1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10 #include <linux/sched.h> 11 #include <linux/fs.h> 12 #include <linux/namei.h> 13 #include <linux/idr.h> 14 #include <linux/slab.h> 15 #include <linux/security.h> 16 #include <linux/hash.h> 17 18 #include "kernfs-internal.h" 19 20 DEFINE_MUTEX(kernfs_mutex); 21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 22 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */ 23 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 24 25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 26 27 static bool kernfs_active(struct kernfs_node *kn) 28 { 29 lockdep_assert_held(&kernfs_mutex); 30 return atomic_read(&kn->active) >= 0; 31 } 32 33 static bool kernfs_lockdep(struct kernfs_node *kn) 34 { 35 #ifdef CONFIG_DEBUG_LOCK_ALLOC 36 return kn->flags & KERNFS_LOCKDEP; 37 #else 38 return false; 39 #endif 40 } 41 42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 43 { 44 if (!kn) 45 return strlcpy(buf, "(null)", buflen); 46 47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 48 } 49 50 /* kernfs_node_depth - compute depth from @from to @to */ 51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 52 { 53 size_t depth = 0; 54 55 while (to->parent && to != from) { 56 depth++; 57 to = to->parent; 58 } 59 return depth; 60 } 61 62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 63 struct kernfs_node *b) 64 { 65 size_t da, db; 66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 67 68 if (ra != rb) 69 return NULL; 70 71 da = kernfs_depth(ra->kn, a); 72 db = kernfs_depth(rb->kn, b); 73 74 while (da > db) { 75 a = a->parent; 76 da--; 77 } 78 while (db > da) { 79 b = b->parent; 80 db--; 81 } 82 83 /* worst case b and a will be the same at root */ 84 while (b != a) { 85 b = b->parent; 86 a = a->parent; 87 } 88 89 return a; 90 } 91 92 /** 93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 94 * where kn_from is treated as root of the path. 95 * @kn_from: kernfs node which should be treated as root for the path 96 * @kn_to: kernfs node to which path is needed 97 * @buf: buffer to copy the path into 98 * @buflen: size of @buf 99 * 100 * We need to handle couple of scenarios here: 101 * [1] when @kn_from is an ancestor of @kn_to at some level 102 * kn_from: /n1/n2/n3 103 * kn_to: /n1/n2/n3/n4/n5 104 * result: /n4/n5 105 * 106 * [2] when @kn_from is on a different hierarchy and we need to find common 107 * ancestor between @kn_from and @kn_to. 108 * kn_from: /n1/n2/n3/n4 109 * kn_to: /n1/n2/n5 110 * result: /../../n5 111 * OR 112 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 113 * kn_to: /n1/n2/n3 [depth=3] 114 * result: /../.. 115 * 116 * [3] when @kn_to is NULL result will be "(null)" 117 * 118 * Returns the length of the full path. If the full length is equal to or 119 * greater than @buflen, @buf contains the truncated path with the trailing 120 * '\0'. On error, -errno is returned. 121 */ 122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 123 struct kernfs_node *kn_from, 124 char *buf, size_t buflen) 125 { 126 struct kernfs_node *kn, *common; 127 const char parent_str[] = "/.."; 128 size_t depth_from, depth_to, len = 0; 129 int i, j; 130 131 if (!kn_to) 132 return strlcpy(buf, "(null)", buflen); 133 134 if (!kn_from) 135 kn_from = kernfs_root(kn_to)->kn; 136 137 if (kn_from == kn_to) 138 return strlcpy(buf, "/", buflen); 139 140 if (!buf) 141 return -EINVAL; 142 143 common = kernfs_common_ancestor(kn_from, kn_to); 144 if (WARN_ON(!common)) 145 return -EINVAL; 146 147 depth_to = kernfs_depth(common, kn_to); 148 depth_from = kernfs_depth(common, kn_from); 149 150 buf[0] = '\0'; 151 152 for (i = 0; i < depth_from; i++) 153 len += strlcpy(buf + len, parent_str, 154 len < buflen ? buflen - len : 0); 155 156 /* Calculate how many bytes we need for the rest */ 157 for (i = depth_to - 1; i >= 0; i--) { 158 for (kn = kn_to, j = 0; j < i; j++) 159 kn = kn->parent; 160 len += strlcpy(buf + len, "/", 161 len < buflen ? buflen - len : 0); 162 len += strlcpy(buf + len, kn->name, 163 len < buflen ? buflen - len : 0); 164 } 165 166 return len; 167 } 168 169 /** 170 * kernfs_name - obtain the name of a given node 171 * @kn: kernfs_node of interest 172 * @buf: buffer to copy @kn's name into 173 * @buflen: size of @buf 174 * 175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 176 * similar to strlcpy(). It returns the length of @kn's name and if @buf 177 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 178 * 179 * Fills buffer with "(null)" if @kn is NULL. 180 * 181 * This function can be called from any context. 182 */ 183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 184 { 185 unsigned long flags; 186 int ret; 187 188 spin_lock_irqsave(&kernfs_rename_lock, flags); 189 ret = kernfs_name_locked(kn, buf, buflen); 190 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 191 return ret; 192 } 193 194 /** 195 * kernfs_path_from_node - build path of node @to relative to @from. 196 * @from: parent kernfs_node relative to which we need to build the path 197 * @to: kernfs_node of interest 198 * @buf: buffer to copy @to's path into 199 * @buflen: size of @buf 200 * 201 * Builds @to's path relative to @from in @buf. @from and @to must 202 * be on the same kernfs-root. If @from is not parent of @to, then a relative 203 * path (which includes '..'s) as needed to reach from @from to @to is 204 * returned. 205 * 206 * Returns the length of the full path. If the full length is equal to or 207 * greater than @buflen, @buf contains the truncated path with the trailing 208 * '\0'. On error, -errno is returned. 209 */ 210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 211 char *buf, size_t buflen) 212 { 213 unsigned long flags; 214 int ret; 215 216 spin_lock_irqsave(&kernfs_rename_lock, flags); 217 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 218 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 219 return ret; 220 } 221 EXPORT_SYMBOL_GPL(kernfs_path_from_node); 222 223 /** 224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 225 * @kn: kernfs_node of interest 226 * 227 * This function can be called from any context. 228 */ 229 void pr_cont_kernfs_name(struct kernfs_node *kn) 230 { 231 unsigned long flags; 232 233 spin_lock_irqsave(&kernfs_rename_lock, flags); 234 235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 236 pr_cont("%s", kernfs_pr_cont_buf); 237 238 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 239 } 240 241 /** 242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 243 * @kn: kernfs_node of interest 244 * 245 * This function can be called from any context. 246 */ 247 void pr_cont_kernfs_path(struct kernfs_node *kn) 248 { 249 unsigned long flags; 250 int sz; 251 252 spin_lock_irqsave(&kernfs_rename_lock, flags); 253 254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf, 255 sizeof(kernfs_pr_cont_buf)); 256 if (sz < 0) { 257 pr_cont("(error)"); 258 goto out; 259 } 260 261 if (sz >= sizeof(kernfs_pr_cont_buf)) { 262 pr_cont("(name too long)"); 263 goto out; 264 } 265 266 pr_cont("%s", kernfs_pr_cont_buf); 267 268 out: 269 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 270 } 271 272 /** 273 * kernfs_get_parent - determine the parent node and pin it 274 * @kn: kernfs_node of interest 275 * 276 * Determines @kn's parent, pins and returns it. This function can be 277 * called from any context. 278 */ 279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 280 { 281 struct kernfs_node *parent; 282 unsigned long flags; 283 284 spin_lock_irqsave(&kernfs_rename_lock, flags); 285 parent = kn->parent; 286 kernfs_get(parent); 287 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 288 289 return parent; 290 } 291 292 /** 293 * kernfs_name_hash 294 * @name: Null terminated string to hash 295 * @ns: Namespace tag to hash 296 * 297 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 298 */ 299 static unsigned int kernfs_name_hash(const char *name, const void *ns) 300 { 301 unsigned long hash = init_name_hash(ns); 302 unsigned int len = strlen(name); 303 while (len--) 304 hash = partial_name_hash(*name++, hash); 305 hash = end_name_hash(hash); 306 hash &= 0x7fffffffU; 307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 308 if (hash < 2) 309 hash += 2; 310 if (hash >= INT_MAX) 311 hash = INT_MAX - 1; 312 return hash; 313 } 314 315 static int kernfs_name_compare(unsigned int hash, const char *name, 316 const void *ns, const struct kernfs_node *kn) 317 { 318 if (hash < kn->hash) 319 return -1; 320 if (hash > kn->hash) 321 return 1; 322 if (ns < kn->ns) 323 return -1; 324 if (ns > kn->ns) 325 return 1; 326 return strcmp(name, kn->name); 327 } 328 329 static int kernfs_sd_compare(const struct kernfs_node *left, 330 const struct kernfs_node *right) 331 { 332 return kernfs_name_compare(left->hash, left->name, left->ns, right); 333 } 334 335 /** 336 * kernfs_link_sibling - link kernfs_node into sibling rbtree 337 * @kn: kernfs_node of interest 338 * 339 * Link @kn into its sibling rbtree which starts from 340 * @kn->parent->dir.children. 341 * 342 * Locking: 343 * mutex_lock(kernfs_mutex) 344 * 345 * RETURNS: 346 * 0 on susccess -EEXIST on failure. 347 */ 348 static int kernfs_link_sibling(struct kernfs_node *kn) 349 { 350 struct rb_node **node = &kn->parent->dir.children.rb_node; 351 struct rb_node *parent = NULL; 352 353 while (*node) { 354 struct kernfs_node *pos; 355 int result; 356 357 pos = rb_to_kn(*node); 358 parent = *node; 359 result = kernfs_sd_compare(kn, pos); 360 if (result < 0) 361 node = &pos->rb.rb_left; 362 else if (result > 0) 363 node = &pos->rb.rb_right; 364 else 365 return -EEXIST; 366 } 367 368 /* add new node and rebalance the tree */ 369 rb_link_node(&kn->rb, parent, node); 370 rb_insert_color(&kn->rb, &kn->parent->dir.children); 371 372 /* successfully added, account subdir number */ 373 if (kernfs_type(kn) == KERNFS_DIR) 374 kn->parent->dir.subdirs++; 375 376 return 0; 377 } 378 379 /** 380 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 381 * @kn: kernfs_node of interest 382 * 383 * Try to unlink @kn from its sibling rbtree which starts from 384 * kn->parent->dir.children. Returns %true if @kn was actually 385 * removed, %false if @kn wasn't on the rbtree. 386 * 387 * Locking: 388 * mutex_lock(kernfs_mutex) 389 */ 390 static bool kernfs_unlink_sibling(struct kernfs_node *kn) 391 { 392 if (RB_EMPTY_NODE(&kn->rb)) 393 return false; 394 395 if (kernfs_type(kn) == KERNFS_DIR) 396 kn->parent->dir.subdirs--; 397 398 rb_erase(&kn->rb, &kn->parent->dir.children); 399 RB_CLEAR_NODE(&kn->rb); 400 return true; 401 } 402 403 /** 404 * kernfs_get_active - get an active reference to kernfs_node 405 * @kn: kernfs_node to get an active reference to 406 * 407 * Get an active reference of @kn. This function is noop if @kn 408 * is NULL. 409 * 410 * RETURNS: 411 * Pointer to @kn on success, NULL on failure. 412 */ 413 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 414 { 415 if (unlikely(!kn)) 416 return NULL; 417 418 if (!atomic_inc_unless_negative(&kn->active)) 419 return NULL; 420 421 if (kernfs_lockdep(kn)) 422 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 423 return kn; 424 } 425 426 /** 427 * kernfs_put_active - put an active reference to kernfs_node 428 * @kn: kernfs_node to put an active reference to 429 * 430 * Put an active reference to @kn. This function is noop if @kn 431 * is NULL. 432 */ 433 void kernfs_put_active(struct kernfs_node *kn) 434 { 435 int v; 436 437 if (unlikely(!kn)) 438 return; 439 440 if (kernfs_lockdep(kn)) 441 rwsem_release(&kn->dep_map, 1, _RET_IP_); 442 v = atomic_dec_return(&kn->active); 443 if (likely(v != KN_DEACTIVATED_BIAS)) 444 return; 445 446 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 447 } 448 449 /** 450 * kernfs_drain - drain kernfs_node 451 * @kn: kernfs_node to drain 452 * 453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 454 * removers may invoke this function concurrently on @kn and all will 455 * return after draining is complete. 456 */ 457 static void kernfs_drain(struct kernfs_node *kn) 458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 459 { 460 struct kernfs_root *root = kernfs_root(kn); 461 462 lockdep_assert_held(&kernfs_mutex); 463 WARN_ON_ONCE(kernfs_active(kn)); 464 465 mutex_unlock(&kernfs_mutex); 466 467 if (kernfs_lockdep(kn)) { 468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 470 lock_contended(&kn->dep_map, _RET_IP_); 471 } 472 473 /* but everyone should wait for draining */ 474 wait_event(root->deactivate_waitq, 475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 476 477 if (kernfs_lockdep(kn)) { 478 lock_acquired(&kn->dep_map, _RET_IP_); 479 rwsem_release(&kn->dep_map, 1, _RET_IP_); 480 } 481 482 kernfs_drain_open_files(kn); 483 484 mutex_lock(&kernfs_mutex); 485 } 486 487 /** 488 * kernfs_get - get a reference count on a kernfs_node 489 * @kn: the target kernfs_node 490 */ 491 void kernfs_get(struct kernfs_node *kn) 492 { 493 if (kn) { 494 WARN_ON(!atomic_read(&kn->count)); 495 atomic_inc(&kn->count); 496 } 497 } 498 EXPORT_SYMBOL_GPL(kernfs_get); 499 500 /** 501 * kernfs_put - put a reference count on a kernfs_node 502 * @kn: the target kernfs_node 503 * 504 * Put a reference count of @kn and destroy it if it reached zero. 505 */ 506 void kernfs_put(struct kernfs_node *kn) 507 { 508 struct kernfs_node *parent; 509 struct kernfs_root *root; 510 511 /* 512 * kernfs_node is freed with ->count 0, kernfs_find_and_get_node_by_ino 513 * depends on this to filter reused stale node 514 */ 515 if (!kn || !atomic_dec_and_test(&kn->count)) 516 return; 517 root = kernfs_root(kn); 518 repeat: 519 /* 520 * Moving/renaming is always done while holding reference. 521 * kn->parent won't change beneath us. 522 */ 523 parent = kn->parent; 524 525 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 526 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 527 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 528 529 if (kernfs_type(kn) == KERNFS_LINK) 530 kernfs_put(kn->symlink.target_kn); 531 532 kfree_const(kn->name); 533 534 if (kn->iattr) { 535 simple_xattrs_free(&kn->iattr->xattrs); 536 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 537 } 538 spin_lock(&kernfs_idr_lock); 539 idr_remove(&root->ino_idr, kn->id.ino); 540 spin_unlock(&kernfs_idr_lock); 541 kmem_cache_free(kernfs_node_cache, kn); 542 543 kn = parent; 544 if (kn) { 545 if (atomic_dec_and_test(&kn->count)) 546 goto repeat; 547 } else { 548 /* just released the root kn, free @root too */ 549 idr_destroy(&root->ino_idr); 550 kfree(root); 551 } 552 } 553 EXPORT_SYMBOL_GPL(kernfs_put); 554 555 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 556 { 557 struct kernfs_node *kn; 558 559 if (flags & LOOKUP_RCU) 560 return -ECHILD; 561 562 /* Always perform fresh lookup for negatives */ 563 if (d_really_is_negative(dentry)) 564 goto out_bad_unlocked; 565 566 kn = kernfs_dentry_node(dentry); 567 mutex_lock(&kernfs_mutex); 568 569 /* The kernfs node has been deactivated */ 570 if (!kernfs_active(kn)) 571 goto out_bad; 572 573 /* The kernfs node has been moved? */ 574 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 575 goto out_bad; 576 577 /* The kernfs node has been renamed */ 578 if (strcmp(dentry->d_name.name, kn->name) != 0) 579 goto out_bad; 580 581 /* The kernfs node has been moved to a different namespace */ 582 if (kn->parent && kernfs_ns_enabled(kn->parent) && 583 kernfs_info(dentry->d_sb)->ns != kn->ns) 584 goto out_bad; 585 586 mutex_unlock(&kernfs_mutex); 587 return 1; 588 out_bad: 589 mutex_unlock(&kernfs_mutex); 590 out_bad_unlocked: 591 return 0; 592 } 593 594 const struct dentry_operations kernfs_dops = { 595 .d_revalidate = kernfs_dop_revalidate, 596 }; 597 598 /** 599 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 600 * @dentry: the dentry in question 601 * 602 * Return the kernfs_node associated with @dentry. If @dentry is not a 603 * kernfs one, %NULL is returned. 604 * 605 * While the returned kernfs_node will stay accessible as long as @dentry 606 * is accessible, the returned node can be in any state and the caller is 607 * fully responsible for determining what's accessible. 608 */ 609 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 610 { 611 if (dentry->d_sb->s_op == &kernfs_sops && 612 !d_really_is_negative(dentry)) 613 return kernfs_dentry_node(dentry); 614 return NULL; 615 } 616 617 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 618 struct kernfs_node *parent, 619 const char *name, umode_t mode, 620 kuid_t uid, kgid_t gid, 621 unsigned flags) 622 { 623 struct kernfs_node *kn; 624 u32 gen; 625 int cursor; 626 int ret; 627 628 name = kstrdup_const(name, GFP_KERNEL); 629 if (!name) 630 return NULL; 631 632 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 633 if (!kn) 634 goto err_out1; 635 636 idr_preload(GFP_KERNEL); 637 spin_lock(&kernfs_idr_lock); 638 cursor = idr_get_cursor(&root->ino_idr); 639 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 640 if (ret >= 0 && ret < cursor) 641 root->next_generation++; 642 gen = root->next_generation; 643 spin_unlock(&kernfs_idr_lock); 644 idr_preload_end(); 645 if (ret < 0) 646 goto err_out2; 647 kn->id.ino = ret; 648 kn->id.generation = gen; 649 650 /* 651 * set ino first. This RELEASE is paired with atomic_inc_not_zero in 652 * kernfs_find_and_get_node_by_ino 653 */ 654 atomic_set_release(&kn->count, 1); 655 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 656 RB_CLEAR_NODE(&kn->rb); 657 658 kn->name = name; 659 kn->mode = mode; 660 kn->flags = flags; 661 662 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 663 struct iattr iattr = { 664 .ia_valid = ATTR_UID | ATTR_GID, 665 .ia_uid = uid, 666 .ia_gid = gid, 667 }; 668 669 ret = __kernfs_setattr(kn, &iattr); 670 if (ret < 0) 671 goto err_out3; 672 } 673 674 if (parent) { 675 ret = security_kernfs_init_security(parent, kn); 676 if (ret) 677 goto err_out3; 678 } 679 680 return kn; 681 682 err_out3: 683 idr_remove(&root->ino_idr, kn->id.ino); 684 err_out2: 685 kmem_cache_free(kernfs_node_cache, kn); 686 err_out1: 687 kfree_const(name); 688 return NULL; 689 } 690 691 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 692 const char *name, umode_t mode, 693 kuid_t uid, kgid_t gid, 694 unsigned flags) 695 { 696 struct kernfs_node *kn; 697 698 kn = __kernfs_new_node(kernfs_root(parent), parent, 699 name, mode, uid, gid, flags); 700 if (kn) { 701 kernfs_get(parent); 702 kn->parent = parent; 703 } 704 return kn; 705 } 706 707 /* 708 * kernfs_find_and_get_node_by_ino - get kernfs_node from inode number 709 * @root: the kernfs root 710 * @ino: inode number 711 * 712 * RETURNS: 713 * NULL on failure. Return a kernfs node with reference counter incremented 714 */ 715 struct kernfs_node *kernfs_find_and_get_node_by_ino(struct kernfs_root *root, 716 unsigned int ino) 717 { 718 struct kernfs_node *kn; 719 720 rcu_read_lock(); 721 kn = idr_find(&root->ino_idr, ino); 722 if (!kn) 723 goto out; 724 725 /* 726 * Since kernfs_node is freed in RCU, it's possible an old node for ino 727 * is freed, but reused before RCU grace period. But a freed node (see 728 * kernfs_put) or an incompletedly initialized node (see 729 * __kernfs_new_node) should have 'count' 0. We can use this fact to 730 * filter out such node. 731 */ 732 if (!atomic_inc_not_zero(&kn->count)) { 733 kn = NULL; 734 goto out; 735 } 736 737 /* 738 * The node could be a new node or a reused node. If it's a new node, 739 * we are ok. If it's reused because of RCU (because of 740 * SLAB_TYPESAFE_BY_RCU), the __kernfs_new_node always sets its 'ino' 741 * before 'count'. So if 'count' is uptodate, 'ino' should be uptodate, 742 * hence we can use 'ino' to filter stale node. 743 */ 744 if (kn->id.ino != ino) 745 goto out; 746 rcu_read_unlock(); 747 748 return kn; 749 out: 750 rcu_read_unlock(); 751 kernfs_put(kn); 752 return NULL; 753 } 754 755 /** 756 * kernfs_add_one - add kernfs_node to parent without warning 757 * @kn: kernfs_node to be added 758 * 759 * The caller must already have initialized @kn->parent. This 760 * function increments nlink of the parent's inode if @kn is a 761 * directory and link into the children list of the parent. 762 * 763 * RETURNS: 764 * 0 on success, -EEXIST if entry with the given name already 765 * exists. 766 */ 767 int kernfs_add_one(struct kernfs_node *kn) 768 { 769 struct kernfs_node *parent = kn->parent; 770 struct kernfs_iattrs *ps_iattr; 771 bool has_ns; 772 int ret; 773 774 mutex_lock(&kernfs_mutex); 775 776 ret = -EINVAL; 777 has_ns = kernfs_ns_enabled(parent); 778 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 779 has_ns ? "required" : "invalid", parent->name, kn->name)) 780 goto out_unlock; 781 782 if (kernfs_type(parent) != KERNFS_DIR) 783 goto out_unlock; 784 785 ret = -ENOENT; 786 if (parent->flags & KERNFS_EMPTY_DIR) 787 goto out_unlock; 788 789 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 790 goto out_unlock; 791 792 kn->hash = kernfs_name_hash(kn->name, kn->ns); 793 794 ret = kernfs_link_sibling(kn); 795 if (ret) 796 goto out_unlock; 797 798 /* Update timestamps on the parent */ 799 ps_iattr = parent->iattr; 800 if (ps_iattr) { 801 ktime_get_real_ts64(&ps_iattr->ia_ctime); 802 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 803 } 804 805 mutex_unlock(&kernfs_mutex); 806 807 /* 808 * Activate the new node unless CREATE_DEACTIVATED is requested. 809 * If not activated here, the kernfs user is responsible for 810 * activating the node with kernfs_activate(). A node which hasn't 811 * been activated is not visible to userland and its removal won't 812 * trigger deactivation. 813 */ 814 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 815 kernfs_activate(kn); 816 return 0; 817 818 out_unlock: 819 mutex_unlock(&kernfs_mutex); 820 return ret; 821 } 822 823 /** 824 * kernfs_find_ns - find kernfs_node with the given name 825 * @parent: kernfs_node to search under 826 * @name: name to look for 827 * @ns: the namespace tag to use 828 * 829 * Look for kernfs_node with name @name under @parent. Returns pointer to 830 * the found kernfs_node on success, %NULL on failure. 831 */ 832 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 833 const unsigned char *name, 834 const void *ns) 835 { 836 struct rb_node *node = parent->dir.children.rb_node; 837 bool has_ns = kernfs_ns_enabled(parent); 838 unsigned int hash; 839 840 lockdep_assert_held(&kernfs_mutex); 841 842 if (has_ns != (bool)ns) { 843 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 844 has_ns ? "required" : "invalid", parent->name, name); 845 return NULL; 846 } 847 848 hash = kernfs_name_hash(name, ns); 849 while (node) { 850 struct kernfs_node *kn; 851 int result; 852 853 kn = rb_to_kn(node); 854 result = kernfs_name_compare(hash, name, ns, kn); 855 if (result < 0) 856 node = node->rb_left; 857 else if (result > 0) 858 node = node->rb_right; 859 else 860 return kn; 861 } 862 return NULL; 863 } 864 865 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 866 const unsigned char *path, 867 const void *ns) 868 { 869 size_t len; 870 char *p, *name; 871 872 lockdep_assert_held(&kernfs_mutex); 873 874 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */ 875 spin_lock_irq(&kernfs_rename_lock); 876 877 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 878 879 if (len >= sizeof(kernfs_pr_cont_buf)) { 880 spin_unlock_irq(&kernfs_rename_lock); 881 return NULL; 882 } 883 884 p = kernfs_pr_cont_buf; 885 886 while ((name = strsep(&p, "/")) && parent) { 887 if (*name == '\0') 888 continue; 889 parent = kernfs_find_ns(parent, name, ns); 890 } 891 892 spin_unlock_irq(&kernfs_rename_lock); 893 894 return parent; 895 } 896 897 /** 898 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 899 * @parent: kernfs_node to search under 900 * @name: name to look for 901 * @ns: the namespace tag to use 902 * 903 * Look for kernfs_node with name @name under @parent and get a reference 904 * if found. This function may sleep and returns pointer to the found 905 * kernfs_node on success, %NULL on failure. 906 */ 907 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 908 const char *name, const void *ns) 909 { 910 struct kernfs_node *kn; 911 912 mutex_lock(&kernfs_mutex); 913 kn = kernfs_find_ns(parent, name, ns); 914 kernfs_get(kn); 915 mutex_unlock(&kernfs_mutex); 916 917 return kn; 918 } 919 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 920 921 /** 922 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 923 * @parent: kernfs_node to search under 924 * @path: path to look for 925 * @ns: the namespace tag to use 926 * 927 * Look for kernfs_node with path @path under @parent and get a reference 928 * if found. This function may sleep and returns pointer to the found 929 * kernfs_node on success, %NULL on failure. 930 */ 931 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 932 const char *path, const void *ns) 933 { 934 struct kernfs_node *kn; 935 936 mutex_lock(&kernfs_mutex); 937 kn = kernfs_walk_ns(parent, path, ns); 938 kernfs_get(kn); 939 mutex_unlock(&kernfs_mutex); 940 941 return kn; 942 } 943 944 /** 945 * kernfs_create_root - create a new kernfs hierarchy 946 * @scops: optional syscall operations for the hierarchy 947 * @flags: KERNFS_ROOT_* flags 948 * @priv: opaque data associated with the new directory 949 * 950 * Returns the root of the new hierarchy on success, ERR_PTR() value on 951 * failure. 952 */ 953 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 954 unsigned int flags, void *priv) 955 { 956 struct kernfs_root *root; 957 struct kernfs_node *kn; 958 959 root = kzalloc(sizeof(*root), GFP_KERNEL); 960 if (!root) 961 return ERR_PTR(-ENOMEM); 962 963 idr_init(&root->ino_idr); 964 INIT_LIST_HEAD(&root->supers); 965 root->next_generation = 1; 966 967 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 968 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 969 KERNFS_DIR); 970 if (!kn) { 971 idr_destroy(&root->ino_idr); 972 kfree(root); 973 return ERR_PTR(-ENOMEM); 974 } 975 976 kn->priv = priv; 977 kn->dir.root = root; 978 979 root->syscall_ops = scops; 980 root->flags = flags; 981 root->kn = kn; 982 init_waitqueue_head(&root->deactivate_waitq); 983 984 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 985 kernfs_activate(kn); 986 987 return root; 988 } 989 990 /** 991 * kernfs_destroy_root - destroy a kernfs hierarchy 992 * @root: root of the hierarchy to destroy 993 * 994 * Destroy the hierarchy anchored at @root by removing all existing 995 * directories and destroying @root. 996 */ 997 void kernfs_destroy_root(struct kernfs_root *root) 998 { 999 kernfs_remove(root->kn); /* will also free @root */ 1000 } 1001 1002 /** 1003 * kernfs_create_dir_ns - create a directory 1004 * @parent: parent in which to create a new directory 1005 * @name: name of the new directory 1006 * @mode: mode of the new directory 1007 * @uid: uid of the new directory 1008 * @gid: gid of the new directory 1009 * @priv: opaque data associated with the new directory 1010 * @ns: optional namespace tag of the directory 1011 * 1012 * Returns the created node on success, ERR_PTR() value on failure. 1013 */ 1014 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1015 const char *name, umode_t mode, 1016 kuid_t uid, kgid_t gid, 1017 void *priv, const void *ns) 1018 { 1019 struct kernfs_node *kn; 1020 int rc; 1021 1022 /* allocate */ 1023 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1024 uid, gid, KERNFS_DIR); 1025 if (!kn) 1026 return ERR_PTR(-ENOMEM); 1027 1028 kn->dir.root = parent->dir.root; 1029 kn->ns = ns; 1030 kn->priv = priv; 1031 1032 /* link in */ 1033 rc = kernfs_add_one(kn); 1034 if (!rc) 1035 return kn; 1036 1037 kernfs_put(kn); 1038 return ERR_PTR(rc); 1039 } 1040 1041 /** 1042 * kernfs_create_empty_dir - create an always empty directory 1043 * @parent: parent in which to create a new directory 1044 * @name: name of the new directory 1045 * 1046 * Returns the created node on success, ERR_PTR() value on failure. 1047 */ 1048 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1049 const char *name) 1050 { 1051 struct kernfs_node *kn; 1052 int rc; 1053 1054 /* allocate */ 1055 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1056 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1057 if (!kn) 1058 return ERR_PTR(-ENOMEM); 1059 1060 kn->flags |= KERNFS_EMPTY_DIR; 1061 kn->dir.root = parent->dir.root; 1062 kn->ns = NULL; 1063 kn->priv = NULL; 1064 1065 /* link in */ 1066 rc = kernfs_add_one(kn); 1067 if (!rc) 1068 return kn; 1069 1070 kernfs_put(kn); 1071 return ERR_PTR(rc); 1072 } 1073 1074 static struct dentry *kernfs_iop_lookup(struct inode *dir, 1075 struct dentry *dentry, 1076 unsigned int flags) 1077 { 1078 struct dentry *ret; 1079 struct kernfs_node *parent = dir->i_private; 1080 struct kernfs_node *kn; 1081 struct inode *inode; 1082 const void *ns = NULL; 1083 1084 mutex_lock(&kernfs_mutex); 1085 1086 if (kernfs_ns_enabled(parent)) 1087 ns = kernfs_info(dir->i_sb)->ns; 1088 1089 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1090 1091 /* no such entry */ 1092 if (!kn || !kernfs_active(kn)) { 1093 ret = NULL; 1094 goto out_unlock; 1095 } 1096 1097 /* attach dentry and inode */ 1098 inode = kernfs_get_inode(dir->i_sb, kn); 1099 if (!inode) { 1100 ret = ERR_PTR(-ENOMEM); 1101 goto out_unlock; 1102 } 1103 1104 /* instantiate and hash dentry */ 1105 ret = d_splice_alias(inode, dentry); 1106 out_unlock: 1107 mutex_unlock(&kernfs_mutex); 1108 return ret; 1109 } 1110 1111 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 1112 umode_t mode) 1113 { 1114 struct kernfs_node *parent = dir->i_private; 1115 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1116 int ret; 1117 1118 if (!scops || !scops->mkdir) 1119 return -EPERM; 1120 1121 if (!kernfs_get_active(parent)) 1122 return -ENODEV; 1123 1124 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1125 1126 kernfs_put_active(parent); 1127 return ret; 1128 } 1129 1130 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1131 { 1132 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1133 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1134 int ret; 1135 1136 if (!scops || !scops->rmdir) 1137 return -EPERM; 1138 1139 if (!kernfs_get_active(kn)) 1140 return -ENODEV; 1141 1142 ret = scops->rmdir(kn); 1143 1144 kernfs_put_active(kn); 1145 return ret; 1146 } 1147 1148 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 1149 struct inode *new_dir, struct dentry *new_dentry, 1150 unsigned int flags) 1151 { 1152 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1153 struct kernfs_node *new_parent = new_dir->i_private; 1154 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1155 int ret; 1156 1157 if (flags) 1158 return -EINVAL; 1159 1160 if (!scops || !scops->rename) 1161 return -EPERM; 1162 1163 if (!kernfs_get_active(kn)) 1164 return -ENODEV; 1165 1166 if (!kernfs_get_active(new_parent)) { 1167 kernfs_put_active(kn); 1168 return -ENODEV; 1169 } 1170 1171 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1172 1173 kernfs_put_active(new_parent); 1174 kernfs_put_active(kn); 1175 return ret; 1176 } 1177 1178 const struct inode_operations kernfs_dir_iops = { 1179 .lookup = kernfs_iop_lookup, 1180 .permission = kernfs_iop_permission, 1181 .setattr = kernfs_iop_setattr, 1182 .getattr = kernfs_iop_getattr, 1183 .listxattr = kernfs_iop_listxattr, 1184 1185 .mkdir = kernfs_iop_mkdir, 1186 .rmdir = kernfs_iop_rmdir, 1187 .rename = kernfs_iop_rename, 1188 }; 1189 1190 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1191 { 1192 struct kernfs_node *last; 1193 1194 while (true) { 1195 struct rb_node *rbn; 1196 1197 last = pos; 1198 1199 if (kernfs_type(pos) != KERNFS_DIR) 1200 break; 1201 1202 rbn = rb_first(&pos->dir.children); 1203 if (!rbn) 1204 break; 1205 1206 pos = rb_to_kn(rbn); 1207 } 1208 1209 return last; 1210 } 1211 1212 /** 1213 * kernfs_next_descendant_post - find the next descendant for post-order walk 1214 * @pos: the current position (%NULL to initiate traversal) 1215 * @root: kernfs_node whose descendants to walk 1216 * 1217 * Find the next descendant to visit for post-order traversal of @root's 1218 * descendants. @root is included in the iteration and the last node to be 1219 * visited. 1220 */ 1221 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1222 struct kernfs_node *root) 1223 { 1224 struct rb_node *rbn; 1225 1226 lockdep_assert_held(&kernfs_mutex); 1227 1228 /* if first iteration, visit leftmost descendant which may be root */ 1229 if (!pos) 1230 return kernfs_leftmost_descendant(root); 1231 1232 /* if we visited @root, we're done */ 1233 if (pos == root) 1234 return NULL; 1235 1236 /* if there's an unvisited sibling, visit its leftmost descendant */ 1237 rbn = rb_next(&pos->rb); 1238 if (rbn) 1239 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1240 1241 /* no sibling left, visit parent */ 1242 return pos->parent; 1243 } 1244 1245 /** 1246 * kernfs_activate - activate a node which started deactivated 1247 * @kn: kernfs_node whose subtree is to be activated 1248 * 1249 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1250 * needs to be explicitly activated. A node which hasn't been activated 1251 * isn't visible to userland and deactivation is skipped during its 1252 * removal. This is useful to construct atomic init sequences where 1253 * creation of multiple nodes should either succeed or fail atomically. 1254 * 1255 * The caller is responsible for ensuring that this function is not called 1256 * after kernfs_remove*() is invoked on @kn. 1257 */ 1258 void kernfs_activate(struct kernfs_node *kn) 1259 { 1260 struct kernfs_node *pos; 1261 1262 mutex_lock(&kernfs_mutex); 1263 1264 pos = NULL; 1265 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1266 if (!pos || (pos->flags & KERNFS_ACTIVATED)) 1267 continue; 1268 1269 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1270 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1271 1272 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1273 pos->flags |= KERNFS_ACTIVATED; 1274 } 1275 1276 mutex_unlock(&kernfs_mutex); 1277 } 1278 1279 static void __kernfs_remove(struct kernfs_node *kn) 1280 { 1281 struct kernfs_node *pos; 1282 1283 lockdep_assert_held(&kernfs_mutex); 1284 1285 /* 1286 * Short-circuit if non-root @kn has already finished removal. 1287 * This is for kernfs_remove_self() which plays with active ref 1288 * after removal. 1289 */ 1290 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1291 return; 1292 1293 pr_debug("kernfs %s: removing\n", kn->name); 1294 1295 /* prevent any new usage under @kn by deactivating all nodes */ 1296 pos = NULL; 1297 while ((pos = kernfs_next_descendant_post(pos, kn))) 1298 if (kernfs_active(pos)) 1299 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1300 1301 /* deactivate and unlink the subtree node-by-node */ 1302 do { 1303 pos = kernfs_leftmost_descendant(kn); 1304 1305 /* 1306 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1307 * base ref could have been put by someone else by the time 1308 * the function returns. Make sure it doesn't go away 1309 * underneath us. 1310 */ 1311 kernfs_get(pos); 1312 1313 /* 1314 * Drain iff @kn was activated. This avoids draining and 1315 * its lockdep annotations for nodes which have never been 1316 * activated and allows embedding kernfs_remove() in create 1317 * error paths without worrying about draining. 1318 */ 1319 if (kn->flags & KERNFS_ACTIVATED) 1320 kernfs_drain(pos); 1321 else 1322 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1323 1324 /* 1325 * kernfs_unlink_sibling() succeeds once per node. Use it 1326 * to decide who's responsible for cleanups. 1327 */ 1328 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1329 struct kernfs_iattrs *ps_iattr = 1330 pos->parent ? pos->parent->iattr : NULL; 1331 1332 /* update timestamps on the parent */ 1333 if (ps_iattr) { 1334 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1335 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1336 } 1337 1338 kernfs_put(pos); 1339 } 1340 1341 kernfs_put(pos); 1342 } while (pos != kn); 1343 } 1344 1345 /** 1346 * kernfs_remove - remove a kernfs_node recursively 1347 * @kn: the kernfs_node to remove 1348 * 1349 * Remove @kn along with all its subdirectories and files. 1350 */ 1351 void kernfs_remove(struct kernfs_node *kn) 1352 { 1353 mutex_lock(&kernfs_mutex); 1354 __kernfs_remove(kn); 1355 mutex_unlock(&kernfs_mutex); 1356 } 1357 1358 /** 1359 * kernfs_break_active_protection - break out of active protection 1360 * @kn: the self kernfs_node 1361 * 1362 * The caller must be running off of a kernfs operation which is invoked 1363 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1364 * this function must also be matched with an invocation of 1365 * kernfs_unbreak_active_protection(). 1366 * 1367 * This function releases the active reference of @kn the caller is 1368 * holding. Once this function is called, @kn may be removed at any point 1369 * and the caller is solely responsible for ensuring that the objects it 1370 * dereferences are accessible. 1371 */ 1372 void kernfs_break_active_protection(struct kernfs_node *kn) 1373 { 1374 /* 1375 * Take out ourself out of the active ref dependency chain. If 1376 * we're called without an active ref, lockdep will complain. 1377 */ 1378 kernfs_put_active(kn); 1379 } 1380 1381 /** 1382 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1383 * @kn: the self kernfs_node 1384 * 1385 * If kernfs_break_active_protection() was called, this function must be 1386 * invoked before finishing the kernfs operation. Note that while this 1387 * function restores the active reference, it doesn't and can't actually 1388 * restore the active protection - @kn may already or be in the process of 1389 * being removed. Once kernfs_break_active_protection() is invoked, that 1390 * protection is irreversibly gone for the kernfs operation instance. 1391 * 1392 * While this function may be called at any point after 1393 * kernfs_break_active_protection() is invoked, its most useful location 1394 * would be right before the enclosing kernfs operation returns. 1395 */ 1396 void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1397 { 1398 /* 1399 * @kn->active could be in any state; however, the increment we do 1400 * here will be undone as soon as the enclosing kernfs operation 1401 * finishes and this temporary bump can't break anything. If @kn 1402 * is alive, nothing changes. If @kn is being deactivated, the 1403 * soon-to-follow put will either finish deactivation or restore 1404 * deactivated state. If @kn is already removed, the temporary 1405 * bump is guaranteed to be gone before @kn is released. 1406 */ 1407 atomic_inc(&kn->active); 1408 if (kernfs_lockdep(kn)) 1409 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1410 } 1411 1412 /** 1413 * kernfs_remove_self - remove a kernfs_node from its own method 1414 * @kn: the self kernfs_node to remove 1415 * 1416 * The caller must be running off of a kernfs operation which is invoked 1417 * with an active reference - e.g. one of kernfs_ops. This can be used to 1418 * implement a file operation which deletes itself. 1419 * 1420 * For example, the "delete" file for a sysfs device directory can be 1421 * implemented by invoking kernfs_remove_self() on the "delete" file 1422 * itself. This function breaks the circular dependency of trying to 1423 * deactivate self while holding an active ref itself. It isn't necessary 1424 * to modify the usual removal path to use kernfs_remove_self(). The 1425 * "delete" implementation can simply invoke kernfs_remove_self() on self 1426 * before proceeding with the usual removal path. kernfs will ignore later 1427 * kernfs_remove() on self. 1428 * 1429 * kernfs_remove_self() can be called multiple times concurrently on the 1430 * same kernfs_node. Only the first one actually performs removal and 1431 * returns %true. All others will wait until the kernfs operation which 1432 * won self-removal finishes and return %false. Note that the losers wait 1433 * for the completion of not only the winning kernfs_remove_self() but also 1434 * the whole kernfs_ops which won the arbitration. This can be used to 1435 * guarantee, for example, all concurrent writes to a "delete" file to 1436 * finish only after the whole operation is complete. 1437 */ 1438 bool kernfs_remove_self(struct kernfs_node *kn) 1439 { 1440 bool ret; 1441 1442 mutex_lock(&kernfs_mutex); 1443 kernfs_break_active_protection(kn); 1444 1445 /* 1446 * SUICIDAL is used to arbitrate among competing invocations. Only 1447 * the first one will actually perform removal. When the removal 1448 * is complete, SUICIDED is set and the active ref is restored 1449 * while holding kernfs_mutex. The ones which lost arbitration 1450 * waits for SUICDED && drained which can happen only after the 1451 * enclosing kernfs operation which executed the winning instance 1452 * of kernfs_remove_self() finished. 1453 */ 1454 if (!(kn->flags & KERNFS_SUICIDAL)) { 1455 kn->flags |= KERNFS_SUICIDAL; 1456 __kernfs_remove(kn); 1457 kn->flags |= KERNFS_SUICIDED; 1458 ret = true; 1459 } else { 1460 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1461 DEFINE_WAIT(wait); 1462 1463 while (true) { 1464 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1465 1466 if ((kn->flags & KERNFS_SUICIDED) && 1467 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1468 break; 1469 1470 mutex_unlock(&kernfs_mutex); 1471 schedule(); 1472 mutex_lock(&kernfs_mutex); 1473 } 1474 finish_wait(waitq, &wait); 1475 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1476 ret = false; 1477 } 1478 1479 /* 1480 * This must be done while holding kernfs_mutex; otherwise, waiting 1481 * for SUICIDED && deactivated could finish prematurely. 1482 */ 1483 kernfs_unbreak_active_protection(kn); 1484 1485 mutex_unlock(&kernfs_mutex); 1486 return ret; 1487 } 1488 1489 /** 1490 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1491 * @parent: parent of the target 1492 * @name: name of the kernfs_node to remove 1493 * @ns: namespace tag of the kernfs_node to remove 1494 * 1495 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1496 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1497 */ 1498 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1499 const void *ns) 1500 { 1501 struct kernfs_node *kn; 1502 1503 if (!parent) { 1504 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1505 name); 1506 return -ENOENT; 1507 } 1508 1509 mutex_lock(&kernfs_mutex); 1510 1511 kn = kernfs_find_ns(parent, name, ns); 1512 if (kn) 1513 __kernfs_remove(kn); 1514 1515 mutex_unlock(&kernfs_mutex); 1516 1517 if (kn) 1518 return 0; 1519 else 1520 return -ENOENT; 1521 } 1522 1523 /** 1524 * kernfs_rename_ns - move and rename a kernfs_node 1525 * @kn: target node 1526 * @new_parent: new parent to put @sd under 1527 * @new_name: new name 1528 * @new_ns: new namespace tag 1529 */ 1530 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1531 const char *new_name, const void *new_ns) 1532 { 1533 struct kernfs_node *old_parent; 1534 const char *old_name = NULL; 1535 int error; 1536 1537 /* can't move or rename root */ 1538 if (!kn->parent) 1539 return -EINVAL; 1540 1541 mutex_lock(&kernfs_mutex); 1542 1543 error = -ENOENT; 1544 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1545 (new_parent->flags & KERNFS_EMPTY_DIR)) 1546 goto out; 1547 1548 error = 0; 1549 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1550 (strcmp(kn->name, new_name) == 0)) 1551 goto out; /* nothing to rename */ 1552 1553 error = -EEXIST; 1554 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1555 goto out; 1556 1557 /* rename kernfs_node */ 1558 if (strcmp(kn->name, new_name) != 0) { 1559 error = -ENOMEM; 1560 new_name = kstrdup_const(new_name, GFP_KERNEL); 1561 if (!new_name) 1562 goto out; 1563 } else { 1564 new_name = NULL; 1565 } 1566 1567 /* 1568 * Move to the appropriate place in the appropriate directories rbtree. 1569 */ 1570 kernfs_unlink_sibling(kn); 1571 kernfs_get(new_parent); 1572 1573 /* rename_lock protects ->parent and ->name accessors */ 1574 spin_lock_irq(&kernfs_rename_lock); 1575 1576 old_parent = kn->parent; 1577 kn->parent = new_parent; 1578 1579 kn->ns = new_ns; 1580 if (new_name) { 1581 old_name = kn->name; 1582 kn->name = new_name; 1583 } 1584 1585 spin_unlock_irq(&kernfs_rename_lock); 1586 1587 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1588 kernfs_link_sibling(kn); 1589 1590 kernfs_put(old_parent); 1591 kfree_const(old_name); 1592 1593 error = 0; 1594 out: 1595 mutex_unlock(&kernfs_mutex); 1596 return error; 1597 } 1598 1599 /* Relationship between s_mode and the DT_xxx types */ 1600 static inline unsigned char dt_type(struct kernfs_node *kn) 1601 { 1602 return (kn->mode >> 12) & 15; 1603 } 1604 1605 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1606 { 1607 kernfs_put(filp->private_data); 1608 return 0; 1609 } 1610 1611 static struct kernfs_node *kernfs_dir_pos(const void *ns, 1612 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1613 { 1614 if (pos) { 1615 int valid = kernfs_active(pos) && 1616 pos->parent == parent && hash == pos->hash; 1617 kernfs_put(pos); 1618 if (!valid) 1619 pos = NULL; 1620 } 1621 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1622 struct rb_node *node = parent->dir.children.rb_node; 1623 while (node) { 1624 pos = rb_to_kn(node); 1625 1626 if (hash < pos->hash) 1627 node = node->rb_left; 1628 else if (hash > pos->hash) 1629 node = node->rb_right; 1630 else 1631 break; 1632 } 1633 } 1634 /* Skip over entries which are dying/dead or in the wrong namespace */ 1635 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1636 struct rb_node *node = rb_next(&pos->rb); 1637 if (!node) 1638 pos = NULL; 1639 else 1640 pos = rb_to_kn(node); 1641 } 1642 return pos; 1643 } 1644 1645 static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1646 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1647 { 1648 pos = kernfs_dir_pos(ns, parent, ino, pos); 1649 if (pos) { 1650 do { 1651 struct rb_node *node = rb_next(&pos->rb); 1652 if (!node) 1653 pos = NULL; 1654 else 1655 pos = rb_to_kn(node); 1656 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1657 } 1658 return pos; 1659 } 1660 1661 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1662 { 1663 struct dentry *dentry = file->f_path.dentry; 1664 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1665 struct kernfs_node *pos = file->private_data; 1666 const void *ns = NULL; 1667 1668 if (!dir_emit_dots(file, ctx)) 1669 return 0; 1670 mutex_lock(&kernfs_mutex); 1671 1672 if (kernfs_ns_enabled(parent)) 1673 ns = kernfs_info(dentry->d_sb)->ns; 1674 1675 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1676 pos; 1677 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1678 const char *name = pos->name; 1679 unsigned int type = dt_type(pos); 1680 int len = strlen(name); 1681 ino_t ino = pos->id.ino; 1682 1683 ctx->pos = pos->hash; 1684 file->private_data = pos; 1685 kernfs_get(pos); 1686 1687 mutex_unlock(&kernfs_mutex); 1688 if (!dir_emit(ctx, name, len, ino, type)) 1689 return 0; 1690 mutex_lock(&kernfs_mutex); 1691 } 1692 mutex_unlock(&kernfs_mutex); 1693 file->private_data = NULL; 1694 ctx->pos = INT_MAX; 1695 return 0; 1696 } 1697 1698 const struct file_operations kernfs_dir_fops = { 1699 .read = generic_read_dir, 1700 .iterate_shared = kernfs_fop_readdir, 1701 .release = kernfs_dir_fop_release, 1702 .llseek = generic_file_llseek, 1703 }; 1704