1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/fs.h> 13 #include <linux/namei.h> 14 #include <linux/idr.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/hash.h> 18 19 #include "kernfs-internal.h" 20 21 DEFINE_MUTEX(kernfs_mutex); 22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 45 } 46 47 static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf, 48 size_t buflen) 49 { 50 char *p = buf + buflen; 51 int len; 52 53 *--p = '\0'; 54 55 do { 56 len = strlen(kn->name); 57 if (p - buf < len + 1) { 58 buf[0] = '\0'; 59 p = NULL; 60 break; 61 } 62 p -= len; 63 memcpy(p, kn->name, len); 64 *--p = '/'; 65 kn = kn->parent; 66 } while (kn && kn->parent); 67 68 return p; 69 } 70 71 /** 72 * kernfs_name - obtain the name of a given node 73 * @kn: kernfs_node of interest 74 * @buf: buffer to copy @kn's name into 75 * @buflen: size of @buf 76 * 77 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 78 * similar to strlcpy(). It returns the length of @kn's name and if @buf 79 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 80 * 81 * This function can be called from any context. 82 */ 83 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 84 { 85 unsigned long flags; 86 int ret; 87 88 spin_lock_irqsave(&kernfs_rename_lock, flags); 89 ret = kernfs_name_locked(kn, buf, buflen); 90 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 91 return ret; 92 } 93 94 /** 95 * kernfs_path - build full path of a given node 96 * @kn: kernfs_node of interest 97 * @buf: buffer to copy @kn's name into 98 * @buflen: size of @buf 99 * 100 * Builds and returns the full path of @kn in @buf of @buflen bytes. The 101 * path is built from the end of @buf so the returned pointer usually 102 * doesn't match @buf. If @buf isn't long enough, @buf is nul terminated 103 * and %NULL is returned. 104 */ 105 char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen) 106 { 107 unsigned long flags; 108 char *p; 109 110 spin_lock_irqsave(&kernfs_rename_lock, flags); 111 p = kernfs_path_locked(kn, buf, buflen); 112 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 113 return p; 114 } 115 EXPORT_SYMBOL_GPL(kernfs_path); 116 117 /** 118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 119 * @kn: kernfs_node of interest 120 * 121 * This function can be called from any context. 122 */ 123 void pr_cont_kernfs_name(struct kernfs_node *kn) 124 { 125 unsigned long flags; 126 127 spin_lock_irqsave(&kernfs_rename_lock, flags); 128 129 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 130 pr_cont("%s", kernfs_pr_cont_buf); 131 132 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 133 } 134 135 /** 136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 137 * @kn: kernfs_node of interest 138 * 139 * This function can be called from any context. 140 */ 141 void pr_cont_kernfs_path(struct kernfs_node *kn) 142 { 143 unsigned long flags; 144 char *p; 145 146 spin_lock_irqsave(&kernfs_rename_lock, flags); 147 148 p = kernfs_path_locked(kn, kernfs_pr_cont_buf, 149 sizeof(kernfs_pr_cont_buf)); 150 if (p) 151 pr_cont("%s", p); 152 else 153 pr_cont("<name too long>"); 154 155 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 156 } 157 158 /** 159 * kernfs_get_parent - determine the parent node and pin it 160 * @kn: kernfs_node of interest 161 * 162 * Determines @kn's parent, pins and returns it. This function can be 163 * called from any context. 164 */ 165 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 166 { 167 struct kernfs_node *parent; 168 unsigned long flags; 169 170 spin_lock_irqsave(&kernfs_rename_lock, flags); 171 parent = kn->parent; 172 kernfs_get(parent); 173 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 174 175 return parent; 176 } 177 178 /** 179 * kernfs_name_hash 180 * @name: Null terminated string to hash 181 * @ns: Namespace tag to hash 182 * 183 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 184 */ 185 static unsigned int kernfs_name_hash(const char *name, const void *ns) 186 { 187 unsigned long hash = init_name_hash(); 188 unsigned int len = strlen(name); 189 while (len--) 190 hash = partial_name_hash(*name++, hash); 191 hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31)); 192 hash &= 0x7fffffffU; 193 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 194 if (hash < 2) 195 hash += 2; 196 if (hash >= INT_MAX) 197 hash = INT_MAX - 1; 198 return hash; 199 } 200 201 static int kernfs_name_compare(unsigned int hash, const char *name, 202 const void *ns, const struct kernfs_node *kn) 203 { 204 if (hash != kn->hash) 205 return hash - kn->hash; 206 if (ns != kn->ns) 207 return ns - kn->ns; 208 return strcmp(name, kn->name); 209 } 210 211 static int kernfs_sd_compare(const struct kernfs_node *left, 212 const struct kernfs_node *right) 213 { 214 return kernfs_name_compare(left->hash, left->name, left->ns, right); 215 } 216 217 /** 218 * kernfs_link_sibling - link kernfs_node into sibling rbtree 219 * @kn: kernfs_node of interest 220 * 221 * Link @kn into its sibling rbtree which starts from 222 * @kn->parent->dir.children. 223 * 224 * Locking: 225 * mutex_lock(kernfs_mutex) 226 * 227 * RETURNS: 228 * 0 on susccess -EEXIST on failure. 229 */ 230 static int kernfs_link_sibling(struct kernfs_node *kn) 231 { 232 struct rb_node **node = &kn->parent->dir.children.rb_node; 233 struct rb_node *parent = NULL; 234 235 while (*node) { 236 struct kernfs_node *pos; 237 int result; 238 239 pos = rb_to_kn(*node); 240 parent = *node; 241 result = kernfs_sd_compare(kn, pos); 242 if (result < 0) 243 node = &pos->rb.rb_left; 244 else if (result > 0) 245 node = &pos->rb.rb_right; 246 else 247 return -EEXIST; 248 } 249 250 /* add new node and rebalance the tree */ 251 rb_link_node(&kn->rb, parent, node); 252 rb_insert_color(&kn->rb, &kn->parent->dir.children); 253 254 /* successfully added, account subdir number */ 255 if (kernfs_type(kn) == KERNFS_DIR) 256 kn->parent->dir.subdirs++; 257 258 return 0; 259 } 260 261 /** 262 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 263 * @kn: kernfs_node of interest 264 * 265 * Try to unlink @kn from its sibling rbtree which starts from 266 * kn->parent->dir.children. Returns %true if @kn was actually 267 * removed, %false if @kn wasn't on the rbtree. 268 * 269 * Locking: 270 * mutex_lock(kernfs_mutex) 271 */ 272 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 273 { 274 if (RB_EMPTY_NODE(&kn->rb)) 275 return false; 276 277 if (kernfs_type(kn) == KERNFS_DIR) 278 kn->parent->dir.subdirs--; 279 280 rb_erase(&kn->rb, &kn->parent->dir.children); 281 RB_CLEAR_NODE(&kn->rb); 282 return true; 283 } 284 285 /** 286 * kernfs_get_active - get an active reference to kernfs_node 287 * @kn: kernfs_node to get an active reference to 288 * 289 * Get an active reference of @kn. This function is noop if @kn 290 * is NULL. 291 * 292 * RETURNS: 293 * Pointer to @kn on success, NULL on failure. 294 */ 295 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 296 { 297 if (unlikely(!kn)) 298 return NULL; 299 300 if (!atomic_inc_unless_negative(&kn->active)) 301 return NULL; 302 303 if (kernfs_lockdep(kn)) 304 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 305 return kn; 306 } 307 308 /** 309 * kernfs_put_active - put an active reference to kernfs_node 310 * @kn: kernfs_node to put an active reference to 311 * 312 * Put an active reference to @kn. This function is noop if @kn 313 * is NULL. 314 */ 315 void kernfs_put_active(struct kernfs_node *kn) 316 { 317 struct kernfs_root *root = kernfs_root(kn); 318 int v; 319 320 if (unlikely(!kn)) 321 return; 322 323 if (kernfs_lockdep(kn)) 324 rwsem_release(&kn->dep_map, 1, _RET_IP_); 325 v = atomic_dec_return(&kn->active); 326 if (likely(v != KN_DEACTIVATED_BIAS)) 327 return; 328 329 wake_up_all(&root->deactivate_waitq); 330 } 331 332 /** 333 * kernfs_drain - drain kernfs_node 334 * @kn: kernfs_node to drain 335 * 336 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 337 * removers may invoke this function concurrently on @kn and all will 338 * return after draining is complete. 339 */ 340 static void kernfs_drain(struct kernfs_node *kn) 341 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 342 { 343 struct kernfs_root *root = kernfs_root(kn); 344 345 lockdep_assert_held(&kernfs_mutex); 346 WARN_ON_ONCE(kernfs_active(kn)); 347 348 mutex_unlock(&kernfs_mutex); 349 350 if (kernfs_lockdep(kn)) { 351 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 352 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 353 lock_contended(&kn->dep_map, _RET_IP_); 354 } 355 356 /* but everyone should wait for draining */ 357 wait_event(root->deactivate_waitq, 358 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 359 360 if (kernfs_lockdep(kn)) { 361 lock_acquired(&kn->dep_map, _RET_IP_); 362 rwsem_release(&kn->dep_map, 1, _RET_IP_); 363 } 364 365 kernfs_unmap_bin_file(kn); 366 367 mutex_lock(&kernfs_mutex); 368 } 369 370 /** 371 * kernfs_get - get a reference count on a kernfs_node 372 * @kn: the target kernfs_node 373 */ 374 void kernfs_get(struct kernfs_node *kn) 375 { 376 if (kn) { 377 WARN_ON(!atomic_read(&kn->count)); 378 atomic_inc(&kn->count); 379 } 380 } 381 EXPORT_SYMBOL_GPL(kernfs_get); 382 383 /** 384 * kernfs_put - put a reference count on a kernfs_node 385 * @kn: the target kernfs_node 386 * 387 * Put a reference count of @kn and destroy it if it reached zero. 388 */ 389 void kernfs_put(struct kernfs_node *kn) 390 { 391 struct kernfs_node *parent; 392 struct kernfs_root *root; 393 394 if (!kn || !atomic_dec_and_test(&kn->count)) 395 return; 396 root = kernfs_root(kn); 397 repeat: 398 /* 399 * Moving/renaming is always done while holding reference. 400 * kn->parent won't change beneath us. 401 */ 402 parent = kn->parent; 403 404 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 405 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 406 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 407 408 if (kernfs_type(kn) == KERNFS_LINK) 409 kernfs_put(kn->symlink.target_kn); 410 if (!(kn->flags & KERNFS_STATIC_NAME)) 411 kfree(kn->name); 412 if (kn->iattr) { 413 if (kn->iattr->ia_secdata) 414 security_release_secctx(kn->iattr->ia_secdata, 415 kn->iattr->ia_secdata_len); 416 simple_xattrs_free(&kn->iattr->xattrs); 417 } 418 kfree(kn->iattr); 419 ida_simple_remove(&root->ino_ida, kn->ino); 420 kmem_cache_free(kernfs_node_cache, kn); 421 422 kn = parent; 423 if (kn) { 424 if (atomic_dec_and_test(&kn->count)) 425 goto repeat; 426 } else { 427 /* just released the root kn, free @root too */ 428 ida_destroy(&root->ino_ida); 429 kfree(root); 430 } 431 } 432 EXPORT_SYMBOL_GPL(kernfs_put); 433 434 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 435 { 436 struct kernfs_node *kn; 437 438 if (flags & LOOKUP_RCU) 439 return -ECHILD; 440 441 /* Always perform fresh lookup for negatives */ 442 if (!dentry->d_inode) 443 goto out_bad_unlocked; 444 445 kn = dentry->d_fsdata; 446 mutex_lock(&kernfs_mutex); 447 448 /* The kernfs node has been deactivated */ 449 if (!kernfs_active(kn)) 450 goto out_bad; 451 452 /* The kernfs node has been moved? */ 453 if (dentry->d_parent->d_fsdata != kn->parent) 454 goto out_bad; 455 456 /* The kernfs node has been renamed */ 457 if (strcmp(dentry->d_name.name, kn->name) != 0) 458 goto out_bad; 459 460 /* The kernfs node has been moved to a different namespace */ 461 if (kn->parent && kernfs_ns_enabled(kn->parent) && 462 kernfs_info(dentry->d_sb)->ns != kn->ns) 463 goto out_bad; 464 465 mutex_unlock(&kernfs_mutex); 466 out_valid: 467 return 1; 468 out_bad: 469 mutex_unlock(&kernfs_mutex); 470 out_bad_unlocked: 471 /* 472 * @dentry doesn't match the underlying kernfs node, drop the 473 * dentry and force lookup. If we have submounts we must allow the 474 * vfs caches to lie about the state of the filesystem to prevent 475 * leaks and other nasty things, so use check_submounts_and_drop() 476 * instead of d_drop(). 477 */ 478 if (check_submounts_and_drop(dentry) != 0) 479 goto out_valid; 480 481 return 0; 482 } 483 484 static void kernfs_dop_release(struct dentry *dentry) 485 { 486 kernfs_put(dentry->d_fsdata); 487 } 488 489 const struct dentry_operations kernfs_dops = { 490 .d_revalidate = kernfs_dop_revalidate, 491 .d_release = kernfs_dop_release, 492 }; 493 494 /** 495 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 496 * @dentry: the dentry in question 497 * 498 * Return the kernfs_node associated with @dentry. If @dentry is not a 499 * kernfs one, %NULL is returned. 500 * 501 * While the returned kernfs_node will stay accessible as long as @dentry 502 * is accessible, the returned node can be in any state and the caller is 503 * fully responsible for determining what's accessible. 504 */ 505 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 506 { 507 if (dentry->d_sb->s_op == &kernfs_sops) 508 return dentry->d_fsdata; 509 return NULL; 510 } 511 512 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 513 const char *name, umode_t mode, 514 unsigned flags) 515 { 516 char *dup_name = NULL; 517 struct kernfs_node *kn; 518 int ret; 519 520 if (!(flags & KERNFS_STATIC_NAME)) { 521 name = dup_name = kstrdup(name, GFP_KERNEL); 522 if (!name) 523 return NULL; 524 } 525 526 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 527 if (!kn) 528 goto err_out1; 529 530 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL); 531 if (ret < 0) 532 goto err_out2; 533 kn->ino = ret; 534 535 atomic_set(&kn->count, 1); 536 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 537 RB_CLEAR_NODE(&kn->rb); 538 539 kn->name = name; 540 kn->mode = mode; 541 kn->flags = flags; 542 543 return kn; 544 545 err_out2: 546 kmem_cache_free(kernfs_node_cache, kn); 547 err_out1: 548 kfree(dup_name); 549 return NULL; 550 } 551 552 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 553 const char *name, umode_t mode, 554 unsigned flags) 555 { 556 struct kernfs_node *kn; 557 558 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags); 559 if (kn) { 560 kernfs_get(parent); 561 kn->parent = parent; 562 } 563 return kn; 564 } 565 566 /** 567 * kernfs_add_one - add kernfs_node to parent without warning 568 * @kn: kernfs_node to be added 569 * 570 * The caller must already have initialized @kn->parent. This 571 * function increments nlink of the parent's inode if @kn is a 572 * directory and link into the children list of the parent. 573 * 574 * RETURNS: 575 * 0 on success, -EEXIST if entry with the given name already 576 * exists. 577 */ 578 int kernfs_add_one(struct kernfs_node *kn) 579 { 580 struct kernfs_node *parent = kn->parent; 581 struct kernfs_iattrs *ps_iattr; 582 bool has_ns; 583 int ret; 584 585 mutex_lock(&kernfs_mutex); 586 587 ret = -EINVAL; 588 has_ns = kernfs_ns_enabled(parent); 589 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 590 has_ns ? "required" : "invalid", parent->name, kn->name)) 591 goto out_unlock; 592 593 if (kernfs_type(parent) != KERNFS_DIR) 594 goto out_unlock; 595 596 ret = -ENOENT; 597 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 598 goto out_unlock; 599 600 kn->hash = kernfs_name_hash(kn->name, kn->ns); 601 602 ret = kernfs_link_sibling(kn); 603 if (ret) 604 goto out_unlock; 605 606 /* Update timestamps on the parent */ 607 ps_iattr = parent->iattr; 608 if (ps_iattr) { 609 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 610 ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME; 611 } 612 613 mutex_unlock(&kernfs_mutex); 614 615 /* 616 * Activate the new node unless CREATE_DEACTIVATED is requested. 617 * If not activated here, the kernfs user is responsible for 618 * activating the node with kernfs_activate(). A node which hasn't 619 * been activated is not visible to userland and its removal won't 620 * trigger deactivation. 621 */ 622 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 623 kernfs_activate(kn); 624 return 0; 625 626 out_unlock: 627 mutex_unlock(&kernfs_mutex); 628 return ret; 629 } 630 631 /** 632 * kernfs_find_ns - find kernfs_node with the given name 633 * @parent: kernfs_node to search under 634 * @name: name to look for 635 * @ns: the namespace tag to use 636 * 637 * Look for kernfs_node with name @name under @parent. Returns pointer to 638 * the found kernfs_node on success, %NULL on failure. 639 */ 640 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 641 const unsigned char *name, 642 const void *ns) 643 { 644 struct rb_node *node = parent->dir.children.rb_node; 645 bool has_ns = kernfs_ns_enabled(parent); 646 unsigned int hash; 647 648 lockdep_assert_held(&kernfs_mutex); 649 650 if (has_ns != (bool)ns) { 651 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 652 has_ns ? "required" : "invalid", parent->name, name); 653 return NULL; 654 } 655 656 hash = kernfs_name_hash(name, ns); 657 while (node) { 658 struct kernfs_node *kn; 659 int result; 660 661 kn = rb_to_kn(node); 662 result = kernfs_name_compare(hash, name, ns, kn); 663 if (result < 0) 664 node = node->rb_left; 665 else if (result > 0) 666 node = node->rb_right; 667 else 668 return kn; 669 } 670 return NULL; 671 } 672 673 /** 674 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 675 * @parent: kernfs_node to search under 676 * @name: name to look for 677 * @ns: the namespace tag to use 678 * 679 * Look for kernfs_node with name @name under @parent and get a reference 680 * if found. This function may sleep and returns pointer to the found 681 * kernfs_node on success, %NULL on failure. 682 */ 683 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 684 const char *name, const void *ns) 685 { 686 struct kernfs_node *kn; 687 688 mutex_lock(&kernfs_mutex); 689 kn = kernfs_find_ns(parent, name, ns); 690 kernfs_get(kn); 691 mutex_unlock(&kernfs_mutex); 692 693 return kn; 694 } 695 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 696 697 /** 698 * kernfs_create_root - create a new kernfs hierarchy 699 * @scops: optional syscall operations for the hierarchy 700 * @flags: KERNFS_ROOT_* flags 701 * @priv: opaque data associated with the new directory 702 * 703 * Returns the root of the new hierarchy on success, ERR_PTR() value on 704 * failure. 705 */ 706 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 707 unsigned int flags, void *priv) 708 { 709 struct kernfs_root *root; 710 struct kernfs_node *kn; 711 712 root = kzalloc(sizeof(*root), GFP_KERNEL); 713 if (!root) 714 return ERR_PTR(-ENOMEM); 715 716 ida_init(&root->ino_ida); 717 INIT_LIST_HEAD(&root->supers); 718 719 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 720 KERNFS_DIR); 721 if (!kn) { 722 ida_destroy(&root->ino_ida); 723 kfree(root); 724 return ERR_PTR(-ENOMEM); 725 } 726 727 kn->priv = priv; 728 kn->dir.root = root; 729 730 root->syscall_ops = scops; 731 root->flags = flags; 732 root->kn = kn; 733 init_waitqueue_head(&root->deactivate_waitq); 734 735 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 736 kernfs_activate(kn); 737 738 return root; 739 } 740 741 /** 742 * kernfs_destroy_root - destroy a kernfs hierarchy 743 * @root: root of the hierarchy to destroy 744 * 745 * Destroy the hierarchy anchored at @root by removing all existing 746 * directories and destroying @root. 747 */ 748 void kernfs_destroy_root(struct kernfs_root *root) 749 { 750 kernfs_remove(root->kn); /* will also free @root */ 751 } 752 753 /** 754 * kernfs_create_dir_ns - create a directory 755 * @parent: parent in which to create a new directory 756 * @name: name of the new directory 757 * @mode: mode of the new directory 758 * @priv: opaque data associated with the new directory 759 * @ns: optional namespace tag of the directory 760 * 761 * Returns the created node on success, ERR_PTR() value on failure. 762 */ 763 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 764 const char *name, umode_t mode, 765 void *priv, const void *ns) 766 { 767 struct kernfs_node *kn; 768 int rc; 769 770 /* allocate */ 771 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR); 772 if (!kn) 773 return ERR_PTR(-ENOMEM); 774 775 kn->dir.root = parent->dir.root; 776 kn->ns = ns; 777 kn->priv = priv; 778 779 /* link in */ 780 rc = kernfs_add_one(kn); 781 if (!rc) 782 return kn; 783 784 kernfs_put(kn); 785 return ERR_PTR(rc); 786 } 787 788 static struct dentry *kernfs_iop_lookup(struct inode *dir, 789 struct dentry *dentry, 790 unsigned int flags) 791 { 792 struct dentry *ret; 793 struct kernfs_node *parent = dentry->d_parent->d_fsdata; 794 struct kernfs_node *kn; 795 struct inode *inode; 796 const void *ns = NULL; 797 798 mutex_lock(&kernfs_mutex); 799 800 if (kernfs_ns_enabled(parent)) 801 ns = kernfs_info(dir->i_sb)->ns; 802 803 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 804 805 /* no such entry */ 806 if (!kn || !kernfs_active(kn)) { 807 ret = NULL; 808 goto out_unlock; 809 } 810 kernfs_get(kn); 811 dentry->d_fsdata = kn; 812 813 /* attach dentry and inode */ 814 inode = kernfs_get_inode(dir->i_sb, kn); 815 if (!inode) { 816 ret = ERR_PTR(-ENOMEM); 817 goto out_unlock; 818 } 819 820 /* instantiate and hash dentry */ 821 ret = d_materialise_unique(dentry, inode); 822 out_unlock: 823 mutex_unlock(&kernfs_mutex); 824 return ret; 825 } 826 827 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 828 umode_t mode) 829 { 830 struct kernfs_node *parent = dir->i_private; 831 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 832 int ret; 833 834 if (!scops || !scops->mkdir) 835 return -EPERM; 836 837 if (!kernfs_get_active(parent)) 838 return -ENODEV; 839 840 ret = scops->mkdir(parent, dentry->d_name.name, mode); 841 842 kernfs_put_active(parent); 843 return ret; 844 } 845 846 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 847 { 848 struct kernfs_node *kn = dentry->d_fsdata; 849 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 850 int ret; 851 852 if (!scops || !scops->rmdir) 853 return -EPERM; 854 855 if (!kernfs_get_active(kn)) 856 return -ENODEV; 857 858 ret = scops->rmdir(kn); 859 860 kernfs_put_active(kn); 861 return ret; 862 } 863 864 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 865 struct inode *new_dir, struct dentry *new_dentry) 866 { 867 struct kernfs_node *kn = old_dentry->d_fsdata; 868 struct kernfs_node *new_parent = new_dir->i_private; 869 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 870 int ret; 871 872 if (!scops || !scops->rename) 873 return -EPERM; 874 875 if (!kernfs_get_active(kn)) 876 return -ENODEV; 877 878 if (!kernfs_get_active(new_parent)) { 879 kernfs_put_active(kn); 880 return -ENODEV; 881 } 882 883 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 884 885 kernfs_put_active(new_parent); 886 kernfs_put_active(kn); 887 return ret; 888 } 889 890 const struct inode_operations kernfs_dir_iops = { 891 .lookup = kernfs_iop_lookup, 892 .permission = kernfs_iop_permission, 893 .setattr = kernfs_iop_setattr, 894 .getattr = kernfs_iop_getattr, 895 .setxattr = kernfs_iop_setxattr, 896 .removexattr = kernfs_iop_removexattr, 897 .getxattr = kernfs_iop_getxattr, 898 .listxattr = kernfs_iop_listxattr, 899 900 .mkdir = kernfs_iop_mkdir, 901 .rmdir = kernfs_iop_rmdir, 902 .rename = kernfs_iop_rename, 903 }; 904 905 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 906 { 907 struct kernfs_node *last; 908 909 while (true) { 910 struct rb_node *rbn; 911 912 last = pos; 913 914 if (kernfs_type(pos) != KERNFS_DIR) 915 break; 916 917 rbn = rb_first(&pos->dir.children); 918 if (!rbn) 919 break; 920 921 pos = rb_to_kn(rbn); 922 } 923 924 return last; 925 } 926 927 /** 928 * kernfs_next_descendant_post - find the next descendant for post-order walk 929 * @pos: the current position (%NULL to initiate traversal) 930 * @root: kernfs_node whose descendants to walk 931 * 932 * Find the next descendant to visit for post-order traversal of @root's 933 * descendants. @root is included in the iteration and the last node to be 934 * visited. 935 */ 936 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 937 struct kernfs_node *root) 938 { 939 struct rb_node *rbn; 940 941 lockdep_assert_held(&kernfs_mutex); 942 943 /* if first iteration, visit leftmost descendant which may be root */ 944 if (!pos) 945 return kernfs_leftmost_descendant(root); 946 947 /* if we visited @root, we're done */ 948 if (pos == root) 949 return NULL; 950 951 /* if there's an unvisited sibling, visit its leftmost descendant */ 952 rbn = rb_next(&pos->rb); 953 if (rbn) 954 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 955 956 /* no sibling left, visit parent */ 957 return pos->parent; 958 } 959 960 /** 961 * kernfs_activate - activate a node which started deactivated 962 * @kn: kernfs_node whose subtree is to be activated 963 * 964 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 965 * needs to be explicitly activated. A node which hasn't been activated 966 * isn't visible to userland and deactivation is skipped during its 967 * removal. This is useful to construct atomic init sequences where 968 * creation of multiple nodes should either succeed or fail atomically. 969 * 970 * The caller is responsible for ensuring that this function is not called 971 * after kernfs_remove*() is invoked on @kn. 972 */ 973 void kernfs_activate(struct kernfs_node *kn) 974 { 975 struct kernfs_node *pos; 976 977 mutex_lock(&kernfs_mutex); 978 979 pos = NULL; 980 while ((pos = kernfs_next_descendant_post(pos, kn))) { 981 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 982 continue; 983 984 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 985 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 986 987 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 988 pos->flags |= KERNFS_ACTIVATED; 989 } 990 991 mutex_unlock(&kernfs_mutex); 992 } 993 994 static void __kernfs_remove(struct kernfs_node *kn) 995 { 996 struct kernfs_node *pos; 997 998 lockdep_assert_held(&kernfs_mutex); 999 1000 /* 1001 * Short-circuit if non-root @kn has already finished removal. 1002 * This is for kernfs_remove_self() which plays with active ref 1003 * after removal. 1004 */ 1005 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1006 return; 1007 1008 pr_debug("kernfs %s: removing\n", kn->name); 1009 1010 /* prevent any new usage under @kn by deactivating all nodes */ 1011 pos = NULL; 1012 while ((pos = kernfs_next_descendant_post(pos, kn))) 1013 if (kernfs_active(pos)) 1014 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1015 1016 /* deactivate and unlink the subtree node-by-node */ 1017 do { 1018 pos = kernfs_leftmost_descendant(kn); 1019 1020 /* 1021 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1022 * base ref could have been put by someone else by the time 1023 * the function returns. Make sure it doesn't go away 1024 * underneath us. 1025 */ 1026 kernfs_get(pos); 1027 1028 /* 1029 * Drain iff @kn was activated. This avoids draining and 1030 * its lockdep annotations for nodes which have never been 1031 * activated and allows embedding kernfs_remove() in create 1032 * error paths without worrying about draining. 1033 */ 1034 if (kn->flags & KERNFS_ACTIVATED) 1035 kernfs_drain(pos); 1036 else 1037 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1038 1039 /* 1040 * kernfs_unlink_sibling() succeeds once per node. Use it 1041 * to decide who's responsible for cleanups. 1042 */ 1043 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1044 struct kernfs_iattrs *ps_iattr = 1045 pos->parent ? pos->parent->iattr : NULL; 1046 1047 /* update timestamps on the parent */ 1048 if (ps_iattr) { 1049 ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME; 1050 ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME; 1051 } 1052 1053 kernfs_put(pos); 1054 } 1055 1056 kernfs_put(pos); 1057 } while (pos != kn); 1058 } 1059 1060 /** 1061 * kernfs_remove - remove a kernfs_node recursively 1062 * @kn: the kernfs_node to remove 1063 * 1064 * Remove @kn along with all its subdirectories and files. 1065 */ 1066 void kernfs_remove(struct kernfs_node *kn) 1067 { 1068 mutex_lock(&kernfs_mutex); 1069 __kernfs_remove(kn); 1070 mutex_unlock(&kernfs_mutex); 1071 } 1072 1073 /** 1074 * kernfs_break_active_protection - break out of active protection 1075 * @kn: the self kernfs_node 1076 * 1077 * The caller must be running off of a kernfs operation which is invoked 1078 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1079 * this function must also be matched with an invocation of 1080 * kernfs_unbreak_active_protection(). 1081 * 1082 * This function releases the active reference of @kn the caller is 1083 * holding. Once this function is called, @kn may be removed at any point 1084 * and the caller is solely responsible for ensuring that the objects it 1085 * dereferences are accessible. 1086 */ 1087 void kernfs_break_active_protection(struct kernfs_node *kn) 1088 { 1089 /* 1090 * Take out ourself out of the active ref dependency chain. If 1091 * we're called without an active ref, lockdep will complain. 1092 */ 1093 kernfs_put_active(kn); 1094 } 1095 1096 /** 1097 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1098 * @kn: the self kernfs_node 1099 * 1100 * If kernfs_break_active_protection() was called, this function must be 1101 * invoked before finishing the kernfs operation. Note that while this 1102 * function restores the active reference, it doesn't and can't actually 1103 * restore the active protection - @kn may already or be in the process of 1104 * being removed. Once kernfs_break_active_protection() is invoked, that 1105 * protection is irreversibly gone for the kernfs operation instance. 1106 * 1107 * While this function may be called at any point after 1108 * kernfs_break_active_protection() is invoked, its most useful location 1109 * would be right before the enclosing kernfs operation returns. 1110 */ 1111 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1112 { 1113 /* 1114 * @kn->active could be in any state; however, the increment we do 1115 * here will be undone as soon as the enclosing kernfs operation 1116 * finishes and this temporary bump can't break anything. If @kn 1117 * is alive, nothing changes. If @kn is being deactivated, the 1118 * soon-to-follow put will either finish deactivation or restore 1119 * deactivated state. If @kn is already removed, the temporary 1120 * bump is guaranteed to be gone before @kn is released. 1121 */ 1122 atomic_inc(&kn->active); 1123 if (kernfs_lockdep(kn)) 1124 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1125 } 1126 1127 /** 1128 * kernfs_remove_self - remove a kernfs_node from its own method 1129 * @kn: the self kernfs_node to remove 1130 * 1131 * The caller must be running off of a kernfs operation which is invoked 1132 * with an active reference - e.g. one of kernfs_ops. This can be used to 1133 * implement a file operation which deletes itself. 1134 * 1135 * For example, the "delete" file for a sysfs device directory can be 1136 * implemented by invoking kernfs_remove_self() on the "delete" file 1137 * itself. This function breaks the circular dependency of trying to 1138 * deactivate self while holding an active ref itself. It isn't necessary 1139 * to modify the usual removal path to use kernfs_remove_self(). The 1140 * "delete" implementation can simply invoke kernfs_remove_self() on self 1141 * before proceeding with the usual removal path. kernfs will ignore later 1142 * kernfs_remove() on self. 1143 * 1144 * kernfs_remove_self() can be called multiple times concurrently on the 1145 * same kernfs_node. Only the first one actually performs removal and 1146 * returns %true. All others will wait until the kernfs operation which 1147 * won self-removal finishes and return %false. Note that the losers wait 1148 * for the completion of not only the winning kernfs_remove_self() but also 1149 * the whole kernfs_ops which won the arbitration. This can be used to 1150 * guarantee, for example, all concurrent writes to a "delete" file to 1151 * finish only after the whole operation is complete. 1152 */ 1153 bool kernfs_remove_self(struct kernfs_node *kn) 1154 { 1155 bool ret; 1156 1157 mutex_lock(&kernfs_mutex); 1158 kernfs_break_active_protection(kn); 1159 1160 /* 1161 * SUICIDAL is used to arbitrate among competing invocations. Only 1162 * the first one will actually perform removal. When the removal 1163 * is complete, SUICIDED is set and the active ref is restored 1164 * while holding kernfs_mutex. The ones which lost arbitration 1165 * waits for SUICDED && drained which can happen only after the 1166 * enclosing kernfs operation which executed the winning instance 1167 * of kernfs_remove_self() finished. 1168 */ 1169 if (!(kn->flags & KERNFS_SUICIDAL)) { 1170 kn->flags |= KERNFS_SUICIDAL; 1171 __kernfs_remove(kn); 1172 kn->flags |= KERNFS_SUICIDED; 1173 ret = true; 1174 } else { 1175 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1176 DEFINE_WAIT(wait); 1177 1178 while (true) { 1179 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1180 1181 if ((kn->flags & KERNFS_SUICIDED) && 1182 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1183 break; 1184 1185 mutex_unlock(&kernfs_mutex); 1186 schedule(); 1187 mutex_lock(&kernfs_mutex); 1188 } 1189 finish_wait(waitq, &wait); 1190 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1191 ret = false; 1192 } 1193 1194 /* 1195 * This must be done while holding kernfs_mutex; otherwise, waiting 1196 * for SUICIDED && deactivated could finish prematurely. 1197 */ 1198 kernfs_unbreak_active_protection(kn); 1199 1200 mutex_unlock(&kernfs_mutex); 1201 return ret; 1202 } 1203 1204 /** 1205 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1206 * @parent: parent of the target 1207 * @name: name of the kernfs_node to remove 1208 * @ns: namespace tag of the kernfs_node to remove 1209 * 1210 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1211 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1212 */ 1213 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1214 const void *ns) 1215 { 1216 struct kernfs_node *kn; 1217 1218 if (!parent) { 1219 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1220 name); 1221 return -ENOENT; 1222 } 1223 1224 mutex_lock(&kernfs_mutex); 1225 1226 kn = kernfs_find_ns(parent, name, ns); 1227 if (kn) 1228 __kernfs_remove(kn); 1229 1230 mutex_unlock(&kernfs_mutex); 1231 1232 if (kn) 1233 return 0; 1234 else 1235 return -ENOENT; 1236 } 1237 1238 /** 1239 * kernfs_rename_ns - move and rename a kernfs_node 1240 * @kn: target node 1241 * @new_parent: new parent to put @sd under 1242 * @new_name: new name 1243 * @new_ns: new namespace tag 1244 */ 1245 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1246 const char *new_name, const void *new_ns) 1247 { 1248 struct kernfs_node *old_parent; 1249 const char *old_name = NULL; 1250 int error; 1251 1252 /* can't move or rename root */ 1253 if (!kn->parent) 1254 return -EINVAL; 1255 1256 mutex_lock(&kernfs_mutex); 1257 1258 error = -ENOENT; 1259 if (!kernfs_active(kn) || !kernfs_active(new_parent)) 1260 goto out; 1261 1262 error = 0; 1263 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1264 (strcmp(kn->name, new_name) == 0)) 1265 goto out; /* nothing to rename */ 1266 1267 error = -EEXIST; 1268 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1269 goto out; 1270 1271 /* rename kernfs_node */ 1272 if (strcmp(kn->name, new_name) != 0) { 1273 error = -ENOMEM; 1274 new_name = kstrdup(new_name, GFP_KERNEL); 1275 if (!new_name) 1276 goto out; 1277 } else { 1278 new_name = NULL; 1279 } 1280 1281 /* 1282 * Move to the appropriate place in the appropriate directories rbtree. 1283 */ 1284 kernfs_unlink_sibling(kn); 1285 kernfs_get(new_parent); 1286 1287 /* rename_lock protects ->parent and ->name accessors */ 1288 spin_lock_irq(&kernfs_rename_lock); 1289 1290 old_parent = kn->parent; 1291 kn->parent = new_parent; 1292 1293 kn->ns = new_ns; 1294 if (new_name) { 1295 if (!(kn->flags & KERNFS_STATIC_NAME)) 1296 old_name = kn->name; 1297 kn->flags &= ~KERNFS_STATIC_NAME; 1298 kn->name = new_name; 1299 } 1300 1301 spin_unlock_irq(&kernfs_rename_lock); 1302 1303 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1304 kernfs_link_sibling(kn); 1305 1306 kernfs_put(old_parent); 1307 kfree(old_name); 1308 1309 error = 0; 1310 out: 1311 mutex_unlock(&kernfs_mutex); 1312 return error; 1313 } 1314 1315 /* Relationship between s_mode and the DT_xxx types */ 1316 static inline unsigned char dt_type(struct kernfs_node *kn) 1317 { 1318 return (kn->mode >> 12) & 15; 1319 } 1320 1321 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1322 { 1323 kernfs_put(filp->private_data); 1324 return 0; 1325 } 1326 1327 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1328 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1329 { 1330 if (pos) { 1331 int valid = kernfs_active(pos) && 1332 pos->parent == parent && hash == pos->hash; 1333 kernfs_put(pos); 1334 if (!valid) 1335 pos = NULL; 1336 } 1337 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1338 struct rb_node *node = parent->dir.children.rb_node; 1339 while (node) { 1340 pos = rb_to_kn(node); 1341 1342 if (hash < pos->hash) 1343 node = node->rb_left; 1344 else if (hash > pos->hash) 1345 node = node->rb_right; 1346 else 1347 break; 1348 } 1349 } 1350 /* Skip over entries which are dying/dead or in the wrong namespace */ 1351 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1352 struct rb_node *node = rb_next(&pos->rb); 1353 if (!node) 1354 pos = NULL; 1355 else 1356 pos = rb_to_kn(node); 1357 } 1358 return pos; 1359 } 1360 1361 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1362 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1363 { 1364 pos = kernfs_dir_pos(ns, parent, ino, pos); 1365 if (pos) { 1366 do { 1367 struct rb_node *node = rb_next(&pos->rb); 1368 if (!node) 1369 pos = NULL; 1370 else 1371 pos = rb_to_kn(node); 1372 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1373 } 1374 return pos; 1375 } 1376 1377 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1378 { 1379 struct dentry *dentry = file->f_path.dentry; 1380 struct kernfs_node *parent = dentry->d_fsdata; 1381 struct kernfs_node *pos = file->private_data; 1382 const void *ns = NULL; 1383 1384 if (!dir_emit_dots(file, ctx)) 1385 return 0; 1386 mutex_lock(&kernfs_mutex); 1387 1388 if (kernfs_ns_enabled(parent)) 1389 ns = kernfs_info(dentry->d_sb)->ns; 1390 1391 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1392 pos; 1393 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1394 const char *name = pos->name; 1395 unsigned int type = dt_type(pos); 1396 int len = strlen(name); 1397 ino_t ino = pos->ino; 1398 1399 ctx->pos = pos->hash; 1400 file->private_data = pos; 1401 kernfs_get(pos); 1402 1403 mutex_unlock(&kernfs_mutex); 1404 if (!dir_emit(ctx, name, len, ino, type)) 1405 return 0; 1406 mutex_lock(&kernfs_mutex); 1407 } 1408 mutex_unlock(&kernfs_mutex); 1409 file->private_data = NULL; 1410 ctx->pos = INT_MAX; 1411 return 0; 1412 } 1413 1414 static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset, 1415 int whence) 1416 { 1417 struct inode *inode = file_inode(file); 1418 loff_t ret; 1419 1420 mutex_lock(&inode->i_mutex); 1421 ret = generic_file_llseek(file, offset, whence); 1422 mutex_unlock(&inode->i_mutex); 1423 1424 return ret; 1425 } 1426 1427 const struct file_operations kernfs_dir_fops = { 1428 .read = generic_read_dir, 1429 .iterate = kernfs_fop_readdir, 1430 .release = kernfs_dir_fop_release, 1431 .llseek = kernfs_dir_fop_llseek, 1432 }; 1433