1 /* 2 * Copyright (C) International Business Machines Corp., 2000-2004 3 * Portions Copyright (C) Christoph Hellwig, 2001-2002 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 /* 21 * jfs_logmgr.c: log manager 22 * 23 * for related information, see transaction manager (jfs_txnmgr.c), and 24 * recovery manager (jfs_logredo.c). 25 * 26 * note: for detail, RTFS. 27 * 28 * log buffer manager: 29 * special purpose buffer manager supporting log i/o requirements. 30 * per log serial pageout of logpage 31 * queuing i/o requests and redrive i/o at iodone 32 * maintain current logpage buffer 33 * no caching since append only 34 * appropriate jfs buffer cache buffers as needed 35 * 36 * group commit: 37 * transactions which wrote COMMIT records in the same in-memory 38 * log page during the pageout of previous/current log page(s) are 39 * committed together by the pageout of the page. 40 * 41 * TBD lazy commit: 42 * transactions are committed asynchronously when the log page 43 * containing it COMMIT is paged out when it becomes full; 44 * 45 * serialization: 46 * . a per log lock serialize log write. 47 * . a per log lock serialize group commit. 48 * . a per log lock serialize log open/close; 49 * 50 * TBD log integrity: 51 * careful-write (ping-pong) of last logpage to recover from crash 52 * in overwrite. 53 * detection of split (out-of-order) write of physical sectors 54 * of last logpage via timestamp at end of each sector 55 * with its mirror data array at trailer). 56 * 57 * alternatives: 58 * lsn - 64-bit monotonically increasing integer vs 59 * 32-bit lspn and page eor. 60 */ 61 62 #include <linux/fs.h> 63 #include <linux/blkdev.h> 64 #include <linux/interrupt.h> 65 #include <linux/completion.h> 66 #include <linux/kthread.h> 67 #include <linux/buffer_head.h> /* for sync_blockdev() */ 68 #include <linux/bio.h> 69 #include <linux/freezer.h> 70 #include <linux/delay.h> 71 #include <linux/mutex.h> 72 #include "jfs_incore.h" 73 #include "jfs_filsys.h" 74 #include "jfs_metapage.h" 75 #include "jfs_superblock.h" 76 #include "jfs_txnmgr.h" 77 #include "jfs_debug.h" 78 79 80 /* 81 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread) 82 */ 83 static struct lbuf *log_redrive_list; 84 static DEFINE_SPINLOCK(log_redrive_lock); 85 86 87 /* 88 * log read/write serialization (per log) 89 */ 90 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock) 91 #define LOG_LOCK(log) mutex_lock(&((log)->loglock)) 92 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock)) 93 94 95 /* 96 * log group commit serialization (per log) 97 */ 98 99 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock) 100 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock) 101 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock) 102 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait) 103 104 /* 105 * log sync serialization (per log) 106 */ 107 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE) 108 #define LOGSYNC_BARRIER(logsize) ((logsize)/4) 109 /* 110 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE) 111 #define LOGSYNC_BARRIER(logsize) ((logsize)/2) 112 */ 113 114 115 /* 116 * log buffer cache synchronization 117 */ 118 static DEFINE_SPINLOCK(jfsLCacheLock); 119 120 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags) 121 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags) 122 123 /* 124 * See __SLEEP_COND in jfs_locks.h 125 */ 126 #define LCACHE_SLEEP_COND(wq, cond, flags) \ 127 do { \ 128 if (cond) \ 129 break; \ 130 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \ 131 } while (0) 132 133 #define LCACHE_WAKEUP(event) wake_up(event) 134 135 136 /* 137 * lbuf buffer cache (lCache) control 138 */ 139 /* log buffer manager pageout control (cumulative, inclusive) */ 140 #define lbmREAD 0x0001 141 #define lbmWRITE 0x0002 /* enqueue at tail of write queue; 142 * init pageout if at head of queue; 143 */ 144 #define lbmRELEASE 0x0004 /* remove from write queue 145 * at completion of pageout; 146 * do not free/recycle it yet: 147 * caller will free it; 148 */ 149 #define lbmSYNC 0x0008 /* do not return to freelist 150 * when removed from write queue; 151 */ 152 #define lbmFREE 0x0010 /* return to freelist 153 * at completion of pageout; 154 * the buffer may be recycled; 155 */ 156 #define lbmDONE 0x0020 157 #define lbmERROR 0x0040 158 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing 159 * of log page 160 */ 161 #define lbmDIRECT 0x0100 162 163 /* 164 * Global list of active external journals 165 */ 166 static LIST_HEAD(jfs_external_logs); 167 static struct jfs_log *dummy_log = NULL; 168 static DEFINE_MUTEX(jfs_log_mutex); 169 170 /* 171 * forward references 172 */ 173 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk, 174 struct lrd * lrd, struct tlock * tlck); 175 176 static int lmNextPage(struct jfs_log * log); 177 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi, 178 int activate); 179 180 static int open_inline_log(struct super_block *sb); 181 static int open_dummy_log(struct super_block *sb); 182 static int lbmLogInit(struct jfs_log * log); 183 static void lbmLogShutdown(struct jfs_log * log); 184 static struct lbuf *lbmAllocate(struct jfs_log * log, int); 185 static void lbmFree(struct lbuf * bp); 186 static void lbmfree(struct lbuf * bp); 187 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp); 188 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block); 189 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag); 190 static int lbmIOWait(struct lbuf * bp, int flag); 191 static bio_end_io_t lbmIODone; 192 static void lbmStartIO(struct lbuf * bp); 193 static void lmGCwrite(struct jfs_log * log, int cant_block); 194 static int lmLogSync(struct jfs_log * log, int hard_sync); 195 196 197 198 /* 199 * statistics 200 */ 201 #ifdef CONFIG_JFS_STATISTICS 202 static struct lmStat { 203 uint commit; /* # of commit */ 204 uint pagedone; /* # of page written */ 205 uint submitted; /* # of pages submitted */ 206 uint full_page; /* # of full pages submitted */ 207 uint partial_page; /* # of partial pages submitted */ 208 } lmStat; 209 #endif 210 211 212 /* 213 * NAME: lmLog() 214 * 215 * FUNCTION: write a log record; 216 * 217 * PARAMETER: 218 * 219 * RETURN: lsn - offset to the next log record to write (end-of-log); 220 * -1 - error; 221 * 222 * note: todo: log error handler 223 */ 224 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd, 225 struct tlock * tlck) 226 { 227 int lsn; 228 int diffp, difft; 229 struct metapage *mp = NULL; 230 unsigned long flags; 231 232 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p", 233 log, tblk, lrd, tlck); 234 235 LOG_LOCK(log); 236 237 /* log by (out-of-transaction) JFS ? */ 238 if (tblk == NULL) 239 goto writeRecord; 240 241 /* log from page ? */ 242 if (tlck == NULL || 243 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL) 244 goto writeRecord; 245 246 /* 247 * initialize/update page/transaction recovery lsn 248 */ 249 lsn = log->lsn; 250 251 LOGSYNC_LOCK(log, flags); 252 253 /* 254 * initialize page lsn if first log write of the page 255 */ 256 if (mp->lsn == 0) { 257 mp->log = log; 258 mp->lsn = lsn; 259 log->count++; 260 261 /* insert page at tail of logsynclist */ 262 list_add_tail(&mp->synclist, &log->synclist); 263 } 264 265 /* 266 * initialize/update lsn of tblock of the page 267 * 268 * transaction inherits oldest lsn of pages associated 269 * with allocation/deallocation of resources (their 270 * log records are used to reconstruct allocation map 271 * at recovery time: inode for inode allocation map, 272 * B+-tree index of extent descriptors for block 273 * allocation map); 274 * allocation map pages inherit transaction lsn at 275 * commit time to allow forwarding log syncpt past log 276 * records associated with allocation/deallocation of 277 * resources only after persistent map of these map pages 278 * have been updated and propagated to home. 279 */ 280 /* 281 * initialize transaction lsn: 282 */ 283 if (tblk->lsn == 0) { 284 /* inherit lsn of its first page logged */ 285 tblk->lsn = mp->lsn; 286 log->count++; 287 288 /* insert tblock after the page on logsynclist */ 289 list_add(&tblk->synclist, &mp->synclist); 290 } 291 /* 292 * update transaction lsn: 293 */ 294 else { 295 /* inherit oldest/smallest lsn of page */ 296 logdiff(diffp, mp->lsn, log); 297 logdiff(difft, tblk->lsn, log); 298 if (diffp < difft) { 299 /* update tblock lsn with page lsn */ 300 tblk->lsn = mp->lsn; 301 302 /* move tblock after page on logsynclist */ 303 list_move(&tblk->synclist, &mp->synclist); 304 } 305 } 306 307 LOGSYNC_UNLOCK(log, flags); 308 309 /* 310 * write the log record 311 */ 312 writeRecord: 313 lsn = lmWriteRecord(log, tblk, lrd, tlck); 314 315 /* 316 * forward log syncpt if log reached next syncpt trigger 317 */ 318 logdiff(diffp, lsn, log); 319 if (diffp >= log->nextsync) 320 lsn = lmLogSync(log, 0); 321 322 /* update end-of-log lsn */ 323 log->lsn = lsn; 324 325 LOG_UNLOCK(log); 326 327 /* return end-of-log address */ 328 return lsn; 329 } 330 331 /* 332 * NAME: lmWriteRecord() 333 * 334 * FUNCTION: move the log record to current log page 335 * 336 * PARAMETER: cd - commit descriptor 337 * 338 * RETURN: end-of-log address 339 * 340 * serialization: LOG_LOCK() held on entry/exit 341 */ 342 static int 343 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd, 344 struct tlock * tlck) 345 { 346 int lsn = 0; /* end-of-log address */ 347 struct lbuf *bp; /* dst log page buffer */ 348 struct logpage *lp; /* dst log page */ 349 caddr_t dst; /* destination address in log page */ 350 int dstoffset; /* end-of-log offset in log page */ 351 int freespace; /* free space in log page */ 352 caddr_t p; /* src meta-data page */ 353 caddr_t src; 354 int srclen; 355 int nbytes; /* number of bytes to move */ 356 int i; 357 int len; 358 struct linelock *linelock; 359 struct lv *lv; 360 struct lvd *lvd; 361 int l2linesize; 362 363 len = 0; 364 365 /* retrieve destination log page to write */ 366 bp = (struct lbuf *) log->bp; 367 lp = (struct logpage *) bp->l_ldata; 368 dstoffset = log->eor; 369 370 /* any log data to write ? */ 371 if (tlck == NULL) 372 goto moveLrd; 373 374 /* 375 * move log record data 376 */ 377 /* retrieve source meta-data page to log */ 378 if (tlck->flag & tlckPAGELOCK) { 379 p = (caddr_t) (tlck->mp->data); 380 linelock = (struct linelock *) & tlck->lock; 381 } 382 /* retrieve source in-memory inode to log */ 383 else if (tlck->flag & tlckINODELOCK) { 384 if (tlck->type & tlckDTREE) 385 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot; 386 else 387 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot; 388 linelock = (struct linelock *) & tlck->lock; 389 } 390 #ifdef _JFS_WIP 391 else if (tlck->flag & tlckINLINELOCK) { 392 393 inlinelock = (struct inlinelock *) & tlck; 394 p = (caddr_t) & inlinelock->pxd; 395 linelock = (struct linelock *) & tlck; 396 } 397 #endif /* _JFS_WIP */ 398 else { 399 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck); 400 return 0; /* Probably should trap */ 401 } 402 l2linesize = linelock->l2linesize; 403 404 moveData: 405 ASSERT(linelock->index <= linelock->maxcnt); 406 407 lv = linelock->lv; 408 for (i = 0; i < linelock->index; i++, lv++) { 409 if (lv->length == 0) 410 continue; 411 412 /* is page full ? */ 413 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) { 414 /* page become full: move on to next page */ 415 lmNextPage(log); 416 417 bp = log->bp; 418 lp = (struct logpage *) bp->l_ldata; 419 dstoffset = LOGPHDRSIZE; 420 } 421 422 /* 423 * move log vector data 424 */ 425 src = (u8 *) p + (lv->offset << l2linesize); 426 srclen = lv->length << l2linesize; 427 len += srclen; 428 while (srclen > 0) { 429 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset; 430 nbytes = min(freespace, srclen); 431 dst = (caddr_t) lp + dstoffset; 432 memcpy(dst, src, nbytes); 433 dstoffset += nbytes; 434 435 /* is page not full ? */ 436 if (dstoffset < LOGPSIZE - LOGPTLRSIZE) 437 break; 438 439 /* page become full: move on to next page */ 440 lmNextPage(log); 441 442 bp = (struct lbuf *) log->bp; 443 lp = (struct logpage *) bp->l_ldata; 444 dstoffset = LOGPHDRSIZE; 445 446 srclen -= nbytes; 447 src += nbytes; 448 } 449 450 /* 451 * move log vector descriptor 452 */ 453 len += 4; 454 lvd = (struct lvd *) ((caddr_t) lp + dstoffset); 455 lvd->offset = cpu_to_le16(lv->offset); 456 lvd->length = cpu_to_le16(lv->length); 457 dstoffset += 4; 458 jfs_info("lmWriteRecord: lv offset:%d length:%d", 459 lv->offset, lv->length); 460 } 461 462 if ((i = linelock->next)) { 463 linelock = (struct linelock *) lid_to_tlock(i); 464 goto moveData; 465 } 466 467 /* 468 * move log record descriptor 469 */ 470 moveLrd: 471 lrd->length = cpu_to_le16(len); 472 473 src = (caddr_t) lrd; 474 srclen = LOGRDSIZE; 475 476 while (srclen > 0) { 477 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset; 478 nbytes = min(freespace, srclen); 479 dst = (caddr_t) lp + dstoffset; 480 memcpy(dst, src, nbytes); 481 482 dstoffset += nbytes; 483 srclen -= nbytes; 484 485 /* are there more to move than freespace of page ? */ 486 if (srclen) 487 goto pageFull; 488 489 /* 490 * end of log record descriptor 491 */ 492 493 /* update last log record eor */ 494 log->eor = dstoffset; 495 bp->l_eor = dstoffset; 496 lsn = (log->page << L2LOGPSIZE) + dstoffset; 497 498 if (lrd->type & cpu_to_le16(LOG_COMMIT)) { 499 tblk->clsn = lsn; 500 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn, 501 bp->l_eor); 502 503 INCREMENT(lmStat.commit); /* # of commit */ 504 505 /* 506 * enqueue tblock for group commit: 507 * 508 * enqueue tblock of non-trivial/synchronous COMMIT 509 * at tail of group commit queue 510 * (trivial/asynchronous COMMITs are ignored by 511 * group commit.) 512 */ 513 LOGGC_LOCK(log); 514 515 /* init tblock gc state */ 516 tblk->flag = tblkGC_QUEUE; 517 tblk->bp = log->bp; 518 tblk->pn = log->page; 519 tblk->eor = log->eor; 520 521 /* enqueue transaction to commit queue */ 522 list_add_tail(&tblk->cqueue, &log->cqueue); 523 524 LOGGC_UNLOCK(log); 525 } 526 527 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x", 528 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset); 529 530 /* page not full ? */ 531 if (dstoffset < LOGPSIZE - LOGPTLRSIZE) 532 return lsn; 533 534 pageFull: 535 /* page become full: move on to next page */ 536 lmNextPage(log); 537 538 bp = (struct lbuf *) log->bp; 539 lp = (struct logpage *) bp->l_ldata; 540 dstoffset = LOGPHDRSIZE; 541 src += nbytes; 542 } 543 544 return lsn; 545 } 546 547 548 /* 549 * NAME: lmNextPage() 550 * 551 * FUNCTION: write current page and allocate next page. 552 * 553 * PARAMETER: log 554 * 555 * RETURN: 0 556 * 557 * serialization: LOG_LOCK() held on entry/exit 558 */ 559 static int lmNextPage(struct jfs_log * log) 560 { 561 struct logpage *lp; 562 int lspn; /* log sequence page number */ 563 int pn; /* current page number */ 564 struct lbuf *bp; 565 struct lbuf *nextbp; 566 struct tblock *tblk; 567 568 /* get current log page number and log sequence page number */ 569 pn = log->page; 570 bp = log->bp; 571 lp = (struct logpage *) bp->l_ldata; 572 lspn = le32_to_cpu(lp->h.page); 573 574 LOGGC_LOCK(log); 575 576 /* 577 * write or queue the full page at the tail of write queue 578 */ 579 /* get the tail tblk on commit queue */ 580 if (list_empty(&log->cqueue)) 581 tblk = NULL; 582 else 583 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue); 584 585 /* every tblk who has COMMIT record on the current page, 586 * and has not been committed, must be on commit queue 587 * since tblk is queued at commit queueu at the time 588 * of writing its COMMIT record on the page before 589 * page becomes full (even though the tblk thread 590 * who wrote COMMIT record may have been suspended 591 * currently); 592 */ 593 594 /* is page bound with outstanding tail tblk ? */ 595 if (tblk && tblk->pn == pn) { 596 /* mark tblk for end-of-page */ 597 tblk->flag |= tblkGC_EOP; 598 599 if (log->cflag & logGC_PAGEOUT) { 600 /* if page is not already on write queue, 601 * just enqueue (no lbmWRITE to prevent redrive) 602 * buffer to wqueue to ensure correct serial order 603 * of the pages since log pages will be added 604 * continuously 605 */ 606 if (bp->l_wqnext == NULL) 607 lbmWrite(log, bp, 0, 0); 608 } else { 609 /* 610 * No current GC leader, initiate group commit 611 */ 612 log->cflag |= logGC_PAGEOUT; 613 lmGCwrite(log, 0); 614 } 615 } 616 /* page is not bound with outstanding tblk: 617 * init write or mark it to be redriven (lbmWRITE) 618 */ 619 else { 620 /* finalize the page */ 621 bp->l_ceor = bp->l_eor; 622 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 623 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0); 624 } 625 LOGGC_UNLOCK(log); 626 627 /* 628 * allocate/initialize next page 629 */ 630 /* if log wraps, the first data page of log is 2 631 * (0 never used, 1 is superblock). 632 */ 633 log->page = (pn == log->size - 1) ? 2 : pn + 1; 634 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */ 635 636 /* allocate/initialize next log page buffer */ 637 nextbp = lbmAllocate(log, log->page); 638 nextbp->l_eor = log->eor; 639 log->bp = nextbp; 640 641 /* initialize next log page */ 642 lp = (struct logpage *) nextbp->l_ldata; 643 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1); 644 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE); 645 646 return 0; 647 } 648 649 650 /* 651 * NAME: lmGroupCommit() 652 * 653 * FUNCTION: group commit 654 * initiate pageout of the pages with COMMIT in the order of 655 * page number - redrive pageout of the page at the head of 656 * pageout queue until full page has been written. 657 * 658 * RETURN: 659 * 660 * NOTE: 661 * LOGGC_LOCK serializes log group commit queue, and 662 * transaction blocks on the commit queue. 663 * N.B. LOG_LOCK is NOT held during lmGroupCommit(). 664 */ 665 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk) 666 { 667 int rc = 0; 668 669 LOGGC_LOCK(log); 670 671 /* group committed already ? */ 672 if (tblk->flag & tblkGC_COMMITTED) { 673 if (tblk->flag & tblkGC_ERROR) 674 rc = -EIO; 675 676 LOGGC_UNLOCK(log); 677 return rc; 678 } 679 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc); 680 681 if (tblk->xflag & COMMIT_LAZY) 682 tblk->flag |= tblkGC_LAZY; 683 684 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) && 685 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag) 686 || jfs_tlocks_low)) { 687 /* 688 * No pageout in progress 689 * 690 * start group commit as its group leader. 691 */ 692 log->cflag |= logGC_PAGEOUT; 693 694 lmGCwrite(log, 0); 695 } 696 697 if (tblk->xflag & COMMIT_LAZY) { 698 /* 699 * Lazy transactions can leave now 700 */ 701 LOGGC_UNLOCK(log); 702 return 0; 703 } 704 705 /* lmGCwrite gives up LOGGC_LOCK, check again */ 706 707 if (tblk->flag & tblkGC_COMMITTED) { 708 if (tblk->flag & tblkGC_ERROR) 709 rc = -EIO; 710 711 LOGGC_UNLOCK(log); 712 return rc; 713 } 714 715 /* upcount transaction waiting for completion 716 */ 717 log->gcrtc++; 718 tblk->flag |= tblkGC_READY; 719 720 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED), 721 LOGGC_LOCK(log), LOGGC_UNLOCK(log)); 722 723 /* removed from commit queue */ 724 if (tblk->flag & tblkGC_ERROR) 725 rc = -EIO; 726 727 LOGGC_UNLOCK(log); 728 return rc; 729 } 730 731 /* 732 * NAME: lmGCwrite() 733 * 734 * FUNCTION: group commit write 735 * initiate write of log page, building a group of all transactions 736 * with commit records on that page. 737 * 738 * RETURN: None 739 * 740 * NOTE: 741 * LOGGC_LOCK must be held by caller. 742 * N.B. LOG_LOCK is NOT held during lmGroupCommit(). 743 */ 744 static void lmGCwrite(struct jfs_log * log, int cant_write) 745 { 746 struct lbuf *bp; 747 struct logpage *lp; 748 int gcpn; /* group commit page number */ 749 struct tblock *tblk; 750 struct tblock *xtblk = NULL; 751 752 /* 753 * build the commit group of a log page 754 * 755 * scan commit queue and make a commit group of all 756 * transactions with COMMIT records on the same log page. 757 */ 758 /* get the head tblk on the commit queue */ 759 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn; 760 761 list_for_each_entry(tblk, &log->cqueue, cqueue) { 762 if (tblk->pn != gcpn) 763 break; 764 765 xtblk = tblk; 766 767 /* state transition: (QUEUE, READY) -> COMMIT */ 768 tblk->flag |= tblkGC_COMMIT; 769 } 770 tblk = xtblk; /* last tblk of the page */ 771 772 /* 773 * pageout to commit transactions on the log page. 774 */ 775 bp = (struct lbuf *) tblk->bp; 776 lp = (struct logpage *) bp->l_ldata; 777 /* is page already full ? */ 778 if (tblk->flag & tblkGC_EOP) { 779 /* mark page to free at end of group commit of the page */ 780 tblk->flag &= ~tblkGC_EOP; 781 tblk->flag |= tblkGC_FREE; 782 bp->l_ceor = bp->l_eor; 783 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 784 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC, 785 cant_write); 786 INCREMENT(lmStat.full_page); 787 } 788 /* page is not yet full */ 789 else { 790 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */ 791 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 792 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write); 793 INCREMENT(lmStat.partial_page); 794 } 795 } 796 797 /* 798 * NAME: lmPostGC() 799 * 800 * FUNCTION: group commit post-processing 801 * Processes transactions after their commit records have been written 802 * to disk, redriving log I/O if necessary. 803 * 804 * RETURN: None 805 * 806 * NOTE: 807 * This routine is called a interrupt time by lbmIODone 808 */ 809 static void lmPostGC(struct lbuf * bp) 810 { 811 unsigned long flags; 812 struct jfs_log *log = bp->l_log; 813 struct logpage *lp; 814 struct tblock *tblk, *temp; 815 816 //LOGGC_LOCK(log); 817 spin_lock_irqsave(&log->gclock, flags); 818 /* 819 * current pageout of group commit completed. 820 * 821 * remove/wakeup transactions from commit queue who were 822 * group committed with the current log page 823 */ 824 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) { 825 if (!(tblk->flag & tblkGC_COMMIT)) 826 break; 827 /* if transaction was marked GC_COMMIT then 828 * it has been shipped in the current pageout 829 * and made it to disk - it is committed. 830 */ 831 832 if (bp->l_flag & lbmERROR) 833 tblk->flag |= tblkGC_ERROR; 834 835 /* remove it from the commit queue */ 836 list_del(&tblk->cqueue); 837 tblk->flag &= ~tblkGC_QUEUE; 838 839 if (tblk == log->flush_tblk) { 840 /* we can stop flushing the log now */ 841 clear_bit(log_FLUSH, &log->flag); 842 log->flush_tblk = NULL; 843 } 844 845 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk, 846 tblk->flag); 847 848 if (!(tblk->xflag & COMMIT_FORCE)) 849 /* 850 * Hand tblk over to lazy commit thread 851 */ 852 txLazyUnlock(tblk); 853 else { 854 /* state transition: COMMIT -> COMMITTED */ 855 tblk->flag |= tblkGC_COMMITTED; 856 857 if (tblk->flag & tblkGC_READY) 858 log->gcrtc--; 859 860 LOGGC_WAKEUP(tblk); 861 } 862 863 /* was page full before pageout ? 864 * (and this is the last tblk bound with the page) 865 */ 866 if (tblk->flag & tblkGC_FREE) 867 lbmFree(bp); 868 /* did page become full after pageout ? 869 * (and this is the last tblk bound with the page) 870 */ 871 else if (tblk->flag & tblkGC_EOP) { 872 /* finalize the page */ 873 lp = (struct logpage *) bp->l_ldata; 874 bp->l_ceor = bp->l_eor; 875 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 876 jfs_info("lmPostGC: calling lbmWrite"); 877 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 878 1); 879 } 880 881 } 882 883 /* are there any transactions who have entered lnGroupCommit() 884 * (whose COMMITs are after that of the last log page written. 885 * They are waiting for new group commit (above at (SLEEP 1)) 886 * or lazy transactions are on a full (queued) log page, 887 * select the latest ready transaction as new group leader and 888 * wake her up to lead her group. 889 */ 890 if ((!list_empty(&log->cqueue)) && 891 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) || 892 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low)) 893 /* 894 * Call lmGCwrite with new group leader 895 */ 896 lmGCwrite(log, 1); 897 898 /* no transaction are ready yet (transactions are only just 899 * queued (GC_QUEUE) and not entered for group commit yet). 900 * the first transaction entering group commit 901 * will elect herself as new group leader. 902 */ 903 else 904 log->cflag &= ~logGC_PAGEOUT; 905 906 //LOGGC_UNLOCK(log); 907 spin_unlock_irqrestore(&log->gclock, flags); 908 return; 909 } 910 911 /* 912 * NAME: lmLogSync() 913 * 914 * FUNCTION: write log SYNCPT record for specified log 915 * if new sync address is available 916 * (normally the case if sync() is executed by back-ground 917 * process). 918 * calculate new value of i_nextsync which determines when 919 * this code is called again. 920 * 921 * PARAMETERS: log - log structure 922 * hard_sync - 1 to force all metadata to be written 923 * 924 * RETURN: 0 925 * 926 * serialization: LOG_LOCK() held on entry/exit 927 */ 928 static int lmLogSync(struct jfs_log * log, int hard_sync) 929 { 930 int logsize; 931 int written; /* written since last syncpt */ 932 int free; /* free space left available */ 933 int delta; /* additional delta to write normally */ 934 int more; /* additional write granted */ 935 struct lrd lrd; 936 int lsn; 937 struct logsyncblk *lp; 938 struct jfs_sb_info *sbi; 939 unsigned long flags; 940 941 /* push dirty metapages out to disk */ 942 if (hard_sync) 943 list_for_each_entry(sbi, &log->sb_list, log_list) { 944 filemap_fdatawrite(sbi->ipbmap->i_mapping); 945 filemap_fdatawrite(sbi->ipimap->i_mapping); 946 filemap_fdatawrite(sbi->direct_inode->i_mapping); 947 } 948 else 949 list_for_each_entry(sbi, &log->sb_list, log_list) { 950 filemap_flush(sbi->ipbmap->i_mapping); 951 filemap_flush(sbi->ipimap->i_mapping); 952 filemap_flush(sbi->direct_inode->i_mapping); 953 } 954 955 /* 956 * forward syncpt 957 */ 958 /* if last sync is same as last syncpt, 959 * invoke sync point forward processing to update sync. 960 */ 961 962 if (log->sync == log->syncpt) { 963 LOGSYNC_LOCK(log, flags); 964 if (list_empty(&log->synclist)) 965 log->sync = log->lsn; 966 else { 967 lp = list_entry(log->synclist.next, 968 struct logsyncblk, synclist); 969 log->sync = lp->lsn; 970 } 971 LOGSYNC_UNLOCK(log, flags); 972 973 } 974 975 /* if sync is different from last syncpt, 976 * write a SYNCPT record with syncpt = sync. 977 * reset syncpt = sync 978 */ 979 if (log->sync != log->syncpt) { 980 lrd.logtid = 0; 981 lrd.backchain = 0; 982 lrd.type = cpu_to_le16(LOG_SYNCPT); 983 lrd.length = 0; 984 lrd.log.syncpt.sync = cpu_to_le32(log->sync); 985 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 986 987 log->syncpt = log->sync; 988 } else 989 lsn = log->lsn; 990 991 /* 992 * setup next syncpt trigger (SWAG) 993 */ 994 logsize = log->logsize; 995 996 logdiff(written, lsn, log); 997 free = logsize - written; 998 delta = LOGSYNC_DELTA(logsize); 999 more = min(free / 2, delta); 1000 if (more < 2 * LOGPSIZE) { 1001 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n"); 1002 /* 1003 * log wrapping 1004 * 1005 * option 1 - panic ? No.! 1006 * option 2 - shutdown file systems 1007 * associated with log ? 1008 * option 3 - extend log ? 1009 */ 1010 /* 1011 * option 4 - second chance 1012 * 1013 * mark log wrapped, and continue. 1014 * when all active transactions are completed, 1015 * mark log vaild for recovery. 1016 * if crashed during invalid state, log state 1017 * implies invald log, forcing fsck(). 1018 */ 1019 /* mark log state log wrap in log superblock */ 1020 /* log->state = LOGWRAP; */ 1021 1022 /* reset sync point computation */ 1023 log->syncpt = log->sync = lsn; 1024 log->nextsync = delta; 1025 } else 1026 /* next syncpt trigger = written + more */ 1027 log->nextsync = written + more; 1028 1029 /* if number of bytes written from last sync point is more 1030 * than 1/4 of the log size, stop new transactions from 1031 * starting until all current transactions are completed 1032 * by setting syncbarrier flag. 1033 */ 1034 if (!test_bit(log_SYNCBARRIER, &log->flag) && 1035 (written > LOGSYNC_BARRIER(logsize)) && log->active) { 1036 set_bit(log_SYNCBARRIER, &log->flag); 1037 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn, 1038 log->syncpt); 1039 /* 1040 * We may have to initiate group commit 1041 */ 1042 jfs_flush_journal(log, 0); 1043 } 1044 1045 return lsn; 1046 } 1047 1048 /* 1049 * NAME: jfs_syncpt 1050 * 1051 * FUNCTION: write log SYNCPT record for specified log 1052 * 1053 * PARAMETERS: log - log structure 1054 * hard_sync - set to 1 to force metadata to be written 1055 */ 1056 void jfs_syncpt(struct jfs_log *log, int hard_sync) 1057 { LOG_LOCK(log); 1058 lmLogSync(log, hard_sync); 1059 LOG_UNLOCK(log); 1060 } 1061 1062 /* 1063 * NAME: lmLogOpen() 1064 * 1065 * FUNCTION: open the log on first open; 1066 * insert filesystem in the active list of the log. 1067 * 1068 * PARAMETER: ipmnt - file system mount inode 1069 * iplog - log inode (out) 1070 * 1071 * RETURN: 1072 * 1073 * serialization: 1074 */ 1075 int lmLogOpen(struct super_block *sb) 1076 { 1077 int rc; 1078 struct block_device *bdev; 1079 struct jfs_log *log; 1080 struct jfs_sb_info *sbi = JFS_SBI(sb); 1081 1082 if (sbi->flag & JFS_NOINTEGRITY) 1083 return open_dummy_log(sb); 1084 1085 if (sbi->mntflag & JFS_INLINELOG) 1086 return open_inline_log(sb); 1087 1088 mutex_lock(&jfs_log_mutex); 1089 list_for_each_entry(log, &jfs_external_logs, journal_list) { 1090 if (log->bdev->bd_dev == sbi->logdev) { 1091 if (memcmp(log->uuid, sbi->loguuid, 1092 sizeof(log->uuid))) { 1093 jfs_warn("wrong uuid on JFS journal\n"); 1094 mutex_unlock(&jfs_log_mutex); 1095 return -EINVAL; 1096 } 1097 /* 1098 * add file system to log active file system list 1099 */ 1100 if ((rc = lmLogFileSystem(log, sbi, 1))) { 1101 mutex_unlock(&jfs_log_mutex); 1102 return rc; 1103 } 1104 goto journal_found; 1105 } 1106 } 1107 1108 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) { 1109 mutex_unlock(&jfs_log_mutex); 1110 return -ENOMEM; 1111 } 1112 INIT_LIST_HEAD(&log->sb_list); 1113 init_waitqueue_head(&log->syncwait); 1114 1115 /* 1116 * external log as separate logical volume 1117 * 1118 * file systems to log may have n-to-1 relationship; 1119 */ 1120 1121 bdev = open_by_devnum(sbi->logdev, FMODE_READ|FMODE_WRITE); 1122 if (IS_ERR(bdev)) { 1123 rc = -PTR_ERR(bdev); 1124 goto free; 1125 } 1126 1127 if ((rc = bd_claim(bdev, log))) { 1128 goto close; 1129 } 1130 1131 log->bdev = bdev; 1132 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid)); 1133 1134 /* 1135 * initialize log: 1136 */ 1137 if ((rc = lmLogInit(log))) 1138 goto unclaim; 1139 1140 list_add(&log->journal_list, &jfs_external_logs); 1141 1142 /* 1143 * add file system to log active file system list 1144 */ 1145 if ((rc = lmLogFileSystem(log, sbi, 1))) 1146 goto shutdown; 1147 1148 journal_found: 1149 LOG_LOCK(log); 1150 list_add(&sbi->log_list, &log->sb_list); 1151 sbi->log = log; 1152 LOG_UNLOCK(log); 1153 1154 mutex_unlock(&jfs_log_mutex); 1155 return 0; 1156 1157 /* 1158 * unwind on error 1159 */ 1160 shutdown: /* unwind lbmLogInit() */ 1161 list_del(&log->journal_list); 1162 lbmLogShutdown(log); 1163 1164 unclaim: 1165 bd_release(bdev); 1166 1167 close: /* close external log device */ 1168 blkdev_put(bdev); 1169 1170 free: /* free log descriptor */ 1171 mutex_unlock(&jfs_log_mutex); 1172 kfree(log); 1173 1174 jfs_warn("lmLogOpen: exit(%d)", rc); 1175 return rc; 1176 } 1177 1178 static int open_inline_log(struct super_block *sb) 1179 { 1180 struct jfs_log *log; 1181 int rc; 1182 1183 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) 1184 return -ENOMEM; 1185 INIT_LIST_HEAD(&log->sb_list); 1186 init_waitqueue_head(&log->syncwait); 1187 1188 set_bit(log_INLINELOG, &log->flag); 1189 log->bdev = sb->s_bdev; 1190 log->base = addressPXD(&JFS_SBI(sb)->logpxd); 1191 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >> 1192 (L2LOGPSIZE - sb->s_blocksize_bits); 1193 log->l2bsize = sb->s_blocksize_bits; 1194 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits); 1195 1196 /* 1197 * initialize log. 1198 */ 1199 if ((rc = lmLogInit(log))) { 1200 kfree(log); 1201 jfs_warn("lmLogOpen: exit(%d)", rc); 1202 return rc; 1203 } 1204 1205 list_add(&JFS_SBI(sb)->log_list, &log->sb_list); 1206 JFS_SBI(sb)->log = log; 1207 1208 return rc; 1209 } 1210 1211 static int open_dummy_log(struct super_block *sb) 1212 { 1213 int rc; 1214 1215 mutex_lock(&jfs_log_mutex); 1216 if (!dummy_log) { 1217 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL); 1218 if (!dummy_log) { 1219 mutex_unlock(&jfs_log_mutex); 1220 return -ENOMEM; 1221 } 1222 INIT_LIST_HEAD(&dummy_log->sb_list); 1223 init_waitqueue_head(&dummy_log->syncwait); 1224 dummy_log->no_integrity = 1; 1225 /* Make up some stuff */ 1226 dummy_log->base = 0; 1227 dummy_log->size = 1024; 1228 rc = lmLogInit(dummy_log); 1229 if (rc) { 1230 kfree(dummy_log); 1231 dummy_log = NULL; 1232 mutex_unlock(&jfs_log_mutex); 1233 return rc; 1234 } 1235 } 1236 1237 LOG_LOCK(dummy_log); 1238 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list); 1239 JFS_SBI(sb)->log = dummy_log; 1240 LOG_UNLOCK(dummy_log); 1241 mutex_unlock(&jfs_log_mutex); 1242 1243 return 0; 1244 } 1245 1246 /* 1247 * NAME: lmLogInit() 1248 * 1249 * FUNCTION: log initialization at first log open. 1250 * 1251 * logredo() (or logformat()) should have been run previously. 1252 * initialize the log from log superblock. 1253 * set the log state in the superblock to LOGMOUNT and 1254 * write SYNCPT log record. 1255 * 1256 * PARAMETER: log - log structure 1257 * 1258 * RETURN: 0 - if ok 1259 * -EINVAL - bad log magic number or superblock dirty 1260 * error returned from logwait() 1261 * 1262 * serialization: single first open thread 1263 */ 1264 int lmLogInit(struct jfs_log * log) 1265 { 1266 int rc = 0; 1267 struct lrd lrd; 1268 struct logsuper *logsuper; 1269 struct lbuf *bpsuper; 1270 struct lbuf *bp; 1271 struct logpage *lp; 1272 int lsn = 0; 1273 1274 jfs_info("lmLogInit: log:0x%p", log); 1275 1276 /* initialize the group commit serialization lock */ 1277 LOGGC_LOCK_INIT(log); 1278 1279 /* allocate/initialize the log write serialization lock */ 1280 LOG_LOCK_INIT(log); 1281 1282 LOGSYNC_LOCK_INIT(log); 1283 1284 INIT_LIST_HEAD(&log->synclist); 1285 1286 INIT_LIST_HEAD(&log->cqueue); 1287 log->flush_tblk = NULL; 1288 1289 log->count = 0; 1290 1291 /* 1292 * initialize log i/o 1293 */ 1294 if ((rc = lbmLogInit(log))) 1295 return rc; 1296 1297 if (!test_bit(log_INLINELOG, &log->flag)) 1298 log->l2bsize = L2LOGPSIZE; 1299 1300 /* check for disabled journaling to disk */ 1301 if (log->no_integrity) { 1302 /* 1303 * Journal pages will still be filled. When the time comes 1304 * to actually do the I/O, the write is not done, and the 1305 * endio routine is called directly. 1306 */ 1307 bp = lbmAllocate(log , 0); 1308 log->bp = bp; 1309 bp->l_pn = bp->l_eor = 0; 1310 } else { 1311 /* 1312 * validate log superblock 1313 */ 1314 if ((rc = lbmRead(log, 1, &bpsuper))) 1315 goto errout10; 1316 1317 logsuper = (struct logsuper *) bpsuper->l_ldata; 1318 1319 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) { 1320 jfs_warn("*** Log Format Error ! ***"); 1321 rc = -EINVAL; 1322 goto errout20; 1323 } 1324 1325 /* logredo() should have been run successfully. */ 1326 if (logsuper->state != cpu_to_le32(LOGREDONE)) { 1327 jfs_warn("*** Log Is Dirty ! ***"); 1328 rc = -EINVAL; 1329 goto errout20; 1330 } 1331 1332 /* initialize log from log superblock */ 1333 if (test_bit(log_INLINELOG,&log->flag)) { 1334 if (log->size != le32_to_cpu(logsuper->size)) { 1335 rc = -EINVAL; 1336 goto errout20; 1337 } 1338 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx " 1339 "size:0x%x", log, 1340 (unsigned long long) log->base, log->size); 1341 } else { 1342 if (memcmp(logsuper->uuid, log->uuid, 16)) { 1343 jfs_warn("wrong uuid on JFS log device"); 1344 goto errout20; 1345 } 1346 log->size = le32_to_cpu(logsuper->size); 1347 log->l2bsize = le32_to_cpu(logsuper->l2bsize); 1348 jfs_info("lmLogInit: external log:0x%p base:0x%Lx " 1349 "size:0x%x", log, 1350 (unsigned long long) log->base, log->size); 1351 } 1352 1353 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE; 1354 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page); 1355 1356 /* 1357 * initialize for log append write mode 1358 */ 1359 /* establish current/end-of-log page/buffer */ 1360 if ((rc = lbmRead(log, log->page, &bp))) 1361 goto errout20; 1362 1363 lp = (struct logpage *) bp->l_ldata; 1364 1365 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d", 1366 le32_to_cpu(logsuper->end), log->page, log->eor, 1367 le16_to_cpu(lp->h.eor)); 1368 1369 log->bp = bp; 1370 bp->l_pn = log->page; 1371 bp->l_eor = log->eor; 1372 1373 /* if current page is full, move on to next page */ 1374 if (log->eor >= LOGPSIZE - LOGPTLRSIZE) 1375 lmNextPage(log); 1376 1377 /* 1378 * initialize log syncpoint 1379 */ 1380 /* 1381 * write the first SYNCPT record with syncpoint = 0 1382 * (i.e., log redo up to HERE !); 1383 * remove current page from lbm write queue at end of pageout 1384 * (to write log superblock update), but do not release to 1385 * freelist; 1386 */ 1387 lrd.logtid = 0; 1388 lrd.backchain = 0; 1389 lrd.type = cpu_to_le16(LOG_SYNCPT); 1390 lrd.length = 0; 1391 lrd.log.syncpt.sync = 0; 1392 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 1393 bp = log->bp; 1394 bp->l_ceor = bp->l_eor; 1395 lp = (struct logpage *) bp->l_ldata; 1396 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 1397 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0); 1398 if ((rc = lbmIOWait(bp, 0))) 1399 goto errout30; 1400 1401 /* 1402 * update/write superblock 1403 */ 1404 logsuper->state = cpu_to_le32(LOGMOUNT); 1405 log->serial = le32_to_cpu(logsuper->serial) + 1; 1406 logsuper->serial = cpu_to_le32(log->serial); 1407 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1408 if ((rc = lbmIOWait(bpsuper, lbmFREE))) 1409 goto errout30; 1410 } 1411 1412 /* initialize logsync parameters */ 1413 log->logsize = (log->size - 2) << L2LOGPSIZE; 1414 log->lsn = lsn; 1415 log->syncpt = lsn; 1416 log->sync = log->syncpt; 1417 log->nextsync = LOGSYNC_DELTA(log->logsize); 1418 1419 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x", 1420 log->lsn, log->syncpt, log->sync); 1421 1422 /* 1423 * initialize for lazy/group commit 1424 */ 1425 log->clsn = lsn; 1426 1427 return 0; 1428 1429 /* 1430 * unwind on error 1431 */ 1432 errout30: /* release log page */ 1433 log->wqueue = NULL; 1434 bp->l_wqnext = NULL; 1435 lbmFree(bp); 1436 1437 errout20: /* release log superblock */ 1438 lbmFree(bpsuper); 1439 1440 errout10: /* unwind lbmLogInit() */ 1441 lbmLogShutdown(log); 1442 1443 jfs_warn("lmLogInit: exit(%d)", rc); 1444 return rc; 1445 } 1446 1447 1448 /* 1449 * NAME: lmLogClose() 1450 * 1451 * FUNCTION: remove file system <ipmnt> from active list of log <iplog> 1452 * and close it on last close. 1453 * 1454 * PARAMETER: sb - superblock 1455 * 1456 * RETURN: errors from subroutines 1457 * 1458 * serialization: 1459 */ 1460 int lmLogClose(struct super_block *sb) 1461 { 1462 struct jfs_sb_info *sbi = JFS_SBI(sb); 1463 struct jfs_log *log = sbi->log; 1464 struct block_device *bdev; 1465 int rc = 0; 1466 1467 jfs_info("lmLogClose: log:0x%p", log); 1468 1469 mutex_lock(&jfs_log_mutex); 1470 LOG_LOCK(log); 1471 list_del(&sbi->log_list); 1472 LOG_UNLOCK(log); 1473 sbi->log = NULL; 1474 1475 /* 1476 * We need to make sure all of the "written" metapages 1477 * actually make it to disk 1478 */ 1479 sync_blockdev(sb->s_bdev); 1480 1481 if (test_bit(log_INLINELOG, &log->flag)) { 1482 /* 1483 * in-line log in host file system 1484 */ 1485 rc = lmLogShutdown(log); 1486 kfree(log); 1487 goto out; 1488 } 1489 1490 if (!log->no_integrity) 1491 lmLogFileSystem(log, sbi, 0); 1492 1493 if (!list_empty(&log->sb_list)) 1494 goto out; 1495 1496 /* 1497 * TODO: ensure that the dummy_log is in a state to allow 1498 * lbmLogShutdown to deallocate all the buffers and call 1499 * kfree against dummy_log. For now, leave dummy_log & its 1500 * buffers in memory, and resuse if another no-integrity mount 1501 * is requested. 1502 */ 1503 if (log->no_integrity) 1504 goto out; 1505 1506 /* 1507 * external log as separate logical volume 1508 */ 1509 list_del(&log->journal_list); 1510 bdev = log->bdev; 1511 rc = lmLogShutdown(log); 1512 1513 bd_release(bdev); 1514 blkdev_put(bdev); 1515 1516 kfree(log); 1517 1518 out: 1519 mutex_unlock(&jfs_log_mutex); 1520 jfs_info("lmLogClose: exit(%d)", rc); 1521 return rc; 1522 } 1523 1524 1525 /* 1526 * NAME: jfs_flush_journal() 1527 * 1528 * FUNCTION: initiate write of any outstanding transactions to the journal 1529 * and optionally wait until they are all written to disk 1530 * 1531 * wait == 0 flush until latest txn is committed, don't wait 1532 * wait == 1 flush until latest txn is committed, wait 1533 * wait > 1 flush until all txn's are complete, wait 1534 */ 1535 void jfs_flush_journal(struct jfs_log *log, int wait) 1536 { 1537 int i; 1538 struct tblock *target = NULL; 1539 struct jfs_sb_info *sbi; 1540 1541 /* jfs_write_inode may call us during read-only mount */ 1542 if (!log) 1543 return; 1544 1545 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait); 1546 1547 LOGGC_LOCK(log); 1548 1549 if (!list_empty(&log->cqueue)) { 1550 /* 1551 * This ensures that we will keep writing to the journal as long 1552 * as there are unwritten commit records 1553 */ 1554 target = list_entry(log->cqueue.prev, struct tblock, cqueue); 1555 1556 if (test_bit(log_FLUSH, &log->flag)) { 1557 /* 1558 * We're already flushing. 1559 * if flush_tblk is NULL, we are flushing everything, 1560 * so leave it that way. Otherwise, update it to the 1561 * latest transaction 1562 */ 1563 if (log->flush_tblk) 1564 log->flush_tblk = target; 1565 } else { 1566 /* Only flush until latest transaction is committed */ 1567 log->flush_tblk = target; 1568 set_bit(log_FLUSH, &log->flag); 1569 1570 /* 1571 * Initiate I/O on outstanding transactions 1572 */ 1573 if (!(log->cflag & logGC_PAGEOUT)) { 1574 log->cflag |= logGC_PAGEOUT; 1575 lmGCwrite(log, 0); 1576 } 1577 } 1578 } 1579 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) { 1580 /* Flush until all activity complete */ 1581 set_bit(log_FLUSH, &log->flag); 1582 log->flush_tblk = NULL; 1583 } 1584 1585 if (wait && target && !(target->flag & tblkGC_COMMITTED)) { 1586 DECLARE_WAITQUEUE(__wait, current); 1587 1588 add_wait_queue(&target->gcwait, &__wait); 1589 set_current_state(TASK_UNINTERRUPTIBLE); 1590 LOGGC_UNLOCK(log); 1591 schedule(); 1592 __set_current_state(TASK_RUNNING); 1593 LOGGC_LOCK(log); 1594 remove_wait_queue(&target->gcwait, &__wait); 1595 } 1596 LOGGC_UNLOCK(log); 1597 1598 if (wait < 2) 1599 return; 1600 1601 list_for_each_entry(sbi, &log->sb_list, log_list) { 1602 filemap_fdatawrite(sbi->ipbmap->i_mapping); 1603 filemap_fdatawrite(sbi->ipimap->i_mapping); 1604 filemap_fdatawrite(sbi->direct_inode->i_mapping); 1605 } 1606 1607 /* 1608 * If there was recent activity, we may need to wait 1609 * for the lazycommit thread to catch up 1610 */ 1611 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) { 1612 for (i = 0; i < 200; i++) { /* Too much? */ 1613 msleep(250); 1614 if (list_empty(&log->cqueue) && 1615 list_empty(&log->synclist)) 1616 break; 1617 } 1618 } 1619 assert(list_empty(&log->cqueue)); 1620 1621 #ifdef CONFIG_JFS_DEBUG 1622 if (!list_empty(&log->synclist)) { 1623 struct logsyncblk *lp; 1624 1625 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n"); 1626 list_for_each_entry(lp, &log->synclist, synclist) { 1627 if (lp->xflag & COMMIT_PAGE) { 1628 struct metapage *mp = (struct metapage *)lp; 1629 print_hex_dump(KERN_ERR, "metapage: ", 1630 DUMP_PREFIX_ADDRESS, 16, 4, 1631 mp, sizeof(struct metapage), 0); 1632 print_hex_dump(KERN_ERR, "page: ", 1633 DUMP_PREFIX_ADDRESS, 16, 1634 sizeof(long), mp->page, 1635 sizeof(struct page), 0); 1636 } else 1637 print_hex_dump(KERN_ERR, "tblock:", 1638 DUMP_PREFIX_ADDRESS, 16, 4, 1639 lp, sizeof(struct tblock), 0); 1640 } 1641 } 1642 #else 1643 WARN_ON(!list_empty(&log->synclist)); 1644 #endif 1645 clear_bit(log_FLUSH, &log->flag); 1646 } 1647 1648 /* 1649 * NAME: lmLogShutdown() 1650 * 1651 * FUNCTION: log shutdown at last LogClose(). 1652 * 1653 * write log syncpt record. 1654 * update super block to set redone flag to 0. 1655 * 1656 * PARAMETER: log - log inode 1657 * 1658 * RETURN: 0 - success 1659 * 1660 * serialization: single last close thread 1661 */ 1662 int lmLogShutdown(struct jfs_log * log) 1663 { 1664 int rc; 1665 struct lrd lrd; 1666 int lsn; 1667 struct logsuper *logsuper; 1668 struct lbuf *bpsuper; 1669 struct lbuf *bp; 1670 struct logpage *lp; 1671 1672 jfs_info("lmLogShutdown: log:0x%p", log); 1673 1674 jfs_flush_journal(log, 2); 1675 1676 /* 1677 * write the last SYNCPT record with syncpoint = 0 1678 * (i.e., log redo up to HERE !) 1679 */ 1680 lrd.logtid = 0; 1681 lrd.backchain = 0; 1682 lrd.type = cpu_to_le16(LOG_SYNCPT); 1683 lrd.length = 0; 1684 lrd.log.syncpt.sync = 0; 1685 1686 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 1687 bp = log->bp; 1688 lp = (struct logpage *) bp->l_ldata; 1689 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 1690 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0); 1691 lbmIOWait(log->bp, lbmFREE); 1692 log->bp = NULL; 1693 1694 /* 1695 * synchronous update log superblock 1696 * mark log state as shutdown cleanly 1697 * (i.e., Log does not need to be replayed). 1698 */ 1699 if ((rc = lbmRead(log, 1, &bpsuper))) 1700 goto out; 1701 1702 logsuper = (struct logsuper *) bpsuper->l_ldata; 1703 logsuper->state = cpu_to_le32(LOGREDONE); 1704 logsuper->end = cpu_to_le32(lsn); 1705 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1706 rc = lbmIOWait(bpsuper, lbmFREE); 1707 1708 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d", 1709 lsn, log->page, log->eor); 1710 1711 out: 1712 /* 1713 * shutdown per log i/o 1714 */ 1715 lbmLogShutdown(log); 1716 1717 if (rc) { 1718 jfs_warn("lmLogShutdown: exit(%d)", rc); 1719 } 1720 return rc; 1721 } 1722 1723 1724 /* 1725 * NAME: lmLogFileSystem() 1726 * 1727 * FUNCTION: insert (<activate> = true)/remove (<activate> = false) 1728 * file system into/from log active file system list. 1729 * 1730 * PARAMETE: log - pointer to logs inode. 1731 * fsdev - kdev_t of filesystem. 1732 * serial - pointer to returned log serial number 1733 * activate - insert/remove device from active list. 1734 * 1735 * RETURN: 0 - success 1736 * errors returned by vms_iowait(). 1737 */ 1738 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi, 1739 int activate) 1740 { 1741 int rc = 0; 1742 int i; 1743 struct logsuper *logsuper; 1744 struct lbuf *bpsuper; 1745 char *uuid = sbi->uuid; 1746 1747 /* 1748 * insert/remove file system device to log active file system list. 1749 */ 1750 if ((rc = lbmRead(log, 1, &bpsuper))) 1751 return rc; 1752 1753 logsuper = (struct logsuper *) bpsuper->l_ldata; 1754 if (activate) { 1755 for (i = 0; i < MAX_ACTIVE; i++) 1756 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) { 1757 memcpy(logsuper->active[i].uuid, uuid, 16); 1758 sbi->aggregate = i; 1759 break; 1760 } 1761 if (i == MAX_ACTIVE) { 1762 jfs_warn("Too many file systems sharing journal!"); 1763 lbmFree(bpsuper); 1764 return -EMFILE; /* Is there a better rc? */ 1765 } 1766 } else { 1767 for (i = 0; i < MAX_ACTIVE; i++) 1768 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) { 1769 memcpy(logsuper->active[i].uuid, NULL_UUID, 16); 1770 break; 1771 } 1772 if (i == MAX_ACTIVE) { 1773 jfs_warn("Somebody stomped on the journal!"); 1774 lbmFree(bpsuper); 1775 return -EIO; 1776 } 1777 1778 } 1779 1780 /* 1781 * synchronous write log superblock: 1782 * 1783 * write sidestream bypassing write queue: 1784 * at file system mount, log super block is updated for 1785 * activation of the file system before any log record 1786 * (MOUNT record) of the file system, and at file system 1787 * unmount, all meta data for the file system has been 1788 * flushed before log super block is updated for deactivation 1789 * of the file system. 1790 */ 1791 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1792 rc = lbmIOWait(bpsuper, lbmFREE); 1793 1794 return rc; 1795 } 1796 1797 /* 1798 * log buffer manager (lbm) 1799 * ------------------------ 1800 * 1801 * special purpose buffer manager supporting log i/o requirements. 1802 * 1803 * per log write queue: 1804 * log pageout occurs in serial order by fifo write queue and 1805 * restricting to a single i/o in pregress at any one time. 1806 * a circular singly-linked list 1807 * (log->wrqueue points to the tail, and buffers are linked via 1808 * bp->wrqueue field), and 1809 * maintains log page in pageout ot waiting for pageout in serial pageout. 1810 */ 1811 1812 /* 1813 * lbmLogInit() 1814 * 1815 * initialize per log I/O setup at lmLogInit() 1816 */ 1817 static int lbmLogInit(struct jfs_log * log) 1818 { /* log inode */ 1819 int i; 1820 struct lbuf *lbuf; 1821 1822 jfs_info("lbmLogInit: log:0x%p", log); 1823 1824 /* initialize current buffer cursor */ 1825 log->bp = NULL; 1826 1827 /* initialize log device write queue */ 1828 log->wqueue = NULL; 1829 1830 /* 1831 * Each log has its own buffer pages allocated to it. These are 1832 * not managed by the page cache. This ensures that a transaction 1833 * writing to the log does not block trying to allocate a page from 1834 * the page cache (for the log). This would be bad, since page 1835 * allocation waits on the kswapd thread that may be committing inodes 1836 * which would cause log activity. Was that clear? I'm trying to 1837 * avoid deadlock here. 1838 */ 1839 init_waitqueue_head(&log->free_wait); 1840 1841 log->lbuf_free = NULL; 1842 1843 for (i = 0; i < LOGPAGES;) { 1844 char *buffer; 1845 uint offset; 1846 struct page *page; 1847 1848 buffer = (char *) get_zeroed_page(GFP_KERNEL); 1849 if (buffer == NULL) 1850 goto error; 1851 page = virt_to_page(buffer); 1852 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) { 1853 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL); 1854 if (lbuf == NULL) { 1855 if (offset == 0) 1856 free_page((unsigned long) buffer); 1857 goto error; 1858 } 1859 if (offset) /* we already have one reference */ 1860 get_page(page); 1861 lbuf->l_offset = offset; 1862 lbuf->l_ldata = buffer + offset; 1863 lbuf->l_page = page; 1864 lbuf->l_log = log; 1865 init_waitqueue_head(&lbuf->l_ioevent); 1866 1867 lbuf->l_freelist = log->lbuf_free; 1868 log->lbuf_free = lbuf; 1869 i++; 1870 } 1871 } 1872 1873 return (0); 1874 1875 error: 1876 lbmLogShutdown(log); 1877 return -ENOMEM; 1878 } 1879 1880 1881 /* 1882 * lbmLogShutdown() 1883 * 1884 * finalize per log I/O setup at lmLogShutdown() 1885 */ 1886 static void lbmLogShutdown(struct jfs_log * log) 1887 { 1888 struct lbuf *lbuf; 1889 1890 jfs_info("lbmLogShutdown: log:0x%p", log); 1891 1892 lbuf = log->lbuf_free; 1893 while (lbuf) { 1894 struct lbuf *next = lbuf->l_freelist; 1895 __free_page(lbuf->l_page); 1896 kfree(lbuf); 1897 lbuf = next; 1898 } 1899 } 1900 1901 1902 /* 1903 * lbmAllocate() 1904 * 1905 * allocate an empty log buffer 1906 */ 1907 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn) 1908 { 1909 struct lbuf *bp; 1910 unsigned long flags; 1911 1912 /* 1913 * recycle from log buffer freelist if any 1914 */ 1915 LCACHE_LOCK(flags); 1916 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags); 1917 log->lbuf_free = bp->l_freelist; 1918 LCACHE_UNLOCK(flags); 1919 1920 bp->l_flag = 0; 1921 1922 bp->l_wqnext = NULL; 1923 bp->l_freelist = NULL; 1924 1925 bp->l_pn = pn; 1926 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize)); 1927 bp->l_ceor = 0; 1928 1929 return bp; 1930 } 1931 1932 1933 /* 1934 * lbmFree() 1935 * 1936 * release a log buffer to freelist 1937 */ 1938 static void lbmFree(struct lbuf * bp) 1939 { 1940 unsigned long flags; 1941 1942 LCACHE_LOCK(flags); 1943 1944 lbmfree(bp); 1945 1946 LCACHE_UNLOCK(flags); 1947 } 1948 1949 static void lbmfree(struct lbuf * bp) 1950 { 1951 struct jfs_log *log = bp->l_log; 1952 1953 assert(bp->l_wqnext == NULL); 1954 1955 /* 1956 * return the buffer to head of freelist 1957 */ 1958 bp->l_freelist = log->lbuf_free; 1959 log->lbuf_free = bp; 1960 1961 wake_up(&log->free_wait); 1962 return; 1963 } 1964 1965 1966 /* 1967 * NAME: lbmRedrive 1968 * 1969 * FUNCTION: add a log buffer to the log redrive list 1970 * 1971 * PARAMETER: 1972 * bp - log buffer 1973 * 1974 * NOTES: 1975 * Takes log_redrive_lock. 1976 */ 1977 static inline void lbmRedrive(struct lbuf *bp) 1978 { 1979 unsigned long flags; 1980 1981 spin_lock_irqsave(&log_redrive_lock, flags); 1982 bp->l_redrive_next = log_redrive_list; 1983 log_redrive_list = bp; 1984 spin_unlock_irqrestore(&log_redrive_lock, flags); 1985 1986 wake_up_process(jfsIOthread); 1987 } 1988 1989 1990 /* 1991 * lbmRead() 1992 */ 1993 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp) 1994 { 1995 struct bio *bio; 1996 struct lbuf *bp; 1997 1998 /* 1999 * allocate a log buffer 2000 */ 2001 *bpp = bp = lbmAllocate(log, pn); 2002 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn); 2003 2004 bp->l_flag |= lbmREAD; 2005 2006 bio = bio_alloc(GFP_NOFS, 1); 2007 2008 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9); 2009 bio->bi_bdev = log->bdev; 2010 bio->bi_io_vec[0].bv_page = bp->l_page; 2011 bio->bi_io_vec[0].bv_len = LOGPSIZE; 2012 bio->bi_io_vec[0].bv_offset = bp->l_offset; 2013 2014 bio->bi_vcnt = 1; 2015 bio->bi_idx = 0; 2016 bio->bi_size = LOGPSIZE; 2017 2018 bio->bi_end_io = lbmIODone; 2019 bio->bi_private = bp; 2020 submit_bio(READ_SYNC, bio); 2021 2022 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD)); 2023 2024 return 0; 2025 } 2026 2027 2028 /* 2029 * lbmWrite() 2030 * 2031 * buffer at head of pageout queue stays after completion of 2032 * partial-page pageout and redriven by explicit initiation of 2033 * pageout by caller until full-page pageout is completed and 2034 * released. 2035 * 2036 * device driver i/o done redrives pageout of new buffer at 2037 * head of pageout queue when current buffer at head of pageout 2038 * queue is released at the completion of its full-page pageout. 2039 * 2040 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit(). 2041 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone() 2042 */ 2043 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, 2044 int cant_block) 2045 { 2046 struct lbuf *tail; 2047 unsigned long flags; 2048 2049 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn); 2050 2051 /* map the logical block address to physical block address */ 2052 bp->l_blkno = 2053 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize)); 2054 2055 LCACHE_LOCK(flags); /* disable+lock */ 2056 2057 /* 2058 * initialize buffer for device driver 2059 */ 2060 bp->l_flag = flag; 2061 2062 /* 2063 * insert bp at tail of write queue associated with log 2064 * 2065 * (request is either for bp already/currently at head of queue 2066 * or new bp to be inserted at tail) 2067 */ 2068 tail = log->wqueue; 2069 2070 /* is buffer not already on write queue ? */ 2071 if (bp->l_wqnext == NULL) { 2072 /* insert at tail of wqueue */ 2073 if (tail == NULL) { 2074 log->wqueue = bp; 2075 bp->l_wqnext = bp; 2076 } else { 2077 log->wqueue = bp; 2078 bp->l_wqnext = tail->l_wqnext; 2079 tail->l_wqnext = bp; 2080 } 2081 2082 tail = bp; 2083 } 2084 2085 /* is buffer at head of wqueue and for write ? */ 2086 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) { 2087 LCACHE_UNLOCK(flags); /* unlock+enable */ 2088 return; 2089 } 2090 2091 LCACHE_UNLOCK(flags); /* unlock+enable */ 2092 2093 if (cant_block) 2094 lbmRedrive(bp); 2095 else if (flag & lbmSYNC) 2096 lbmStartIO(bp); 2097 else { 2098 LOGGC_UNLOCK(log); 2099 lbmStartIO(bp); 2100 LOGGC_LOCK(log); 2101 } 2102 } 2103 2104 2105 /* 2106 * lbmDirectWrite() 2107 * 2108 * initiate pageout bypassing write queue for sidestream 2109 * (e.g., log superblock) write; 2110 */ 2111 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag) 2112 { 2113 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x", 2114 bp, flag, bp->l_pn); 2115 2116 /* 2117 * initialize buffer for device driver 2118 */ 2119 bp->l_flag = flag | lbmDIRECT; 2120 2121 /* map the logical block address to physical block address */ 2122 bp->l_blkno = 2123 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize)); 2124 2125 /* 2126 * initiate pageout of the page 2127 */ 2128 lbmStartIO(bp); 2129 } 2130 2131 2132 /* 2133 * NAME: lbmStartIO() 2134 * 2135 * FUNCTION: Interface to DD strategy routine 2136 * 2137 * RETURN: none 2138 * 2139 * serialization: LCACHE_LOCK() is NOT held during log i/o; 2140 */ 2141 static void lbmStartIO(struct lbuf * bp) 2142 { 2143 struct bio *bio; 2144 struct jfs_log *log = bp->l_log; 2145 2146 jfs_info("lbmStartIO\n"); 2147 2148 bio = bio_alloc(GFP_NOFS, 1); 2149 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9); 2150 bio->bi_bdev = log->bdev; 2151 bio->bi_io_vec[0].bv_page = bp->l_page; 2152 bio->bi_io_vec[0].bv_len = LOGPSIZE; 2153 bio->bi_io_vec[0].bv_offset = bp->l_offset; 2154 2155 bio->bi_vcnt = 1; 2156 bio->bi_idx = 0; 2157 bio->bi_size = LOGPSIZE; 2158 2159 bio->bi_end_io = lbmIODone; 2160 bio->bi_private = bp; 2161 2162 /* check if journaling to disk has been disabled */ 2163 if (log->no_integrity) { 2164 bio->bi_size = 0; 2165 lbmIODone(bio, 0, 0); 2166 } else { 2167 submit_bio(WRITE_SYNC, bio); 2168 INCREMENT(lmStat.submitted); 2169 } 2170 } 2171 2172 2173 /* 2174 * lbmIOWait() 2175 */ 2176 static int lbmIOWait(struct lbuf * bp, int flag) 2177 { 2178 unsigned long flags; 2179 int rc = 0; 2180 2181 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag); 2182 2183 LCACHE_LOCK(flags); /* disable+lock */ 2184 2185 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags); 2186 2187 rc = (bp->l_flag & lbmERROR) ? -EIO : 0; 2188 2189 if (flag & lbmFREE) 2190 lbmfree(bp); 2191 2192 LCACHE_UNLOCK(flags); /* unlock+enable */ 2193 2194 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag); 2195 return rc; 2196 } 2197 2198 /* 2199 * lbmIODone() 2200 * 2201 * executed at INTIODONE level 2202 */ 2203 static int lbmIODone(struct bio *bio, unsigned int bytes_done, int error) 2204 { 2205 struct lbuf *bp = bio->bi_private; 2206 struct lbuf *nextbp, *tail; 2207 struct jfs_log *log; 2208 unsigned long flags; 2209 2210 if (bio->bi_size) 2211 return 1; 2212 2213 /* 2214 * get back jfs buffer bound to the i/o buffer 2215 */ 2216 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag); 2217 2218 LCACHE_LOCK(flags); /* disable+lock */ 2219 2220 bp->l_flag |= lbmDONE; 2221 2222 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2223 bp->l_flag |= lbmERROR; 2224 2225 jfs_err("lbmIODone: I/O error in JFS log"); 2226 } 2227 2228 bio_put(bio); 2229 2230 /* 2231 * pagein completion 2232 */ 2233 if (bp->l_flag & lbmREAD) { 2234 bp->l_flag &= ~lbmREAD; 2235 2236 LCACHE_UNLOCK(flags); /* unlock+enable */ 2237 2238 /* wakeup I/O initiator */ 2239 LCACHE_WAKEUP(&bp->l_ioevent); 2240 2241 return 0; 2242 } 2243 2244 /* 2245 * pageout completion 2246 * 2247 * the bp at the head of write queue has completed pageout. 2248 * 2249 * if single-commit/full-page pageout, remove the current buffer 2250 * from head of pageout queue, and redrive pageout with 2251 * the new buffer at head of pageout queue; 2252 * otherwise, the partial-page pageout buffer stays at 2253 * the head of pageout queue to be redriven for pageout 2254 * by lmGroupCommit() until full-page pageout is completed. 2255 */ 2256 bp->l_flag &= ~lbmWRITE; 2257 INCREMENT(lmStat.pagedone); 2258 2259 /* update committed lsn */ 2260 log = bp->l_log; 2261 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor; 2262 2263 if (bp->l_flag & lbmDIRECT) { 2264 LCACHE_WAKEUP(&bp->l_ioevent); 2265 LCACHE_UNLOCK(flags); 2266 return 0; 2267 } 2268 2269 tail = log->wqueue; 2270 2271 /* single element queue */ 2272 if (bp == tail) { 2273 /* remove head buffer of full-page pageout 2274 * from log device write queue 2275 */ 2276 if (bp->l_flag & lbmRELEASE) { 2277 log->wqueue = NULL; 2278 bp->l_wqnext = NULL; 2279 } 2280 } 2281 /* multi element queue */ 2282 else { 2283 /* remove head buffer of full-page pageout 2284 * from log device write queue 2285 */ 2286 if (bp->l_flag & lbmRELEASE) { 2287 nextbp = tail->l_wqnext = bp->l_wqnext; 2288 bp->l_wqnext = NULL; 2289 2290 /* 2291 * redrive pageout of next page at head of write queue: 2292 * redrive next page without any bound tblk 2293 * (i.e., page w/o any COMMIT records), or 2294 * first page of new group commit which has been 2295 * queued after current page (subsequent pageout 2296 * is performed synchronously, except page without 2297 * any COMMITs) by lmGroupCommit() as indicated 2298 * by lbmWRITE flag; 2299 */ 2300 if (nextbp->l_flag & lbmWRITE) { 2301 /* 2302 * We can't do the I/O at interrupt time. 2303 * The jfsIO thread can do it 2304 */ 2305 lbmRedrive(nextbp); 2306 } 2307 } 2308 } 2309 2310 /* 2311 * synchronous pageout: 2312 * 2313 * buffer has not necessarily been removed from write queue 2314 * (e.g., synchronous write of partial-page with COMMIT): 2315 * leave buffer for i/o initiator to dispose 2316 */ 2317 if (bp->l_flag & lbmSYNC) { 2318 LCACHE_UNLOCK(flags); /* unlock+enable */ 2319 2320 /* wakeup I/O initiator */ 2321 LCACHE_WAKEUP(&bp->l_ioevent); 2322 } 2323 2324 /* 2325 * Group Commit pageout: 2326 */ 2327 else if (bp->l_flag & lbmGC) { 2328 LCACHE_UNLOCK(flags); 2329 lmPostGC(bp); 2330 } 2331 2332 /* 2333 * asynchronous pageout: 2334 * 2335 * buffer must have been removed from write queue: 2336 * insert buffer at head of freelist where it can be recycled 2337 */ 2338 else { 2339 assert(bp->l_flag & lbmRELEASE); 2340 assert(bp->l_flag & lbmFREE); 2341 lbmfree(bp); 2342 2343 LCACHE_UNLOCK(flags); /* unlock+enable */ 2344 } 2345 2346 return 0; 2347 } 2348 2349 int jfsIOWait(void *arg) 2350 { 2351 struct lbuf *bp; 2352 2353 do { 2354 spin_lock_irq(&log_redrive_lock); 2355 while ((bp = log_redrive_list) != 0) { 2356 log_redrive_list = bp->l_redrive_next; 2357 bp->l_redrive_next = NULL; 2358 spin_unlock_irq(&log_redrive_lock); 2359 lbmStartIO(bp); 2360 spin_lock_irq(&log_redrive_lock); 2361 } 2362 2363 if (freezing(current)) { 2364 spin_unlock_irq(&log_redrive_lock); 2365 refrigerator(); 2366 } else { 2367 set_current_state(TASK_INTERRUPTIBLE); 2368 spin_unlock_irq(&log_redrive_lock); 2369 schedule(); 2370 __set_current_state(TASK_RUNNING); 2371 } 2372 } while (!kthread_should_stop()); 2373 2374 jfs_info("jfsIOWait being killed!"); 2375 return 0; 2376 } 2377 2378 /* 2379 * NAME: lmLogFormat()/jfs_logform() 2380 * 2381 * FUNCTION: format file system log 2382 * 2383 * PARAMETERS: 2384 * log - volume log 2385 * logAddress - start address of log space in FS block 2386 * logSize - length of log space in FS block; 2387 * 2388 * RETURN: 0 - success 2389 * -EIO - i/o error 2390 * 2391 * XXX: We're synchronously writing one page at a time. This needs to 2392 * be improved by writing multiple pages at once. 2393 */ 2394 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize) 2395 { 2396 int rc = -EIO; 2397 struct jfs_sb_info *sbi; 2398 struct logsuper *logsuper; 2399 struct logpage *lp; 2400 int lspn; /* log sequence page number */ 2401 struct lrd *lrd_ptr; 2402 int npages = 0; 2403 struct lbuf *bp; 2404 2405 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d", 2406 (long long)logAddress, logSize); 2407 2408 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list); 2409 2410 /* allocate a log buffer */ 2411 bp = lbmAllocate(log, 1); 2412 2413 npages = logSize >> sbi->l2nbperpage; 2414 2415 /* 2416 * log space: 2417 * 2418 * page 0 - reserved; 2419 * page 1 - log superblock; 2420 * page 2 - log data page: A SYNC log record is written 2421 * into this page at logform time; 2422 * pages 3-N - log data page: set to empty log data pages; 2423 */ 2424 /* 2425 * init log superblock: log page 1 2426 */ 2427 logsuper = (struct logsuper *) bp->l_ldata; 2428 2429 logsuper->magic = cpu_to_le32(LOGMAGIC); 2430 logsuper->version = cpu_to_le32(LOGVERSION); 2431 logsuper->state = cpu_to_le32(LOGREDONE); 2432 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */ 2433 logsuper->size = cpu_to_le32(npages); 2434 logsuper->bsize = cpu_to_le32(sbi->bsize); 2435 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize); 2436 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE); 2437 2438 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2439 bp->l_blkno = logAddress + sbi->nbperpage; 2440 lbmStartIO(bp); 2441 if ((rc = lbmIOWait(bp, 0))) 2442 goto exit; 2443 2444 /* 2445 * init pages 2 to npages-1 as log data pages: 2446 * 2447 * log page sequence number (lpsn) initialization: 2448 * 2449 * pn: 0 1 2 3 n-1 2450 * +-----+-----+=====+=====+===.....===+=====+ 2451 * lspn: N-1 0 1 N-2 2452 * <--- N page circular file ----> 2453 * 2454 * the N (= npages-2) data pages of the log is maintained as 2455 * a circular file for the log records; 2456 * lpsn grows by 1 monotonically as each log page is written 2457 * to the circular file of the log; 2458 * and setLogpage() will not reset the page number even if 2459 * the eor is equal to LOGPHDRSIZE. In order for binary search 2460 * still work in find log end process, we have to simulate the 2461 * log wrap situation at the log format time. 2462 * The 1st log page written will have the highest lpsn. Then 2463 * the succeeding log pages will have ascending order of 2464 * the lspn starting from 0, ... (N-2) 2465 */ 2466 lp = (struct logpage *) bp->l_ldata; 2467 /* 2468 * initialize 1st log page to be written: lpsn = N - 1, 2469 * write a SYNCPT log record is written to this page 2470 */ 2471 lp->h.page = lp->t.page = cpu_to_le32(npages - 3); 2472 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE); 2473 2474 lrd_ptr = (struct lrd *) &lp->data; 2475 lrd_ptr->logtid = 0; 2476 lrd_ptr->backchain = 0; 2477 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT); 2478 lrd_ptr->length = 0; 2479 lrd_ptr->log.syncpt.sync = 0; 2480 2481 bp->l_blkno += sbi->nbperpage; 2482 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2483 lbmStartIO(bp); 2484 if ((rc = lbmIOWait(bp, 0))) 2485 goto exit; 2486 2487 /* 2488 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2) 2489 */ 2490 for (lspn = 0; lspn < npages - 3; lspn++) { 2491 lp->h.page = lp->t.page = cpu_to_le32(lspn); 2492 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE); 2493 2494 bp->l_blkno += sbi->nbperpage; 2495 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2496 lbmStartIO(bp); 2497 if ((rc = lbmIOWait(bp, 0))) 2498 goto exit; 2499 } 2500 2501 rc = 0; 2502 exit: 2503 /* 2504 * finalize log 2505 */ 2506 /* release the buffer */ 2507 lbmFree(bp); 2508 2509 return rc; 2510 } 2511 2512 #ifdef CONFIG_JFS_STATISTICS 2513 int jfs_lmstats_read(char *buffer, char **start, off_t offset, int length, 2514 int *eof, void *data) 2515 { 2516 int len = 0; 2517 off_t begin; 2518 2519 len += sprintf(buffer, 2520 "JFS Logmgr stats\n" 2521 "================\n" 2522 "commits = %d\n" 2523 "writes submitted = %d\n" 2524 "writes completed = %d\n" 2525 "full pages submitted = %d\n" 2526 "partial pages submitted = %d\n", 2527 lmStat.commit, 2528 lmStat.submitted, 2529 lmStat.pagedone, 2530 lmStat.full_page, 2531 lmStat.partial_page); 2532 2533 begin = offset; 2534 *start = buffer + begin; 2535 len -= begin; 2536 2537 if (len > length) 2538 len = length; 2539 else 2540 *eof = 1; 2541 2542 if (len < 0) 2543 len = 0; 2544 2545 return len; 2546 } 2547 #endif /* CONFIG_JFS_STATISTICS */ 2548