1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 static DEFINE_RWLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 21 /* 22 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to 23 * call pr_cont() while holding rename_lock. Because sometimes pr_cont() 24 * will perform wakeups when releasing console_sem. Holding rename_lock 25 * will introduce deadlock if the scheduler reads the kernfs_name in the 26 * wakeup path. 27 */ 28 static DEFINE_SPINLOCK(kernfs_pr_cont_lock); 29 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ 30 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 31 32 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 33 34 static bool __kernfs_active(struct kernfs_node *kn) 35 { 36 return atomic_read(&kn->active) >= 0; 37 } 38 39 static bool kernfs_active(struct kernfs_node *kn) 40 { 41 lockdep_assert_held(&kernfs_root(kn)->kernfs_rwsem); 42 return __kernfs_active(kn); 43 } 44 45 static bool kernfs_lockdep(struct kernfs_node *kn) 46 { 47 #ifdef CONFIG_DEBUG_LOCK_ALLOC 48 return kn->flags & KERNFS_LOCKDEP; 49 #else 50 return false; 51 #endif 52 } 53 54 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 55 { 56 if (!kn) 57 return strlcpy(buf, "(null)", buflen); 58 59 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 60 } 61 62 /* kernfs_node_depth - compute depth from @from to @to */ 63 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 64 { 65 size_t depth = 0; 66 67 while (to->parent && to != from) { 68 depth++; 69 to = to->parent; 70 } 71 return depth; 72 } 73 74 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 75 struct kernfs_node *b) 76 { 77 size_t da, db; 78 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 79 80 if (ra != rb) 81 return NULL; 82 83 da = kernfs_depth(ra->kn, a); 84 db = kernfs_depth(rb->kn, b); 85 86 while (da > db) { 87 a = a->parent; 88 da--; 89 } 90 while (db > da) { 91 b = b->parent; 92 db--; 93 } 94 95 /* worst case b and a will be the same at root */ 96 while (b != a) { 97 b = b->parent; 98 a = a->parent; 99 } 100 101 return a; 102 } 103 104 /** 105 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 106 * where kn_from is treated as root of the path. 107 * @kn_from: kernfs node which should be treated as root for the path 108 * @kn_to: kernfs node to which path is needed 109 * @buf: buffer to copy the path into 110 * @buflen: size of @buf 111 * 112 * We need to handle couple of scenarios here: 113 * [1] when @kn_from is an ancestor of @kn_to at some level 114 * kn_from: /n1/n2/n3 115 * kn_to: /n1/n2/n3/n4/n5 116 * result: /n4/n5 117 * 118 * [2] when @kn_from is on a different hierarchy and we need to find common 119 * ancestor between @kn_from and @kn_to. 120 * kn_from: /n1/n2/n3/n4 121 * kn_to: /n1/n2/n5 122 * result: /../../n5 123 * OR 124 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 125 * kn_to: /n1/n2/n3 [depth=3] 126 * result: /../.. 127 * 128 * [3] when @kn_to is %NULL result will be "(null)" 129 * 130 * Return: the length of the constructed path. If the path would have been 131 * greater than @buflen, @buf contains the truncated path with the trailing 132 * '\0'. On error, -errno is returned. 133 */ 134 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 135 struct kernfs_node *kn_from, 136 char *buf, size_t buflen) 137 { 138 struct kernfs_node *kn, *common; 139 const char parent_str[] = "/.."; 140 size_t depth_from, depth_to, len = 0; 141 ssize_t copied; 142 int i, j; 143 144 if (!kn_to) 145 return strscpy(buf, "(null)", buflen); 146 147 if (!kn_from) 148 kn_from = kernfs_root(kn_to)->kn; 149 150 if (kn_from == kn_to) 151 return strscpy(buf, "/", buflen); 152 153 common = kernfs_common_ancestor(kn_from, kn_to); 154 if (WARN_ON(!common)) 155 return -EINVAL; 156 157 depth_to = kernfs_depth(common, kn_to); 158 depth_from = kernfs_depth(common, kn_from); 159 160 buf[0] = '\0'; 161 162 for (i = 0; i < depth_from; i++) { 163 copied = strscpy(buf + len, parent_str, buflen - len); 164 if (copied < 0) 165 return copied; 166 len += copied; 167 } 168 169 /* Calculate how many bytes we need for the rest */ 170 for (i = depth_to - 1; i >= 0; i--) { 171 for (kn = kn_to, j = 0; j < i; j++) 172 kn = kn->parent; 173 174 len += scnprintf(buf + len, buflen - len, "/%s", kn->name); 175 } 176 177 return len; 178 } 179 180 /** 181 * kernfs_name - obtain the name of a given node 182 * @kn: kernfs_node of interest 183 * @buf: buffer to copy @kn's name into 184 * @buflen: size of @buf 185 * 186 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 187 * similar to strlcpy(). 188 * 189 * Fills buffer with "(null)" if @kn is %NULL. 190 * 191 * Return: the length of @kn's name and if @buf isn't long enough, 192 * it's filled up to @buflen-1 and nul terminated. 193 * 194 * This function can be called from any context. 195 */ 196 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 197 { 198 unsigned long flags; 199 int ret; 200 201 read_lock_irqsave(&kernfs_rename_lock, flags); 202 ret = kernfs_name_locked(kn, buf, buflen); 203 read_unlock_irqrestore(&kernfs_rename_lock, flags); 204 return ret; 205 } 206 207 /** 208 * kernfs_path_from_node - build path of node @to relative to @from. 209 * @from: parent kernfs_node relative to which we need to build the path 210 * @to: kernfs_node of interest 211 * @buf: buffer to copy @to's path into 212 * @buflen: size of @buf 213 * 214 * Builds @to's path relative to @from in @buf. @from and @to must 215 * be on the same kernfs-root. If @from is not parent of @to, then a relative 216 * path (which includes '..'s) as needed to reach from @from to @to is 217 * returned. 218 * 219 * Return: the length of the constructed path. If the path would have been 220 * greater than @buflen, @buf contains the truncated path with the trailing 221 * '\0'. On error, -errno is returned. 222 */ 223 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 224 char *buf, size_t buflen) 225 { 226 unsigned long flags; 227 int ret; 228 229 read_lock_irqsave(&kernfs_rename_lock, flags); 230 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 231 read_unlock_irqrestore(&kernfs_rename_lock, flags); 232 return ret; 233 } 234 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 235 236 /** 237 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 238 * @kn: kernfs_node of interest 239 * 240 * This function can be called from any context. 241 */ 242 void pr_cont_kernfs_name(struct kernfs_node *kn) 243 { 244 unsigned long flags; 245 246 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 247 248 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 249 pr_cont("%s", kernfs_pr_cont_buf); 250 251 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 252 } 253 254 /** 255 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 256 * @kn: kernfs_node of interest 257 * 258 * This function can be called from any context. 259 */ 260 void pr_cont_kernfs_path(struct kernfs_node *kn) 261 { 262 unsigned long flags; 263 int sz; 264 265 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 266 267 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, 268 sizeof(kernfs_pr_cont_buf)); 269 if (sz < 0) { 270 if (sz == -E2BIG) 271 pr_cont("(name too long)"); 272 else 273 pr_cont("(error)"); 274 goto out; 275 } 276 277 pr_cont("%s", kernfs_pr_cont_buf); 278 279 out: 280 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 281 } 282 283 /** 284 * kernfs_get_parent - determine the parent node and pin it 285 * @kn: kernfs_node of interest 286 * 287 * Determines @kn's parent, pins and returns it. This function can be 288 * called from any context. 289 * 290 * Return: parent node of @kn 291 */ 292 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 293 { 294 struct kernfs_node *parent; 295 unsigned long flags; 296 297 read_lock_irqsave(&kernfs_rename_lock, flags); 298 parent = kn->parent; 299 kernfs_get(parent); 300 read_unlock_irqrestore(&kernfs_rename_lock, flags); 301 302 return parent; 303 } 304 305 /** 306 * kernfs_name_hash - calculate hash of @ns + @name 307 * @name: Null terminated string to hash 308 * @ns: Namespace tag to hash 309 * 310 * Return: 31-bit hash of ns + name (so it fits in an off_t) 311 */ 312 static unsigned int kernfs_name_hash(const char *name, const void *ns) 313 { 314 unsigned long hash = init_name_hash(ns); 315 unsigned int len = strlen(name); 316 while (len--) 317 hash = partial_name_hash(*name++, hash); 318 hash = end_name_hash(hash); 319 hash &= 0x7fffffffU; 320 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 321 if (hash < 2) 322 hash += 2; 323 if (hash >= INT_MAX) 324 hash = INT_MAX - 1; 325 return hash; 326 } 327 328 static int kernfs_name_compare(unsigned int hash, const char *name, 329 const void *ns, const struct kernfs_node *kn) 330 { 331 if (hash < kn->hash) 332 return -1; 333 if (hash > kn->hash) 334 return 1; 335 if (ns < kn->ns) 336 return -1; 337 if (ns > kn->ns) 338 return 1; 339 return strcmp(name, kn->name); 340 } 341 342 static int kernfs_sd_compare(const struct kernfs_node *left, 343 const struct kernfs_node *right) 344 { 345 return kernfs_name_compare(left->hash, left->name, left->ns, right); 346 } 347 348 /** 349 * kernfs_link_sibling - link kernfs_node into sibling rbtree 350 * @kn: kernfs_node of interest 351 * 352 * Link @kn into its sibling rbtree which starts from 353 * @kn->parent->dir.children. 354 * 355 * Locking: 356 * kernfs_rwsem held exclusive 357 * 358 * Return: 359 * %0 on success, -EEXIST on failure. 360 */ 361 static int kernfs_link_sibling(struct kernfs_node *kn) 362 { 363 struct rb_node **node = &kn->parent->dir.children.rb_node; 364 struct rb_node *parent = NULL; 365 366 while (*node) { 367 struct kernfs_node *pos; 368 int result; 369 370 pos = rb_to_kn(*node); 371 parent = *node; 372 result = kernfs_sd_compare(kn, pos); 373 if (result < 0) 374 node = &pos->rb.rb_left; 375 else if (result > 0) 376 node = &pos->rb.rb_right; 377 else 378 return -EEXIST; 379 } 380 381 /* add new node and rebalance the tree */ 382 rb_link_node(&kn->rb, parent, node); 383 rb_insert_color(&kn->rb, &kn->parent->dir.children); 384 385 /* successfully added, account subdir number */ 386 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 387 if (kernfs_type(kn) == KERNFS_DIR) 388 kn->parent->dir.subdirs++; 389 kernfs_inc_rev(kn->parent); 390 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 391 392 return 0; 393 } 394 395 /** 396 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 397 * @kn: kernfs_node of interest 398 * 399 * Try to unlink @kn from its sibling rbtree which starts from 400 * kn->parent->dir.children. 401 * 402 * Return: %true if @kn was actually removed, 403 * %false if @kn wasn't on the rbtree. 404 * 405 * Locking: 406 * kernfs_rwsem held exclusive 407 */ 408 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 409 { 410 if (RB_EMPTY_NODE(&kn->rb)) 411 return false; 412 413 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 414 if (kernfs_type(kn) == KERNFS_DIR) 415 kn->parent->dir.subdirs--; 416 kernfs_inc_rev(kn->parent); 417 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 418 419 rb_erase(&kn->rb, &kn->parent->dir.children); 420 RB_CLEAR_NODE(&kn->rb); 421 return true; 422 } 423 424 /** 425 * kernfs_get_active - get an active reference to kernfs_node 426 * @kn: kernfs_node to get an active reference to 427 * 428 * Get an active reference of @kn. This function is noop if @kn 429 * is %NULL. 430 * 431 * Return: 432 * Pointer to @kn on success, %NULL on failure. 433 */ 434 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 435 { 436 if (unlikely(!kn)) 437 return NULL; 438 439 if (!atomic_inc_unless_negative(&kn->active)) 440 return NULL; 441 442 if (kernfs_lockdep(kn)) 443 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 444 return kn; 445 } 446 447 /** 448 * kernfs_put_active - put an active reference to kernfs_node 449 * @kn: kernfs_node to put an active reference to 450 * 451 * Put an active reference to @kn. This function is noop if @kn 452 * is %NULL. 453 */ 454 void kernfs_put_active(struct kernfs_node *kn) 455 { 456 int v; 457 458 if (unlikely(!kn)) 459 return; 460 461 if (kernfs_lockdep(kn)) 462 rwsem_release(&kn->dep_map, _RET_IP_); 463 v = atomic_dec_return(&kn->active); 464 if (likely(v != KN_DEACTIVATED_BIAS)) 465 return; 466 467 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 468 } 469 470 /** 471 * kernfs_drain - drain kernfs_node 472 * @kn: kernfs_node to drain 473 * 474 * Drain existing usages and nuke all existing mmaps of @kn. Multiple 475 * removers may invoke this function concurrently on @kn and all will 476 * return after draining is complete. 477 */ 478 static void kernfs_drain(struct kernfs_node *kn) 479 __releases(&kernfs_root(kn)->kernfs_rwsem) 480 __acquires(&kernfs_root(kn)->kernfs_rwsem) 481 { 482 struct kernfs_root *root = kernfs_root(kn); 483 484 lockdep_assert_held_write(&root->kernfs_rwsem); 485 WARN_ON_ONCE(kernfs_active(kn)); 486 487 /* 488 * Skip draining if already fully drained. This avoids draining and its 489 * lockdep annotations for nodes which have never been activated 490 * allowing embedding kernfs_remove() in create error paths without 491 * worrying about draining. 492 */ 493 if (atomic_read(&kn->active) == KN_DEACTIVATED_BIAS && 494 !kernfs_should_drain_open_files(kn)) 495 return; 496 497 up_write(&root->kernfs_rwsem); 498 499 if (kernfs_lockdep(kn)) { 500 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 501 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 502 lock_contended(&kn->dep_map, _RET_IP_); 503 } 504 505 wait_event(root->deactivate_waitq, 506 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 507 508 if (kernfs_lockdep(kn)) { 509 lock_acquired(&kn->dep_map, _RET_IP_); 510 rwsem_release(&kn->dep_map, _RET_IP_); 511 } 512 513 if (kernfs_should_drain_open_files(kn)) 514 kernfs_drain_open_files(kn); 515 516 down_write(&root->kernfs_rwsem); 517 } 518 519 /** 520 * kernfs_get - get a reference count on a kernfs_node 521 * @kn: the target kernfs_node 522 */ 523 void kernfs_get(struct kernfs_node *kn) 524 { 525 if (kn) { 526 WARN_ON(!atomic_read(&kn->count)); 527 atomic_inc(&kn->count); 528 } 529 } 530 EXPORT_SYMBOL_GPL(kernfs_get); 531 532 static void kernfs_free_rcu(struct rcu_head *rcu) 533 { 534 struct kernfs_node *kn = container_of(rcu, struct kernfs_node, rcu); 535 536 kfree_const(kn->name); 537 538 if (kn->iattr) { 539 simple_xattrs_free(&kn->iattr->xattrs, NULL); 540 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 541 } 542 543 kmem_cache_free(kernfs_node_cache, kn); 544 } 545 546 /** 547 * kernfs_put - put a reference count on a kernfs_node 548 * @kn: the target kernfs_node 549 * 550 * Put a reference count of @kn and destroy it if it reached zero. 551 */ 552 void kernfs_put(struct kernfs_node *kn) 553 { 554 struct kernfs_node *parent; 555 struct kernfs_root *root; 556 557 if (!kn || !atomic_dec_and_test(&kn->count)) 558 return; 559 root = kernfs_root(kn); 560 repeat: 561 /* 562 * Moving/renaming is always done while holding reference. 563 * kn->parent won't change beneath us. 564 */ 565 parent = kn->parent; 566 567 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 568 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 569 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 570 571 if (kernfs_type(kn) == KERNFS_LINK) 572 kernfs_put(kn->symlink.target_kn); 573 574 spin_lock(&kernfs_idr_lock); 575 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 576 spin_unlock(&kernfs_idr_lock); 577 578 call_rcu(&kn->rcu, kernfs_free_rcu); 579 580 kn = parent; 581 if (kn) { 582 if (atomic_dec_and_test(&kn->count)) 583 goto repeat; 584 } else { 585 /* just released the root kn, free @root too */ 586 idr_destroy(&root->ino_idr); 587 kfree_rcu(root, rcu); 588 } 589 } 590 EXPORT_SYMBOL_GPL(kernfs_put); 591 592 /** 593 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 594 * @dentry: the dentry in question 595 * 596 * Return: the kernfs_node associated with @dentry. If @dentry is not a 597 * kernfs one, %NULL is returned. 598 * 599 * While the returned kernfs_node will stay accessible as long as @dentry 600 * is accessible, the returned node can be in any state and the caller is 601 * fully responsible for determining what's accessible. 602 */ 603 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 604 { 605 if (dentry->d_sb->s_op == &kernfs_sops) 606 return kernfs_dentry_node(dentry); 607 return NULL; 608 } 609 610 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 611 struct kernfs_node *parent, 612 const char *name, umode_t mode, 613 kuid_t uid, kgid_t gid, 614 unsigned flags) 615 { 616 struct kernfs_node *kn; 617 u32 id_highbits; 618 int ret; 619 620 name = kstrdup_const(name, GFP_KERNEL); 621 if (!name) 622 return NULL; 623 624 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 625 if (!kn) 626 goto err_out1; 627 628 idr_preload(GFP_KERNEL); 629 spin_lock(&kernfs_idr_lock); 630 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 631 if (ret >= 0 && ret < root->last_id_lowbits) 632 root->id_highbits++; 633 id_highbits = root->id_highbits; 634 root->last_id_lowbits = ret; 635 spin_unlock(&kernfs_idr_lock); 636 idr_preload_end(); 637 if (ret < 0) 638 goto err_out2; 639 640 kn->id = (u64)id_highbits << 32 | ret; 641 642 atomic_set(&kn->count, 1); 643 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 644 RB_CLEAR_NODE(&kn->rb); 645 646 kn->name = name; 647 kn->mode = mode; 648 kn->flags = flags; 649 650 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 651 struct iattr iattr = { 652 .ia_valid = ATTR_UID | ATTR_GID, 653 .ia_uid = uid, 654 .ia_gid = gid, 655 }; 656 657 ret = __kernfs_setattr(kn, &iattr); 658 if (ret < 0) 659 goto err_out3; 660 } 661 662 if (parent) { 663 ret = security_kernfs_init_security(parent, kn); 664 if (ret) 665 goto err_out3; 666 } 667 668 return kn; 669 670 err_out3: 671 spin_lock(&kernfs_idr_lock); 672 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 673 spin_unlock(&kernfs_idr_lock); 674 err_out2: 675 kmem_cache_free(kernfs_node_cache, kn); 676 err_out1: 677 kfree_const(name); 678 return NULL; 679 } 680 681 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 682 const char *name, umode_t mode, 683 kuid_t uid, kgid_t gid, 684 unsigned flags) 685 { 686 struct kernfs_node *kn; 687 688 if (parent->mode & S_ISGID) { 689 /* this code block imitates inode_init_owner() for 690 * kernfs 691 */ 692 693 if (parent->iattr) 694 gid = parent->iattr->ia_gid; 695 696 if (flags & KERNFS_DIR) 697 mode |= S_ISGID; 698 } 699 700 kn = __kernfs_new_node(kernfs_root(parent), parent, 701 name, mode, uid, gid, flags); 702 if (kn) { 703 kernfs_get(parent); 704 kn->parent = parent; 705 } 706 return kn; 707 } 708 709 /* 710 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 711 * @root: the kernfs root 712 * @id: the target node id 713 * 714 * @id's lower 32bits encode ino and upper gen. If the gen portion is 715 * zero, all generations are matched. 716 * 717 * Return: %NULL on failure, 718 * otherwise a kernfs node with reference counter incremented. 719 */ 720 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 721 u64 id) 722 { 723 struct kernfs_node *kn; 724 ino_t ino = kernfs_id_ino(id); 725 u32 gen = kernfs_id_gen(id); 726 727 rcu_read_lock(); 728 729 kn = idr_find(&root->ino_idr, (u32)ino); 730 if (!kn) 731 goto err_unlock; 732 733 if (sizeof(ino_t) >= sizeof(u64)) { 734 /* we looked up with the low 32bits, compare the whole */ 735 if (kernfs_ino(kn) != ino) 736 goto err_unlock; 737 } else { 738 /* 0 matches all generations */ 739 if (unlikely(gen && kernfs_gen(kn) != gen)) 740 goto err_unlock; 741 } 742 743 /* 744 * We should fail if @kn has never been activated and guarantee success 745 * if the caller knows that @kn is active. Both can be achieved by 746 * __kernfs_active() which tests @kn->active without kernfs_rwsem. 747 */ 748 if (unlikely(!__kernfs_active(kn) || !atomic_inc_not_zero(&kn->count))) 749 goto err_unlock; 750 751 rcu_read_unlock(); 752 return kn; 753 err_unlock: 754 rcu_read_unlock(); 755 return NULL; 756 } 757 758 /** 759 * kernfs_add_one - add kernfs_node to parent without warning 760 * @kn: kernfs_node to be added 761 * 762 * The caller must already have initialized @kn->parent. This 763 * function increments nlink of the parent's inode if @kn is a 764 * directory and link into the children list of the parent. 765 * 766 * Return: 767 * %0 on success, -EEXIST if entry with the given name already 768 * exists. 769 */ 770 int kernfs_add_one(struct kernfs_node *kn) 771 { 772 struct kernfs_node *parent = kn->parent; 773 struct kernfs_root *root = kernfs_root(parent); 774 struct kernfs_iattrs *ps_iattr; 775 bool has_ns; 776 int ret; 777 778 down_write(&root->kernfs_rwsem); 779 780 ret = -EINVAL; 781 has_ns = kernfs_ns_enabled(parent); 782 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 783 has_ns ? "required" : "invalid", parent->name, kn->name)) 784 goto out_unlock; 785 786 if (kernfs_type(parent) != KERNFS_DIR) 787 goto out_unlock; 788 789 ret = -ENOENT; 790 if (parent->flags & (KERNFS_REMOVING | KERNFS_EMPTY_DIR)) 791 goto out_unlock; 792 793 kn->hash = kernfs_name_hash(kn->name, kn->ns); 794 795 ret = kernfs_link_sibling(kn); 796 if (ret) 797 goto out_unlock; 798 799 /* Update timestamps on the parent */ 800 down_write(&root->kernfs_iattr_rwsem); 801 802 ps_iattr = parent->iattr; 803 if (ps_iattr) { 804 ktime_get_real_ts64(&ps_iattr->ia_ctime); 805 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 806 } 807 808 up_write(&root->kernfs_iattr_rwsem); 809 up_write(&root->kernfs_rwsem); 810 811 /* 812 * Activate the new node unless CREATE_DEACTIVATED is requested. 813 * If not activated here, the kernfs user is responsible for 814 * activating the node with kernfs_activate(). A node which hasn't 815 * been activated is not visible to userland and its removal won't 816 * trigger deactivation. 817 */ 818 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 819 kernfs_activate(kn); 820 return 0; 821 822 out_unlock: 823 up_write(&root->kernfs_rwsem); 824 return ret; 825 } 826 827 /** 828 * kernfs_find_ns - find kernfs_node with the given name 829 * @parent: kernfs_node to search under 830 * @name: name to look for 831 * @ns: the namespace tag to use 832 * 833 * Look for kernfs_node with name @name under @parent. 834 * 835 * Return: pointer to the found kernfs_node on success, %NULL on failure. 836 */ 837 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 838 const unsigned char *name, 839 const void *ns) 840 { 841 struct rb_node *node = parent->dir.children.rb_node; 842 bool has_ns = kernfs_ns_enabled(parent); 843 unsigned int hash; 844 845 lockdep_assert_held(&kernfs_root(parent)->kernfs_rwsem); 846 847 if (has_ns != (bool)ns) { 848 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 849 has_ns ? "required" : "invalid", parent->name, name); 850 return NULL; 851 } 852 853 hash = kernfs_name_hash(name, ns); 854 while (node) { 855 struct kernfs_node *kn; 856 int result; 857 858 kn = rb_to_kn(node); 859 result = kernfs_name_compare(hash, name, ns, kn); 860 if (result < 0) 861 node = node->rb_left; 862 else if (result > 0) 863 node = node->rb_right; 864 else 865 return kn; 866 } 867 return NULL; 868 } 869 870 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 871 const unsigned char *path, 872 const void *ns) 873 { 874 size_t len; 875 char *p, *name; 876 877 lockdep_assert_held_read(&kernfs_root(parent)->kernfs_rwsem); 878 879 spin_lock_irq(&kernfs_pr_cont_lock); 880 881 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 882 883 if (len >= sizeof(kernfs_pr_cont_buf)) { 884 spin_unlock_irq(&kernfs_pr_cont_lock); 885 return NULL; 886 } 887 888 p = kernfs_pr_cont_buf; 889 890 while ((name = strsep(&p, "/")) && parent) { 891 if (*name == '\0') 892 continue; 893 parent = kernfs_find_ns(parent, name, ns); 894 } 895 896 spin_unlock_irq(&kernfs_pr_cont_lock); 897 898 return parent; 899 } 900 901 /** 902 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 903 * @parent: kernfs_node to search under 904 * @name: name to look for 905 * @ns: the namespace tag to use 906 * 907 * Look for kernfs_node with name @name under @parent and get a reference 908 * if found. This function may sleep. 909 * 910 * Return: pointer to the found kernfs_node on success, %NULL on failure. 911 */ 912 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 913 const char *name, const void *ns) 914 { 915 struct kernfs_node *kn; 916 struct kernfs_root *root = kernfs_root(parent); 917 918 down_read(&root->kernfs_rwsem); 919 kn = kernfs_find_ns(parent, name, ns); 920 kernfs_get(kn); 921 up_read(&root->kernfs_rwsem); 922 923 return kn; 924 } 925 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 926 927 /** 928 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 929 * @parent: kernfs_node to search under 930 * @path: path to look for 931 * @ns: the namespace tag to use 932 * 933 * Look for kernfs_node with path @path under @parent and get a reference 934 * if found. This function may sleep. 935 * 936 * Return: pointer to the found kernfs_node on success, %NULL on failure. 937 */ 938 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 939 const char *path, const void *ns) 940 { 941 struct kernfs_node *kn; 942 struct kernfs_root *root = kernfs_root(parent); 943 944 down_read(&root->kernfs_rwsem); 945 kn = kernfs_walk_ns(parent, path, ns); 946 kernfs_get(kn); 947 up_read(&root->kernfs_rwsem); 948 949 return kn; 950 } 951 952 /** 953 * kernfs_create_root - create a new kernfs hierarchy 954 * @scops: optional syscall operations for the hierarchy 955 * @flags: KERNFS_ROOT_* flags 956 * @priv: opaque data associated with the new directory 957 * 958 * Return: the root of the new hierarchy on success, ERR_PTR() value on 959 * failure. 960 */ 961 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 962 unsigned int flags, void *priv) 963 { 964 struct kernfs_root *root; 965 struct kernfs_node *kn; 966 967 root = kzalloc(sizeof(*root), GFP_KERNEL); 968 if (!root) 969 return ERR_PTR(-ENOMEM); 970 971 idr_init(&root->ino_idr); 972 init_rwsem(&root->kernfs_rwsem); 973 init_rwsem(&root->kernfs_iattr_rwsem); 974 init_rwsem(&root->kernfs_supers_rwsem); 975 INIT_LIST_HEAD(&root->supers); 976 977 /* 978 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 979 * High bits generation. The starting value for both ino and 980 * genenration is 1. Initialize upper 32bit allocation 981 * accordingly. 982 */ 983 if (sizeof(ino_t) >= sizeof(u64)) 984 root->id_highbits = 0; 985 else 986 root->id_highbits = 1; 987 988 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 989 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 990 KERNFS_DIR); 991 if (!kn) { 992 idr_destroy(&root->ino_idr); 993 kfree(root); 994 return ERR_PTR(-ENOMEM); 995 } 996 997 kn->priv = priv; 998 kn->dir.root = root; 999 1000 root->syscall_ops = scops; 1001 root->flags = flags; 1002 root->kn = kn; 1003 init_waitqueue_head(&root->deactivate_waitq); 1004 1005 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 1006 kernfs_activate(kn); 1007 1008 return root; 1009 } 1010 1011 /** 1012 * kernfs_destroy_root - destroy a kernfs hierarchy 1013 * @root: root of the hierarchy to destroy 1014 * 1015 * Destroy the hierarchy anchored at @root by removing all existing 1016 * directories and destroying @root. 1017 */ 1018 void kernfs_destroy_root(struct kernfs_root *root) 1019 { 1020 /* 1021 * kernfs_remove holds kernfs_rwsem from the root so the root 1022 * shouldn't be freed during the operation. 1023 */ 1024 kernfs_get(root->kn); 1025 kernfs_remove(root->kn); 1026 kernfs_put(root->kn); /* will also free @root */ 1027 } 1028 1029 /** 1030 * kernfs_root_to_node - return the kernfs_node associated with a kernfs_root 1031 * @root: root to use to lookup 1032 * 1033 * Return: @root's kernfs_node 1034 */ 1035 struct kernfs_node *kernfs_root_to_node(struct kernfs_root *root) 1036 { 1037 return root->kn; 1038 } 1039 1040 /** 1041 * kernfs_create_dir_ns - create a directory 1042 * @parent: parent in which to create a new directory 1043 * @name: name of the new directory 1044 * @mode: mode of the new directory 1045 * @uid: uid of the new directory 1046 * @gid: gid of the new directory 1047 * @priv: opaque data associated with the new directory 1048 * @ns: optional namespace tag of the directory 1049 * 1050 * Return: the created node on success, ERR_PTR() value on failure. 1051 */ 1052 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1053 const char *name, umode_t mode, 1054 kuid_t uid, kgid_t gid, 1055 void *priv, const void *ns) 1056 { 1057 struct kernfs_node *kn; 1058 int rc; 1059 1060 /* allocate */ 1061 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1062 uid, gid, KERNFS_DIR); 1063 if (!kn) 1064 return ERR_PTR(-ENOMEM); 1065 1066 kn->dir.root = parent->dir.root; 1067 kn->ns = ns; 1068 kn->priv = priv; 1069 1070 /* link in */ 1071 rc = kernfs_add_one(kn); 1072 if (!rc) 1073 return kn; 1074 1075 kernfs_put(kn); 1076 return ERR_PTR(rc); 1077 } 1078 1079 /** 1080 * kernfs_create_empty_dir - create an always empty directory 1081 * @parent: parent in which to create a new directory 1082 * @name: name of the new directory 1083 * 1084 * Return: the created node on success, ERR_PTR() value on failure. 1085 */ 1086 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1087 const char *name) 1088 { 1089 struct kernfs_node *kn; 1090 int rc; 1091 1092 /* allocate */ 1093 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1094 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1095 if (!kn) 1096 return ERR_PTR(-ENOMEM); 1097 1098 kn->flags |= KERNFS_EMPTY_DIR; 1099 kn->dir.root = parent->dir.root; 1100 kn->ns = NULL; 1101 kn->priv = NULL; 1102 1103 /* link in */ 1104 rc = kernfs_add_one(kn); 1105 if (!rc) 1106 return kn; 1107 1108 kernfs_put(kn); 1109 return ERR_PTR(rc); 1110 } 1111 1112 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 1113 { 1114 struct kernfs_node *kn; 1115 struct kernfs_root *root; 1116 1117 if (flags & LOOKUP_RCU) 1118 return -ECHILD; 1119 1120 /* Negative hashed dentry? */ 1121 if (d_really_is_negative(dentry)) { 1122 struct kernfs_node *parent; 1123 1124 /* If the kernfs parent node has changed discard and 1125 * proceed to ->lookup. 1126 * 1127 * There's nothing special needed here when getting the 1128 * dentry parent, even if a concurrent rename is in 1129 * progress. That's because the dentry is negative so 1130 * it can only be the target of the rename and it will 1131 * be doing a d_move() not a replace. Consequently the 1132 * dentry d_parent won't change over the d_move(). 1133 * 1134 * Also kernfs negative dentries transitioning from 1135 * negative to positive during revalidate won't happen 1136 * because they are invalidated on containing directory 1137 * changes and the lookup re-done so that a new positive 1138 * dentry can be properly created. 1139 */ 1140 root = kernfs_root_from_sb(dentry->d_sb); 1141 down_read(&root->kernfs_rwsem); 1142 parent = kernfs_dentry_node(dentry->d_parent); 1143 if (parent) { 1144 if (kernfs_dir_changed(parent, dentry)) { 1145 up_read(&root->kernfs_rwsem); 1146 return 0; 1147 } 1148 } 1149 up_read(&root->kernfs_rwsem); 1150 1151 /* The kernfs parent node hasn't changed, leave the 1152 * dentry negative and return success. 1153 */ 1154 return 1; 1155 } 1156 1157 kn = kernfs_dentry_node(dentry); 1158 root = kernfs_root(kn); 1159 down_read(&root->kernfs_rwsem); 1160 1161 /* The kernfs node has been deactivated */ 1162 if (!kernfs_active(kn)) 1163 goto out_bad; 1164 1165 /* The kernfs node has been moved? */ 1166 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 1167 goto out_bad; 1168 1169 /* The kernfs node has been renamed */ 1170 if (strcmp(dentry->d_name.name, kn->name) != 0) 1171 goto out_bad; 1172 1173 /* The kernfs node has been moved to a different namespace */ 1174 if (kn->parent && kernfs_ns_enabled(kn->parent) && 1175 kernfs_info(dentry->d_sb)->ns != kn->ns) 1176 goto out_bad; 1177 1178 up_read(&root->kernfs_rwsem); 1179 return 1; 1180 out_bad: 1181 up_read(&root->kernfs_rwsem); 1182 return 0; 1183 } 1184 1185 const struct dentry_operations kernfs_dops = { 1186 .d_revalidate = kernfs_dop_revalidate, 1187 }; 1188 1189 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1190 struct dentry *dentry, 1191 unsigned int flags) 1192 { 1193 struct kernfs_node *parent = dir->i_private; 1194 struct kernfs_node *kn; 1195 struct kernfs_root *root; 1196 struct inode *inode = NULL; 1197 const void *ns = NULL; 1198 1199 root = kernfs_root(parent); 1200 down_read(&root->kernfs_rwsem); 1201 if (kernfs_ns_enabled(parent)) 1202 ns = kernfs_info(dir->i_sb)->ns; 1203 1204 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1205 /* attach dentry and inode */ 1206 if (kn) { 1207 /* Inactive nodes are invisible to the VFS so don't 1208 * create a negative. 1209 */ 1210 if (!kernfs_active(kn)) { 1211 up_read(&root->kernfs_rwsem); 1212 return NULL; 1213 } 1214 inode = kernfs_get_inode(dir->i_sb, kn); 1215 if (!inode) 1216 inode = ERR_PTR(-ENOMEM); 1217 } 1218 /* 1219 * Needed for negative dentry validation. 1220 * The negative dentry can be created in kernfs_iop_lookup() 1221 * or transforms from positive dentry in dentry_unlink_inode() 1222 * called from vfs_rmdir(). 1223 */ 1224 if (!IS_ERR(inode)) 1225 kernfs_set_rev(parent, dentry); 1226 up_read(&root->kernfs_rwsem); 1227 1228 /* instantiate and hash (possibly negative) dentry */ 1229 return d_splice_alias(inode, dentry); 1230 } 1231 1232 static int kernfs_iop_mkdir(struct mnt_idmap *idmap, 1233 struct inode *dir, struct dentry *dentry, 1234 umode_t mode) 1235 { 1236 struct kernfs_node *parent = dir->i_private; 1237 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1238 int ret; 1239 1240 if (!scops || !scops->mkdir) 1241 return -EPERM; 1242 1243 if (!kernfs_get_active(parent)) 1244 return -ENODEV; 1245 1246 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1247 1248 kernfs_put_active(parent); 1249 return ret; 1250 } 1251 1252 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1253 { 1254 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1255 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1256 int ret; 1257 1258 if (!scops || !scops->rmdir) 1259 return -EPERM; 1260 1261 if (!kernfs_get_active(kn)) 1262 return -ENODEV; 1263 1264 ret = scops->rmdir(kn); 1265 1266 kernfs_put_active(kn); 1267 return ret; 1268 } 1269 1270 static int kernfs_iop_rename(struct mnt_idmap *idmap, 1271 struct inode *old_dir, struct dentry *old_dentry, 1272 struct inode *new_dir, struct dentry *new_dentry, 1273 unsigned int flags) 1274 { 1275 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1276 struct kernfs_node *new_parent = new_dir->i_private; 1277 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1278 int ret; 1279 1280 if (flags) 1281 return -EINVAL; 1282 1283 if (!scops || !scops->rename) 1284 return -EPERM; 1285 1286 if (!kernfs_get_active(kn)) 1287 return -ENODEV; 1288 1289 if (!kernfs_get_active(new_parent)) { 1290 kernfs_put_active(kn); 1291 return -ENODEV; 1292 } 1293 1294 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1295 1296 kernfs_put_active(new_parent); 1297 kernfs_put_active(kn); 1298 return ret; 1299 } 1300 1301 const struct inode_operations kernfs_dir_iops = { 1302 .lookup = kernfs_iop_lookup, 1303 .permission = kernfs_iop_permission, 1304 .setattr = kernfs_iop_setattr, 1305 .getattr = kernfs_iop_getattr, 1306 .listxattr = kernfs_iop_listxattr, 1307 1308 .mkdir = kernfs_iop_mkdir, 1309 .rmdir = kernfs_iop_rmdir, 1310 .rename = kernfs_iop_rename, 1311 }; 1312 1313 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1314 { 1315 struct kernfs_node *last; 1316 1317 while (true) { 1318 struct rb_node *rbn; 1319 1320 last = pos; 1321 1322 if (kernfs_type(pos) != KERNFS_DIR) 1323 break; 1324 1325 rbn = rb_first(&pos->dir.children); 1326 if (!rbn) 1327 break; 1328 1329 pos = rb_to_kn(rbn); 1330 } 1331 1332 return last; 1333 } 1334 1335 /** 1336 * kernfs_next_descendant_post - find the next descendant for post-order walk 1337 * @pos: the current position (%NULL to initiate traversal) 1338 * @root: kernfs_node whose descendants to walk 1339 * 1340 * Find the next descendant to visit for post-order traversal of @root's 1341 * descendants. @root is included in the iteration and the last node to be 1342 * visited. 1343 * 1344 * Return: the next descendant to visit or %NULL when done. 1345 */ 1346 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1347 struct kernfs_node *root) 1348 { 1349 struct rb_node *rbn; 1350 1351 lockdep_assert_held_write(&kernfs_root(root)->kernfs_rwsem); 1352 1353 /* if first iteration, visit leftmost descendant which may be root */ 1354 if (!pos) 1355 return kernfs_leftmost_descendant(root); 1356 1357 /* if we visited @root, we're done */ 1358 if (pos == root) 1359 return NULL; 1360 1361 /* if there's an unvisited sibling, visit its leftmost descendant */ 1362 rbn = rb_next(&pos->rb); 1363 if (rbn) 1364 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1365 1366 /* no sibling left, visit parent */ 1367 return pos->parent; 1368 } 1369 1370 static void kernfs_activate_one(struct kernfs_node *kn) 1371 { 1372 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1373 1374 kn->flags |= KERNFS_ACTIVATED; 1375 1376 if (kernfs_active(kn) || (kn->flags & (KERNFS_HIDDEN | KERNFS_REMOVING))) 1377 return; 1378 1379 WARN_ON_ONCE(kn->parent && RB_EMPTY_NODE(&kn->rb)); 1380 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1381 1382 atomic_sub(KN_DEACTIVATED_BIAS, &kn->active); 1383 } 1384 1385 /** 1386 * kernfs_activate - activate a node which started deactivated 1387 * @kn: kernfs_node whose subtree is to be activated 1388 * 1389 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1390 * needs to be explicitly activated. A node which hasn't been activated 1391 * isn't visible to userland and deactivation is skipped during its 1392 * removal. This is useful to construct atomic init sequences where 1393 * creation of multiple nodes should either succeed or fail atomically. 1394 * 1395 * The caller is responsible for ensuring that this function is not called 1396 * after kernfs_remove*() is invoked on @kn. 1397 */ 1398 void kernfs_activate(struct kernfs_node *kn) 1399 { 1400 struct kernfs_node *pos; 1401 struct kernfs_root *root = kernfs_root(kn); 1402 1403 down_write(&root->kernfs_rwsem); 1404 1405 pos = NULL; 1406 while ((pos = kernfs_next_descendant_post(pos, kn))) 1407 kernfs_activate_one(pos); 1408 1409 up_write(&root->kernfs_rwsem); 1410 } 1411 1412 /** 1413 * kernfs_show - show or hide a node 1414 * @kn: kernfs_node to show or hide 1415 * @show: whether to show or hide 1416 * 1417 * If @show is %false, @kn is marked hidden and deactivated. A hidden node is 1418 * ignored in future activaitons. If %true, the mark is removed and activation 1419 * state is restored. This function won't implicitly activate a new node in a 1420 * %KERNFS_ROOT_CREATE_DEACTIVATED root which hasn't been activated yet. 1421 * 1422 * To avoid recursion complexities, directories aren't supported for now. 1423 */ 1424 void kernfs_show(struct kernfs_node *kn, bool show) 1425 { 1426 struct kernfs_root *root = kernfs_root(kn); 1427 1428 if (WARN_ON_ONCE(kernfs_type(kn) == KERNFS_DIR)) 1429 return; 1430 1431 down_write(&root->kernfs_rwsem); 1432 1433 if (show) { 1434 kn->flags &= ~KERNFS_HIDDEN; 1435 if (kn->flags & KERNFS_ACTIVATED) 1436 kernfs_activate_one(kn); 1437 } else { 1438 kn->flags |= KERNFS_HIDDEN; 1439 if (kernfs_active(kn)) 1440 atomic_add(KN_DEACTIVATED_BIAS, &kn->active); 1441 kernfs_drain(kn); 1442 } 1443 1444 up_write(&root->kernfs_rwsem); 1445 } 1446 1447 static void __kernfs_remove(struct kernfs_node *kn) 1448 { 1449 struct kernfs_node *pos; 1450 1451 /* Short-circuit if non-root @kn has already finished removal. */ 1452 if (!kn) 1453 return; 1454 1455 lockdep_assert_held_write(&kernfs_root(kn)->kernfs_rwsem); 1456 1457 /* 1458 * This is for kernfs_remove_self() which plays with active ref 1459 * after removal. 1460 */ 1461 if (kn->parent && RB_EMPTY_NODE(&kn->rb)) 1462 return; 1463 1464 pr_debug("kernfs %s: removing\n", kn->name); 1465 1466 /* prevent new usage by marking all nodes removing and deactivating */ 1467 pos = NULL; 1468 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1469 pos->flags |= KERNFS_REMOVING; 1470 if (kernfs_active(pos)) 1471 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1472 } 1473 1474 /* deactivate and unlink the subtree node-by-node */ 1475 do { 1476 pos = kernfs_leftmost_descendant(kn); 1477 1478 /* 1479 * kernfs_drain() may drop kernfs_rwsem temporarily and @pos's 1480 * base ref could have been put by someone else by the time 1481 * the function returns. Make sure it doesn't go away 1482 * underneath us. 1483 */ 1484 kernfs_get(pos); 1485 1486 kernfs_drain(pos); 1487 1488 /* 1489 * kernfs_unlink_sibling() succeeds once per node. Use it 1490 * to decide who's responsible for cleanups. 1491 */ 1492 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1493 struct kernfs_iattrs *ps_iattr = 1494 pos->parent ? pos->parent->iattr : NULL; 1495 1496 /* update timestamps on the parent */ 1497 down_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1498 1499 if (ps_iattr) { 1500 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1501 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1502 } 1503 1504 up_write(&kernfs_root(kn)->kernfs_iattr_rwsem); 1505 kernfs_put(pos); 1506 } 1507 1508 kernfs_put(pos); 1509 } while (pos != kn); 1510 } 1511 1512 /** 1513 * kernfs_remove - remove a kernfs_node recursively 1514 * @kn: the kernfs_node to remove 1515 * 1516 * Remove @kn along with all its subdirectories and files. 1517 */ 1518 void kernfs_remove(struct kernfs_node *kn) 1519 { 1520 struct kernfs_root *root; 1521 1522 if (!kn) 1523 return; 1524 1525 root = kernfs_root(kn); 1526 1527 down_write(&root->kernfs_rwsem); 1528 __kernfs_remove(kn); 1529 up_write(&root->kernfs_rwsem); 1530 } 1531 1532 /** 1533 * kernfs_break_active_protection - break out of active protection 1534 * @kn: the self kernfs_node 1535 * 1536 * The caller must be running off of a kernfs operation which is invoked 1537 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1538 * this function must also be matched with an invocation of 1539 * kernfs_unbreak_active_protection(). 1540 * 1541 * This function releases the active reference of @kn the caller is 1542 * holding. Once this function is called, @kn may be removed at any point 1543 * and the caller is solely responsible for ensuring that the objects it 1544 * dereferences are accessible. 1545 */ 1546 void kernfs_break_active_protection(struct kernfs_node *kn) 1547 { 1548 /* 1549 * Take out ourself out of the active ref dependency chain. If 1550 * we're called without an active ref, lockdep will complain. 1551 */ 1552 kernfs_put_active(kn); 1553 } 1554 1555 /** 1556 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1557 * @kn: the self kernfs_node 1558 * 1559 * If kernfs_break_active_protection() was called, this function must be 1560 * invoked before finishing the kernfs operation. Note that while this 1561 * function restores the active reference, it doesn't and can't actually 1562 * restore the active protection - @kn may already or be in the process of 1563 * being removed. Once kernfs_break_active_protection() is invoked, that 1564 * protection is irreversibly gone for the kernfs operation instance. 1565 * 1566 * While this function may be called at any point after 1567 * kernfs_break_active_protection() is invoked, its most useful location 1568 * would be right before the enclosing kernfs operation returns. 1569 */ 1570 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1571 { 1572 /* 1573 * @kn->active could be in any state; however, the increment we do 1574 * here will be undone as soon as the enclosing kernfs operation 1575 * finishes and this temporary bump can't break anything. If @kn 1576 * is alive, nothing changes. If @kn is being deactivated, the 1577 * soon-to-follow put will either finish deactivation or restore 1578 * deactivated state. If @kn is already removed, the temporary 1579 * bump is guaranteed to be gone before @kn is released. 1580 */ 1581 atomic_inc(&kn->active); 1582 if (kernfs_lockdep(kn)) 1583 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1584 } 1585 1586 /** 1587 * kernfs_remove_self - remove a kernfs_node from its own method 1588 * @kn: the self kernfs_node to remove 1589 * 1590 * The caller must be running off of a kernfs operation which is invoked 1591 * with an active reference - e.g. one of kernfs_ops. This can be used to 1592 * implement a file operation which deletes itself. 1593 * 1594 * For example, the "delete" file for a sysfs device directory can be 1595 * implemented by invoking kernfs_remove_self() on the "delete" file 1596 * itself. This function breaks the circular dependency of trying to 1597 * deactivate self while holding an active ref itself. It isn't necessary 1598 * to modify the usual removal path to use kernfs_remove_self(). The 1599 * "delete" implementation can simply invoke kernfs_remove_self() on self 1600 * before proceeding with the usual removal path. kernfs will ignore later 1601 * kernfs_remove() on self. 1602 * 1603 * kernfs_remove_self() can be called multiple times concurrently on the 1604 * same kernfs_node. Only the first one actually performs removal and 1605 * returns %true. All others will wait until the kernfs operation which 1606 * won self-removal finishes and return %false. Note that the losers wait 1607 * for the completion of not only the winning kernfs_remove_self() but also 1608 * the whole kernfs_ops which won the arbitration. This can be used to 1609 * guarantee, for example, all concurrent writes to a "delete" file to 1610 * finish only after the whole operation is complete. 1611 * 1612 * Return: %true if @kn is removed by this call, otherwise %false. 1613 */ 1614 bool kernfs_remove_self(struct kernfs_node *kn) 1615 { 1616 bool ret; 1617 struct kernfs_root *root = kernfs_root(kn); 1618 1619 down_write(&root->kernfs_rwsem); 1620 kernfs_break_active_protection(kn); 1621 1622 /* 1623 * SUICIDAL is used to arbitrate among competing invocations. Only 1624 * the first one will actually perform removal. When the removal 1625 * is complete, SUICIDED is set and the active ref is restored 1626 * while kernfs_rwsem for held exclusive. The ones which lost 1627 * arbitration waits for SUICIDED && drained which can happen only 1628 * after the enclosing kernfs operation which executed the winning 1629 * instance of kernfs_remove_self() finished. 1630 */ 1631 if (!(kn->flags & KERNFS_SUICIDAL)) { 1632 kn->flags |= KERNFS_SUICIDAL; 1633 __kernfs_remove(kn); 1634 kn->flags |= KERNFS_SUICIDED; 1635 ret = true; 1636 } else { 1637 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1638 DEFINE_WAIT(wait); 1639 1640 while (true) { 1641 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1642 1643 if ((kn->flags & KERNFS_SUICIDED) && 1644 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1645 break; 1646 1647 up_write(&root->kernfs_rwsem); 1648 schedule(); 1649 down_write(&root->kernfs_rwsem); 1650 } 1651 finish_wait(waitq, &wait); 1652 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1653 ret = false; 1654 } 1655 1656 /* 1657 * This must be done while kernfs_rwsem held exclusive; otherwise, 1658 * waiting for SUICIDED && deactivated could finish prematurely. 1659 */ 1660 kernfs_unbreak_active_protection(kn); 1661 1662 up_write(&root->kernfs_rwsem); 1663 return ret; 1664 } 1665 1666 /** 1667 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1668 * @parent: parent of the target 1669 * @name: name of the kernfs_node to remove 1670 * @ns: namespace tag of the kernfs_node to remove 1671 * 1672 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1673 * 1674 * Return: %0 on success, -ENOENT if such entry doesn't exist. 1675 */ 1676 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1677 const void *ns) 1678 { 1679 struct kernfs_node *kn; 1680 struct kernfs_root *root; 1681 1682 if (!parent) { 1683 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1684 name); 1685 return -ENOENT; 1686 } 1687 1688 root = kernfs_root(parent); 1689 down_write(&root->kernfs_rwsem); 1690 1691 kn = kernfs_find_ns(parent, name, ns); 1692 if (kn) { 1693 kernfs_get(kn); 1694 __kernfs_remove(kn); 1695 kernfs_put(kn); 1696 } 1697 1698 up_write(&root->kernfs_rwsem); 1699 1700 if (kn) 1701 return 0; 1702 else 1703 return -ENOENT; 1704 } 1705 1706 /** 1707 * kernfs_rename_ns - move and rename a kernfs_node 1708 * @kn: target node 1709 * @new_parent: new parent to put @sd under 1710 * @new_name: new name 1711 * @new_ns: new namespace tag 1712 * 1713 * Return: %0 on success, -errno on failure. 1714 */ 1715 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1716 const char *new_name, const void *new_ns) 1717 { 1718 struct kernfs_node *old_parent; 1719 struct kernfs_root *root; 1720 const char *old_name = NULL; 1721 int error; 1722 1723 /* can't move or rename root */ 1724 if (!kn->parent) 1725 return -EINVAL; 1726 1727 root = kernfs_root(kn); 1728 down_write(&root->kernfs_rwsem); 1729 1730 error = -ENOENT; 1731 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1732 (new_parent->flags & KERNFS_EMPTY_DIR)) 1733 goto out; 1734 1735 error = 0; 1736 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1737 (strcmp(kn->name, new_name) == 0)) 1738 goto out; /* nothing to rename */ 1739 1740 error = -EEXIST; 1741 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1742 goto out; 1743 1744 /* rename kernfs_node */ 1745 if (strcmp(kn->name, new_name) != 0) { 1746 error = -ENOMEM; 1747 new_name = kstrdup_const(new_name, GFP_KERNEL); 1748 if (!new_name) 1749 goto out; 1750 } else { 1751 new_name = NULL; 1752 } 1753 1754 /* 1755 * Move to the appropriate place in the appropriate directories rbtree. 1756 */ 1757 kernfs_unlink_sibling(kn); 1758 kernfs_get(new_parent); 1759 1760 /* rename_lock protects ->parent and ->name accessors */ 1761 write_lock_irq(&kernfs_rename_lock); 1762 1763 old_parent = kn->parent; 1764 kn->parent = new_parent; 1765 1766 kn->ns = new_ns; 1767 if (new_name) { 1768 old_name = kn->name; 1769 kn->name = new_name; 1770 } 1771 1772 write_unlock_irq(&kernfs_rename_lock); 1773 1774 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1775 kernfs_link_sibling(kn); 1776 1777 kernfs_put(old_parent); 1778 kfree_const(old_name); 1779 1780 error = 0; 1781 out: 1782 up_write(&root->kernfs_rwsem); 1783 return error; 1784 } 1785 1786 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1787 { 1788 kernfs_put(filp->private_data); 1789 return 0; 1790 } 1791 1792 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1793 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1794 { 1795 if (pos) { 1796 int valid = kernfs_active(pos) && 1797 pos->parent == parent && hash == pos->hash; 1798 kernfs_put(pos); 1799 if (!valid) 1800 pos = NULL; 1801 } 1802 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1803 struct rb_node *node = parent->dir.children.rb_node; 1804 while (node) { 1805 pos = rb_to_kn(node); 1806 1807 if (hash < pos->hash) 1808 node = node->rb_left; 1809 else if (hash > pos->hash) 1810 node = node->rb_right; 1811 else 1812 break; 1813 } 1814 } 1815 /* Skip over entries which are dying/dead or in the wrong namespace */ 1816 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1817 struct rb_node *node = rb_next(&pos->rb); 1818 if (!node) 1819 pos = NULL; 1820 else 1821 pos = rb_to_kn(node); 1822 } 1823 return pos; 1824 } 1825 1826 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1827 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1828 { 1829 pos = kernfs_dir_pos(ns, parent, ino, pos); 1830 if (pos) { 1831 do { 1832 struct rb_node *node = rb_next(&pos->rb); 1833 if (!node) 1834 pos = NULL; 1835 else 1836 pos = rb_to_kn(node); 1837 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1838 } 1839 return pos; 1840 } 1841 1842 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1843 { 1844 struct dentry *dentry = file->f_path.dentry; 1845 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1846 struct kernfs_node *pos = file->private_data; 1847 struct kernfs_root *root; 1848 const void *ns = NULL; 1849 1850 if (!dir_emit_dots(file, ctx)) 1851 return 0; 1852 1853 root = kernfs_root(parent); 1854 down_read(&root->kernfs_rwsem); 1855 1856 if (kernfs_ns_enabled(parent)) 1857 ns = kernfs_info(dentry->d_sb)->ns; 1858 1859 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1860 pos; 1861 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1862 const char *name = pos->name; 1863 unsigned int type = fs_umode_to_dtype(pos->mode); 1864 int len = strlen(name); 1865 ino_t ino = kernfs_ino(pos); 1866 1867 ctx->pos = pos->hash; 1868 file->private_data = pos; 1869 kernfs_get(pos); 1870 1871 up_read(&root->kernfs_rwsem); 1872 if (!dir_emit(ctx, name, len, ino, type)) 1873 return 0; 1874 down_read(&root->kernfs_rwsem); 1875 } 1876 up_read(&root->kernfs_rwsem); 1877 file->private_data = NULL; 1878 ctx->pos = INT_MAX; 1879 return 0; 1880 } 1881 1882 const struct file_operations kernfs_dir_fops = { 1883 .read = generic_read_dir, 1884 .iterate_shared = kernfs_fop_readdir, 1885 .release = kernfs_dir_fop_release, 1886 .llseek = generic_file_llseek, 1887 }; 1888