1 /* 2 * Copyright (C) International Business Machines Corp., 2000-2004 3 * Portions Copyright (C) Christoph Hellwig, 2001-2002 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 13 * the GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 */ 19 20 /* 21 * jfs_logmgr.c: log manager 22 * 23 * for related information, see transaction manager (jfs_txnmgr.c), and 24 * recovery manager (jfs_logredo.c). 25 * 26 * note: for detail, RTFS. 27 * 28 * log buffer manager: 29 * special purpose buffer manager supporting log i/o requirements. 30 * per log serial pageout of logpage 31 * queuing i/o requests and redrive i/o at iodone 32 * maintain current logpage buffer 33 * no caching since append only 34 * appropriate jfs buffer cache buffers as needed 35 * 36 * group commit: 37 * transactions which wrote COMMIT records in the same in-memory 38 * log page during the pageout of previous/current log page(s) are 39 * committed together by the pageout of the page. 40 * 41 * TBD lazy commit: 42 * transactions are committed asynchronously when the log page 43 * containing it COMMIT is paged out when it becomes full; 44 * 45 * serialization: 46 * . a per log lock serialize log write. 47 * . a per log lock serialize group commit. 48 * . a per log lock serialize log open/close; 49 * 50 * TBD log integrity: 51 * careful-write (ping-pong) of last logpage to recover from crash 52 * in overwrite. 53 * detection of split (out-of-order) write of physical sectors 54 * of last logpage via timestamp at end of each sector 55 * with its mirror data array at trailer). 56 * 57 * alternatives: 58 * lsn - 64-bit monotonically increasing integer vs 59 * 32-bit lspn and page eor. 60 */ 61 62 #include <linux/fs.h> 63 #include <linux/blkdev.h> 64 #include <linux/interrupt.h> 65 #include <linux/completion.h> 66 #include <linux/kthread.h> 67 #include <linux/buffer_head.h> /* for sync_blockdev() */ 68 #include <linux/bio.h> 69 #include <linux/freezer.h> 70 #include <linux/export.h> 71 #include <linux/delay.h> 72 #include <linux/mutex.h> 73 #include <linux/seq_file.h> 74 #include <linux/slab.h> 75 #include "jfs_incore.h" 76 #include "jfs_filsys.h" 77 #include "jfs_metapage.h" 78 #include "jfs_superblock.h" 79 #include "jfs_txnmgr.h" 80 #include "jfs_debug.h" 81 82 83 /* 84 * lbuf's ready to be redriven. Protected by log_redrive_lock (jfsIO thread) 85 */ 86 static struct lbuf *log_redrive_list; 87 static DEFINE_SPINLOCK(log_redrive_lock); 88 89 90 /* 91 * log read/write serialization (per log) 92 */ 93 #define LOG_LOCK_INIT(log) mutex_init(&(log)->loglock) 94 #define LOG_LOCK(log) mutex_lock(&((log)->loglock)) 95 #define LOG_UNLOCK(log) mutex_unlock(&((log)->loglock)) 96 97 98 /* 99 * log group commit serialization (per log) 100 */ 101 102 #define LOGGC_LOCK_INIT(log) spin_lock_init(&(log)->gclock) 103 #define LOGGC_LOCK(log) spin_lock_irq(&(log)->gclock) 104 #define LOGGC_UNLOCK(log) spin_unlock_irq(&(log)->gclock) 105 #define LOGGC_WAKEUP(tblk) wake_up_all(&(tblk)->gcwait) 106 107 /* 108 * log sync serialization (per log) 109 */ 110 #define LOGSYNC_DELTA(logsize) min((logsize)/8, 128*LOGPSIZE) 111 #define LOGSYNC_BARRIER(logsize) ((logsize)/4) 112 /* 113 #define LOGSYNC_DELTA(logsize) min((logsize)/4, 256*LOGPSIZE) 114 #define LOGSYNC_BARRIER(logsize) ((logsize)/2) 115 */ 116 117 118 /* 119 * log buffer cache synchronization 120 */ 121 static DEFINE_SPINLOCK(jfsLCacheLock); 122 123 #define LCACHE_LOCK(flags) spin_lock_irqsave(&jfsLCacheLock, flags) 124 #define LCACHE_UNLOCK(flags) spin_unlock_irqrestore(&jfsLCacheLock, flags) 125 126 /* 127 * See __SLEEP_COND in jfs_locks.h 128 */ 129 #define LCACHE_SLEEP_COND(wq, cond, flags) \ 130 do { \ 131 if (cond) \ 132 break; \ 133 __SLEEP_COND(wq, cond, LCACHE_LOCK(flags), LCACHE_UNLOCK(flags)); \ 134 } while (0) 135 136 #define LCACHE_WAKEUP(event) wake_up(event) 137 138 139 /* 140 * lbuf buffer cache (lCache) control 141 */ 142 /* log buffer manager pageout control (cumulative, inclusive) */ 143 #define lbmREAD 0x0001 144 #define lbmWRITE 0x0002 /* enqueue at tail of write queue; 145 * init pageout if at head of queue; 146 */ 147 #define lbmRELEASE 0x0004 /* remove from write queue 148 * at completion of pageout; 149 * do not free/recycle it yet: 150 * caller will free it; 151 */ 152 #define lbmSYNC 0x0008 /* do not return to freelist 153 * when removed from write queue; 154 */ 155 #define lbmFREE 0x0010 /* return to freelist 156 * at completion of pageout; 157 * the buffer may be recycled; 158 */ 159 #define lbmDONE 0x0020 160 #define lbmERROR 0x0040 161 #define lbmGC 0x0080 /* lbmIODone to perform post-GC processing 162 * of log page 163 */ 164 #define lbmDIRECT 0x0100 165 166 /* 167 * Global list of active external journals 168 */ 169 static LIST_HEAD(jfs_external_logs); 170 static struct jfs_log *dummy_log = NULL; 171 static DEFINE_MUTEX(jfs_log_mutex); 172 173 /* 174 * forward references 175 */ 176 static int lmWriteRecord(struct jfs_log * log, struct tblock * tblk, 177 struct lrd * lrd, struct tlock * tlck); 178 179 static int lmNextPage(struct jfs_log * log); 180 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi, 181 int activate); 182 183 static int open_inline_log(struct super_block *sb); 184 static int open_dummy_log(struct super_block *sb); 185 static int lbmLogInit(struct jfs_log * log); 186 static void lbmLogShutdown(struct jfs_log * log); 187 static struct lbuf *lbmAllocate(struct jfs_log * log, int); 188 static void lbmFree(struct lbuf * bp); 189 static void lbmfree(struct lbuf * bp); 190 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp); 191 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, int cant_block); 192 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag); 193 static int lbmIOWait(struct lbuf * bp, int flag); 194 static bio_end_io_t lbmIODone; 195 static void lbmStartIO(struct lbuf * bp); 196 static void lmGCwrite(struct jfs_log * log, int cant_block); 197 static int lmLogSync(struct jfs_log * log, int hard_sync); 198 199 200 201 /* 202 * statistics 203 */ 204 #ifdef CONFIG_JFS_STATISTICS 205 static struct lmStat { 206 uint commit; /* # of commit */ 207 uint pagedone; /* # of page written */ 208 uint submitted; /* # of pages submitted */ 209 uint full_page; /* # of full pages submitted */ 210 uint partial_page; /* # of partial pages submitted */ 211 } lmStat; 212 #endif 213 214 static void write_special_inodes(struct jfs_log *log, 215 int (*writer)(struct address_space *)) 216 { 217 struct jfs_sb_info *sbi; 218 219 list_for_each_entry(sbi, &log->sb_list, log_list) { 220 writer(sbi->ipbmap->i_mapping); 221 writer(sbi->ipimap->i_mapping); 222 writer(sbi->direct_inode->i_mapping); 223 } 224 } 225 226 /* 227 * NAME: lmLog() 228 * 229 * FUNCTION: write a log record; 230 * 231 * PARAMETER: 232 * 233 * RETURN: lsn - offset to the next log record to write (end-of-log); 234 * -1 - error; 235 * 236 * note: todo: log error handler 237 */ 238 int lmLog(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd, 239 struct tlock * tlck) 240 { 241 int lsn; 242 int diffp, difft; 243 struct metapage *mp = NULL; 244 unsigned long flags; 245 246 jfs_info("lmLog: log:0x%p tblk:0x%p, lrd:0x%p tlck:0x%p", 247 log, tblk, lrd, tlck); 248 249 LOG_LOCK(log); 250 251 /* log by (out-of-transaction) JFS ? */ 252 if (tblk == NULL) 253 goto writeRecord; 254 255 /* log from page ? */ 256 if (tlck == NULL || 257 tlck->type & tlckBTROOT || (mp = tlck->mp) == NULL) 258 goto writeRecord; 259 260 /* 261 * initialize/update page/transaction recovery lsn 262 */ 263 lsn = log->lsn; 264 265 LOGSYNC_LOCK(log, flags); 266 267 /* 268 * initialize page lsn if first log write of the page 269 */ 270 if (mp->lsn == 0) { 271 mp->log = log; 272 mp->lsn = lsn; 273 log->count++; 274 275 /* insert page at tail of logsynclist */ 276 list_add_tail(&mp->synclist, &log->synclist); 277 } 278 279 /* 280 * initialize/update lsn of tblock of the page 281 * 282 * transaction inherits oldest lsn of pages associated 283 * with allocation/deallocation of resources (their 284 * log records are used to reconstruct allocation map 285 * at recovery time: inode for inode allocation map, 286 * B+-tree index of extent descriptors for block 287 * allocation map); 288 * allocation map pages inherit transaction lsn at 289 * commit time to allow forwarding log syncpt past log 290 * records associated with allocation/deallocation of 291 * resources only after persistent map of these map pages 292 * have been updated and propagated to home. 293 */ 294 /* 295 * initialize transaction lsn: 296 */ 297 if (tblk->lsn == 0) { 298 /* inherit lsn of its first page logged */ 299 tblk->lsn = mp->lsn; 300 log->count++; 301 302 /* insert tblock after the page on logsynclist */ 303 list_add(&tblk->synclist, &mp->synclist); 304 } 305 /* 306 * update transaction lsn: 307 */ 308 else { 309 /* inherit oldest/smallest lsn of page */ 310 logdiff(diffp, mp->lsn, log); 311 logdiff(difft, tblk->lsn, log); 312 if (diffp < difft) { 313 /* update tblock lsn with page lsn */ 314 tblk->lsn = mp->lsn; 315 316 /* move tblock after page on logsynclist */ 317 list_move(&tblk->synclist, &mp->synclist); 318 } 319 } 320 321 LOGSYNC_UNLOCK(log, flags); 322 323 /* 324 * write the log record 325 */ 326 writeRecord: 327 lsn = lmWriteRecord(log, tblk, lrd, tlck); 328 329 /* 330 * forward log syncpt if log reached next syncpt trigger 331 */ 332 logdiff(diffp, lsn, log); 333 if (diffp >= log->nextsync) 334 lsn = lmLogSync(log, 0); 335 336 /* update end-of-log lsn */ 337 log->lsn = lsn; 338 339 LOG_UNLOCK(log); 340 341 /* return end-of-log address */ 342 return lsn; 343 } 344 345 /* 346 * NAME: lmWriteRecord() 347 * 348 * FUNCTION: move the log record to current log page 349 * 350 * PARAMETER: cd - commit descriptor 351 * 352 * RETURN: end-of-log address 353 * 354 * serialization: LOG_LOCK() held on entry/exit 355 */ 356 static int 357 lmWriteRecord(struct jfs_log * log, struct tblock * tblk, struct lrd * lrd, 358 struct tlock * tlck) 359 { 360 int lsn = 0; /* end-of-log address */ 361 struct lbuf *bp; /* dst log page buffer */ 362 struct logpage *lp; /* dst log page */ 363 caddr_t dst; /* destination address in log page */ 364 int dstoffset; /* end-of-log offset in log page */ 365 int freespace; /* free space in log page */ 366 caddr_t p; /* src meta-data page */ 367 caddr_t src; 368 int srclen; 369 int nbytes; /* number of bytes to move */ 370 int i; 371 int len; 372 struct linelock *linelock; 373 struct lv *lv; 374 struct lvd *lvd; 375 int l2linesize; 376 377 len = 0; 378 379 /* retrieve destination log page to write */ 380 bp = (struct lbuf *) log->bp; 381 lp = (struct logpage *) bp->l_ldata; 382 dstoffset = log->eor; 383 384 /* any log data to write ? */ 385 if (tlck == NULL) 386 goto moveLrd; 387 388 /* 389 * move log record data 390 */ 391 /* retrieve source meta-data page to log */ 392 if (tlck->flag & tlckPAGELOCK) { 393 p = (caddr_t) (tlck->mp->data); 394 linelock = (struct linelock *) & tlck->lock; 395 } 396 /* retrieve source in-memory inode to log */ 397 else if (tlck->flag & tlckINODELOCK) { 398 if (tlck->type & tlckDTREE) 399 p = (caddr_t) &JFS_IP(tlck->ip)->i_dtroot; 400 else 401 p = (caddr_t) &JFS_IP(tlck->ip)->i_xtroot; 402 linelock = (struct linelock *) & tlck->lock; 403 } 404 #ifdef _JFS_WIP 405 else if (tlck->flag & tlckINLINELOCK) { 406 407 inlinelock = (struct inlinelock *) & tlck; 408 p = (caddr_t) & inlinelock->pxd; 409 linelock = (struct linelock *) & tlck; 410 } 411 #endif /* _JFS_WIP */ 412 else { 413 jfs_err("lmWriteRecord: UFO tlck:0x%p", tlck); 414 return 0; /* Probably should trap */ 415 } 416 l2linesize = linelock->l2linesize; 417 418 moveData: 419 ASSERT(linelock->index <= linelock->maxcnt); 420 421 lv = linelock->lv; 422 for (i = 0; i < linelock->index; i++, lv++) { 423 if (lv->length == 0) 424 continue; 425 426 /* is page full ? */ 427 if (dstoffset >= LOGPSIZE - LOGPTLRSIZE) { 428 /* page become full: move on to next page */ 429 lmNextPage(log); 430 431 bp = log->bp; 432 lp = (struct logpage *) bp->l_ldata; 433 dstoffset = LOGPHDRSIZE; 434 } 435 436 /* 437 * move log vector data 438 */ 439 src = (u8 *) p + (lv->offset << l2linesize); 440 srclen = lv->length << l2linesize; 441 len += srclen; 442 while (srclen > 0) { 443 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset; 444 nbytes = min(freespace, srclen); 445 dst = (caddr_t) lp + dstoffset; 446 memcpy(dst, src, nbytes); 447 dstoffset += nbytes; 448 449 /* is page not full ? */ 450 if (dstoffset < LOGPSIZE - LOGPTLRSIZE) 451 break; 452 453 /* page become full: move on to next page */ 454 lmNextPage(log); 455 456 bp = (struct lbuf *) log->bp; 457 lp = (struct logpage *) bp->l_ldata; 458 dstoffset = LOGPHDRSIZE; 459 460 srclen -= nbytes; 461 src += nbytes; 462 } 463 464 /* 465 * move log vector descriptor 466 */ 467 len += 4; 468 lvd = (struct lvd *) ((caddr_t) lp + dstoffset); 469 lvd->offset = cpu_to_le16(lv->offset); 470 lvd->length = cpu_to_le16(lv->length); 471 dstoffset += 4; 472 jfs_info("lmWriteRecord: lv offset:%d length:%d", 473 lv->offset, lv->length); 474 } 475 476 if ((i = linelock->next)) { 477 linelock = (struct linelock *) lid_to_tlock(i); 478 goto moveData; 479 } 480 481 /* 482 * move log record descriptor 483 */ 484 moveLrd: 485 lrd->length = cpu_to_le16(len); 486 487 src = (caddr_t) lrd; 488 srclen = LOGRDSIZE; 489 490 while (srclen > 0) { 491 freespace = (LOGPSIZE - LOGPTLRSIZE) - dstoffset; 492 nbytes = min(freespace, srclen); 493 dst = (caddr_t) lp + dstoffset; 494 memcpy(dst, src, nbytes); 495 496 dstoffset += nbytes; 497 srclen -= nbytes; 498 499 /* are there more to move than freespace of page ? */ 500 if (srclen) 501 goto pageFull; 502 503 /* 504 * end of log record descriptor 505 */ 506 507 /* update last log record eor */ 508 log->eor = dstoffset; 509 bp->l_eor = dstoffset; 510 lsn = (log->page << L2LOGPSIZE) + dstoffset; 511 512 if (lrd->type & cpu_to_le16(LOG_COMMIT)) { 513 tblk->clsn = lsn; 514 jfs_info("wr: tclsn:0x%x, beor:0x%x", tblk->clsn, 515 bp->l_eor); 516 517 INCREMENT(lmStat.commit); /* # of commit */ 518 519 /* 520 * enqueue tblock for group commit: 521 * 522 * enqueue tblock of non-trivial/synchronous COMMIT 523 * at tail of group commit queue 524 * (trivial/asynchronous COMMITs are ignored by 525 * group commit.) 526 */ 527 LOGGC_LOCK(log); 528 529 /* init tblock gc state */ 530 tblk->flag = tblkGC_QUEUE; 531 tblk->bp = log->bp; 532 tblk->pn = log->page; 533 tblk->eor = log->eor; 534 535 /* enqueue transaction to commit queue */ 536 list_add_tail(&tblk->cqueue, &log->cqueue); 537 538 LOGGC_UNLOCK(log); 539 } 540 541 jfs_info("lmWriteRecord: lrd:0x%04x bp:0x%p pn:%d eor:0x%x", 542 le16_to_cpu(lrd->type), log->bp, log->page, dstoffset); 543 544 /* page not full ? */ 545 if (dstoffset < LOGPSIZE - LOGPTLRSIZE) 546 return lsn; 547 548 pageFull: 549 /* page become full: move on to next page */ 550 lmNextPage(log); 551 552 bp = (struct lbuf *) log->bp; 553 lp = (struct logpage *) bp->l_ldata; 554 dstoffset = LOGPHDRSIZE; 555 src += nbytes; 556 } 557 558 return lsn; 559 } 560 561 562 /* 563 * NAME: lmNextPage() 564 * 565 * FUNCTION: write current page and allocate next page. 566 * 567 * PARAMETER: log 568 * 569 * RETURN: 0 570 * 571 * serialization: LOG_LOCK() held on entry/exit 572 */ 573 static int lmNextPage(struct jfs_log * log) 574 { 575 struct logpage *lp; 576 int lspn; /* log sequence page number */ 577 int pn; /* current page number */ 578 struct lbuf *bp; 579 struct lbuf *nextbp; 580 struct tblock *tblk; 581 582 /* get current log page number and log sequence page number */ 583 pn = log->page; 584 bp = log->bp; 585 lp = (struct logpage *) bp->l_ldata; 586 lspn = le32_to_cpu(lp->h.page); 587 588 LOGGC_LOCK(log); 589 590 /* 591 * write or queue the full page at the tail of write queue 592 */ 593 /* get the tail tblk on commit queue */ 594 if (list_empty(&log->cqueue)) 595 tblk = NULL; 596 else 597 tblk = list_entry(log->cqueue.prev, struct tblock, cqueue); 598 599 /* every tblk who has COMMIT record on the current page, 600 * and has not been committed, must be on commit queue 601 * since tblk is queued at commit queueu at the time 602 * of writing its COMMIT record on the page before 603 * page becomes full (even though the tblk thread 604 * who wrote COMMIT record may have been suspended 605 * currently); 606 */ 607 608 /* is page bound with outstanding tail tblk ? */ 609 if (tblk && tblk->pn == pn) { 610 /* mark tblk for end-of-page */ 611 tblk->flag |= tblkGC_EOP; 612 613 if (log->cflag & logGC_PAGEOUT) { 614 /* if page is not already on write queue, 615 * just enqueue (no lbmWRITE to prevent redrive) 616 * buffer to wqueue to ensure correct serial order 617 * of the pages since log pages will be added 618 * continuously 619 */ 620 if (bp->l_wqnext == NULL) 621 lbmWrite(log, bp, 0, 0); 622 } else { 623 /* 624 * No current GC leader, initiate group commit 625 */ 626 log->cflag |= logGC_PAGEOUT; 627 lmGCwrite(log, 0); 628 } 629 } 630 /* page is not bound with outstanding tblk: 631 * init write or mark it to be redriven (lbmWRITE) 632 */ 633 else { 634 /* finalize the page */ 635 bp->l_ceor = bp->l_eor; 636 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 637 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 0); 638 } 639 LOGGC_UNLOCK(log); 640 641 /* 642 * allocate/initialize next page 643 */ 644 /* if log wraps, the first data page of log is 2 645 * (0 never used, 1 is superblock). 646 */ 647 log->page = (pn == log->size - 1) ? 2 : pn + 1; 648 log->eor = LOGPHDRSIZE; /* ? valid page empty/full at logRedo() */ 649 650 /* allocate/initialize next log page buffer */ 651 nextbp = lbmAllocate(log, log->page); 652 nextbp->l_eor = log->eor; 653 log->bp = nextbp; 654 655 /* initialize next log page */ 656 lp = (struct logpage *) nextbp->l_ldata; 657 lp->h.page = lp->t.page = cpu_to_le32(lspn + 1); 658 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE); 659 660 return 0; 661 } 662 663 664 /* 665 * NAME: lmGroupCommit() 666 * 667 * FUNCTION: group commit 668 * initiate pageout of the pages with COMMIT in the order of 669 * page number - redrive pageout of the page at the head of 670 * pageout queue until full page has been written. 671 * 672 * RETURN: 673 * 674 * NOTE: 675 * LOGGC_LOCK serializes log group commit queue, and 676 * transaction blocks on the commit queue. 677 * N.B. LOG_LOCK is NOT held during lmGroupCommit(). 678 */ 679 int lmGroupCommit(struct jfs_log * log, struct tblock * tblk) 680 { 681 int rc = 0; 682 683 LOGGC_LOCK(log); 684 685 /* group committed already ? */ 686 if (tblk->flag & tblkGC_COMMITTED) { 687 if (tblk->flag & tblkGC_ERROR) 688 rc = -EIO; 689 690 LOGGC_UNLOCK(log); 691 return rc; 692 } 693 jfs_info("lmGroup Commit: tblk = 0x%p, gcrtc = %d", tblk, log->gcrtc); 694 695 if (tblk->xflag & COMMIT_LAZY) 696 tblk->flag |= tblkGC_LAZY; 697 698 if ((!(log->cflag & logGC_PAGEOUT)) && (!list_empty(&log->cqueue)) && 699 (!(tblk->xflag & COMMIT_LAZY) || test_bit(log_FLUSH, &log->flag) 700 || jfs_tlocks_low)) { 701 /* 702 * No pageout in progress 703 * 704 * start group commit as its group leader. 705 */ 706 log->cflag |= logGC_PAGEOUT; 707 708 lmGCwrite(log, 0); 709 } 710 711 if (tblk->xflag & COMMIT_LAZY) { 712 /* 713 * Lazy transactions can leave now 714 */ 715 LOGGC_UNLOCK(log); 716 return 0; 717 } 718 719 /* lmGCwrite gives up LOGGC_LOCK, check again */ 720 721 if (tblk->flag & tblkGC_COMMITTED) { 722 if (tblk->flag & tblkGC_ERROR) 723 rc = -EIO; 724 725 LOGGC_UNLOCK(log); 726 return rc; 727 } 728 729 /* upcount transaction waiting for completion 730 */ 731 log->gcrtc++; 732 tblk->flag |= tblkGC_READY; 733 734 __SLEEP_COND(tblk->gcwait, (tblk->flag & tblkGC_COMMITTED), 735 LOGGC_LOCK(log), LOGGC_UNLOCK(log)); 736 737 /* removed from commit queue */ 738 if (tblk->flag & tblkGC_ERROR) 739 rc = -EIO; 740 741 LOGGC_UNLOCK(log); 742 return rc; 743 } 744 745 /* 746 * NAME: lmGCwrite() 747 * 748 * FUNCTION: group commit write 749 * initiate write of log page, building a group of all transactions 750 * with commit records on that page. 751 * 752 * RETURN: None 753 * 754 * NOTE: 755 * LOGGC_LOCK must be held by caller. 756 * N.B. LOG_LOCK is NOT held during lmGroupCommit(). 757 */ 758 static void lmGCwrite(struct jfs_log * log, int cant_write) 759 { 760 struct lbuf *bp; 761 struct logpage *lp; 762 int gcpn; /* group commit page number */ 763 struct tblock *tblk; 764 struct tblock *xtblk = NULL; 765 766 /* 767 * build the commit group of a log page 768 * 769 * scan commit queue and make a commit group of all 770 * transactions with COMMIT records on the same log page. 771 */ 772 /* get the head tblk on the commit queue */ 773 gcpn = list_entry(log->cqueue.next, struct tblock, cqueue)->pn; 774 775 list_for_each_entry(tblk, &log->cqueue, cqueue) { 776 if (tblk->pn != gcpn) 777 break; 778 779 xtblk = tblk; 780 781 /* state transition: (QUEUE, READY) -> COMMIT */ 782 tblk->flag |= tblkGC_COMMIT; 783 } 784 tblk = xtblk; /* last tblk of the page */ 785 786 /* 787 * pageout to commit transactions on the log page. 788 */ 789 bp = (struct lbuf *) tblk->bp; 790 lp = (struct logpage *) bp->l_ldata; 791 /* is page already full ? */ 792 if (tblk->flag & tblkGC_EOP) { 793 /* mark page to free at end of group commit of the page */ 794 tblk->flag &= ~tblkGC_EOP; 795 tblk->flag |= tblkGC_FREE; 796 bp->l_ceor = bp->l_eor; 797 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 798 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmGC, 799 cant_write); 800 INCREMENT(lmStat.full_page); 801 } 802 /* page is not yet full */ 803 else { 804 bp->l_ceor = tblk->eor; /* ? bp->l_ceor = bp->l_eor; */ 805 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_ceor); 806 lbmWrite(log, bp, lbmWRITE | lbmGC, cant_write); 807 INCREMENT(lmStat.partial_page); 808 } 809 } 810 811 /* 812 * NAME: lmPostGC() 813 * 814 * FUNCTION: group commit post-processing 815 * Processes transactions after their commit records have been written 816 * to disk, redriving log I/O if necessary. 817 * 818 * RETURN: None 819 * 820 * NOTE: 821 * This routine is called a interrupt time by lbmIODone 822 */ 823 static void lmPostGC(struct lbuf * bp) 824 { 825 unsigned long flags; 826 struct jfs_log *log = bp->l_log; 827 struct logpage *lp; 828 struct tblock *tblk, *temp; 829 830 //LOGGC_LOCK(log); 831 spin_lock_irqsave(&log->gclock, flags); 832 /* 833 * current pageout of group commit completed. 834 * 835 * remove/wakeup transactions from commit queue who were 836 * group committed with the current log page 837 */ 838 list_for_each_entry_safe(tblk, temp, &log->cqueue, cqueue) { 839 if (!(tblk->flag & tblkGC_COMMIT)) 840 break; 841 /* if transaction was marked GC_COMMIT then 842 * it has been shipped in the current pageout 843 * and made it to disk - it is committed. 844 */ 845 846 if (bp->l_flag & lbmERROR) 847 tblk->flag |= tblkGC_ERROR; 848 849 /* remove it from the commit queue */ 850 list_del(&tblk->cqueue); 851 tblk->flag &= ~tblkGC_QUEUE; 852 853 if (tblk == log->flush_tblk) { 854 /* we can stop flushing the log now */ 855 clear_bit(log_FLUSH, &log->flag); 856 log->flush_tblk = NULL; 857 } 858 859 jfs_info("lmPostGC: tblk = 0x%p, flag = 0x%x", tblk, 860 tblk->flag); 861 862 if (!(tblk->xflag & COMMIT_FORCE)) 863 /* 864 * Hand tblk over to lazy commit thread 865 */ 866 txLazyUnlock(tblk); 867 else { 868 /* state transition: COMMIT -> COMMITTED */ 869 tblk->flag |= tblkGC_COMMITTED; 870 871 if (tblk->flag & tblkGC_READY) 872 log->gcrtc--; 873 874 LOGGC_WAKEUP(tblk); 875 } 876 877 /* was page full before pageout ? 878 * (and this is the last tblk bound with the page) 879 */ 880 if (tblk->flag & tblkGC_FREE) 881 lbmFree(bp); 882 /* did page become full after pageout ? 883 * (and this is the last tblk bound with the page) 884 */ 885 else if (tblk->flag & tblkGC_EOP) { 886 /* finalize the page */ 887 lp = (struct logpage *) bp->l_ldata; 888 bp->l_ceor = bp->l_eor; 889 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 890 jfs_info("lmPostGC: calling lbmWrite"); 891 lbmWrite(log, bp, lbmWRITE | lbmRELEASE | lbmFREE, 892 1); 893 } 894 895 } 896 897 /* are there any transactions who have entered lnGroupCommit() 898 * (whose COMMITs are after that of the last log page written. 899 * They are waiting for new group commit (above at (SLEEP 1)) 900 * or lazy transactions are on a full (queued) log page, 901 * select the latest ready transaction as new group leader and 902 * wake her up to lead her group. 903 */ 904 if ((!list_empty(&log->cqueue)) && 905 ((log->gcrtc > 0) || (tblk->bp->l_wqnext != NULL) || 906 test_bit(log_FLUSH, &log->flag) || jfs_tlocks_low)) 907 /* 908 * Call lmGCwrite with new group leader 909 */ 910 lmGCwrite(log, 1); 911 912 /* no transaction are ready yet (transactions are only just 913 * queued (GC_QUEUE) and not entered for group commit yet). 914 * the first transaction entering group commit 915 * will elect herself as new group leader. 916 */ 917 else 918 log->cflag &= ~logGC_PAGEOUT; 919 920 //LOGGC_UNLOCK(log); 921 spin_unlock_irqrestore(&log->gclock, flags); 922 return; 923 } 924 925 /* 926 * NAME: lmLogSync() 927 * 928 * FUNCTION: write log SYNCPT record for specified log 929 * if new sync address is available 930 * (normally the case if sync() is executed by back-ground 931 * process). 932 * calculate new value of i_nextsync which determines when 933 * this code is called again. 934 * 935 * PARAMETERS: log - log structure 936 * hard_sync - 1 to force all metadata to be written 937 * 938 * RETURN: 0 939 * 940 * serialization: LOG_LOCK() held on entry/exit 941 */ 942 static int lmLogSync(struct jfs_log * log, int hard_sync) 943 { 944 int logsize; 945 int written; /* written since last syncpt */ 946 int free; /* free space left available */ 947 int delta; /* additional delta to write normally */ 948 int more; /* additional write granted */ 949 struct lrd lrd; 950 int lsn; 951 struct logsyncblk *lp; 952 unsigned long flags; 953 954 /* push dirty metapages out to disk */ 955 if (hard_sync) 956 write_special_inodes(log, filemap_fdatawrite); 957 else 958 write_special_inodes(log, filemap_flush); 959 960 /* 961 * forward syncpt 962 */ 963 /* if last sync is same as last syncpt, 964 * invoke sync point forward processing to update sync. 965 */ 966 967 if (log->sync == log->syncpt) { 968 LOGSYNC_LOCK(log, flags); 969 if (list_empty(&log->synclist)) 970 log->sync = log->lsn; 971 else { 972 lp = list_entry(log->synclist.next, 973 struct logsyncblk, synclist); 974 log->sync = lp->lsn; 975 } 976 LOGSYNC_UNLOCK(log, flags); 977 978 } 979 980 /* if sync is different from last syncpt, 981 * write a SYNCPT record with syncpt = sync. 982 * reset syncpt = sync 983 */ 984 if (log->sync != log->syncpt) { 985 lrd.logtid = 0; 986 lrd.backchain = 0; 987 lrd.type = cpu_to_le16(LOG_SYNCPT); 988 lrd.length = 0; 989 lrd.log.syncpt.sync = cpu_to_le32(log->sync); 990 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 991 992 log->syncpt = log->sync; 993 } else 994 lsn = log->lsn; 995 996 /* 997 * setup next syncpt trigger (SWAG) 998 */ 999 logsize = log->logsize; 1000 1001 logdiff(written, lsn, log); 1002 free = logsize - written; 1003 delta = LOGSYNC_DELTA(logsize); 1004 more = min(free / 2, delta); 1005 if (more < 2 * LOGPSIZE) { 1006 jfs_warn("\n ... Log Wrap ... Log Wrap ... Log Wrap ...\n"); 1007 /* 1008 * log wrapping 1009 * 1010 * option 1 - panic ? No.! 1011 * option 2 - shutdown file systems 1012 * associated with log ? 1013 * option 3 - extend log ? 1014 * option 4 - second chance 1015 * 1016 * mark log wrapped, and continue. 1017 * when all active transactions are completed, 1018 * mark log valid for recovery. 1019 * if crashed during invalid state, log state 1020 * implies invalid log, forcing fsck(). 1021 */ 1022 /* mark log state log wrap in log superblock */ 1023 /* log->state = LOGWRAP; */ 1024 1025 /* reset sync point computation */ 1026 log->syncpt = log->sync = lsn; 1027 log->nextsync = delta; 1028 } else 1029 /* next syncpt trigger = written + more */ 1030 log->nextsync = written + more; 1031 1032 /* if number of bytes written from last sync point is more 1033 * than 1/4 of the log size, stop new transactions from 1034 * starting until all current transactions are completed 1035 * by setting syncbarrier flag. 1036 */ 1037 if (!test_bit(log_SYNCBARRIER, &log->flag) && 1038 (written > LOGSYNC_BARRIER(logsize)) && log->active) { 1039 set_bit(log_SYNCBARRIER, &log->flag); 1040 jfs_info("log barrier on: lsn=0x%x syncpt=0x%x", lsn, 1041 log->syncpt); 1042 /* 1043 * We may have to initiate group commit 1044 */ 1045 jfs_flush_journal(log, 0); 1046 } 1047 1048 return lsn; 1049 } 1050 1051 /* 1052 * NAME: jfs_syncpt 1053 * 1054 * FUNCTION: write log SYNCPT record for specified log 1055 * 1056 * PARAMETERS: log - log structure 1057 * hard_sync - set to 1 to force metadata to be written 1058 */ 1059 void jfs_syncpt(struct jfs_log *log, int hard_sync) 1060 { LOG_LOCK(log); 1061 lmLogSync(log, hard_sync); 1062 LOG_UNLOCK(log); 1063 } 1064 1065 /* 1066 * NAME: lmLogOpen() 1067 * 1068 * FUNCTION: open the log on first open; 1069 * insert filesystem in the active list of the log. 1070 * 1071 * PARAMETER: ipmnt - file system mount inode 1072 * iplog - log inode (out) 1073 * 1074 * RETURN: 1075 * 1076 * serialization: 1077 */ 1078 int lmLogOpen(struct super_block *sb) 1079 { 1080 int rc; 1081 struct block_device *bdev; 1082 struct jfs_log *log; 1083 struct jfs_sb_info *sbi = JFS_SBI(sb); 1084 1085 if (sbi->flag & JFS_NOINTEGRITY) 1086 return open_dummy_log(sb); 1087 1088 if (sbi->mntflag & JFS_INLINELOG) 1089 return open_inline_log(sb); 1090 1091 mutex_lock(&jfs_log_mutex); 1092 list_for_each_entry(log, &jfs_external_logs, journal_list) { 1093 if (log->bdev->bd_dev == sbi->logdev) { 1094 if (memcmp(log->uuid, sbi->loguuid, 1095 sizeof(log->uuid))) { 1096 jfs_warn("wrong uuid on JFS journal\n"); 1097 mutex_unlock(&jfs_log_mutex); 1098 return -EINVAL; 1099 } 1100 /* 1101 * add file system to log active file system list 1102 */ 1103 if ((rc = lmLogFileSystem(log, sbi, 1))) { 1104 mutex_unlock(&jfs_log_mutex); 1105 return rc; 1106 } 1107 goto journal_found; 1108 } 1109 } 1110 1111 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) { 1112 mutex_unlock(&jfs_log_mutex); 1113 return -ENOMEM; 1114 } 1115 INIT_LIST_HEAD(&log->sb_list); 1116 init_waitqueue_head(&log->syncwait); 1117 1118 /* 1119 * external log as separate logical volume 1120 * 1121 * file systems to log may have n-to-1 relationship; 1122 */ 1123 1124 bdev = blkdev_get_by_dev(sbi->logdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, 1125 log); 1126 if (IS_ERR(bdev)) { 1127 rc = PTR_ERR(bdev); 1128 goto free; 1129 } 1130 1131 log->bdev = bdev; 1132 memcpy(log->uuid, sbi->loguuid, sizeof(log->uuid)); 1133 1134 /* 1135 * initialize log: 1136 */ 1137 if ((rc = lmLogInit(log))) 1138 goto close; 1139 1140 list_add(&log->journal_list, &jfs_external_logs); 1141 1142 /* 1143 * add file system to log active file system list 1144 */ 1145 if ((rc = lmLogFileSystem(log, sbi, 1))) 1146 goto shutdown; 1147 1148 journal_found: 1149 LOG_LOCK(log); 1150 list_add(&sbi->log_list, &log->sb_list); 1151 sbi->log = log; 1152 LOG_UNLOCK(log); 1153 1154 mutex_unlock(&jfs_log_mutex); 1155 return 0; 1156 1157 /* 1158 * unwind on error 1159 */ 1160 shutdown: /* unwind lbmLogInit() */ 1161 list_del(&log->journal_list); 1162 lbmLogShutdown(log); 1163 1164 close: /* close external log device */ 1165 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1166 1167 free: /* free log descriptor */ 1168 mutex_unlock(&jfs_log_mutex); 1169 kfree(log); 1170 1171 jfs_warn("lmLogOpen: exit(%d)", rc); 1172 return rc; 1173 } 1174 1175 static int open_inline_log(struct super_block *sb) 1176 { 1177 struct jfs_log *log; 1178 int rc; 1179 1180 if (!(log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL))) 1181 return -ENOMEM; 1182 INIT_LIST_HEAD(&log->sb_list); 1183 init_waitqueue_head(&log->syncwait); 1184 1185 set_bit(log_INLINELOG, &log->flag); 1186 log->bdev = sb->s_bdev; 1187 log->base = addressPXD(&JFS_SBI(sb)->logpxd); 1188 log->size = lengthPXD(&JFS_SBI(sb)->logpxd) >> 1189 (L2LOGPSIZE - sb->s_blocksize_bits); 1190 log->l2bsize = sb->s_blocksize_bits; 1191 ASSERT(L2LOGPSIZE >= sb->s_blocksize_bits); 1192 1193 /* 1194 * initialize log. 1195 */ 1196 if ((rc = lmLogInit(log))) { 1197 kfree(log); 1198 jfs_warn("lmLogOpen: exit(%d)", rc); 1199 return rc; 1200 } 1201 1202 list_add(&JFS_SBI(sb)->log_list, &log->sb_list); 1203 JFS_SBI(sb)->log = log; 1204 1205 return rc; 1206 } 1207 1208 static int open_dummy_log(struct super_block *sb) 1209 { 1210 int rc; 1211 1212 mutex_lock(&jfs_log_mutex); 1213 if (!dummy_log) { 1214 dummy_log = kzalloc(sizeof(struct jfs_log), GFP_KERNEL); 1215 if (!dummy_log) { 1216 mutex_unlock(&jfs_log_mutex); 1217 return -ENOMEM; 1218 } 1219 INIT_LIST_HEAD(&dummy_log->sb_list); 1220 init_waitqueue_head(&dummy_log->syncwait); 1221 dummy_log->no_integrity = 1; 1222 /* Make up some stuff */ 1223 dummy_log->base = 0; 1224 dummy_log->size = 1024; 1225 rc = lmLogInit(dummy_log); 1226 if (rc) { 1227 kfree(dummy_log); 1228 dummy_log = NULL; 1229 mutex_unlock(&jfs_log_mutex); 1230 return rc; 1231 } 1232 } 1233 1234 LOG_LOCK(dummy_log); 1235 list_add(&JFS_SBI(sb)->log_list, &dummy_log->sb_list); 1236 JFS_SBI(sb)->log = dummy_log; 1237 LOG_UNLOCK(dummy_log); 1238 mutex_unlock(&jfs_log_mutex); 1239 1240 return 0; 1241 } 1242 1243 /* 1244 * NAME: lmLogInit() 1245 * 1246 * FUNCTION: log initialization at first log open. 1247 * 1248 * logredo() (or logformat()) should have been run previously. 1249 * initialize the log from log superblock. 1250 * set the log state in the superblock to LOGMOUNT and 1251 * write SYNCPT log record. 1252 * 1253 * PARAMETER: log - log structure 1254 * 1255 * RETURN: 0 - if ok 1256 * -EINVAL - bad log magic number or superblock dirty 1257 * error returned from logwait() 1258 * 1259 * serialization: single first open thread 1260 */ 1261 int lmLogInit(struct jfs_log * log) 1262 { 1263 int rc = 0; 1264 struct lrd lrd; 1265 struct logsuper *logsuper; 1266 struct lbuf *bpsuper; 1267 struct lbuf *bp; 1268 struct logpage *lp; 1269 int lsn = 0; 1270 1271 jfs_info("lmLogInit: log:0x%p", log); 1272 1273 /* initialize the group commit serialization lock */ 1274 LOGGC_LOCK_INIT(log); 1275 1276 /* allocate/initialize the log write serialization lock */ 1277 LOG_LOCK_INIT(log); 1278 1279 LOGSYNC_LOCK_INIT(log); 1280 1281 INIT_LIST_HEAD(&log->synclist); 1282 1283 INIT_LIST_HEAD(&log->cqueue); 1284 log->flush_tblk = NULL; 1285 1286 log->count = 0; 1287 1288 /* 1289 * initialize log i/o 1290 */ 1291 if ((rc = lbmLogInit(log))) 1292 return rc; 1293 1294 if (!test_bit(log_INLINELOG, &log->flag)) 1295 log->l2bsize = L2LOGPSIZE; 1296 1297 /* check for disabled journaling to disk */ 1298 if (log->no_integrity) { 1299 /* 1300 * Journal pages will still be filled. When the time comes 1301 * to actually do the I/O, the write is not done, and the 1302 * endio routine is called directly. 1303 */ 1304 bp = lbmAllocate(log , 0); 1305 log->bp = bp; 1306 bp->l_pn = bp->l_eor = 0; 1307 } else { 1308 /* 1309 * validate log superblock 1310 */ 1311 if ((rc = lbmRead(log, 1, &bpsuper))) 1312 goto errout10; 1313 1314 logsuper = (struct logsuper *) bpsuper->l_ldata; 1315 1316 if (logsuper->magic != cpu_to_le32(LOGMAGIC)) { 1317 jfs_warn("*** Log Format Error ! ***"); 1318 rc = -EINVAL; 1319 goto errout20; 1320 } 1321 1322 /* logredo() should have been run successfully. */ 1323 if (logsuper->state != cpu_to_le32(LOGREDONE)) { 1324 jfs_warn("*** Log Is Dirty ! ***"); 1325 rc = -EINVAL; 1326 goto errout20; 1327 } 1328 1329 /* initialize log from log superblock */ 1330 if (test_bit(log_INLINELOG,&log->flag)) { 1331 if (log->size != le32_to_cpu(logsuper->size)) { 1332 rc = -EINVAL; 1333 goto errout20; 1334 } 1335 jfs_info("lmLogInit: inline log:0x%p base:0x%Lx " 1336 "size:0x%x", log, 1337 (unsigned long long) log->base, log->size); 1338 } else { 1339 if (memcmp(logsuper->uuid, log->uuid, 16)) { 1340 jfs_warn("wrong uuid on JFS log device"); 1341 goto errout20; 1342 } 1343 log->size = le32_to_cpu(logsuper->size); 1344 log->l2bsize = le32_to_cpu(logsuper->l2bsize); 1345 jfs_info("lmLogInit: external log:0x%p base:0x%Lx " 1346 "size:0x%x", log, 1347 (unsigned long long) log->base, log->size); 1348 } 1349 1350 log->page = le32_to_cpu(logsuper->end) / LOGPSIZE; 1351 log->eor = le32_to_cpu(logsuper->end) - (LOGPSIZE * log->page); 1352 1353 /* 1354 * initialize for log append write mode 1355 */ 1356 /* establish current/end-of-log page/buffer */ 1357 if ((rc = lbmRead(log, log->page, &bp))) 1358 goto errout20; 1359 1360 lp = (struct logpage *) bp->l_ldata; 1361 1362 jfs_info("lmLogInit: lsn:0x%x page:%d eor:%d:%d", 1363 le32_to_cpu(logsuper->end), log->page, log->eor, 1364 le16_to_cpu(lp->h.eor)); 1365 1366 log->bp = bp; 1367 bp->l_pn = log->page; 1368 bp->l_eor = log->eor; 1369 1370 /* if current page is full, move on to next page */ 1371 if (log->eor >= LOGPSIZE - LOGPTLRSIZE) 1372 lmNextPage(log); 1373 1374 /* 1375 * initialize log syncpoint 1376 */ 1377 /* 1378 * write the first SYNCPT record with syncpoint = 0 1379 * (i.e., log redo up to HERE !); 1380 * remove current page from lbm write queue at end of pageout 1381 * (to write log superblock update), but do not release to 1382 * freelist; 1383 */ 1384 lrd.logtid = 0; 1385 lrd.backchain = 0; 1386 lrd.type = cpu_to_le16(LOG_SYNCPT); 1387 lrd.length = 0; 1388 lrd.log.syncpt.sync = 0; 1389 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 1390 bp = log->bp; 1391 bp->l_ceor = bp->l_eor; 1392 lp = (struct logpage *) bp->l_ldata; 1393 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 1394 lbmWrite(log, bp, lbmWRITE | lbmSYNC, 0); 1395 if ((rc = lbmIOWait(bp, 0))) 1396 goto errout30; 1397 1398 /* 1399 * update/write superblock 1400 */ 1401 logsuper->state = cpu_to_le32(LOGMOUNT); 1402 log->serial = le32_to_cpu(logsuper->serial) + 1; 1403 logsuper->serial = cpu_to_le32(log->serial); 1404 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1405 if ((rc = lbmIOWait(bpsuper, lbmFREE))) 1406 goto errout30; 1407 } 1408 1409 /* initialize logsync parameters */ 1410 log->logsize = (log->size - 2) << L2LOGPSIZE; 1411 log->lsn = lsn; 1412 log->syncpt = lsn; 1413 log->sync = log->syncpt; 1414 log->nextsync = LOGSYNC_DELTA(log->logsize); 1415 1416 jfs_info("lmLogInit: lsn:0x%x syncpt:0x%x sync:0x%x", 1417 log->lsn, log->syncpt, log->sync); 1418 1419 /* 1420 * initialize for lazy/group commit 1421 */ 1422 log->clsn = lsn; 1423 1424 return 0; 1425 1426 /* 1427 * unwind on error 1428 */ 1429 errout30: /* release log page */ 1430 log->wqueue = NULL; 1431 bp->l_wqnext = NULL; 1432 lbmFree(bp); 1433 1434 errout20: /* release log superblock */ 1435 lbmFree(bpsuper); 1436 1437 errout10: /* unwind lbmLogInit() */ 1438 lbmLogShutdown(log); 1439 1440 jfs_warn("lmLogInit: exit(%d)", rc); 1441 return rc; 1442 } 1443 1444 1445 /* 1446 * NAME: lmLogClose() 1447 * 1448 * FUNCTION: remove file system <ipmnt> from active list of log <iplog> 1449 * and close it on last close. 1450 * 1451 * PARAMETER: sb - superblock 1452 * 1453 * RETURN: errors from subroutines 1454 * 1455 * serialization: 1456 */ 1457 int lmLogClose(struct super_block *sb) 1458 { 1459 struct jfs_sb_info *sbi = JFS_SBI(sb); 1460 struct jfs_log *log = sbi->log; 1461 struct block_device *bdev; 1462 int rc = 0; 1463 1464 jfs_info("lmLogClose: log:0x%p", log); 1465 1466 mutex_lock(&jfs_log_mutex); 1467 LOG_LOCK(log); 1468 list_del(&sbi->log_list); 1469 LOG_UNLOCK(log); 1470 sbi->log = NULL; 1471 1472 /* 1473 * We need to make sure all of the "written" metapages 1474 * actually make it to disk 1475 */ 1476 sync_blockdev(sb->s_bdev); 1477 1478 if (test_bit(log_INLINELOG, &log->flag)) { 1479 /* 1480 * in-line log in host file system 1481 */ 1482 rc = lmLogShutdown(log); 1483 kfree(log); 1484 goto out; 1485 } 1486 1487 if (!log->no_integrity) 1488 lmLogFileSystem(log, sbi, 0); 1489 1490 if (!list_empty(&log->sb_list)) 1491 goto out; 1492 1493 /* 1494 * TODO: ensure that the dummy_log is in a state to allow 1495 * lbmLogShutdown to deallocate all the buffers and call 1496 * kfree against dummy_log. For now, leave dummy_log & its 1497 * buffers in memory, and resuse if another no-integrity mount 1498 * is requested. 1499 */ 1500 if (log->no_integrity) 1501 goto out; 1502 1503 /* 1504 * external log as separate logical volume 1505 */ 1506 list_del(&log->journal_list); 1507 bdev = log->bdev; 1508 rc = lmLogShutdown(log); 1509 1510 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); 1511 1512 kfree(log); 1513 1514 out: 1515 mutex_unlock(&jfs_log_mutex); 1516 jfs_info("lmLogClose: exit(%d)", rc); 1517 return rc; 1518 } 1519 1520 1521 /* 1522 * NAME: jfs_flush_journal() 1523 * 1524 * FUNCTION: initiate write of any outstanding transactions to the journal 1525 * and optionally wait until they are all written to disk 1526 * 1527 * wait == 0 flush until latest txn is committed, don't wait 1528 * wait == 1 flush until latest txn is committed, wait 1529 * wait > 1 flush until all txn's are complete, wait 1530 */ 1531 void jfs_flush_journal(struct jfs_log *log, int wait) 1532 { 1533 int i; 1534 struct tblock *target = NULL; 1535 1536 /* jfs_write_inode may call us during read-only mount */ 1537 if (!log) 1538 return; 1539 1540 jfs_info("jfs_flush_journal: log:0x%p wait=%d", log, wait); 1541 1542 LOGGC_LOCK(log); 1543 1544 if (!list_empty(&log->cqueue)) { 1545 /* 1546 * This ensures that we will keep writing to the journal as long 1547 * as there are unwritten commit records 1548 */ 1549 target = list_entry(log->cqueue.prev, struct tblock, cqueue); 1550 1551 if (test_bit(log_FLUSH, &log->flag)) { 1552 /* 1553 * We're already flushing. 1554 * if flush_tblk is NULL, we are flushing everything, 1555 * so leave it that way. Otherwise, update it to the 1556 * latest transaction 1557 */ 1558 if (log->flush_tblk) 1559 log->flush_tblk = target; 1560 } else { 1561 /* Only flush until latest transaction is committed */ 1562 log->flush_tblk = target; 1563 set_bit(log_FLUSH, &log->flag); 1564 1565 /* 1566 * Initiate I/O on outstanding transactions 1567 */ 1568 if (!(log->cflag & logGC_PAGEOUT)) { 1569 log->cflag |= logGC_PAGEOUT; 1570 lmGCwrite(log, 0); 1571 } 1572 } 1573 } 1574 if ((wait > 1) || test_bit(log_SYNCBARRIER, &log->flag)) { 1575 /* Flush until all activity complete */ 1576 set_bit(log_FLUSH, &log->flag); 1577 log->flush_tblk = NULL; 1578 } 1579 1580 if (wait && target && !(target->flag & tblkGC_COMMITTED)) { 1581 DECLARE_WAITQUEUE(__wait, current); 1582 1583 add_wait_queue(&target->gcwait, &__wait); 1584 set_current_state(TASK_UNINTERRUPTIBLE); 1585 LOGGC_UNLOCK(log); 1586 schedule(); 1587 __set_current_state(TASK_RUNNING); 1588 LOGGC_LOCK(log); 1589 remove_wait_queue(&target->gcwait, &__wait); 1590 } 1591 LOGGC_UNLOCK(log); 1592 1593 if (wait < 2) 1594 return; 1595 1596 write_special_inodes(log, filemap_fdatawrite); 1597 1598 /* 1599 * If there was recent activity, we may need to wait 1600 * for the lazycommit thread to catch up 1601 */ 1602 if ((!list_empty(&log->cqueue)) || !list_empty(&log->synclist)) { 1603 for (i = 0; i < 200; i++) { /* Too much? */ 1604 msleep(250); 1605 write_special_inodes(log, filemap_fdatawrite); 1606 if (list_empty(&log->cqueue) && 1607 list_empty(&log->synclist)) 1608 break; 1609 } 1610 } 1611 assert(list_empty(&log->cqueue)); 1612 1613 #ifdef CONFIG_JFS_DEBUG 1614 if (!list_empty(&log->synclist)) { 1615 struct logsyncblk *lp; 1616 1617 printk(KERN_ERR "jfs_flush_journal: synclist not empty\n"); 1618 list_for_each_entry(lp, &log->synclist, synclist) { 1619 if (lp->xflag & COMMIT_PAGE) { 1620 struct metapage *mp = (struct metapage *)lp; 1621 print_hex_dump(KERN_ERR, "metapage: ", 1622 DUMP_PREFIX_ADDRESS, 16, 4, 1623 mp, sizeof(struct metapage), 0); 1624 print_hex_dump(KERN_ERR, "page: ", 1625 DUMP_PREFIX_ADDRESS, 16, 1626 sizeof(long), mp->page, 1627 sizeof(struct page), 0); 1628 } else 1629 print_hex_dump(KERN_ERR, "tblock:", 1630 DUMP_PREFIX_ADDRESS, 16, 4, 1631 lp, sizeof(struct tblock), 0); 1632 } 1633 } 1634 #else 1635 WARN_ON(!list_empty(&log->synclist)); 1636 #endif 1637 clear_bit(log_FLUSH, &log->flag); 1638 } 1639 1640 /* 1641 * NAME: lmLogShutdown() 1642 * 1643 * FUNCTION: log shutdown at last LogClose(). 1644 * 1645 * write log syncpt record. 1646 * update super block to set redone flag to 0. 1647 * 1648 * PARAMETER: log - log inode 1649 * 1650 * RETURN: 0 - success 1651 * 1652 * serialization: single last close thread 1653 */ 1654 int lmLogShutdown(struct jfs_log * log) 1655 { 1656 int rc; 1657 struct lrd lrd; 1658 int lsn; 1659 struct logsuper *logsuper; 1660 struct lbuf *bpsuper; 1661 struct lbuf *bp; 1662 struct logpage *lp; 1663 1664 jfs_info("lmLogShutdown: log:0x%p", log); 1665 1666 jfs_flush_journal(log, 2); 1667 1668 /* 1669 * write the last SYNCPT record with syncpoint = 0 1670 * (i.e., log redo up to HERE !) 1671 */ 1672 lrd.logtid = 0; 1673 lrd.backchain = 0; 1674 lrd.type = cpu_to_le16(LOG_SYNCPT); 1675 lrd.length = 0; 1676 lrd.log.syncpt.sync = 0; 1677 1678 lsn = lmWriteRecord(log, NULL, &lrd, NULL); 1679 bp = log->bp; 1680 lp = (struct logpage *) bp->l_ldata; 1681 lp->h.eor = lp->t.eor = cpu_to_le16(bp->l_eor); 1682 lbmWrite(log, log->bp, lbmWRITE | lbmRELEASE | lbmSYNC, 0); 1683 lbmIOWait(log->bp, lbmFREE); 1684 log->bp = NULL; 1685 1686 /* 1687 * synchronous update log superblock 1688 * mark log state as shutdown cleanly 1689 * (i.e., Log does not need to be replayed). 1690 */ 1691 if ((rc = lbmRead(log, 1, &bpsuper))) 1692 goto out; 1693 1694 logsuper = (struct logsuper *) bpsuper->l_ldata; 1695 logsuper->state = cpu_to_le32(LOGREDONE); 1696 logsuper->end = cpu_to_le32(lsn); 1697 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1698 rc = lbmIOWait(bpsuper, lbmFREE); 1699 1700 jfs_info("lmLogShutdown: lsn:0x%x page:%d eor:%d", 1701 lsn, log->page, log->eor); 1702 1703 out: 1704 /* 1705 * shutdown per log i/o 1706 */ 1707 lbmLogShutdown(log); 1708 1709 if (rc) { 1710 jfs_warn("lmLogShutdown: exit(%d)", rc); 1711 } 1712 return rc; 1713 } 1714 1715 1716 /* 1717 * NAME: lmLogFileSystem() 1718 * 1719 * FUNCTION: insert (<activate> = true)/remove (<activate> = false) 1720 * file system into/from log active file system list. 1721 * 1722 * PARAMETE: log - pointer to logs inode. 1723 * fsdev - kdev_t of filesystem. 1724 * serial - pointer to returned log serial number 1725 * activate - insert/remove device from active list. 1726 * 1727 * RETURN: 0 - success 1728 * errors returned by vms_iowait(). 1729 */ 1730 static int lmLogFileSystem(struct jfs_log * log, struct jfs_sb_info *sbi, 1731 int activate) 1732 { 1733 int rc = 0; 1734 int i; 1735 struct logsuper *logsuper; 1736 struct lbuf *bpsuper; 1737 char *uuid = sbi->uuid; 1738 1739 /* 1740 * insert/remove file system device to log active file system list. 1741 */ 1742 if ((rc = lbmRead(log, 1, &bpsuper))) 1743 return rc; 1744 1745 logsuper = (struct logsuper *) bpsuper->l_ldata; 1746 if (activate) { 1747 for (i = 0; i < MAX_ACTIVE; i++) 1748 if (!memcmp(logsuper->active[i].uuid, NULL_UUID, 16)) { 1749 memcpy(logsuper->active[i].uuid, uuid, 16); 1750 sbi->aggregate = i; 1751 break; 1752 } 1753 if (i == MAX_ACTIVE) { 1754 jfs_warn("Too many file systems sharing journal!"); 1755 lbmFree(bpsuper); 1756 return -EMFILE; /* Is there a better rc? */ 1757 } 1758 } else { 1759 for (i = 0; i < MAX_ACTIVE; i++) 1760 if (!memcmp(logsuper->active[i].uuid, uuid, 16)) { 1761 memcpy(logsuper->active[i].uuid, NULL_UUID, 16); 1762 break; 1763 } 1764 if (i == MAX_ACTIVE) { 1765 jfs_warn("Somebody stomped on the journal!"); 1766 lbmFree(bpsuper); 1767 return -EIO; 1768 } 1769 1770 } 1771 1772 /* 1773 * synchronous write log superblock: 1774 * 1775 * write sidestream bypassing write queue: 1776 * at file system mount, log super block is updated for 1777 * activation of the file system before any log record 1778 * (MOUNT record) of the file system, and at file system 1779 * unmount, all meta data for the file system has been 1780 * flushed before log super block is updated for deactivation 1781 * of the file system. 1782 */ 1783 lbmDirectWrite(log, bpsuper, lbmWRITE | lbmRELEASE | lbmSYNC); 1784 rc = lbmIOWait(bpsuper, lbmFREE); 1785 1786 return rc; 1787 } 1788 1789 /* 1790 * log buffer manager (lbm) 1791 * ------------------------ 1792 * 1793 * special purpose buffer manager supporting log i/o requirements. 1794 * 1795 * per log write queue: 1796 * log pageout occurs in serial order by fifo write queue and 1797 * restricting to a single i/o in pregress at any one time. 1798 * a circular singly-linked list 1799 * (log->wrqueue points to the tail, and buffers are linked via 1800 * bp->wrqueue field), and 1801 * maintains log page in pageout ot waiting for pageout in serial pageout. 1802 */ 1803 1804 /* 1805 * lbmLogInit() 1806 * 1807 * initialize per log I/O setup at lmLogInit() 1808 */ 1809 static int lbmLogInit(struct jfs_log * log) 1810 { /* log inode */ 1811 int i; 1812 struct lbuf *lbuf; 1813 1814 jfs_info("lbmLogInit: log:0x%p", log); 1815 1816 /* initialize current buffer cursor */ 1817 log->bp = NULL; 1818 1819 /* initialize log device write queue */ 1820 log->wqueue = NULL; 1821 1822 /* 1823 * Each log has its own buffer pages allocated to it. These are 1824 * not managed by the page cache. This ensures that a transaction 1825 * writing to the log does not block trying to allocate a page from 1826 * the page cache (for the log). This would be bad, since page 1827 * allocation waits on the kswapd thread that may be committing inodes 1828 * which would cause log activity. Was that clear? I'm trying to 1829 * avoid deadlock here. 1830 */ 1831 init_waitqueue_head(&log->free_wait); 1832 1833 log->lbuf_free = NULL; 1834 1835 for (i = 0; i < LOGPAGES;) { 1836 char *buffer; 1837 uint offset; 1838 struct page *page; 1839 1840 buffer = (char *) get_zeroed_page(GFP_KERNEL); 1841 if (buffer == NULL) 1842 goto error; 1843 page = virt_to_page(buffer); 1844 for (offset = 0; offset < PAGE_SIZE; offset += LOGPSIZE) { 1845 lbuf = kmalloc(sizeof(struct lbuf), GFP_KERNEL); 1846 if (lbuf == NULL) { 1847 if (offset == 0) 1848 free_page((unsigned long) buffer); 1849 goto error; 1850 } 1851 if (offset) /* we already have one reference */ 1852 get_page(page); 1853 lbuf->l_offset = offset; 1854 lbuf->l_ldata = buffer + offset; 1855 lbuf->l_page = page; 1856 lbuf->l_log = log; 1857 init_waitqueue_head(&lbuf->l_ioevent); 1858 1859 lbuf->l_freelist = log->lbuf_free; 1860 log->lbuf_free = lbuf; 1861 i++; 1862 } 1863 } 1864 1865 return (0); 1866 1867 error: 1868 lbmLogShutdown(log); 1869 return -ENOMEM; 1870 } 1871 1872 1873 /* 1874 * lbmLogShutdown() 1875 * 1876 * finalize per log I/O setup at lmLogShutdown() 1877 */ 1878 static void lbmLogShutdown(struct jfs_log * log) 1879 { 1880 struct lbuf *lbuf; 1881 1882 jfs_info("lbmLogShutdown: log:0x%p", log); 1883 1884 lbuf = log->lbuf_free; 1885 while (lbuf) { 1886 struct lbuf *next = lbuf->l_freelist; 1887 __free_page(lbuf->l_page); 1888 kfree(lbuf); 1889 lbuf = next; 1890 } 1891 } 1892 1893 1894 /* 1895 * lbmAllocate() 1896 * 1897 * allocate an empty log buffer 1898 */ 1899 static struct lbuf *lbmAllocate(struct jfs_log * log, int pn) 1900 { 1901 struct lbuf *bp; 1902 unsigned long flags; 1903 1904 /* 1905 * recycle from log buffer freelist if any 1906 */ 1907 LCACHE_LOCK(flags); 1908 LCACHE_SLEEP_COND(log->free_wait, (bp = log->lbuf_free), flags); 1909 log->lbuf_free = bp->l_freelist; 1910 LCACHE_UNLOCK(flags); 1911 1912 bp->l_flag = 0; 1913 1914 bp->l_wqnext = NULL; 1915 bp->l_freelist = NULL; 1916 1917 bp->l_pn = pn; 1918 bp->l_blkno = log->base + (pn << (L2LOGPSIZE - log->l2bsize)); 1919 bp->l_ceor = 0; 1920 1921 return bp; 1922 } 1923 1924 1925 /* 1926 * lbmFree() 1927 * 1928 * release a log buffer to freelist 1929 */ 1930 static void lbmFree(struct lbuf * bp) 1931 { 1932 unsigned long flags; 1933 1934 LCACHE_LOCK(flags); 1935 1936 lbmfree(bp); 1937 1938 LCACHE_UNLOCK(flags); 1939 } 1940 1941 static void lbmfree(struct lbuf * bp) 1942 { 1943 struct jfs_log *log = bp->l_log; 1944 1945 assert(bp->l_wqnext == NULL); 1946 1947 /* 1948 * return the buffer to head of freelist 1949 */ 1950 bp->l_freelist = log->lbuf_free; 1951 log->lbuf_free = bp; 1952 1953 wake_up(&log->free_wait); 1954 return; 1955 } 1956 1957 1958 /* 1959 * NAME: lbmRedrive 1960 * 1961 * FUNCTION: add a log buffer to the log redrive list 1962 * 1963 * PARAMETER: 1964 * bp - log buffer 1965 * 1966 * NOTES: 1967 * Takes log_redrive_lock. 1968 */ 1969 static inline void lbmRedrive(struct lbuf *bp) 1970 { 1971 unsigned long flags; 1972 1973 spin_lock_irqsave(&log_redrive_lock, flags); 1974 bp->l_redrive_next = log_redrive_list; 1975 log_redrive_list = bp; 1976 spin_unlock_irqrestore(&log_redrive_lock, flags); 1977 1978 wake_up_process(jfsIOthread); 1979 } 1980 1981 1982 /* 1983 * lbmRead() 1984 */ 1985 static int lbmRead(struct jfs_log * log, int pn, struct lbuf ** bpp) 1986 { 1987 struct bio *bio; 1988 struct lbuf *bp; 1989 1990 /* 1991 * allocate a log buffer 1992 */ 1993 *bpp = bp = lbmAllocate(log, pn); 1994 jfs_info("lbmRead: bp:0x%p pn:0x%x", bp, pn); 1995 1996 bp->l_flag |= lbmREAD; 1997 1998 bio = bio_alloc(GFP_NOFS, 1); 1999 2000 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9); 2001 bio->bi_bdev = log->bdev; 2002 bio->bi_io_vec[0].bv_page = bp->l_page; 2003 bio->bi_io_vec[0].bv_len = LOGPSIZE; 2004 bio->bi_io_vec[0].bv_offset = bp->l_offset; 2005 2006 bio->bi_vcnt = 1; 2007 bio->bi_idx = 0; 2008 bio->bi_size = LOGPSIZE; 2009 2010 bio->bi_end_io = lbmIODone; 2011 bio->bi_private = bp; 2012 submit_bio(READ_SYNC, bio); 2013 2014 wait_event(bp->l_ioevent, (bp->l_flag != lbmREAD)); 2015 2016 return 0; 2017 } 2018 2019 2020 /* 2021 * lbmWrite() 2022 * 2023 * buffer at head of pageout queue stays after completion of 2024 * partial-page pageout and redriven by explicit initiation of 2025 * pageout by caller until full-page pageout is completed and 2026 * released. 2027 * 2028 * device driver i/o done redrives pageout of new buffer at 2029 * head of pageout queue when current buffer at head of pageout 2030 * queue is released at the completion of its full-page pageout. 2031 * 2032 * LOGGC_LOCK() serializes lbmWrite() by lmNextPage() and lmGroupCommit(). 2033 * LCACHE_LOCK() serializes xflag between lbmWrite() and lbmIODone() 2034 */ 2035 static void lbmWrite(struct jfs_log * log, struct lbuf * bp, int flag, 2036 int cant_block) 2037 { 2038 struct lbuf *tail; 2039 unsigned long flags; 2040 2041 jfs_info("lbmWrite: bp:0x%p flag:0x%x pn:0x%x", bp, flag, bp->l_pn); 2042 2043 /* map the logical block address to physical block address */ 2044 bp->l_blkno = 2045 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize)); 2046 2047 LCACHE_LOCK(flags); /* disable+lock */ 2048 2049 /* 2050 * initialize buffer for device driver 2051 */ 2052 bp->l_flag = flag; 2053 2054 /* 2055 * insert bp at tail of write queue associated with log 2056 * 2057 * (request is either for bp already/currently at head of queue 2058 * or new bp to be inserted at tail) 2059 */ 2060 tail = log->wqueue; 2061 2062 /* is buffer not already on write queue ? */ 2063 if (bp->l_wqnext == NULL) { 2064 /* insert at tail of wqueue */ 2065 if (tail == NULL) { 2066 log->wqueue = bp; 2067 bp->l_wqnext = bp; 2068 } else { 2069 log->wqueue = bp; 2070 bp->l_wqnext = tail->l_wqnext; 2071 tail->l_wqnext = bp; 2072 } 2073 2074 tail = bp; 2075 } 2076 2077 /* is buffer at head of wqueue and for write ? */ 2078 if ((bp != tail->l_wqnext) || !(flag & lbmWRITE)) { 2079 LCACHE_UNLOCK(flags); /* unlock+enable */ 2080 return; 2081 } 2082 2083 LCACHE_UNLOCK(flags); /* unlock+enable */ 2084 2085 if (cant_block) 2086 lbmRedrive(bp); 2087 else if (flag & lbmSYNC) 2088 lbmStartIO(bp); 2089 else { 2090 LOGGC_UNLOCK(log); 2091 lbmStartIO(bp); 2092 LOGGC_LOCK(log); 2093 } 2094 } 2095 2096 2097 /* 2098 * lbmDirectWrite() 2099 * 2100 * initiate pageout bypassing write queue for sidestream 2101 * (e.g., log superblock) write; 2102 */ 2103 static void lbmDirectWrite(struct jfs_log * log, struct lbuf * bp, int flag) 2104 { 2105 jfs_info("lbmDirectWrite: bp:0x%p flag:0x%x pn:0x%x", 2106 bp, flag, bp->l_pn); 2107 2108 /* 2109 * initialize buffer for device driver 2110 */ 2111 bp->l_flag = flag | lbmDIRECT; 2112 2113 /* map the logical block address to physical block address */ 2114 bp->l_blkno = 2115 log->base + (bp->l_pn << (L2LOGPSIZE - log->l2bsize)); 2116 2117 /* 2118 * initiate pageout of the page 2119 */ 2120 lbmStartIO(bp); 2121 } 2122 2123 2124 /* 2125 * NAME: lbmStartIO() 2126 * 2127 * FUNCTION: Interface to DD strategy routine 2128 * 2129 * RETURN: none 2130 * 2131 * serialization: LCACHE_LOCK() is NOT held during log i/o; 2132 */ 2133 static void lbmStartIO(struct lbuf * bp) 2134 { 2135 struct bio *bio; 2136 struct jfs_log *log = bp->l_log; 2137 2138 jfs_info("lbmStartIO\n"); 2139 2140 bio = bio_alloc(GFP_NOFS, 1); 2141 bio->bi_sector = bp->l_blkno << (log->l2bsize - 9); 2142 bio->bi_bdev = log->bdev; 2143 bio->bi_io_vec[0].bv_page = bp->l_page; 2144 bio->bi_io_vec[0].bv_len = LOGPSIZE; 2145 bio->bi_io_vec[0].bv_offset = bp->l_offset; 2146 2147 bio->bi_vcnt = 1; 2148 bio->bi_idx = 0; 2149 bio->bi_size = LOGPSIZE; 2150 2151 bio->bi_end_io = lbmIODone; 2152 bio->bi_private = bp; 2153 2154 /* check if journaling to disk has been disabled */ 2155 if (log->no_integrity) { 2156 bio->bi_size = 0; 2157 lbmIODone(bio, 0); 2158 } else { 2159 submit_bio(WRITE_SYNC, bio); 2160 INCREMENT(lmStat.submitted); 2161 } 2162 } 2163 2164 2165 /* 2166 * lbmIOWait() 2167 */ 2168 static int lbmIOWait(struct lbuf * bp, int flag) 2169 { 2170 unsigned long flags; 2171 int rc = 0; 2172 2173 jfs_info("lbmIOWait1: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag); 2174 2175 LCACHE_LOCK(flags); /* disable+lock */ 2176 2177 LCACHE_SLEEP_COND(bp->l_ioevent, (bp->l_flag & lbmDONE), flags); 2178 2179 rc = (bp->l_flag & lbmERROR) ? -EIO : 0; 2180 2181 if (flag & lbmFREE) 2182 lbmfree(bp); 2183 2184 LCACHE_UNLOCK(flags); /* unlock+enable */ 2185 2186 jfs_info("lbmIOWait2: bp:0x%p flag:0x%x:0x%x", bp, bp->l_flag, flag); 2187 return rc; 2188 } 2189 2190 /* 2191 * lbmIODone() 2192 * 2193 * executed at INTIODONE level 2194 */ 2195 static void lbmIODone(struct bio *bio, int error) 2196 { 2197 struct lbuf *bp = bio->bi_private; 2198 struct lbuf *nextbp, *tail; 2199 struct jfs_log *log; 2200 unsigned long flags; 2201 2202 /* 2203 * get back jfs buffer bound to the i/o buffer 2204 */ 2205 jfs_info("lbmIODone: bp:0x%p flag:0x%x", bp, bp->l_flag); 2206 2207 LCACHE_LOCK(flags); /* disable+lock */ 2208 2209 bp->l_flag |= lbmDONE; 2210 2211 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) { 2212 bp->l_flag |= lbmERROR; 2213 2214 jfs_err("lbmIODone: I/O error in JFS log"); 2215 } 2216 2217 bio_put(bio); 2218 2219 /* 2220 * pagein completion 2221 */ 2222 if (bp->l_flag & lbmREAD) { 2223 bp->l_flag &= ~lbmREAD; 2224 2225 LCACHE_UNLOCK(flags); /* unlock+enable */ 2226 2227 /* wakeup I/O initiator */ 2228 LCACHE_WAKEUP(&bp->l_ioevent); 2229 2230 return; 2231 } 2232 2233 /* 2234 * pageout completion 2235 * 2236 * the bp at the head of write queue has completed pageout. 2237 * 2238 * if single-commit/full-page pageout, remove the current buffer 2239 * from head of pageout queue, and redrive pageout with 2240 * the new buffer at head of pageout queue; 2241 * otherwise, the partial-page pageout buffer stays at 2242 * the head of pageout queue to be redriven for pageout 2243 * by lmGroupCommit() until full-page pageout is completed. 2244 */ 2245 bp->l_flag &= ~lbmWRITE; 2246 INCREMENT(lmStat.pagedone); 2247 2248 /* update committed lsn */ 2249 log = bp->l_log; 2250 log->clsn = (bp->l_pn << L2LOGPSIZE) + bp->l_ceor; 2251 2252 if (bp->l_flag & lbmDIRECT) { 2253 LCACHE_WAKEUP(&bp->l_ioevent); 2254 LCACHE_UNLOCK(flags); 2255 return; 2256 } 2257 2258 tail = log->wqueue; 2259 2260 /* single element queue */ 2261 if (bp == tail) { 2262 /* remove head buffer of full-page pageout 2263 * from log device write queue 2264 */ 2265 if (bp->l_flag & lbmRELEASE) { 2266 log->wqueue = NULL; 2267 bp->l_wqnext = NULL; 2268 } 2269 } 2270 /* multi element queue */ 2271 else { 2272 /* remove head buffer of full-page pageout 2273 * from log device write queue 2274 */ 2275 if (bp->l_flag & lbmRELEASE) { 2276 nextbp = tail->l_wqnext = bp->l_wqnext; 2277 bp->l_wqnext = NULL; 2278 2279 /* 2280 * redrive pageout of next page at head of write queue: 2281 * redrive next page without any bound tblk 2282 * (i.e., page w/o any COMMIT records), or 2283 * first page of new group commit which has been 2284 * queued after current page (subsequent pageout 2285 * is performed synchronously, except page without 2286 * any COMMITs) by lmGroupCommit() as indicated 2287 * by lbmWRITE flag; 2288 */ 2289 if (nextbp->l_flag & lbmWRITE) { 2290 /* 2291 * We can't do the I/O at interrupt time. 2292 * The jfsIO thread can do it 2293 */ 2294 lbmRedrive(nextbp); 2295 } 2296 } 2297 } 2298 2299 /* 2300 * synchronous pageout: 2301 * 2302 * buffer has not necessarily been removed from write queue 2303 * (e.g., synchronous write of partial-page with COMMIT): 2304 * leave buffer for i/o initiator to dispose 2305 */ 2306 if (bp->l_flag & lbmSYNC) { 2307 LCACHE_UNLOCK(flags); /* unlock+enable */ 2308 2309 /* wakeup I/O initiator */ 2310 LCACHE_WAKEUP(&bp->l_ioevent); 2311 } 2312 2313 /* 2314 * Group Commit pageout: 2315 */ 2316 else if (bp->l_flag & lbmGC) { 2317 LCACHE_UNLOCK(flags); 2318 lmPostGC(bp); 2319 } 2320 2321 /* 2322 * asynchronous pageout: 2323 * 2324 * buffer must have been removed from write queue: 2325 * insert buffer at head of freelist where it can be recycled 2326 */ 2327 else { 2328 assert(bp->l_flag & lbmRELEASE); 2329 assert(bp->l_flag & lbmFREE); 2330 lbmfree(bp); 2331 2332 LCACHE_UNLOCK(flags); /* unlock+enable */ 2333 } 2334 } 2335 2336 int jfsIOWait(void *arg) 2337 { 2338 struct lbuf *bp; 2339 2340 do { 2341 spin_lock_irq(&log_redrive_lock); 2342 while ((bp = log_redrive_list)) { 2343 log_redrive_list = bp->l_redrive_next; 2344 bp->l_redrive_next = NULL; 2345 spin_unlock_irq(&log_redrive_lock); 2346 lbmStartIO(bp); 2347 spin_lock_irq(&log_redrive_lock); 2348 } 2349 2350 if (freezing(current)) { 2351 spin_unlock_irq(&log_redrive_lock); 2352 refrigerator(); 2353 } else { 2354 set_current_state(TASK_INTERRUPTIBLE); 2355 spin_unlock_irq(&log_redrive_lock); 2356 schedule(); 2357 __set_current_state(TASK_RUNNING); 2358 } 2359 } while (!kthread_should_stop()); 2360 2361 jfs_info("jfsIOWait being killed!"); 2362 return 0; 2363 } 2364 2365 /* 2366 * NAME: lmLogFormat()/jfs_logform() 2367 * 2368 * FUNCTION: format file system log 2369 * 2370 * PARAMETERS: 2371 * log - volume log 2372 * logAddress - start address of log space in FS block 2373 * logSize - length of log space in FS block; 2374 * 2375 * RETURN: 0 - success 2376 * -EIO - i/o error 2377 * 2378 * XXX: We're synchronously writing one page at a time. This needs to 2379 * be improved by writing multiple pages at once. 2380 */ 2381 int lmLogFormat(struct jfs_log *log, s64 logAddress, int logSize) 2382 { 2383 int rc = -EIO; 2384 struct jfs_sb_info *sbi; 2385 struct logsuper *logsuper; 2386 struct logpage *lp; 2387 int lspn; /* log sequence page number */ 2388 struct lrd *lrd_ptr; 2389 int npages = 0; 2390 struct lbuf *bp; 2391 2392 jfs_info("lmLogFormat: logAddress:%Ld logSize:%d", 2393 (long long)logAddress, logSize); 2394 2395 sbi = list_entry(log->sb_list.next, struct jfs_sb_info, log_list); 2396 2397 /* allocate a log buffer */ 2398 bp = lbmAllocate(log, 1); 2399 2400 npages = logSize >> sbi->l2nbperpage; 2401 2402 /* 2403 * log space: 2404 * 2405 * page 0 - reserved; 2406 * page 1 - log superblock; 2407 * page 2 - log data page: A SYNC log record is written 2408 * into this page at logform time; 2409 * pages 3-N - log data page: set to empty log data pages; 2410 */ 2411 /* 2412 * init log superblock: log page 1 2413 */ 2414 logsuper = (struct logsuper *) bp->l_ldata; 2415 2416 logsuper->magic = cpu_to_le32(LOGMAGIC); 2417 logsuper->version = cpu_to_le32(LOGVERSION); 2418 logsuper->state = cpu_to_le32(LOGREDONE); 2419 logsuper->flag = cpu_to_le32(sbi->mntflag); /* ? */ 2420 logsuper->size = cpu_to_le32(npages); 2421 logsuper->bsize = cpu_to_le32(sbi->bsize); 2422 logsuper->l2bsize = cpu_to_le32(sbi->l2bsize); 2423 logsuper->end = cpu_to_le32(2 * LOGPSIZE + LOGPHDRSIZE + LOGRDSIZE); 2424 2425 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2426 bp->l_blkno = logAddress + sbi->nbperpage; 2427 lbmStartIO(bp); 2428 if ((rc = lbmIOWait(bp, 0))) 2429 goto exit; 2430 2431 /* 2432 * init pages 2 to npages-1 as log data pages: 2433 * 2434 * log page sequence number (lpsn) initialization: 2435 * 2436 * pn: 0 1 2 3 n-1 2437 * +-----+-----+=====+=====+===.....===+=====+ 2438 * lspn: N-1 0 1 N-2 2439 * <--- N page circular file ----> 2440 * 2441 * the N (= npages-2) data pages of the log is maintained as 2442 * a circular file for the log records; 2443 * lpsn grows by 1 monotonically as each log page is written 2444 * to the circular file of the log; 2445 * and setLogpage() will not reset the page number even if 2446 * the eor is equal to LOGPHDRSIZE. In order for binary search 2447 * still work in find log end process, we have to simulate the 2448 * log wrap situation at the log format time. 2449 * The 1st log page written will have the highest lpsn. Then 2450 * the succeeding log pages will have ascending order of 2451 * the lspn starting from 0, ... (N-2) 2452 */ 2453 lp = (struct logpage *) bp->l_ldata; 2454 /* 2455 * initialize 1st log page to be written: lpsn = N - 1, 2456 * write a SYNCPT log record is written to this page 2457 */ 2458 lp->h.page = lp->t.page = cpu_to_le32(npages - 3); 2459 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE + LOGRDSIZE); 2460 2461 lrd_ptr = (struct lrd *) &lp->data; 2462 lrd_ptr->logtid = 0; 2463 lrd_ptr->backchain = 0; 2464 lrd_ptr->type = cpu_to_le16(LOG_SYNCPT); 2465 lrd_ptr->length = 0; 2466 lrd_ptr->log.syncpt.sync = 0; 2467 2468 bp->l_blkno += sbi->nbperpage; 2469 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2470 lbmStartIO(bp); 2471 if ((rc = lbmIOWait(bp, 0))) 2472 goto exit; 2473 2474 /* 2475 * initialize succeeding log pages: lpsn = 0, 1, ..., (N-2) 2476 */ 2477 for (lspn = 0; lspn < npages - 3; lspn++) { 2478 lp->h.page = lp->t.page = cpu_to_le32(lspn); 2479 lp->h.eor = lp->t.eor = cpu_to_le16(LOGPHDRSIZE); 2480 2481 bp->l_blkno += sbi->nbperpage; 2482 bp->l_flag = lbmWRITE | lbmSYNC | lbmDIRECT; 2483 lbmStartIO(bp); 2484 if ((rc = lbmIOWait(bp, 0))) 2485 goto exit; 2486 } 2487 2488 rc = 0; 2489 exit: 2490 /* 2491 * finalize log 2492 */ 2493 /* release the buffer */ 2494 lbmFree(bp); 2495 2496 return rc; 2497 } 2498 2499 #ifdef CONFIG_JFS_STATISTICS 2500 static int jfs_lmstats_proc_show(struct seq_file *m, void *v) 2501 { 2502 seq_printf(m, 2503 "JFS Logmgr stats\n" 2504 "================\n" 2505 "commits = %d\n" 2506 "writes submitted = %d\n" 2507 "writes completed = %d\n" 2508 "full pages submitted = %d\n" 2509 "partial pages submitted = %d\n", 2510 lmStat.commit, 2511 lmStat.submitted, 2512 lmStat.pagedone, 2513 lmStat.full_page, 2514 lmStat.partial_page); 2515 return 0; 2516 } 2517 2518 static int jfs_lmstats_proc_open(struct inode *inode, struct file *file) 2519 { 2520 return single_open(file, jfs_lmstats_proc_show, NULL); 2521 } 2522 2523 const struct file_operations jfs_lmstats_proc_fops = { 2524 .owner = THIS_MODULE, 2525 .open = jfs_lmstats_proc_open, 2526 .read = seq_read, 2527 .llseek = seq_lseek, 2528 .release = single_release, 2529 }; 2530 #endif /* CONFIG_JFS_STATISTICS */ 2531