825 has_ns ? "required" : "invalid", parent->name, name); 826 return NULL; 827 } 828 829 hash = kernfs_name_hash(name, ns); 830 while (node) { 831 struct kernfs_node *kn; 832 int result; 833 834 kn = rb_to_kn(node); 835 result = kernfs_name_compare(hash, name, ns, kn); 836 if (result < 0) 837 node = node->rb_left; 838 else if (result > 0) 839 node = node->rb_right; 840 else 841 return kn; 842 } 843 return NULL; 844 } 845 846 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 847 const unsigned char *path, 848 const void *ns) 849 { 850 size_t len; 851 char *p, *name; 852 853 lockdep_assert_held(&kernfs_mutex); 854 855 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */ 856 spin_lock_irq(&kernfs_rename_lock); 857 858 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 859 860 if (len >= sizeof(kernfs_pr_cont_buf)) { 861 spin_unlock_irq(&kernfs_rename_lock); 862 return NULL; 863 } 864 865 p = kernfs_pr_cont_buf; 866 867 while ((name = strsep(&p, "/")) && parent) { 868 if (*name == '\0') 869 continue; 870 parent = kernfs_find_ns(parent, name, ns); 871 } 872 873 spin_unlock_irq(&kernfs_rename_lock); 874 875 return parent; 876 } 877 878 /** 879 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 880 * @parent: kernfs_node to search under 881 * @name: name to look for 882 * @ns: the namespace tag to use 883 * 884 * Look for kernfs_node with name @name under @parent and get a reference 885 * if found. This function may sleep and returns pointer to the found 886 * kernfs_node on success, %NULL on failure. 887 */ 888 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 889 const char *name, const void *ns) 890 { 891 struct kernfs_node *kn; 892 893 mutex_lock(&kernfs_mutex); 894 kn = kernfs_find_ns(parent, name, ns); 895 kernfs_get(kn); 896 mutex_unlock(&kernfs_mutex); 897 898 return kn; 899 } 900 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 901 902 /** 903 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 904 * @parent: kernfs_node to search under 905 * @path: path to look for 906 * @ns: the namespace tag to use 907 * 908 * Look for kernfs_node with path @path under @parent and get a reference 909 * if found. This function may sleep and returns pointer to the found 910 * kernfs_node on success, %NULL on failure. 911 */ 912 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 913 const char *path, const void *ns) 914 { 915 struct kernfs_node *kn; 916 917 mutex_lock(&kernfs_mutex); 918 kn = kernfs_walk_ns(parent, path, ns); 919 kernfs_get(kn); 920 mutex_unlock(&kernfs_mutex); 921 922 return kn; 923 } 924 925 /** 926 * kernfs_create_root - create a new kernfs hierarchy 927 * @scops: optional syscall operations for the hierarchy 928 * @flags: KERNFS_ROOT_* flags 929 * @priv: opaque data associated with the new directory 930 * 931 * Returns the root of the new hierarchy on success, ERR_PTR() value on 932 * failure. 933 */ 934 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 935 unsigned int flags, void *priv) 936 { 937 struct kernfs_root *root; 938 struct kernfs_node *kn; 939 940 root = kzalloc(sizeof(*root), GFP_KERNEL); 941 if (!root) 942 return ERR_PTR(-ENOMEM); 943 944 idr_init(&root->ino_idr); 945 INIT_LIST_HEAD(&root->supers); 946 root->next_generation = 1; 947 948 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 949 KERNFS_DIR); 950 if (!kn) { 951 idr_destroy(&root->ino_idr); 952 kfree(root); 953 return ERR_PTR(-ENOMEM); 954 } 955 956 kn->priv = priv; 957 kn->dir.root = root; 958 959 root->syscall_ops = scops; 960 root->flags = flags; 961 root->kn = kn; 962 init_waitqueue_head(&root->deactivate_waitq); 963 964 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 965 kernfs_activate(kn); 966 967 return root; 968 } 969 970 /** 971 * kernfs_destroy_root - destroy a kernfs hierarchy 972 * @root: root of the hierarchy to destroy 973 * 974 * Destroy the hierarchy anchored at @root by removing all existing 975 * directories and destroying @root. 976 */ 977 void kernfs_destroy_root(struct kernfs_root *root) 978 { 979 kernfs_remove(root->kn); /* will also free @root */ 980 } 981 982 /** 983 * kernfs_create_dir_ns - create a directory 984 * @parent: parent in which to create a new directory 985 * @name: name of the new directory 986 * @mode: mode of the new directory 987 * @priv: opaque data associated with the new directory 988 * @ns: optional namespace tag of the directory 989 * 990 * Returns the created node on success, ERR_PTR() value on failure. 991 */ 992 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 993 const char *name, umode_t mode, 994 void *priv, const void *ns) 995 { 996 struct kernfs_node *kn; 997 int rc; 998 999 /* allocate */ 1000 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR); 1001 if (!kn) 1002 return ERR_PTR(-ENOMEM); 1003 1004 kn->dir.root = parent->dir.root; 1005 kn->ns = ns; 1006 kn->priv = priv; 1007 1008 /* link in */ 1009 rc = kernfs_add_one(kn); 1010 if (!rc) 1011 return kn; 1012 1013 kernfs_put(kn); 1014 return ERR_PTR(rc); 1015 } 1016 1017 /** 1018 * kernfs_create_empty_dir - create an always empty directory 1019 * @parent: parent in which to create a new directory 1020 * @name: name of the new directory 1021 * 1022 * Returns the created node on success, ERR_PTR() value on failure. 1023 */ 1024 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1025 const char *name) 1026 { 1027 struct kernfs_node *kn; 1028 int rc; 1029 1030 /* allocate */ 1031 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR); 1032 if (!kn) 1033 return ERR_PTR(-ENOMEM); 1034 1035 kn->flags |= KERNFS_EMPTY_DIR; 1036 kn->dir.root = parent->dir.root; 1037 kn->ns = NULL; 1038 kn->priv = NULL; 1039 1040 /* link in */ 1041 rc = kernfs_add_one(kn); 1042 if (!rc) 1043 return kn; 1044 1045 kernfs_put(kn); 1046 return ERR_PTR(rc); 1047 } 1048 1049 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1050 struct dentry *dentry, 1051 unsigned int flags) 1052 { 1053 struct dentry *ret; 1054 struct kernfs_node *parent = dir->i_private; 1055 struct kernfs_node *kn; 1056 struct inode *inode; 1057 const void *ns = NULL; 1058 1059 mutex_lock(&kernfs_mutex); 1060 1061 if (kernfs_ns_enabled(parent)) 1062 ns = kernfs_info(dir->i_sb)->ns; 1063 1064 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1065 1066 /* no such entry */ 1067 if (!kn || !kernfs_active(kn)) { 1068 ret = NULL; 1069 goto out_unlock; 1070 } 1071 1072 /* attach dentry and inode */ 1073 inode = kernfs_get_inode(dir->i_sb, kn); 1074 if (!inode) { 1075 ret = ERR_PTR(-ENOMEM); 1076 goto out_unlock; 1077 } 1078 1079 /* instantiate and hash dentry */ 1080 ret = d_splice_alias(inode, dentry); 1081 out_unlock: 1082 mutex_unlock(&kernfs_mutex); 1083 return ret; 1084 } 1085 1086 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 1087 umode_t mode) 1088 { 1089 struct kernfs_node *parent = dir->i_private; 1090 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1091 int ret; 1092 1093 if (!scops || !scops->mkdir) 1094 return -EPERM; 1095 1096 if (!kernfs_get_active(parent)) 1097 return -ENODEV; 1098 1099 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1100 1101 kernfs_put_active(parent); 1102 return ret; 1103 } 1104 1105 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1106 { 1107 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1108 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1109 int ret; 1110 1111 if (!scops || !scops->rmdir) 1112 return -EPERM; 1113 1114 if (!kernfs_get_active(kn)) 1115 return -ENODEV; 1116 1117 ret = scops->rmdir(kn); 1118 1119 kernfs_put_active(kn); 1120 return ret; 1121 } 1122 1123 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 1124 struct inode *new_dir, struct dentry *new_dentry, 1125 unsigned int flags) 1126 { 1127 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1128 struct kernfs_node *new_parent = new_dir->i_private; 1129 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1130 int ret; 1131 1132 if (flags) 1133 return -EINVAL; 1134 1135 if (!scops || !scops->rename) 1136 return -EPERM; 1137 1138 if (!kernfs_get_active(kn)) 1139 return -ENODEV; 1140 1141 if (!kernfs_get_active(new_parent)) { 1142 kernfs_put_active(kn); 1143 return -ENODEV; 1144 } 1145 1146 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1147 1148 kernfs_put_active(new_parent); 1149 kernfs_put_active(kn); 1150 return ret; 1151 } 1152 1153 const struct inode_operations kernfs_dir_iops = { 1154 .lookup = kernfs_iop_lookup, 1155 .permission = kernfs_iop_permission, 1156 .setattr = kernfs_iop_setattr, 1157 .getattr = kernfs_iop_getattr, 1158 .listxattr = kernfs_iop_listxattr, 1159 1160 .mkdir = kernfs_iop_mkdir, 1161 .rmdir = kernfs_iop_rmdir, 1162 .rename = kernfs_iop_rename, 1163 }; 1164 1165 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1166 { 1167 struct kernfs_node *last; 1168 1169 while (true) { 1170 struct rb_node *rbn; 1171 1172 last = pos; 1173 1174 if (kernfs_type(pos) != KERNFS_DIR) 1175 break; 1176 1177 rbn = rb_first(&pos->dir.children); 1178 if (!rbn) 1179 break; 1180 1181 pos = rb_to_kn(rbn); 1182 } 1183 1184 return last; 1185 } 1186 1187 /** 1188 * kernfs_next_descendant_post - find the next descendant for post-order walk 1189 * @pos: the current position (%NULL to initiate traversal) 1190 * @root: kernfs_node whose descendants to walk 1191 * 1192 * Find the next descendant to visit for post-order traversal of @root's 1193 * descendants. @root is included in the iteration and the last node to be 1194 * visited. 1195 */ 1196 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1197 struct kernfs_node *root) 1198 { 1199 struct rb_node *rbn; 1200 1201 lockdep_assert_held(&kernfs_mutex); 1202 1203 /* if first iteration, visit leftmost descendant which may be root */ 1204 if (!pos) 1205 return kernfs_leftmost_descendant(root); 1206 1207 /* if we visited @root, we're done */ 1208 if (pos == root) 1209 return NULL; 1210 1211 /* if there's an unvisited sibling, visit its leftmost descendant */ 1212 rbn = rb_next(&pos->rb); 1213 if (rbn) 1214 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1215 1216 /* no sibling left, visit parent */ 1217 return pos->parent; 1218 } 1219 1220 /** 1221 * kernfs_activate - activate a node which started deactivated 1222 * @kn: kernfs_node whose subtree is to be activated 1223 * 1224 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1225 * needs to be explicitly activated. A node which hasn't been activated 1226 * isn't visible to userland and deactivation is skipped during its 1227 * removal. This is useful to construct atomic init sequences where 1228 * creation of multiple nodes should either succeed or fail atomically. 1229 * 1230 * The caller is responsible for ensuring that this function is not called 1231 * after kernfs_remove*() is invoked on @kn. 1232 */ 1233 void kernfs_activate(struct kernfs_node *kn) 1234 { 1235 struct kernfs_node *pos; 1236 1237 mutex_lock(&kernfs_mutex); 1238 1239 pos = NULL; 1240 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1241 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 1242 continue; 1243 1244 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1245 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1246 1247 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1248 pos->flags |= KERNFS_ACTIVATED; 1249 } 1250 1251 mutex_unlock(&kernfs_mutex); 1252 } 1253 1254 static void __kernfs_remove(struct kernfs_node *kn) 1255 { 1256 struct kernfs_node *pos; 1257 1258 lockdep_assert_held(&kernfs_mutex); 1259 1260 /* 1261 * Short-circuit if non-root @kn has already finished removal. 1262 * This is for kernfs_remove_self() which plays with active ref 1263 * after removal. 1264 */ 1265 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1266 return; 1267 1268 pr_debug("kernfs %s: removing\n", kn->name); 1269 1270 /* prevent any new usage under @kn by deactivating all nodes */ 1271 pos = NULL; 1272 while ((pos = kernfs_next_descendant_post(pos, kn))) 1273 if (kernfs_active(pos)) 1274 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1275 1276 /* deactivate and unlink the subtree node-by-node */ 1277 do { 1278 pos = kernfs_leftmost_descendant(kn); 1279 1280 /* 1281 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1282 * base ref could have been put by someone else by the time 1283 * the function returns. Make sure it doesn't go away 1284 * underneath us. 1285 */ 1286 kernfs_get(pos); 1287 1288 /* 1289 * Drain iff @kn was activated. This avoids draining and 1290 * its lockdep annotations for nodes which have never been 1291 * activated and allows embedding kernfs_remove() in create 1292 * error paths without worrying about draining. 1293 */ 1294 if (kn->flags & KERNFS_ACTIVATED) 1295 kernfs_drain(pos); 1296 else 1297 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1298 1299 /* 1300 * kernfs_unlink_sibling() succeeds once per node. Use it 1301 * to decide who's responsible for cleanups. 1302 */ 1303 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1304 struct kernfs_iattrs *ps_iattr = 1305 pos->parent ? pos->parent->iattr : NULL; 1306 1307 /* update timestamps on the parent */ 1308 if (ps_iattr) { 1309 ktime_get_real_ts64(&ps_iattr->ia_iattr.ia_ctime); 1310 ps_iattr->ia_iattr.ia_mtime = 1311 ps_iattr->ia_iattr.ia_ctime; 1312 } 1313 1314 kernfs_put(pos); 1315 } 1316 1317 kernfs_put(pos); 1318 } while (pos != kn); 1319 } 1320 1321 /** 1322 * kernfs_remove - remove a kernfs_node recursively 1323 * @kn: the kernfs_node to remove 1324 * 1325 * Remove @kn along with all its subdirectories and files. 1326 */ 1327 void kernfs_remove(struct kernfs_node *kn) 1328 { 1329 mutex_lock(&kernfs_mutex); 1330 __kernfs_remove(kn); 1331 mutex_unlock(&kernfs_mutex); 1332 } 1333 1334 /** 1335 * kernfs_break_active_protection - break out of active protection 1336 * @kn: the self kernfs_node 1337 * 1338 * The caller must be running off of a kernfs operation which is invoked 1339 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1340 * this function must also be matched with an invocation of 1341 * kernfs_unbreak_active_protection(). 1342 * 1343 * This function releases the active reference of @kn the caller is 1344 * holding. Once this function is called, @kn may be removed at any point 1345 * and the caller is solely responsible for ensuring that the objects it 1346 * dereferences are accessible. 1347 */ 1348 void kernfs_break_active_protection(struct kernfs_node *kn) 1349 { 1350 /* 1351 * Take out ourself out of the active ref dependency chain. If 1352 * we're called without an active ref, lockdep will complain. 1353 */ 1354 kernfs_put_active(kn); 1355 } 1356 1357 /** 1358 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1359 * @kn: the self kernfs_node 1360 * 1361 * If kernfs_break_active_protection() was called, this function must be 1362 * invoked before finishing the kernfs operation. Note that while this 1363 * function restores the active reference, it doesn't and can't actually 1364 * restore the active protection - @kn may already or be in the process of 1365 * being removed. Once kernfs_break_active_protection() is invoked, that 1366 * protection is irreversibly gone for the kernfs operation instance. 1367 * 1368 * While this function may be called at any point after 1369 * kernfs_break_active_protection() is invoked, its most useful location 1370 * would be right before the enclosing kernfs operation returns. 1371 */ 1372 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1373 { 1374 /* 1375 * @kn->active could be in any state; however, the increment we do 1376 * here will be undone as soon as the enclosing kernfs operation 1377 * finishes and this temporary bump can't break anything. If @kn 1378 * is alive, nothing changes. If @kn is being deactivated, the 1379 * soon-to-follow put will either finish deactivation or restore 1380 * deactivated state. If @kn is already removed, the temporary 1381 * bump is guaranteed to be gone before @kn is released. 1382 */ 1383 atomic_inc(&kn->active); 1384 if (kernfs_lockdep(kn)) 1385 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1386 } 1387 1388 /** 1389 * kernfs_remove_self - remove a kernfs_node from its own method 1390 * @kn: the self kernfs_node to remove 1391 * 1392 * The caller must be running off of a kernfs operation which is invoked 1393 * with an active reference - e.g. one of kernfs_ops. This can be used to 1394 * implement a file operation which deletes itself. 1395 * 1396 * For example, the "delete" file for a sysfs device directory can be 1397 * implemented by invoking kernfs_remove_self() on the "delete" file 1398 * itself. This function breaks the circular dependency of trying to 1399 * deactivate self while holding an active ref itself. It isn't necessary 1400 * to modify the usual removal path to use kernfs_remove_self(). The 1401 * "delete" implementation can simply invoke kernfs_remove_self() on self 1402 * before proceeding with the usual removal path. kernfs will ignore later 1403 * kernfs_remove() on self. 1404 * 1405 * kernfs_remove_self() can be called multiple times concurrently on the 1406 * same kernfs_node. Only the first one actually performs removal and 1407 * returns %true. All others will wait until the kernfs operation which 1408 * won self-removal finishes and return %false. Note that the losers wait 1409 * for the completion of not only the winning kernfs_remove_self() but also 1410 * the whole kernfs_ops which won the arbitration. This can be used to 1411 * guarantee, for example, all concurrent writes to a "delete" file to 1412 * finish only after the whole operation is complete. 1413 */ 1414 bool kernfs_remove_self(struct kernfs_node *kn) 1415 { 1416 bool ret; 1417 1418 mutex_lock(&kernfs_mutex); 1419 kernfs_break_active_protection(kn); 1420 1421 /* 1422 * SUICIDAL is used to arbitrate among competing invocations. Only 1423 * the first one will actually perform removal. When the removal 1424 * is complete, SUICIDED is set and the active ref is restored 1425 * while holding kernfs_mutex. The ones which lost arbitration 1426 * waits for SUICDED && drained which can happen only after the 1427 * enclosing kernfs operation which executed the winning instance 1428 * of kernfs_remove_self() finished. 1429 */ 1430 if (!(kn->flags & KERNFS_SUICIDAL)) { 1431 kn->flags |= KERNFS_SUICIDAL; 1432 __kernfs_remove(kn); 1433 kn->flags |= KERNFS_SUICIDED; 1434 ret = true; 1435 } else { 1436 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1437 DEFINE_WAIT(wait); 1438 1439 while (true) { 1440 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1441 1442 if ((kn->flags & KERNFS_SUICIDED) && 1443 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1444 break; 1445 1446 mutex_unlock(&kernfs_mutex); 1447 schedule(); 1448 mutex_lock(&kernfs_mutex); 1449 } 1450 finish_wait(waitq, &wait); 1451 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1452 ret = false; 1453 } 1454 1455 /* 1456 * This must be done while holding kernfs_mutex; otherwise, waiting 1457 * for SUICIDED && deactivated could finish prematurely. 1458 */ 1459 kernfs_unbreak_active_protection(kn); 1460 1461 mutex_unlock(&kernfs_mutex); 1462 return ret; 1463 } 1464 1465 /** 1466 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1467 * @parent: parent of the target 1468 * @name: name of the kernfs_node to remove 1469 * @ns: namespace tag of the kernfs_node to remove 1470 * 1471 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1472 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1473 */ 1474 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1475 const void *ns) 1476 { 1477 struct kernfs_node *kn; 1478 1479 if (!parent) { 1480 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1481 name); 1482 return -ENOENT; 1483 } 1484 1485 mutex_lock(&kernfs_mutex); 1486 1487 kn = kernfs_find_ns(parent, name, ns); 1488 if (kn) 1489 __kernfs_remove(kn); 1490 1491 mutex_unlock(&kernfs_mutex); 1492 1493 if (kn) 1494 return 0; 1495 else 1496 return -ENOENT; 1497 } 1498 1499 /** 1500 * kernfs_rename_ns - move and rename a kernfs_node 1501 * @kn: target node 1502 * @new_parent: new parent to put @sd under 1503 * @new_name: new name 1504 * @new_ns: new namespace tag 1505 */ 1506 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1507 const char *new_name, const void *new_ns) 1508 { 1509 struct kernfs_node *old_parent; 1510 const char *old_name = NULL; 1511 int error; 1512 1513 /* can't move or rename root */ 1514 if (!kn->parent) 1515 return -EINVAL; 1516 1517 mutex_lock(&kernfs_mutex); 1518 1519 error = -ENOENT; 1520 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1521 (new_parent->flags & KERNFS_EMPTY_DIR)) 1522 goto out; 1523 1524 error = 0; 1525 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1526 (strcmp(kn->name, new_name) == 0)) 1527 goto out; /* nothing to rename */ 1528 1529 error = -EEXIST; 1530 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1531 goto out; 1532 1533 /* rename kernfs_node */ 1534 if (strcmp(kn->name, new_name) != 0) { 1535 error = -ENOMEM; 1536 new_name = kstrdup_const(new_name, GFP_KERNEL); 1537 if (!new_name) 1538 goto out; 1539 } else { 1540 new_name = NULL; 1541 } 1542 1543 /* 1544 * Move to the appropriate place in the appropriate directories rbtree. 1545 */ 1546 kernfs_unlink_sibling(kn); 1547 kernfs_get(new_parent); 1548 1549 /* rename_lock protects ->parent and ->name accessors */ 1550 spin_lock_irq(&kernfs_rename_lock); 1551 1552 old_parent = kn->parent; 1553 kn->parent = new_parent; 1554 1555 kn->ns = new_ns; 1556 if (new_name) { 1557 old_name = kn->name; 1558 kn->name = new_name; 1559 } 1560 1561 spin_unlock_irq(&kernfs_rename_lock); 1562 1563 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1564 kernfs_link_sibling(kn); 1565 1566 kernfs_put(old_parent); 1567 kfree_const(old_name); 1568 1569 error = 0; 1570 out: 1571 mutex_unlock(&kernfs_mutex); 1572 return error; 1573 } 1574 1575 /* Relationship between s_mode and the DT_xxx types */ 1576 static inline unsigned char dt_type(struct kernfs_node *kn) 1577 { 1578 return (kn->mode >> 12) & 15; 1579 } 1580 1581 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1582 { 1583 kernfs_put(filp->private_data); 1584 return 0; 1585 } 1586 1587 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1588 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1589 { 1590 if (pos) { 1591 int valid = kernfs_active(pos) && 1592 pos->parent == parent && hash == pos->hash; 1593 kernfs_put(pos); 1594 if (!valid) 1595 pos = NULL; 1596 } 1597 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1598 struct rb_node *node = parent->dir.children.rb_node; 1599 while (node) { 1600 pos = rb_to_kn(node); 1601 1602 if (hash < pos->hash) 1603 node = node->rb_left; 1604 else if (hash > pos->hash) 1605 node = node->rb_right; 1606 else 1607 break; 1608 } 1609 } 1610 /* Skip over entries which are dying/dead or in the wrong namespace */ 1611 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1612 struct rb_node *node = rb_next(&pos->rb); 1613 if (!node) 1614 pos = NULL; 1615 else 1616 pos = rb_to_kn(node); 1617 } 1618 return pos; 1619 } 1620 1621 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1622 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1623 { 1624 pos = kernfs_dir_pos(ns, parent, ino, pos); 1625 if (pos) { 1626 do { 1627 struct rb_node *node = rb_next(&pos->rb); 1628 if (!node) 1629 pos = NULL; 1630 else 1631 pos = rb_to_kn(node); 1632 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1633 } 1634 return pos; 1635 } 1636 1637 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1638 { 1639 struct dentry *dentry = file->f_path.dentry; 1640 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1641 struct kernfs_node *pos = file->private_data; 1642 const void *ns = NULL; 1643 1644 if (!dir_emit_dots(file, ctx)) 1645 return 0; 1646 mutex_lock(&kernfs_mutex); 1647 1648 if (kernfs_ns_enabled(parent)) 1649 ns = kernfs_info(dentry->d_sb)->ns; 1650 1651 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1652 pos; 1653 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1654 const char *name = pos->name; 1655 unsigned int type = dt_type(pos); 1656 int len = strlen(name); 1657 ino_t ino = pos->id.ino; 1658 1659 ctx->pos = pos->hash; 1660 file->private_data = pos; 1661 kernfs_get(pos); 1662 1663 mutex_unlock(&kernfs_mutex); 1664 if (!dir_emit(ctx, name, len, ino, type)) 1665 return 0; 1666 mutex_lock(&kernfs_mutex); 1667 } 1668 mutex_unlock(&kernfs_mutex); 1669 file->private_data = NULL; 1670 ctx->pos = INT_MAX; 1671 return 0; 1672 } 1673 1674 const struct file_operations kernfs_dir_fops = { 1675 .read = generic_read_dir, 1676 .iterate_shared = kernfs_fop_readdir, 1677 .release = kernfs_dir_fop_release, 1678 .llseek = generic_file_llseek, 1679 }; 1680