1 /* 2 * fs/kernfs/dir.c - kernfs directory implementation 3 * 4 * Copyright (c) 2001-3 Patrick Mochel 5 * Copyright (c) 2007 SUSE Linux Products GmbH 6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 7 * 8 * This file is released under the GPLv2. 9 */ 10 11 #include <linux/sched.h> 12 #include <linux/fs.h> 13 #include <linux/namei.h> 14 #include <linux/idr.h> 15 #include <linux/slab.h> 16 #include <linux/security.h> 17 #include <linux/hash.h> 18 19 #include "kernfs-internal.h" 20 21 DEFINE_MUTEX(kernfs_mutex); 22 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 23 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 if (!kn) 45 return strlcpy(buf, "(null)", buflen); 46 47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 48 } 49 50 /* kernfs_node_depth - compute depth from @from to @to */ 51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 52 { 53 size_t depth = 0; 54 55 while (to->parent && to != from) { 56 depth++; 57 to = to->parent; 58 } 59 return depth; 60 } 61 62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 63 struct kernfs_node *b) 64 { 65 size_t da, db; 66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 67 68 if (ra != rb) 69 return NULL; 70 71 da = kernfs_depth(ra->kn, a); 72 db = kernfs_depth(rb->kn, b); 73 74 while (da > db) { 75 a = a->parent; 76 da--; 77 } 78 while (db > da) { 79 b = b->parent; 80 db--; 81 } 82 83 /* worst case b and a will be the same at root */ 84 while (b != a) { 85 b = b->parent; 86 a = a->parent; 87 } 88 89 return a; 90 } 91 92 /** 93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 94 * where kn_from is treated as root of the path. 95 * @kn_from: kernfs node which should be treated as root for the path 96 * @kn_to: kernfs node to which path is needed 97 * @buf: buffer to copy the path into 98 * @buflen: size of @buf 99 * 100 * We need to handle couple of scenarios here: 101 * [1] when @kn_from is an ancestor of @kn_to at some level 102 * kn_from: /n1/n2/n3 103 * kn_to: /n1/n2/n3/n4/n5 104 * result: /n4/n5 105 * 106 * [2] when @kn_from is on a different hierarchy and we need to find common 107 * ancestor between @kn_from and @kn_to. 108 * kn_from: /n1/n2/n3/n4 109 * kn_to: /n1/n2/n5 110 * result: /../../n5 111 * OR 112 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 113 * kn_to: /n1/n2/n3 [depth=3] 114 * result: /../.. 115 * 116 * [3] when @kn_to is NULL result will be "(null)" 117 * 118 * Returns the length of the full path. If the full length is equal to or 119 * greater than @buflen, @buf contains the truncated path with the trailing 120 * '\0'. On error, -errno is returned. 121 */ 122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 123 struct kernfs_node *kn_from, 124 char *buf, size_t buflen) 125 { 126 struct kernfs_node *kn, *common; 127 const char parent_str[] = "/.."; 128 size_t depth_from, depth_to, len = 0; 129 int i, j; 130 131 if (!kn_to) 132 return strlcpy(buf, "(null)", buflen); 133 134 if (!kn_from) 135 kn_from = kernfs_root(kn_to)->kn; 136 137 if (kn_from == kn_to) 138 return strlcpy(buf, "/", buflen); 139 140 common = kernfs_common_ancestor(kn_from, kn_to); 141 if (WARN_ON(!common)) 142 return -EINVAL; 143 144 depth_to = kernfs_depth(common, kn_to); 145 depth_from = kernfs_depth(common, kn_from); 146 147 if (buf) 148 buf[0] = '\0'; 149 150 for (i = 0; i < depth_from; i++) 151 len += strlcpy(buf + len, parent_str, 152 len < buflen ? buflen - len : 0); 153 154 /* Calculate how many bytes we need for the rest */ 155 for (i = depth_to - 1; i >= 0; i--) { 156 for (kn = kn_to, j = 0; j < i; j++) 157 kn = kn->parent; 158 len += strlcpy(buf + len, "/", 159 len < buflen ? buflen - len : 0); 160 len += strlcpy(buf + len, kn->name, 161 len < buflen ? buflen - len : 0); 162 } 163 164 return len; 165 } 166 167 /** 168 * kernfs_name - obtain the name of a given node 169 * @kn: kernfs_node of interest 170 * @buf: buffer to copy @kn's name into 171 * @buflen: size of @buf 172 * 173 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 174 * similar to strlcpy(). It returns the length of @kn's name and if @buf 175 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 176 * 177 * Fills buffer with "(null)" if @kn is NULL. 178 * 179 * This function can be called from any context. 180 */ 181 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 182 { 183 unsigned long flags; 184 int ret; 185 186 spin_lock_irqsave(&kernfs_rename_lock, flags); 187 ret = kernfs_name_locked(kn, buf, buflen); 188 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 189 return ret; 190 } 191 192 /** 193 * kernfs_path_from_node - build path of node @to relative to @from. 194 * @from: parent kernfs_node relative to which we need to build the path 195 * @to: kernfs_node of interest 196 * @buf: buffer to copy @to's path into 197 * @buflen: size of @buf 198 * 199 * Builds @to's path relative to @from in @buf. @from and @to must 200 * be on the same kernfs-root. If @from is not parent of @to, then a relative 201 * path (which includes '..'s) as needed to reach from @from to @to is 202 * returned. 203 * 204 * Returns the length of the full path. If the full length is equal to or 205 * greater than @buflen, @buf contains the truncated path with the trailing 206 * '\0'. On error, -errno is returned. 207 */ 208 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 209 char *buf, size_t buflen) 210 { 211 unsigned long flags; 212 int ret; 213 214 spin_lock_irqsave(&kernfs_rename_lock, flags); 215 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 216 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 217 return ret; 218 } 219 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 220 221 /** 222 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 223 * @kn: kernfs_node of interest 224 * 225 * This function can be called from any context. 226 */ 227 void pr_cont_kernfs_name(struct kernfs_node *kn) 228 { 229 unsigned long flags; 230 231 spin_lock_irqsave(&kernfs_rename_lock, flags); 232 233 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 234 pr_cont("%s", kernfs_pr_cont_buf); 235 236 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 237 } 238 239 /** 240 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 241 * @kn: kernfs_node of interest 242 * 243 * This function can be called from any context. 244 */ 245 void pr_cont_kernfs_path(struct kernfs_node *kn) 246 { 247 unsigned long flags; 248 int sz; 249 250 spin_lock_irqsave(&kernfs_rename_lock, flags); 251 252 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf, 253 sizeof(kernfs_pr_cont_buf)); 254 if (sz < 0) { 255 pr_cont("(error)"); 256 goto out; 257 } 258 259 if (sz >= sizeof(kernfs_pr_cont_buf)) { 260 pr_cont("(name too long)"); 261 goto out; 262 } 263 264 pr_cont("%s", kernfs_pr_cont_buf); 265 266 out: 267 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 268 } 269 270 /** 271 * kernfs_get_parent - determine the parent node and pin it 272 * @kn: kernfs_node of interest 273 * 274 * Determines @kn's parent, pins and returns it. This function can be 275 * called from any context. 276 */ 277 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 278 { 279 struct kernfs_node *parent; 280 unsigned long flags; 281 282 spin_lock_irqsave(&kernfs_rename_lock, flags); 283 parent = kn->parent; 284 kernfs_get(parent); 285 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 286 287 return parent; 288 } 289 290 /** 291 * kernfs_name_hash 292 * @name: Null terminated string to hash 293 * @ns: Namespace tag to hash 294 * 295 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 296 */ 297 static unsigned int kernfs_name_hash(const char *name, const void *ns) 298 { 299 unsigned long hash = init_name_hash(ns); 300 unsigned int len = strlen(name); 301 while (len--) 302 hash = partial_name_hash(*name++, hash); 303 hash = end_name_hash(hash); 304 hash &= 0x7fffffffU; 305 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 306 if (hash < 2) 307 hash += 2; 308 if (hash >= INT_MAX) 309 hash = INT_MAX - 1; 310 return hash; 311 } 312 313 static int kernfs_name_compare(unsigned int hash, const char *name, 314 const void *ns, const struct kernfs_node *kn) 315 { 316 if (hash < kn->hash) 317 return -1; 318 if (hash > kn->hash) 319 return 1; 320 if (ns < kn->ns) 321 return -1; 322 if (ns > kn->ns) 323 return 1; 324 return strcmp(name, kn->name); 325 } 326 327 static int kernfs_sd_compare(const struct kernfs_node *left, 328 const struct kernfs_node *right) 329 { 330 return kernfs_name_compare(left->hash, left->name, left->ns, right); 331 } 332 333 /** 334 * kernfs_link_sibling - link kernfs_node into sibling rbtree 335 * @kn: kernfs_node of interest 336 * 337 * Link @kn into its sibling rbtree which starts from 338 * @kn->parent->dir.children. 339 * 340 * Locking: 341 * mutex_lock(kernfs_mutex) 342 * 343 * RETURNS: 344 * 0 on susccess -EEXIST on failure. 345 */ 346 static int kernfs_link_sibling(struct kernfs_node *kn) 347 { 348 struct rb_node **node = &kn->parent->dir.children.rb_node; 349 struct rb_node *parent = NULL; 350 351 while (*node) { 352 struct kernfs_node *pos; 353 int result; 354 355 pos = rb_to_kn(*node); 356 parent = *node; 357 result = kernfs_sd_compare(kn, pos); 358 if (result < 0) 359 node = &pos->rb.rb_left; 360 else if (result > 0) 361 node = &pos->rb.rb_right; 362 else 363 return -EEXIST; 364 } 365 366 /* add new node and rebalance the tree */ 367 rb_link_node(&kn->rb, parent, node); 368 rb_insert_color(&kn->rb, &kn->parent->dir.children); 369 370 /* successfully added, account subdir number */ 371 if (kernfs_type(kn) == KERNFS_DIR) 372 kn->parent->dir.subdirs++; 373 374 return 0; 375 } 376 377 /** 378 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 379 * @kn: kernfs_node of interest 380 * 381 * Try to unlink @kn from its sibling rbtree which starts from 382 * kn->parent->dir.children. Returns %true if @kn was actually 383 * removed, %false if @kn wasn't on the rbtree. 384 * 385 * Locking: 386 * mutex_lock(kernfs_mutex) 387 */ 388 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 389 { 390 if (RB_EMPTY_NODE(&kn->rb)) 391 return false; 392 393 if (kernfs_type(kn) == KERNFS_DIR) 394 kn->parent->dir.subdirs--; 395 396 rb_erase(&kn->rb, &kn->parent->dir.children); 397 RB_CLEAR_NODE(&kn->rb); 398 return true; 399 } 400 401 /** 402 * kernfs_get_active - get an active reference to kernfs_node 403 * @kn: kernfs_node to get an active reference to 404 * 405 * Get an active reference of @kn. This function is noop if @kn 406 * is NULL. 407 * 408 * RETURNS: 409 * Pointer to @kn on success, NULL on failure. 410 */ 411 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 412 { 413 if (unlikely(!kn)) 414 return NULL; 415 416 if (!atomic_inc_unless_negative(&kn->active)) 417 return NULL; 418 419 if (kernfs_lockdep(kn)) 420 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 421 return kn; 422 } 423 424 /** 425 * kernfs_put_active - put an active reference to kernfs_node 426 * @kn: kernfs_node to put an active reference to 427 * 428 * Put an active reference to @kn. This function is noop if @kn 429 * is NULL. 430 */ 431 void kernfs_put_active(struct kernfs_node *kn) 432 { 433 struct kernfs_root *root = kernfs_root(kn); 434 int v; 435 436 if (unlikely(!kn)) 437 return; 438 439 if (kernfs_lockdep(kn)) 440 rwsem_release(&kn->dep_map, 1, _RET_IP_); 441 v = atomic_dec_return(&kn->active); 442 if (likely(v != KN_DEACTIVATED_BIAS)) 443 return; 444 445 wake_up_all(&root->deactivate_waitq); 446 } 447 448 /** 449 * kernfs_drain - drain kernfs_node 450 * @kn: kernfs_node to drain 451 * 452 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 453 * removers may invoke this function concurrently on @kn and all will 454 * return after draining is complete. 455 */ 456 static void kernfs_drain(struct kernfs_node *kn) 457 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 458 { 459 struct kernfs_root *root = kernfs_root(kn); 460 461 lockdep_assert_held(&kernfs_mutex); 462 WARN_ON_ONCE(kernfs_active(kn)); 463 464 mutex_unlock(&kernfs_mutex); 465 466 if (kernfs_lockdep(kn)) { 467 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 468 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 469 lock_contended(&kn->dep_map, _RET_IP_); 470 } 471 472 /* but everyone should wait for draining */ 473 wait_event(root->deactivate_waitq, 474 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 475 476 if (kernfs_lockdep(kn)) { 477 lock_acquired(&kn->dep_map, _RET_IP_); 478 rwsem_release(&kn->dep_map, 1, _RET_IP_); 479 } 480 481 kernfs_drain_open_files(kn); 482 483 mutex_lock(&kernfs_mutex); 484 } 485 486 /** 487 * kernfs_get - get a reference count on a kernfs_node 488 * @kn: the target kernfs_node 489 */ 490 void kernfs_get(struct kernfs_node *kn) 491 { 492 if (kn) { 493 WARN_ON(!atomic_read(&kn->count)); 494 atomic_inc(&kn->count); 495 } 496 } 497 EXPORT_SYMBOL_GPL(kernfs_get); 498 499 /** 500 * kernfs_put - put a reference count on a kernfs_node 501 * @kn: the target kernfs_node 502 * 503 * Put a reference count of @kn and destroy it if it reached zero. 504 */ 505 void kernfs_put(struct kernfs_node *kn) 506 { 507 struct kernfs_node *parent; 508 struct kernfs_root *root; 509 510 if (!kn || !atomic_dec_and_test(&kn->count)) 511 return; 512 root = kernfs_root(kn); 513 repeat: 514 /* 515 * Moving/renaming is always done while holding reference. 516 * kn->parent won't change beneath us. 517 */ 518 parent = kn->parent; 519 520 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 521 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 522 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 523 524 if (kernfs_type(kn) == KERNFS_LINK) 525 kernfs_put(kn->symlink.target_kn); 526 527 kfree_const(kn->name); 528 529 if (kn->iattr) { 530 if (kn->iattr->ia_secdata) 531 security_release_secctx(kn->iattr->ia_secdata, 532 kn->iattr->ia_secdata_len); 533 simple_xattrs_free(&kn->iattr->xattrs); 534 } 535 kfree(kn->iattr); 536 ida_simple_remove(&root->ino_ida, kn->ino); 537 kmem_cache_free(kernfs_node_cache, kn); 538 539 kn = parent; 540 if (kn) { 541 if (atomic_dec_and_test(&kn->count)) 542 goto repeat; 543 } else { 544 /* just released the root kn, free @root too */ 545 ida_destroy(&root->ino_ida); 546 kfree(root); 547 } 548 } 549 EXPORT_SYMBOL_GPL(kernfs_put); 550 551 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 552 { 553 struct kernfs_node *kn; 554 555 if (flags & LOOKUP_RCU) 556 return -ECHILD; 557 558 /* Always perform fresh lookup for negatives */ 559 if (d_really_is_negative(dentry)) 560 goto out_bad_unlocked; 561 562 kn = dentry->d_fsdata; 563 mutex_lock(&kernfs_mutex); 564 565 /* The kernfs node has been deactivated */ 566 if (!kernfs_active(kn)) 567 goto out_bad; 568 569 /* The kernfs node has been moved? */ 570 if (dentry->d_parent->d_fsdata != kn->parent) 571 goto out_bad; 572 573 /* The kernfs node has been renamed */ 574 if (strcmp(dentry->d_name.name, kn->name) != 0) 575 goto out_bad; 576 577 /* The kernfs node has been moved to a different namespace */ 578 if (kn->parent && kernfs_ns_enabled(kn->parent) && 579 kernfs_info(dentry->d_sb)->ns != kn->ns) 580 goto out_bad; 581 582 mutex_unlock(&kernfs_mutex); 583 return 1; 584 out_bad: 585 mutex_unlock(&kernfs_mutex); 586 out_bad_unlocked: 587 return 0; 588 } 589 590 static void kernfs_dop_release(struct dentry *dentry) 591 { 592 kernfs_put(dentry->d_fsdata); 593 } 594 595 const struct dentry_operations kernfs_dops = { 596 .d_revalidate = kernfs_dop_revalidate, 597 .d_release = kernfs_dop_release, 598 }; 599 600 /** 601 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 602 * @dentry: the dentry in question 603 * 604 * Return the kernfs_node associated with @dentry. If @dentry is not a 605 * kernfs one, %NULL is returned. 606 * 607 * While the returned kernfs_node will stay accessible as long as @dentry 608 * is accessible, the returned node can be in any state and the caller is 609 * fully responsible for determining what's accessible. 610 */ 611 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 612 { 613 if (dentry->d_sb->s_op == &kernfs_sops) 614 return dentry->d_fsdata; 615 return NULL; 616 } 617 618 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 619 const char *name, umode_t mode, 620 unsigned flags) 621 { 622 struct kernfs_node *kn; 623 int ret; 624 625 name = kstrdup_const(name, GFP_KERNEL); 626 if (!name) 627 return NULL; 628 629 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 630 if (!kn) 631 goto err_out1; 632 633 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL); 634 if (ret < 0) 635 goto err_out2; 636 kn->ino = ret; 637 638 atomic_set(&kn->count, 1); 639 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 640 RB_CLEAR_NODE(&kn->rb); 641 642 kn->name = name; 643 kn->mode = mode; 644 kn->flags = flags; 645 646 return kn; 647 648 err_out2: 649 kmem_cache_free(kernfs_node_cache, kn); 650 err_out1: 651 kfree_const(name); 652 return NULL; 653 } 654 655 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 656 const char *name, umode_t mode, 657 unsigned flags) 658 { 659 struct kernfs_node *kn; 660 661 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags); 662 if (kn) { 663 kernfs_get(parent); 664 kn->parent = parent; 665 } 666 return kn; 667 } 668 669 /** 670 * kernfs_add_one - add kernfs_node to parent without warning 671 * @kn: kernfs_node to be added 672 * 673 * The caller must already have initialized @kn->parent. This 674 * function increments nlink of the parent's inode if @kn is a 675 * directory and link into the children list of the parent. 676 * 677 * RETURNS: 678 * 0 on success, -EEXIST if entry with the given name already 679 * exists. 680 */ 681 int kernfs_add_one(struct kernfs_node *kn) 682 { 683 struct kernfs_node *parent = kn->parent; 684 struct kernfs_iattrs *ps_iattr; 685 bool has_ns; 686 int ret; 687 688 mutex_lock(&kernfs_mutex); 689 690 ret = -EINVAL; 691 has_ns = kernfs_ns_enabled(parent); 692 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 693 has_ns ? "required" : "invalid", parent->name, kn->name)) 694 goto out_unlock; 695 696 if (kernfs_type(parent) != KERNFS_DIR) 697 goto out_unlock; 698 699 ret = -ENOENT; 700 if (parent->flags & KERNFS_EMPTY_DIR) 701 goto out_unlock; 702 703 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 704 goto out_unlock; 705 706 kn->hash = kernfs_name_hash(kn->name, kn->ns); 707 708 ret = kernfs_link_sibling(kn); 709 if (ret) 710 goto out_unlock; 711 712 /* Update timestamps on the parent */ 713 ps_iattr = parent->iattr; 714 if (ps_iattr) { 715 struct iattr *ps_iattrs = &ps_iattr->ia_iattr; 716 ktime_get_real_ts(&ps_iattrs->ia_ctime); 717 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime; 718 } 719 720 mutex_unlock(&kernfs_mutex); 721 722 /* 723 * Activate the new node unless CREATE_DEACTIVATED is requested. 724 * If not activated here, the kernfs user is responsible for 725 * activating the node with kernfs_activate(). A node which hasn't 726 * been activated is not visible to userland and its removal won't 727 * trigger deactivation. 728 */ 729 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 730 kernfs_activate(kn); 731 return 0; 732 733 out_unlock: 734 mutex_unlock(&kernfs_mutex); 735 return ret; 736 } 737 738 /** 739 * kernfs_find_ns - find kernfs_node with the given name 740 * @parent: kernfs_node to search under 741 * @name: name to look for 742 * @ns: the namespace tag to use 743 * 744 * Look for kernfs_node with name @name under @parent. Returns pointer to 745 * the found kernfs_node on success, %NULL on failure. 746 */ 747 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 748 const unsigned char *name, 749 const void *ns) 750 { 751 struct rb_node *node = parent->dir.children.rb_node; 752 bool has_ns = kernfs_ns_enabled(parent); 753 unsigned int hash; 754 755 lockdep_assert_held(&kernfs_mutex); 756 757 if (has_ns != (bool)ns) { 758 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 759 has_ns ? "required" : "invalid", parent->name, name); 760 return NULL; 761 } 762 763 hash = kernfs_name_hash(name, ns); 764 while (node) { 765 struct kernfs_node *kn; 766 int result; 767 768 kn = rb_to_kn(node); 769 result = kernfs_name_compare(hash, name, ns, kn); 770 if (result < 0) 771 node = node->rb_left; 772 else if (result > 0) 773 node = node->rb_right; 774 else 775 return kn; 776 } 777 return NULL; 778 } 779 780 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 781 const unsigned char *path, 782 const void *ns) 783 { 784 size_t len; 785 char *p, *name; 786 787 lockdep_assert_held(&kernfs_mutex); 788 789 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */ 790 spin_lock_irq(&kernfs_rename_lock); 791 792 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 793 794 if (len >= sizeof(kernfs_pr_cont_buf)) { 795 spin_unlock_irq(&kernfs_rename_lock); 796 return NULL; 797 } 798 799 p = kernfs_pr_cont_buf; 800 801 while ((name = strsep(&p, "/")) && parent) { 802 if (*name == '\0') 803 continue; 804 parent = kernfs_find_ns(parent, name, ns); 805 } 806 807 spin_unlock_irq(&kernfs_rename_lock); 808 809 return parent; 810 } 811 812 /** 813 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 814 * @parent: kernfs_node to search under 815 * @name: name to look for 816 * @ns: the namespace tag to use 817 * 818 * Look for kernfs_node with name @name under @parent and get a reference 819 * if found. This function may sleep and returns pointer to the found 820 * kernfs_node on success, %NULL on failure. 821 */ 822 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 823 const char *name, const void *ns) 824 { 825 struct kernfs_node *kn; 826 827 mutex_lock(&kernfs_mutex); 828 kn = kernfs_find_ns(parent, name, ns); 829 kernfs_get(kn); 830 mutex_unlock(&kernfs_mutex); 831 832 return kn; 833 } 834 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 835 836 /** 837 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 838 * @parent: kernfs_node to search under 839 * @path: path to look for 840 * @ns: the namespace tag to use 841 * 842 * Look for kernfs_node with path @path under @parent and get a reference 843 * if found. This function may sleep and returns pointer to the found 844 * kernfs_node on success, %NULL on failure. 845 */ 846 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 847 const char *path, const void *ns) 848 { 849 struct kernfs_node *kn; 850 851 mutex_lock(&kernfs_mutex); 852 kn = kernfs_walk_ns(parent, path, ns); 853 kernfs_get(kn); 854 mutex_unlock(&kernfs_mutex); 855 856 return kn; 857 } 858 859 /** 860 * kernfs_create_root - create a new kernfs hierarchy 861 * @scops: optional syscall operations for the hierarchy 862 * @flags: KERNFS_ROOT_* flags 863 * @priv: opaque data associated with the new directory 864 * 865 * Returns the root of the new hierarchy on success, ERR_PTR() value on 866 * failure. 867 */ 868 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 869 unsigned int flags, void *priv) 870 { 871 struct kernfs_root *root; 872 struct kernfs_node *kn; 873 874 root = kzalloc(sizeof(*root), GFP_KERNEL); 875 if (!root) 876 return ERR_PTR(-ENOMEM); 877 878 ida_init(&root->ino_ida); 879 INIT_LIST_HEAD(&root->supers); 880 881 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO, 882 KERNFS_DIR); 883 if (!kn) { 884 ida_destroy(&root->ino_ida); 885 kfree(root); 886 return ERR_PTR(-ENOMEM); 887 } 888 889 kn->priv = priv; 890 kn->dir.root = root; 891 892 root->syscall_ops = scops; 893 root->flags = flags; 894 root->kn = kn; 895 init_waitqueue_head(&root->deactivate_waitq); 896 897 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 898 kernfs_activate(kn); 899 900 return root; 901 } 902 903 /** 904 * kernfs_destroy_root - destroy a kernfs hierarchy 905 * @root: root of the hierarchy to destroy 906 * 907 * Destroy the hierarchy anchored at @root by removing all existing 908 * directories and destroying @root. 909 */ 910 void kernfs_destroy_root(struct kernfs_root *root) 911 { 912 kernfs_remove(root->kn); /* will also free @root */ 913 } 914 915 /** 916 * kernfs_create_dir_ns - create a directory 917 * @parent: parent in which to create a new directory 918 * @name: name of the new directory 919 * @mode: mode of the new directory 920 * @priv: opaque data associated with the new directory 921 * @ns: optional namespace tag of the directory 922 * 923 * Returns the created node on success, ERR_PTR() value on failure. 924 */ 925 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 926 const char *name, umode_t mode, 927 void *priv, const void *ns) 928 { 929 struct kernfs_node *kn; 930 int rc; 931 932 /* allocate */ 933 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR); 934 if (!kn) 935 return ERR_PTR(-ENOMEM); 936 937 kn->dir.root = parent->dir.root; 938 kn->ns = ns; 939 kn->priv = priv; 940 941 /* link in */ 942 rc = kernfs_add_one(kn); 943 if (!rc) 944 return kn; 945 946 kernfs_put(kn); 947 return ERR_PTR(rc); 948 } 949 950 /** 951 * kernfs_create_empty_dir - create an always empty directory 952 * @parent: parent in which to create a new directory 953 * @name: name of the new directory 954 * 955 * Returns the created node on success, ERR_PTR() value on failure. 956 */ 957 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 958 const char *name) 959 { 960 struct kernfs_node *kn; 961 int rc; 962 963 /* allocate */ 964 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR); 965 if (!kn) 966 return ERR_PTR(-ENOMEM); 967 968 kn->flags |= KERNFS_EMPTY_DIR; 969 kn->dir.root = parent->dir.root; 970 kn->ns = NULL; 971 kn->priv = NULL; 972 973 /* link in */ 974 rc = kernfs_add_one(kn); 975 if (!rc) 976 return kn; 977 978 kernfs_put(kn); 979 return ERR_PTR(rc); 980 } 981 982 static struct dentry *kernfs_iop_lookup(struct inode *dir, 983 struct dentry *dentry, 984 unsigned int flags) 985 { 986 struct dentry *ret; 987 struct kernfs_node *parent = dentry->d_parent->d_fsdata; 988 struct kernfs_node *kn; 989 struct inode *inode; 990 const void *ns = NULL; 991 992 mutex_lock(&kernfs_mutex); 993 994 if (kernfs_ns_enabled(parent)) 995 ns = kernfs_info(dir->i_sb)->ns; 996 997 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 998 999 /* no such entry */ 1000 if (!kn || !kernfs_active(kn)) { 1001 ret = NULL; 1002 goto out_unlock; 1003 } 1004 kernfs_get(kn); 1005 dentry->d_fsdata = kn; 1006 1007 /* attach dentry and inode */ 1008 inode = kernfs_get_inode(dir->i_sb, kn); 1009 if (!inode) { 1010 ret = ERR_PTR(-ENOMEM); 1011 goto out_unlock; 1012 } 1013 1014 /* instantiate and hash dentry */ 1015 ret = d_splice_alias(inode, dentry); 1016 out_unlock: 1017 mutex_unlock(&kernfs_mutex); 1018 return ret; 1019 } 1020 1021 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 1022 umode_t mode) 1023 { 1024 struct kernfs_node *parent = dir->i_private; 1025 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1026 int ret; 1027 1028 if (!scops || !scops->mkdir) 1029 return -EPERM; 1030 1031 if (!kernfs_get_active(parent)) 1032 return -ENODEV; 1033 1034 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1035 1036 kernfs_put_active(parent); 1037 return ret; 1038 } 1039 1040 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1041 { 1042 struct kernfs_node *kn = dentry->d_fsdata; 1043 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1044 int ret; 1045 1046 if (!scops || !scops->rmdir) 1047 return -EPERM; 1048 1049 if (!kernfs_get_active(kn)) 1050 return -ENODEV; 1051 1052 ret = scops->rmdir(kn); 1053 1054 kernfs_put_active(kn); 1055 return ret; 1056 } 1057 1058 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 1059 struct inode *new_dir, struct dentry *new_dentry, 1060 unsigned int flags) 1061 { 1062 struct kernfs_node *kn = old_dentry->d_fsdata; 1063 struct kernfs_node *new_parent = new_dir->i_private; 1064 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1065 int ret; 1066 1067 if (flags) 1068 return -EINVAL; 1069 1070 if (!scops || !scops->rename) 1071 return -EPERM; 1072 1073 if (!kernfs_get_active(kn)) 1074 return -ENODEV; 1075 1076 if (!kernfs_get_active(new_parent)) { 1077 kernfs_put_active(kn); 1078 return -ENODEV; 1079 } 1080 1081 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1082 1083 kernfs_put_active(new_parent); 1084 kernfs_put_active(kn); 1085 return ret; 1086 } 1087 1088 const struct inode_operations kernfs_dir_iops = { 1089 .lookup = kernfs_iop_lookup, 1090 .permission = kernfs_iop_permission, 1091 .setattr = kernfs_iop_setattr, 1092 .getattr = kernfs_iop_getattr, 1093 .listxattr = kernfs_iop_listxattr, 1094 1095 .mkdir = kernfs_iop_mkdir, 1096 .rmdir = kernfs_iop_rmdir, 1097 .rename = kernfs_iop_rename, 1098 }; 1099 1100 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1101 { 1102 struct kernfs_node *last; 1103 1104 while (true) { 1105 struct rb_node *rbn; 1106 1107 last = pos; 1108 1109 if (kernfs_type(pos) != KERNFS_DIR) 1110 break; 1111 1112 rbn = rb_first(&pos->dir.children); 1113 if (!rbn) 1114 break; 1115 1116 pos = rb_to_kn(rbn); 1117 } 1118 1119 return last; 1120 } 1121 1122 /** 1123 * kernfs_next_descendant_post - find the next descendant for post-order walk 1124 * @pos: the current position (%NULL to initiate traversal) 1125 * @root: kernfs_node whose descendants to walk 1126 * 1127 * Find the next descendant to visit for post-order traversal of @root's 1128 * descendants. @root is included in the iteration and the last node to be 1129 * visited. 1130 */ 1131 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1132 struct kernfs_node *root) 1133 { 1134 struct rb_node *rbn; 1135 1136 lockdep_assert_held(&kernfs_mutex); 1137 1138 /* if first iteration, visit leftmost descendant which may be root */ 1139 if (!pos) 1140 return kernfs_leftmost_descendant(root); 1141 1142 /* if we visited @root, we're done */ 1143 if (pos == root) 1144 return NULL; 1145 1146 /* if there's an unvisited sibling, visit its leftmost descendant */ 1147 rbn = rb_next(&pos->rb); 1148 if (rbn) 1149 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1150 1151 /* no sibling left, visit parent */ 1152 return pos->parent; 1153 } 1154 1155 /** 1156 * kernfs_activate - activate a node which started deactivated 1157 * @kn: kernfs_node whose subtree is to be activated 1158 * 1159 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1160 * needs to be explicitly activated. A node which hasn't been activated 1161 * isn't visible to userland and deactivation is skipped during its 1162 * removal. This is useful to construct atomic init sequences where 1163 * creation of multiple nodes should either succeed or fail atomically. 1164 * 1165 * The caller is responsible for ensuring that this function is not called 1166 * after kernfs_remove*() is invoked on @kn. 1167 */ 1168 void kernfs_activate(struct kernfs_node *kn) 1169 { 1170 struct kernfs_node *pos; 1171 1172 mutex_lock(&kernfs_mutex); 1173 1174 pos = NULL; 1175 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1176 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 1177 continue; 1178 1179 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1180 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1181 1182 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1183 pos->flags |= KERNFS_ACTIVATED; 1184 } 1185 1186 mutex_unlock(&kernfs_mutex); 1187 } 1188 1189 static void __kernfs_remove(struct kernfs_node *kn) 1190 { 1191 struct kernfs_node *pos; 1192 1193 lockdep_assert_held(&kernfs_mutex); 1194 1195 /* 1196 * Short-circuit if non-root @kn has already finished removal. 1197 * This is for kernfs_remove_self() which plays with active ref 1198 * after removal. 1199 */ 1200 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1201 return; 1202 1203 pr_debug("kernfs %s: removing\n", kn->name); 1204 1205 /* prevent any new usage under @kn by deactivating all nodes */ 1206 pos = NULL; 1207 while ((pos = kernfs_next_descendant_post(pos, kn))) 1208 if (kernfs_active(pos)) 1209 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1210 1211 /* deactivate and unlink the subtree node-by-node */ 1212 do { 1213 pos = kernfs_leftmost_descendant(kn); 1214 1215 /* 1216 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1217 * base ref could have been put by someone else by the time 1218 * the function returns. Make sure it doesn't go away 1219 * underneath us. 1220 */ 1221 kernfs_get(pos); 1222 1223 /* 1224 * Drain iff @kn was activated. This avoids draining and 1225 * its lockdep annotations for nodes which have never been 1226 * activated and allows embedding kernfs_remove() in create 1227 * error paths without worrying about draining. 1228 */ 1229 if (kn->flags & KERNFS_ACTIVATED) 1230 kernfs_drain(pos); 1231 else 1232 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1233 1234 /* 1235 * kernfs_unlink_sibling() succeeds once per node. Use it 1236 * to decide who's responsible for cleanups. 1237 */ 1238 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1239 struct kernfs_iattrs *ps_iattr = 1240 pos->parent ? pos->parent->iattr : NULL; 1241 1242 /* update timestamps on the parent */ 1243 if (ps_iattr) { 1244 ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime); 1245 ps_iattr->ia_iattr.ia_mtime = 1246 ps_iattr->ia_iattr.ia_ctime; 1247 } 1248 1249 kernfs_put(pos); 1250 } 1251 1252 kernfs_put(pos); 1253 } while (pos != kn); 1254 } 1255 1256 /** 1257 * kernfs_remove - remove a kernfs_node recursively 1258 * @kn: the kernfs_node to remove 1259 * 1260 * Remove @kn along with all its subdirectories and files. 1261 */ 1262 void kernfs_remove(struct kernfs_node *kn) 1263 { 1264 mutex_lock(&kernfs_mutex); 1265 __kernfs_remove(kn); 1266 mutex_unlock(&kernfs_mutex); 1267 } 1268 1269 /** 1270 * kernfs_break_active_protection - break out of active protection 1271 * @kn: the self kernfs_node 1272 * 1273 * The caller must be running off of a kernfs operation which is invoked 1274 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1275 * this function must also be matched with an invocation of 1276 * kernfs_unbreak_active_protection(). 1277 * 1278 * This function releases the active reference of @kn the caller is 1279 * holding. Once this function is called, @kn may be removed at any point 1280 * and the caller is solely responsible for ensuring that the objects it 1281 * dereferences are accessible. 1282 */ 1283 void kernfs_break_active_protection(struct kernfs_node *kn) 1284 { 1285 /* 1286 * Take out ourself out of the active ref dependency chain. If 1287 * we're called without an active ref, lockdep will complain. 1288 */ 1289 kernfs_put_active(kn); 1290 } 1291 1292 /** 1293 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1294 * @kn: the self kernfs_node 1295 * 1296 * If kernfs_break_active_protection() was called, this function must be 1297 * invoked before finishing the kernfs operation. Note that while this 1298 * function restores the active reference, it doesn't and can't actually 1299 * restore the active protection - @kn may already or be in the process of 1300 * being removed. Once kernfs_break_active_protection() is invoked, that 1301 * protection is irreversibly gone for the kernfs operation instance. 1302 * 1303 * While this function may be called at any point after 1304 * kernfs_break_active_protection() is invoked, its most useful location 1305 * would be right before the enclosing kernfs operation returns. 1306 */ 1307 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1308 { 1309 /* 1310 * @kn->active could be in any state; however, the increment we do 1311 * here will be undone as soon as the enclosing kernfs operation 1312 * finishes and this temporary bump can't break anything. If @kn 1313 * is alive, nothing changes. If @kn is being deactivated, the 1314 * soon-to-follow put will either finish deactivation or restore 1315 * deactivated state. If @kn is already removed, the temporary 1316 * bump is guaranteed to be gone before @kn is released. 1317 */ 1318 atomic_inc(&kn->active); 1319 if (kernfs_lockdep(kn)) 1320 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1321 } 1322 1323 /** 1324 * kernfs_remove_self - remove a kernfs_node from its own method 1325 * @kn: the self kernfs_node to remove 1326 * 1327 * The caller must be running off of a kernfs operation which is invoked 1328 * with an active reference - e.g. one of kernfs_ops. This can be used to 1329 * implement a file operation which deletes itself. 1330 * 1331 * For example, the "delete" file for a sysfs device directory can be 1332 * implemented by invoking kernfs_remove_self() on the "delete" file 1333 * itself. This function breaks the circular dependency of trying to 1334 * deactivate self while holding an active ref itself. It isn't necessary 1335 * to modify the usual removal path to use kernfs_remove_self(). The 1336 * "delete" implementation can simply invoke kernfs_remove_self() on self 1337 * before proceeding with the usual removal path. kernfs will ignore later 1338 * kernfs_remove() on self. 1339 * 1340 * kernfs_remove_self() can be called multiple times concurrently on the 1341 * same kernfs_node. Only the first one actually performs removal and 1342 * returns %true. All others will wait until the kernfs operation which 1343 * won self-removal finishes and return %false. Note that the losers wait 1344 * for the completion of not only the winning kernfs_remove_self() but also 1345 * the whole kernfs_ops which won the arbitration. This can be used to 1346 * guarantee, for example, all concurrent writes to a "delete" file to 1347 * finish only after the whole operation is complete. 1348 */ 1349 bool kernfs_remove_self(struct kernfs_node *kn) 1350 { 1351 bool ret; 1352 1353 mutex_lock(&kernfs_mutex); 1354 kernfs_break_active_protection(kn); 1355 1356 /* 1357 * SUICIDAL is used to arbitrate among competing invocations. Only 1358 * the first one will actually perform removal. When the removal 1359 * is complete, SUICIDED is set and the active ref is restored 1360 * while holding kernfs_mutex. The ones which lost arbitration 1361 * waits for SUICDED && drained which can happen only after the 1362 * enclosing kernfs operation which executed the winning instance 1363 * of kernfs_remove_self() finished. 1364 */ 1365 if (!(kn->flags & KERNFS_SUICIDAL)) { 1366 kn->flags |= KERNFS_SUICIDAL; 1367 __kernfs_remove(kn); 1368 kn->flags |= KERNFS_SUICIDED; 1369 ret = true; 1370 } else { 1371 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1372 DEFINE_WAIT(wait); 1373 1374 while (true) { 1375 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1376 1377 if ((kn->flags & KERNFS_SUICIDED) && 1378 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1379 break; 1380 1381 mutex_unlock(&kernfs_mutex); 1382 schedule(); 1383 mutex_lock(&kernfs_mutex); 1384 } 1385 finish_wait(waitq, &wait); 1386 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1387 ret = false; 1388 } 1389 1390 /* 1391 * This must be done while holding kernfs_mutex; otherwise, waiting 1392 * for SUICIDED && deactivated could finish prematurely. 1393 */ 1394 kernfs_unbreak_active_protection(kn); 1395 1396 mutex_unlock(&kernfs_mutex); 1397 return ret; 1398 } 1399 1400 /** 1401 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1402 * @parent: parent of the target 1403 * @name: name of the kernfs_node to remove 1404 * @ns: namespace tag of the kernfs_node to remove 1405 * 1406 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1407 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1408 */ 1409 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1410 const void *ns) 1411 { 1412 struct kernfs_node *kn; 1413 1414 if (!parent) { 1415 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1416 name); 1417 return -ENOENT; 1418 } 1419 1420 mutex_lock(&kernfs_mutex); 1421 1422 kn = kernfs_find_ns(parent, name, ns); 1423 if (kn) 1424 __kernfs_remove(kn); 1425 1426 mutex_unlock(&kernfs_mutex); 1427 1428 if (kn) 1429 return 0; 1430 else 1431 return -ENOENT; 1432 } 1433 1434 /** 1435 * kernfs_rename_ns - move and rename a kernfs_node 1436 * @kn: target node 1437 * @new_parent: new parent to put @sd under 1438 * @new_name: new name 1439 * @new_ns: new namespace tag 1440 */ 1441 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1442 const char *new_name, const void *new_ns) 1443 { 1444 struct kernfs_node *old_parent; 1445 const char *old_name = NULL; 1446 int error; 1447 1448 /* can't move or rename root */ 1449 if (!kn->parent) 1450 return -EINVAL; 1451 1452 mutex_lock(&kernfs_mutex); 1453 1454 error = -ENOENT; 1455 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1456 (new_parent->flags & KERNFS_EMPTY_DIR)) 1457 goto out; 1458 1459 error = 0; 1460 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1461 (strcmp(kn->name, new_name) == 0)) 1462 goto out; /* nothing to rename */ 1463 1464 error = -EEXIST; 1465 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1466 goto out; 1467 1468 /* rename kernfs_node */ 1469 if (strcmp(kn->name, new_name) != 0) { 1470 error = -ENOMEM; 1471 new_name = kstrdup_const(new_name, GFP_KERNEL); 1472 if (!new_name) 1473 goto out; 1474 } else { 1475 new_name = NULL; 1476 } 1477 1478 /* 1479 * Move to the appropriate place in the appropriate directories rbtree. 1480 */ 1481 kernfs_unlink_sibling(kn); 1482 kernfs_get(new_parent); 1483 1484 /* rename_lock protects ->parent and ->name accessors */ 1485 spin_lock_irq(&kernfs_rename_lock); 1486 1487 old_parent = kn->parent; 1488 kn->parent = new_parent; 1489 1490 kn->ns = new_ns; 1491 if (new_name) { 1492 old_name = kn->name; 1493 kn->name = new_name; 1494 } 1495 1496 spin_unlock_irq(&kernfs_rename_lock); 1497 1498 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1499 kernfs_link_sibling(kn); 1500 1501 kernfs_put(old_parent); 1502 kfree_const(old_name); 1503 1504 error = 0; 1505 out: 1506 mutex_unlock(&kernfs_mutex); 1507 return error; 1508 } 1509 1510 /* Relationship between s_mode and the DT_xxx types */ 1511 static inline unsigned char dt_type(struct kernfs_node *kn) 1512 { 1513 return (kn->mode >> 12) & 15; 1514 } 1515 1516 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1517 { 1518 kernfs_put(filp->private_data); 1519 return 0; 1520 } 1521 1522 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1523 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1524 { 1525 if (pos) { 1526 int valid = kernfs_active(pos) && 1527 pos->parent == parent && hash == pos->hash; 1528 kernfs_put(pos); 1529 if (!valid) 1530 pos = NULL; 1531 } 1532 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1533 struct rb_node *node = parent->dir.children.rb_node; 1534 while (node) { 1535 pos = rb_to_kn(node); 1536 1537 if (hash < pos->hash) 1538 node = node->rb_left; 1539 else if (hash > pos->hash) 1540 node = node->rb_right; 1541 else 1542 break; 1543 } 1544 } 1545 /* Skip over entries which are dying/dead or in the wrong namespace */ 1546 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1547 struct rb_node *node = rb_next(&pos->rb); 1548 if (!node) 1549 pos = NULL; 1550 else 1551 pos = rb_to_kn(node); 1552 } 1553 return pos; 1554 } 1555 1556 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1557 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1558 { 1559 pos = kernfs_dir_pos(ns, parent, ino, pos); 1560 if (pos) { 1561 do { 1562 struct rb_node *node = rb_next(&pos->rb); 1563 if (!node) 1564 pos = NULL; 1565 else 1566 pos = rb_to_kn(node); 1567 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1568 } 1569 return pos; 1570 } 1571 1572 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1573 { 1574 struct dentry *dentry = file->f_path.dentry; 1575 struct kernfs_node *parent = dentry->d_fsdata; 1576 struct kernfs_node *pos = file->private_data; 1577 const void *ns = NULL; 1578 1579 if (!dir_emit_dots(file, ctx)) 1580 return 0; 1581 mutex_lock(&kernfs_mutex); 1582 1583 if (kernfs_ns_enabled(parent)) 1584 ns = kernfs_info(dentry->d_sb)->ns; 1585 1586 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1587 pos; 1588 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1589 const char *name = pos->name; 1590 unsigned int type = dt_type(pos); 1591 int len = strlen(name); 1592 ino_t ino = pos->ino; 1593 1594 ctx->pos = pos->hash; 1595 file->private_data = pos; 1596 kernfs_get(pos); 1597 1598 mutex_unlock(&kernfs_mutex); 1599 if (!dir_emit(ctx, name, len, ino, type)) 1600 return 0; 1601 mutex_lock(&kernfs_mutex); 1602 } 1603 mutex_unlock(&kernfs_mutex); 1604 file->private_data = NULL; 1605 ctx->pos = INT_MAX; 1606 return 0; 1607 } 1608 1609 const struct file_operations kernfs_dir_fops = { 1610 .read = generic_read_dir, 1611 .iterate_shared = kernfs_fop_readdir, 1612 .release = kernfs_dir_fop_release, 1613 .llseek = generic_file_llseek, 1614 }; 1615