xref: /openbmc/linux/fs/jfs/jfs_dtree.c (revision 8fa5723aa7e053d498336b48448b292fc2e0458b)
1 /*
2  *   Copyright (C) International Business Machines Corp., 2000-2004
3  *
4  *   This program is free software;  you can redistribute it and/or modify
5  *   it under the terms of the GNU General Public License as published by
6  *   the Free Software Foundation; either version 2 of the License, or
7  *   (at your option) any later version.
8  *
9  *   This program is distributed in the hope that it will be useful,
10  *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
12  *   the GNU General Public License for more details.
13  *
14  *   You should have received a copy of the GNU General Public License
15  *   along with this program;  if not, write to the Free Software
16  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18 
19 /*
20  *	jfs_dtree.c: directory B+-tree manager
21  *
22  * B+-tree with variable length key directory:
23  *
24  * each directory page is structured as an array of 32-byte
25  * directory entry slots initialized as a freelist
26  * to avoid search/compaction of free space at insertion.
27  * when an entry is inserted, a number of slots are allocated
28  * from the freelist as required to store variable length data
29  * of the entry; when the entry is deleted, slots of the entry
30  * are returned to freelist.
31  *
32  * leaf entry stores full name as key and file serial number
33  * (aka inode number) as data.
34  * internal/router entry stores sufffix compressed name
35  * as key and simple extent descriptor as data.
36  *
37  * each directory page maintains a sorted entry index table
38  * which stores the start slot index of sorted entries
39  * to allow binary search on the table.
40  *
41  * directory starts as a root/leaf page in on-disk inode
42  * inline data area.
43  * when it becomes full, it starts a leaf of a external extent
44  * of length of 1 block. each time the first leaf becomes full,
45  * it is extended rather than split (its size is doubled),
46  * until its length becoms 4 KBytes, from then the extent is split
47  * with new 4 Kbyte extent when it becomes full
48  * to reduce external fragmentation of small directories.
49  *
50  * blah, blah, blah, for linear scan of directory in pieces by
51  * readdir().
52  *
53  *
54  *	case-insensitive directory file system
55  *
56  * names are stored in case-sensitive way in leaf entry.
57  * but stored, searched and compared in case-insensitive (uppercase) order
58  * (i.e., both search key and entry key are folded for search/compare):
59  * (note that case-sensitive order is BROKEN in storage, e.g.,
60  *  sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
61  *
62  *  entries which folds to the same key makes up a equivalent class
63  *  whose members are stored as contiguous cluster (may cross page boundary)
64  *  but whose order is arbitrary and acts as duplicate, e.g.,
65  *  abc, Abc, aBc, abC)
66  *
67  * once match is found at leaf, requires scan forward/backward
68  * either for, in case-insensitive search, duplicate
69  * or for, in case-sensitive search, for exact match
70  *
71  * router entry must be created/stored in case-insensitive way
72  * in internal entry:
73  * (right most key of left page and left most key of right page
74  * are folded, and its suffix compression is propagated as router
75  * key in parent)
76  * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77  * should be made the router key for the split)
78  *
79  * case-insensitive search:
80  *
81  *	fold search key;
82  *
83  *	case-insensitive search of B-tree:
84  *	for internal entry, router key is already folded;
85  *	for leaf entry, fold the entry key before comparison.
86  *
87  *	if (leaf entry case-insensitive match found)
88  *		if (next entry satisfies case-insensitive match)
89  *			return EDUPLICATE;
90  *		if (prev entry satisfies case-insensitive match)
91  *			return EDUPLICATE;
92  *		return match;
93  *	else
94  *		return no match;
95  *
96  *	serialization:
97  * target directory inode lock is being held on entry/exit
98  * of all main directory service routines.
99  *
100  *	log based recovery:
101  */
102 
103 #include <linux/fs.h>
104 #include <linux/quotaops.h>
105 #include "jfs_incore.h"
106 #include "jfs_superblock.h"
107 #include "jfs_filsys.h"
108 #include "jfs_metapage.h"
109 #include "jfs_dmap.h"
110 #include "jfs_unicode.h"
111 #include "jfs_debug.h"
112 
113 /* dtree split parameter */
114 struct dtsplit {
115 	struct metapage *mp;
116 	s16 index;
117 	s16 nslot;
118 	struct component_name *key;
119 	ddata_t *data;
120 	struct pxdlist *pxdlist;
121 };
122 
123 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
124 
125 /* get page buffer for specified block address */
126 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\
127 {\
128 	BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\
129 	if (!(RC))\
130 	{\
131 		if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\
132 		    ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\
133 		{\
134 			BT_PUTPAGE(MP);\
135 			jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\
136 			MP = NULL;\
137 			RC = -EIO;\
138 		}\
139 	}\
140 }
141 
142 /* for consistency */
143 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
144 
145 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
146 	BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
147 
148 /*
149  * forward references
150  */
151 static int dtSplitUp(tid_t tid, struct inode *ip,
152 		     struct dtsplit * split, struct btstack * btstack);
153 
154 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
155 		       struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
156 
157 static int dtExtendPage(tid_t tid, struct inode *ip,
158 			struct dtsplit * split, struct btstack * btstack);
159 
160 static int dtSplitRoot(tid_t tid, struct inode *ip,
161 		       struct dtsplit * split, struct metapage ** rmpp);
162 
163 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
164 		      dtpage_t * fp, struct btstack * btstack);
165 
166 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
167 
168 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
169 
170 static int dtReadNext(struct inode *ip,
171 		      loff_t * offset, struct btstack * btstack);
172 
173 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
174 
175 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
176 		     int flag);
177 
178 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
179 		     int flag);
180 
181 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
182 			      int ri, struct component_name * key, int flag);
183 
184 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
185 			  ddata_t * data, struct dt_lock **);
186 
187 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
188 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
189 			int do_index);
190 
191 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
192 
193 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
194 
195 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
196 
197 #define ciToUpper(c)	UniStrupr((c)->name)
198 
199 /*
200  *	read_index_page()
201  *
202  *	Reads a page of a directory's index table.
203  *	Having metadata mapped into the directory inode's address space
204  *	presents a multitude of problems.  We avoid this by mapping to
205  *	the absolute address space outside of the *_metapage routines
206  */
207 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
208 {
209 	int rc;
210 	s64 xaddr;
211 	int xflag;
212 	s32 xlen;
213 
214 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
215 	if (rc || (xaddr == 0))
216 		return NULL;
217 
218 	return read_metapage(inode, xaddr, PSIZE, 1);
219 }
220 
221 /*
222  *	get_index_page()
223  *
224  *	Same as get_index_page(), but get's a new page without reading
225  */
226 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
227 {
228 	int rc;
229 	s64 xaddr;
230 	int xflag;
231 	s32 xlen;
232 
233 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
234 	if (rc || (xaddr == 0))
235 		return NULL;
236 
237 	return get_metapage(inode, xaddr, PSIZE, 1);
238 }
239 
240 /*
241  *	find_index()
242  *
243  *	Returns dtree page containing directory table entry for specified
244  *	index and pointer to its entry.
245  *
246  *	mp must be released by caller.
247  */
248 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
249 					 struct metapage ** mp, s64 *lblock)
250 {
251 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
252 	s64 blkno;
253 	s64 offset;
254 	int page_offset;
255 	struct dir_table_slot *slot;
256 	static int maxWarnings = 10;
257 
258 	if (index < 2) {
259 		if (maxWarnings) {
260 			jfs_warn("find_entry called with index = %d", index);
261 			maxWarnings--;
262 		}
263 		return NULL;
264 	}
265 
266 	if (index >= jfs_ip->next_index) {
267 		jfs_warn("find_entry called with index >= next_index");
268 		return NULL;
269 	}
270 
271 	if (jfs_dirtable_inline(ip)) {
272 		/*
273 		 * Inline directory table
274 		 */
275 		*mp = NULL;
276 		slot = &jfs_ip->i_dirtable[index - 2];
277 	} else {
278 		offset = (index - 2) * sizeof(struct dir_table_slot);
279 		page_offset = offset & (PSIZE - 1);
280 		blkno = ((offset + 1) >> L2PSIZE) <<
281 		    JFS_SBI(ip->i_sb)->l2nbperpage;
282 
283 		if (*mp && (*lblock != blkno)) {
284 			release_metapage(*mp);
285 			*mp = NULL;
286 		}
287 		if (!(*mp)) {
288 			*lblock = blkno;
289 			*mp = read_index_page(ip, blkno);
290 		}
291 		if (!(*mp)) {
292 			jfs_err("free_index: error reading directory table");
293 			return NULL;
294 		}
295 
296 		slot =
297 		    (struct dir_table_slot *) ((char *) (*mp)->data +
298 					       page_offset);
299 	}
300 	return slot;
301 }
302 
303 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
304 			      u32 index)
305 {
306 	struct tlock *tlck;
307 	struct linelock *llck;
308 	struct lv *lv;
309 
310 	tlck = txLock(tid, ip, mp, tlckDATA);
311 	llck = (struct linelock *) tlck->lock;
312 
313 	if (llck->index >= llck->maxcnt)
314 		llck = txLinelock(llck);
315 	lv = &llck->lv[llck->index];
316 
317 	/*
318 	 *	Linelock slot size is twice the size of directory table
319 	 *	slot size.  512 entries per page.
320 	 */
321 	lv->offset = ((index - 2) & 511) >> 1;
322 	lv->length = 1;
323 	llck->index++;
324 }
325 
326 /*
327  *	add_index()
328  *
329  *	Adds an entry to the directory index table.  This is used to provide
330  *	each directory entry with a persistent index in which to resume
331  *	directory traversals
332  */
333 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
334 {
335 	struct super_block *sb = ip->i_sb;
336 	struct jfs_sb_info *sbi = JFS_SBI(sb);
337 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
338 	u64 blkno;
339 	struct dir_table_slot *dirtab_slot;
340 	u32 index;
341 	struct linelock *llck;
342 	struct lv *lv;
343 	struct metapage *mp;
344 	s64 offset;
345 	uint page_offset;
346 	struct tlock *tlck;
347 	s64 xaddr;
348 
349 	ASSERT(DO_INDEX(ip));
350 
351 	if (jfs_ip->next_index < 2) {
352 		jfs_warn("add_index: next_index = %d.  Resetting!",
353 			   jfs_ip->next_index);
354 		jfs_ip->next_index = 2;
355 	}
356 
357 	index = jfs_ip->next_index++;
358 
359 	if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
360 		/*
361 		 * i_size reflects size of index table, or 8 bytes per entry.
362 		 */
363 		ip->i_size = (loff_t) (index - 1) << 3;
364 
365 		/*
366 		 * dir table fits inline within inode
367 		 */
368 		dirtab_slot = &jfs_ip->i_dirtable[index-2];
369 		dirtab_slot->flag = DIR_INDEX_VALID;
370 		dirtab_slot->slot = slot;
371 		DTSaddress(dirtab_slot, bn);
372 
373 		set_cflag(COMMIT_Dirtable, ip);
374 
375 		return index;
376 	}
377 	if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
378 		struct dir_table_slot temp_table[12];
379 
380 		/*
381 		 * It's time to move the inline table to an external
382 		 * page and begin to build the xtree
383 		 */
384 		if (DQUOT_ALLOC_BLOCK(ip, sbi->nbperpage))
385 			goto clean_up;
386 		if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
387 			DQUOT_FREE_BLOCK(ip, sbi->nbperpage);
388 			goto clean_up;
389 		}
390 
391 		/*
392 		 * Save the table, we're going to overwrite it with the
393 		 * xtree root
394 		 */
395 		memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
396 
397 		/*
398 		 * Initialize empty x-tree
399 		 */
400 		xtInitRoot(tid, ip);
401 
402 		/*
403 		 * Add the first block to the xtree
404 		 */
405 		if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
406 			/* This really shouldn't fail */
407 			jfs_warn("add_index: xtInsert failed!");
408 			memcpy(&jfs_ip->i_dirtable, temp_table,
409 			       sizeof (temp_table));
410 			dbFree(ip, xaddr, sbi->nbperpage);
411 			DQUOT_FREE_BLOCK(ip, sbi->nbperpage);
412 			goto clean_up;
413 		}
414 		ip->i_size = PSIZE;
415 
416 		mp = get_index_page(ip, 0);
417 		if (!mp) {
418 			jfs_err("add_index: get_metapage failed!");
419 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
420 			memcpy(&jfs_ip->i_dirtable, temp_table,
421 			       sizeof (temp_table));
422 			goto clean_up;
423 		}
424 		tlck = txLock(tid, ip, mp, tlckDATA);
425 		llck = (struct linelock *) & tlck->lock;
426 		ASSERT(llck->index == 0);
427 		lv = &llck->lv[0];
428 
429 		lv->offset = 0;
430 		lv->length = 6;	/* tlckDATA slot size is 16 bytes */
431 		llck->index++;
432 
433 		memcpy(mp->data, temp_table, sizeof(temp_table));
434 
435 		mark_metapage_dirty(mp);
436 		release_metapage(mp);
437 
438 		/*
439 		 * Logging is now directed by xtree tlocks
440 		 */
441 		clear_cflag(COMMIT_Dirtable, ip);
442 	}
443 
444 	offset = (index - 2) * sizeof(struct dir_table_slot);
445 	page_offset = offset & (PSIZE - 1);
446 	blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
447 	if (page_offset == 0) {
448 		/*
449 		 * This will be the beginning of a new page
450 		 */
451 		xaddr = 0;
452 		if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
453 			jfs_warn("add_index: xtInsert failed!");
454 			goto clean_up;
455 		}
456 		ip->i_size += PSIZE;
457 
458 		if ((mp = get_index_page(ip, blkno)))
459 			memset(mp->data, 0, PSIZE);	/* Just looks better */
460 		else
461 			xtTruncate(tid, ip, offset, COMMIT_PWMAP);
462 	} else
463 		mp = read_index_page(ip, blkno);
464 
465 	if (!mp) {
466 		jfs_err("add_index: get/read_metapage failed!");
467 		goto clean_up;
468 	}
469 
470 	lock_index(tid, ip, mp, index);
471 
472 	dirtab_slot =
473 	    (struct dir_table_slot *) ((char *) mp->data + page_offset);
474 	dirtab_slot->flag = DIR_INDEX_VALID;
475 	dirtab_slot->slot = slot;
476 	DTSaddress(dirtab_slot, bn);
477 
478 	mark_metapage_dirty(mp);
479 	release_metapage(mp);
480 
481 	return index;
482 
483       clean_up:
484 
485 	jfs_ip->next_index--;
486 
487 	return 0;
488 }
489 
490 /*
491  *	free_index()
492  *
493  *	Marks an entry to the directory index table as free.
494  */
495 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
496 {
497 	struct dir_table_slot *dirtab_slot;
498 	s64 lblock;
499 	struct metapage *mp = NULL;
500 
501 	dirtab_slot = find_index(ip, index, &mp, &lblock);
502 
503 	if (!dirtab_slot)
504 		return;
505 
506 	dirtab_slot->flag = DIR_INDEX_FREE;
507 	dirtab_slot->slot = dirtab_slot->addr1 = 0;
508 	dirtab_slot->addr2 = cpu_to_le32(next);
509 
510 	if (mp) {
511 		lock_index(tid, ip, mp, index);
512 		mark_metapage_dirty(mp);
513 		release_metapage(mp);
514 	} else
515 		set_cflag(COMMIT_Dirtable, ip);
516 }
517 
518 /*
519  *	modify_index()
520  *
521  *	Changes an entry in the directory index table
522  */
523 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
524 			 int slot, struct metapage ** mp, s64 *lblock)
525 {
526 	struct dir_table_slot *dirtab_slot;
527 
528 	dirtab_slot = find_index(ip, index, mp, lblock);
529 
530 	if (!dirtab_slot)
531 		return;
532 
533 	DTSaddress(dirtab_slot, bn);
534 	dirtab_slot->slot = slot;
535 
536 	if (*mp) {
537 		lock_index(tid, ip, *mp, index);
538 		mark_metapage_dirty(*mp);
539 	} else
540 		set_cflag(COMMIT_Dirtable, ip);
541 }
542 
543 /*
544  *	read_index()
545  *
546  *	reads a directory table slot
547  */
548 static int read_index(struct inode *ip, u32 index,
549 		     struct dir_table_slot * dirtab_slot)
550 {
551 	s64 lblock;
552 	struct metapage *mp = NULL;
553 	struct dir_table_slot *slot;
554 
555 	slot = find_index(ip, index, &mp, &lblock);
556 	if (!slot) {
557 		return -EIO;
558 	}
559 
560 	memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
561 
562 	if (mp)
563 		release_metapage(mp);
564 
565 	return 0;
566 }
567 
568 /*
569  *	dtSearch()
570  *
571  * function:
572  *	Search for the entry with specified key
573  *
574  * parameter:
575  *
576  * return: 0 - search result on stack, leaf page pinned;
577  *	   errno - I/O error
578  */
579 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
580 	     struct btstack * btstack, int flag)
581 {
582 	int rc = 0;
583 	int cmp = 1;		/* init for empty page */
584 	s64 bn;
585 	struct metapage *mp;
586 	dtpage_t *p;
587 	s8 *stbl;
588 	int base, index, lim;
589 	struct btframe *btsp;
590 	pxd_t *pxd;
591 	int psize = 288;	/* initial in-line directory */
592 	ino_t inumber;
593 	struct component_name ciKey;
594 	struct super_block *sb = ip->i_sb;
595 
596 	ciKey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t), GFP_NOFS);
597 	if (!ciKey.name) {
598 		rc = -ENOMEM;
599 		goto dtSearch_Exit2;
600 	}
601 
602 
603 	/* uppercase search key for c-i directory */
604 	UniStrcpy(ciKey.name, key->name);
605 	ciKey.namlen = key->namlen;
606 
607 	/* only uppercase if case-insensitive support is on */
608 	if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
609 		ciToUpper(&ciKey);
610 	}
611 	BT_CLR(btstack);	/* reset stack */
612 
613 	/* init level count for max pages to split */
614 	btstack->nsplit = 1;
615 
616 	/*
617 	 *	search down tree from root:
618 	 *
619 	 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
620 	 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
621 	 *
622 	 * if entry with search key K is not found
623 	 * internal page search find the entry with largest key Ki
624 	 * less than K which point to the child page to search;
625 	 * leaf page search find the entry with smallest key Kj
626 	 * greater than K so that the returned index is the position of
627 	 * the entry to be shifted right for insertion of new entry.
628 	 * for empty tree, search key is greater than any key of the tree.
629 	 *
630 	 * by convention, root bn = 0.
631 	 */
632 	for (bn = 0;;) {
633 		/* get/pin the page to search */
634 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
635 		if (rc)
636 			goto dtSearch_Exit1;
637 
638 		/* get sorted entry table of the page */
639 		stbl = DT_GETSTBL(p);
640 
641 		/*
642 		 * binary search with search key K on the current page.
643 		 */
644 		for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
645 			index = base + (lim >> 1);
646 
647 			if (p->header.flag & BT_LEAF) {
648 				/* uppercase leaf name to compare */
649 				cmp =
650 				    ciCompare(&ciKey, p, stbl[index],
651 					      JFS_SBI(sb)->mntflag);
652 			} else {
653 				/* router key is in uppercase */
654 
655 				cmp = dtCompare(&ciKey, p, stbl[index]);
656 
657 
658 			}
659 			if (cmp == 0) {
660 				/*
661 				 *	search hit
662 				 */
663 				/* search hit - leaf page:
664 				 * return the entry found
665 				 */
666 				if (p->header.flag & BT_LEAF) {
667 					inumber = le32_to_cpu(
668 			((struct ldtentry *) & p->slot[stbl[index]])->inumber);
669 
670 					/*
671 					 * search for JFS_LOOKUP
672 					 */
673 					if (flag == JFS_LOOKUP) {
674 						*data = inumber;
675 						rc = 0;
676 						goto out;
677 					}
678 
679 					/*
680 					 * search for JFS_CREATE
681 					 */
682 					if (flag == JFS_CREATE) {
683 						*data = inumber;
684 						rc = -EEXIST;
685 						goto out;
686 					}
687 
688 					/*
689 					 * search for JFS_REMOVE or JFS_RENAME
690 					 */
691 					if ((flag == JFS_REMOVE ||
692 					     flag == JFS_RENAME) &&
693 					    *data != inumber) {
694 						rc = -ESTALE;
695 						goto out;
696 					}
697 
698 					/*
699 					 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
700 					 */
701 					/* save search result */
702 					*data = inumber;
703 					btsp = btstack->top;
704 					btsp->bn = bn;
705 					btsp->index = index;
706 					btsp->mp = mp;
707 
708 					rc = 0;
709 					goto dtSearch_Exit1;
710 				}
711 
712 				/* search hit - internal page:
713 				 * descend/search its child page
714 				 */
715 				goto getChild;
716 			}
717 
718 			if (cmp > 0) {
719 				base = index + 1;
720 				--lim;
721 			}
722 		}
723 
724 		/*
725 		 *	search miss
726 		 *
727 		 * base is the smallest index with key (Kj) greater than
728 		 * search key (K) and may be zero or (maxindex + 1) index.
729 		 */
730 		/*
731 		 * search miss - leaf page
732 		 *
733 		 * return location of entry (base) where new entry with
734 		 * search key K is to be inserted.
735 		 */
736 		if (p->header.flag & BT_LEAF) {
737 			/*
738 			 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
739 			 */
740 			if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
741 			    flag == JFS_RENAME) {
742 				rc = -ENOENT;
743 				goto out;
744 			}
745 
746 			/*
747 			 * search for JFS_CREATE|JFS_FINDDIR:
748 			 *
749 			 * save search result
750 			 */
751 			*data = 0;
752 			btsp = btstack->top;
753 			btsp->bn = bn;
754 			btsp->index = base;
755 			btsp->mp = mp;
756 
757 			rc = 0;
758 			goto dtSearch_Exit1;
759 		}
760 
761 		/*
762 		 * search miss - internal page
763 		 *
764 		 * if base is non-zero, decrement base by one to get the parent
765 		 * entry of the child page to search.
766 		 */
767 		index = base ? base - 1 : base;
768 
769 		/*
770 		 * go down to child page
771 		 */
772 	      getChild:
773 		/* update max. number of pages to split */
774 		if (BT_STACK_FULL(btstack)) {
775 			/* Something's corrupted, mark filesystem dirty so
776 			 * chkdsk will fix it.
777 			 */
778 			jfs_error(sb, "stack overrun in dtSearch!");
779 			BT_STACK_DUMP(btstack);
780 			rc = -EIO;
781 			goto out;
782 		}
783 		btstack->nsplit++;
784 
785 		/* push (bn, index) of the parent page/entry */
786 		BT_PUSH(btstack, bn, index);
787 
788 		/* get the child page block number */
789 		pxd = (pxd_t *) & p->slot[stbl[index]];
790 		bn = addressPXD(pxd);
791 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
792 
793 		/* unpin the parent page */
794 		DT_PUTPAGE(mp);
795 	}
796 
797       out:
798 	DT_PUTPAGE(mp);
799 
800       dtSearch_Exit1:
801 
802 	kfree(ciKey.name);
803 
804       dtSearch_Exit2:
805 
806 	return rc;
807 }
808 
809 
810 /*
811  *	dtInsert()
812  *
813  * function: insert an entry to directory tree
814  *
815  * parameter:
816  *
817  * return: 0 - success;
818  *	   errno - failure;
819  */
820 int dtInsert(tid_t tid, struct inode *ip,
821 	 struct component_name * name, ino_t * fsn, struct btstack * btstack)
822 {
823 	int rc = 0;
824 	struct metapage *mp;	/* meta-page buffer */
825 	dtpage_t *p;		/* base B+-tree index page */
826 	s64 bn;
827 	int index;
828 	struct dtsplit split;	/* split information */
829 	ddata_t data;
830 	struct dt_lock *dtlck;
831 	int n;
832 	struct tlock *tlck;
833 	struct lv *lv;
834 
835 	/*
836 	 *	retrieve search result
837 	 *
838 	 * dtSearch() returns (leaf page pinned, index at which to insert).
839 	 * n.b. dtSearch() may return index of (maxindex + 1) of
840 	 * the full page.
841 	 */
842 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
843 
844 	/*
845 	 *	insert entry for new key
846 	 */
847 	if (DO_INDEX(ip)) {
848 		if (JFS_IP(ip)->next_index == DIREND) {
849 			DT_PUTPAGE(mp);
850 			return -EMLINK;
851 		}
852 		n = NDTLEAF(name->namlen);
853 		data.leaf.tid = tid;
854 		data.leaf.ip = ip;
855 	} else {
856 		n = NDTLEAF_LEGACY(name->namlen);
857 		data.leaf.ip = NULL;	/* signifies legacy directory format */
858 	}
859 	data.leaf.ino = *fsn;
860 
861 	/*
862 	 *	leaf page does not have enough room for new entry:
863 	 *
864 	 *	extend/split the leaf page;
865 	 *
866 	 * dtSplitUp() will insert the entry and unpin the leaf page.
867 	 */
868 	if (n > p->header.freecnt) {
869 		split.mp = mp;
870 		split.index = index;
871 		split.nslot = n;
872 		split.key = name;
873 		split.data = &data;
874 		rc = dtSplitUp(tid, ip, &split, btstack);
875 		return rc;
876 	}
877 
878 	/*
879 	 *	leaf page does have enough room for new entry:
880 	 *
881 	 *	insert the new data entry into the leaf page;
882 	 */
883 	BT_MARK_DIRTY(mp, ip);
884 	/*
885 	 * acquire a transaction lock on the leaf page
886 	 */
887 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
888 	dtlck = (struct dt_lock *) & tlck->lock;
889 	ASSERT(dtlck->index == 0);
890 	lv = & dtlck->lv[0];
891 
892 	/* linelock header */
893 	lv->offset = 0;
894 	lv->length = 1;
895 	dtlck->index++;
896 
897 	dtInsertEntry(p, index, name, &data, &dtlck);
898 
899 	/* linelock stbl of non-root leaf page */
900 	if (!(p->header.flag & BT_ROOT)) {
901 		if (dtlck->index >= dtlck->maxcnt)
902 			dtlck = (struct dt_lock *) txLinelock(dtlck);
903 		lv = & dtlck->lv[dtlck->index];
904 		n = index >> L2DTSLOTSIZE;
905 		lv->offset = p->header.stblindex + n;
906 		lv->length =
907 		    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
908 		dtlck->index++;
909 	}
910 
911 	/* unpin the leaf page */
912 	DT_PUTPAGE(mp);
913 
914 	return 0;
915 }
916 
917 
918 /*
919  *	dtSplitUp()
920  *
921  * function: propagate insertion bottom up;
922  *
923  * parameter:
924  *
925  * return: 0 - success;
926  *	   errno - failure;
927  *	leaf page unpinned;
928  */
929 static int dtSplitUp(tid_t tid,
930 	  struct inode *ip, struct dtsplit * split, struct btstack * btstack)
931 {
932 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
933 	int rc = 0;
934 	struct metapage *smp;
935 	dtpage_t *sp;		/* split page */
936 	struct metapage *rmp;
937 	dtpage_t *rp;		/* new right page split from sp */
938 	pxd_t rpxd;		/* new right page extent descriptor */
939 	struct metapage *lmp;
940 	dtpage_t *lp;		/* left child page */
941 	int skip;		/* index of entry of insertion */
942 	struct btframe *parent;	/* parent page entry on traverse stack */
943 	s64 xaddr, nxaddr;
944 	int xlen, xsize;
945 	struct pxdlist pxdlist;
946 	pxd_t *pxd;
947 	struct component_name key = { 0, NULL };
948 	ddata_t *data = split->data;
949 	int n;
950 	struct dt_lock *dtlck;
951 	struct tlock *tlck;
952 	struct lv *lv;
953 	int quota_allocation = 0;
954 
955 	/* get split page */
956 	smp = split->mp;
957 	sp = DT_PAGE(ip, smp);
958 
959 	key.name = kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t), GFP_NOFS);
960 	if (!key.name) {
961 		DT_PUTPAGE(smp);
962 		rc = -ENOMEM;
963 		goto dtSplitUp_Exit;
964 	}
965 
966 	/*
967 	 *	split leaf page
968 	 *
969 	 * The split routines insert the new entry, and
970 	 * acquire txLock as appropriate.
971 	 */
972 	/*
973 	 *	split root leaf page:
974 	 */
975 	if (sp->header.flag & BT_ROOT) {
976 		/*
977 		 * allocate a single extent child page
978 		 */
979 		xlen = 1;
980 		n = sbi->bsize >> L2DTSLOTSIZE;
981 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
982 		n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
983 		if (n <= split->nslot)
984 			xlen++;
985 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
986 			DT_PUTPAGE(smp);
987 			goto freeKeyName;
988 		}
989 
990 		pxdlist.maxnpxd = 1;
991 		pxdlist.npxd = 0;
992 		pxd = &pxdlist.pxd[0];
993 		PXDaddress(pxd, xaddr);
994 		PXDlength(pxd, xlen);
995 		split->pxdlist = &pxdlist;
996 		rc = dtSplitRoot(tid, ip, split, &rmp);
997 
998 		if (rc)
999 			dbFree(ip, xaddr, xlen);
1000 		else
1001 			DT_PUTPAGE(rmp);
1002 
1003 		DT_PUTPAGE(smp);
1004 
1005 		if (!DO_INDEX(ip))
1006 			ip->i_size = xlen << sbi->l2bsize;
1007 
1008 		goto freeKeyName;
1009 	}
1010 
1011 	/*
1012 	 *	extend first leaf page
1013 	 *
1014 	 * extend the 1st extent if less than buffer page size
1015 	 * (dtExtendPage() reurns leaf page unpinned)
1016 	 */
1017 	pxd = &sp->header.self;
1018 	xlen = lengthPXD(pxd);
1019 	xsize = xlen << sbi->l2bsize;
1020 	if (xsize < PSIZE) {
1021 		xaddr = addressPXD(pxd);
1022 		n = xsize >> L2DTSLOTSIZE;
1023 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
1024 		if ((n + sp->header.freecnt) <= split->nslot)
1025 			n = xlen + (xlen << 1);
1026 		else
1027 			n = xlen;
1028 
1029 		/* Allocate blocks to quota. */
1030 		if (DQUOT_ALLOC_BLOCK(ip, n)) {
1031 			rc = -EDQUOT;
1032 			goto extendOut;
1033 		}
1034 		quota_allocation += n;
1035 
1036 		if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1037 				    (s64) n, &nxaddr)))
1038 			goto extendOut;
1039 
1040 		pxdlist.maxnpxd = 1;
1041 		pxdlist.npxd = 0;
1042 		pxd = &pxdlist.pxd[0];
1043 		PXDaddress(pxd, nxaddr)
1044 		    PXDlength(pxd, xlen + n);
1045 		split->pxdlist = &pxdlist;
1046 		if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1047 			nxaddr = addressPXD(pxd);
1048 			if (xaddr != nxaddr) {
1049 				/* free relocated extent */
1050 				xlen = lengthPXD(pxd);
1051 				dbFree(ip, nxaddr, (s64) xlen);
1052 			} else {
1053 				/* free extended delta */
1054 				xlen = lengthPXD(pxd) - n;
1055 				xaddr = addressPXD(pxd) + xlen;
1056 				dbFree(ip, xaddr, (s64) n);
1057 			}
1058 		} else if (!DO_INDEX(ip))
1059 			ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1060 
1061 
1062 	      extendOut:
1063 		DT_PUTPAGE(smp);
1064 		goto freeKeyName;
1065 	}
1066 
1067 	/*
1068 	 *	split leaf page <sp> into <sp> and a new right page <rp>.
1069 	 *
1070 	 * return <rp> pinned and its extent descriptor <rpxd>
1071 	 */
1072 	/*
1073 	 * allocate new directory page extent and
1074 	 * new index page(s) to cover page split(s)
1075 	 *
1076 	 * allocation hint: ?
1077 	 */
1078 	n = btstack->nsplit;
1079 	pxdlist.maxnpxd = pxdlist.npxd = 0;
1080 	xlen = sbi->nbperpage;
1081 	for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1082 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1083 			PXDaddress(pxd, xaddr);
1084 			PXDlength(pxd, xlen);
1085 			pxdlist.maxnpxd++;
1086 			continue;
1087 		}
1088 
1089 		DT_PUTPAGE(smp);
1090 
1091 		/* undo allocation */
1092 		goto splitOut;
1093 	}
1094 
1095 	split->pxdlist = &pxdlist;
1096 	if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1097 		DT_PUTPAGE(smp);
1098 
1099 		/* undo allocation */
1100 		goto splitOut;
1101 	}
1102 
1103 	if (!DO_INDEX(ip))
1104 		ip->i_size += PSIZE;
1105 
1106 	/*
1107 	 * propagate up the router entry for the leaf page just split
1108 	 *
1109 	 * insert a router entry for the new page into the parent page,
1110 	 * propagate the insert/split up the tree by walking back the stack
1111 	 * of (bn of parent page, index of child page entry in parent page)
1112 	 * that were traversed during the search for the page that split.
1113 	 *
1114 	 * the propagation of insert/split up the tree stops if the root
1115 	 * splits or the page inserted into doesn't have to split to hold
1116 	 * the new entry.
1117 	 *
1118 	 * the parent entry for the split page remains the same, and
1119 	 * a new entry is inserted at its right with the first key and
1120 	 * block number of the new right page.
1121 	 *
1122 	 * There are a maximum of 4 pages pinned at any time:
1123 	 * two children, left parent and right parent (when the parent splits).
1124 	 * keep the child pages pinned while working on the parent.
1125 	 * make sure that all pins are released at exit.
1126 	 */
1127 	while ((parent = BT_POP(btstack)) != NULL) {
1128 		/* parent page specified by stack frame <parent> */
1129 
1130 		/* keep current child pages (<lp>, <rp>) pinned */
1131 		lmp = smp;
1132 		lp = sp;
1133 
1134 		/*
1135 		 * insert router entry in parent for new right child page <rp>
1136 		 */
1137 		/* get the parent page <sp> */
1138 		DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1139 		if (rc) {
1140 			DT_PUTPAGE(lmp);
1141 			DT_PUTPAGE(rmp);
1142 			goto splitOut;
1143 		}
1144 
1145 		/*
1146 		 * The new key entry goes ONE AFTER the index of parent entry,
1147 		 * because the split was to the right.
1148 		 */
1149 		skip = parent->index + 1;
1150 
1151 		/*
1152 		 * compute the key for the router entry
1153 		 *
1154 		 * key suffix compression:
1155 		 * for internal pages that have leaf pages as children,
1156 		 * retain only what's needed to distinguish between
1157 		 * the new entry and the entry on the page to its left.
1158 		 * If the keys compare equal, retain the entire key.
1159 		 *
1160 		 * note that compression is performed only at computing
1161 		 * router key at the lowest internal level.
1162 		 * further compression of the key between pairs of higher
1163 		 * level internal pages loses too much information and
1164 		 * the search may fail.
1165 		 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1166 		 * results in two adjacent parent entries (a)(xx).
1167 		 * if split occurs between these two entries, and
1168 		 * if compression is applied, the router key of parent entry
1169 		 * of right page (x) will divert search for x into right
1170 		 * subtree and miss x in the left subtree.)
1171 		 *
1172 		 * the entire key must be retained for the next-to-leftmost
1173 		 * internal key at any level of the tree, or search may fail
1174 		 * (e.g., ?)
1175 		 */
1176 		switch (rp->header.flag & BT_TYPE) {
1177 		case BT_LEAF:
1178 			/*
1179 			 * compute the length of prefix for suffix compression
1180 			 * between last entry of left page and first entry
1181 			 * of right page
1182 			 */
1183 			if ((sp->header.flag & BT_ROOT && skip > 1) ||
1184 			    sp->header.prev != 0 || skip > 1) {
1185 				/* compute uppercase router prefix key */
1186 				rc = ciGetLeafPrefixKey(lp,
1187 							lp->header.nextindex-1,
1188 							rp, 0, &key,
1189 							sbi->mntflag);
1190 				if (rc) {
1191 					DT_PUTPAGE(lmp);
1192 					DT_PUTPAGE(rmp);
1193 					DT_PUTPAGE(smp);
1194 					goto splitOut;
1195 				}
1196 			} else {
1197 				/* next to leftmost entry of
1198 				   lowest internal level */
1199 
1200 				/* compute uppercase router key */
1201 				dtGetKey(rp, 0, &key, sbi->mntflag);
1202 				key.name[key.namlen] = 0;
1203 
1204 				if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1205 					ciToUpper(&key);
1206 			}
1207 
1208 			n = NDTINTERNAL(key.namlen);
1209 			break;
1210 
1211 		case BT_INTERNAL:
1212 			dtGetKey(rp, 0, &key, sbi->mntflag);
1213 			n = NDTINTERNAL(key.namlen);
1214 			break;
1215 
1216 		default:
1217 			jfs_err("dtSplitUp(): UFO!");
1218 			break;
1219 		}
1220 
1221 		/* unpin left child page */
1222 		DT_PUTPAGE(lmp);
1223 
1224 		/*
1225 		 * compute the data for the router entry
1226 		 */
1227 		data->xd = rpxd;	/* child page xd */
1228 
1229 		/*
1230 		 * parent page is full - split the parent page
1231 		 */
1232 		if (n > sp->header.freecnt) {
1233 			/* init for parent page split */
1234 			split->mp = smp;
1235 			split->index = skip;	/* index at insert */
1236 			split->nslot = n;
1237 			split->key = &key;
1238 			/* split->data = data; */
1239 
1240 			/* unpin right child page */
1241 			DT_PUTPAGE(rmp);
1242 
1243 			/* The split routines insert the new entry,
1244 			 * acquire txLock as appropriate.
1245 			 * return <rp> pinned and its block number <rbn>.
1246 			 */
1247 			rc = (sp->header.flag & BT_ROOT) ?
1248 			    dtSplitRoot(tid, ip, split, &rmp) :
1249 			    dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1250 			if (rc) {
1251 				DT_PUTPAGE(smp);
1252 				goto splitOut;
1253 			}
1254 
1255 			/* smp and rmp are pinned */
1256 		}
1257 		/*
1258 		 * parent page is not full - insert router entry in parent page
1259 		 */
1260 		else {
1261 			BT_MARK_DIRTY(smp, ip);
1262 			/*
1263 			 * acquire a transaction lock on the parent page
1264 			 */
1265 			tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1266 			dtlck = (struct dt_lock *) & tlck->lock;
1267 			ASSERT(dtlck->index == 0);
1268 			lv = & dtlck->lv[0];
1269 
1270 			/* linelock header */
1271 			lv->offset = 0;
1272 			lv->length = 1;
1273 			dtlck->index++;
1274 
1275 			/* linelock stbl of non-root parent page */
1276 			if (!(sp->header.flag & BT_ROOT)) {
1277 				lv++;
1278 				n = skip >> L2DTSLOTSIZE;
1279 				lv->offset = sp->header.stblindex + n;
1280 				lv->length =
1281 				    ((sp->header.nextindex -
1282 				      1) >> L2DTSLOTSIZE) - n + 1;
1283 				dtlck->index++;
1284 			}
1285 
1286 			dtInsertEntry(sp, skip, &key, data, &dtlck);
1287 
1288 			/* exit propagate up */
1289 			break;
1290 		}
1291 	}
1292 
1293 	/* unpin current split and its right page */
1294 	DT_PUTPAGE(smp);
1295 	DT_PUTPAGE(rmp);
1296 
1297 	/*
1298 	 * free remaining extents allocated for split
1299 	 */
1300       splitOut:
1301 	n = pxdlist.npxd;
1302 	pxd = &pxdlist.pxd[n];
1303 	for (; n < pxdlist.maxnpxd; n++, pxd++)
1304 		dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1305 
1306       freeKeyName:
1307 	kfree(key.name);
1308 
1309 	/* Rollback quota allocation */
1310 	if (rc && quota_allocation)
1311 		DQUOT_FREE_BLOCK(ip, quota_allocation);
1312 
1313       dtSplitUp_Exit:
1314 
1315 	return rc;
1316 }
1317 
1318 
1319 /*
1320  *	dtSplitPage()
1321  *
1322  * function: Split a non-root page of a btree.
1323  *
1324  * parameter:
1325  *
1326  * return: 0 - success;
1327  *	   errno - failure;
1328  *	return split and new page pinned;
1329  */
1330 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1331 	    struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1332 {
1333 	int rc = 0;
1334 	struct metapage *smp;
1335 	dtpage_t *sp;
1336 	struct metapage *rmp;
1337 	dtpage_t *rp;		/* new right page allocated */
1338 	s64 rbn;		/* new right page block number */
1339 	struct metapage *mp;
1340 	dtpage_t *p;
1341 	s64 nextbn;
1342 	struct pxdlist *pxdlist;
1343 	pxd_t *pxd;
1344 	int skip, nextindex, half, left, nxt, off, si;
1345 	struct ldtentry *ldtentry;
1346 	struct idtentry *idtentry;
1347 	u8 *stbl;
1348 	struct dtslot *f;
1349 	int fsi, stblsize;
1350 	int n;
1351 	struct dt_lock *sdtlck, *rdtlck;
1352 	struct tlock *tlck;
1353 	struct dt_lock *dtlck;
1354 	struct lv *slv, *rlv, *lv;
1355 
1356 	/* get split page */
1357 	smp = split->mp;
1358 	sp = DT_PAGE(ip, smp);
1359 
1360 	/*
1361 	 * allocate the new right page for the split
1362 	 */
1363 	pxdlist = split->pxdlist;
1364 	pxd = &pxdlist->pxd[pxdlist->npxd];
1365 	pxdlist->npxd++;
1366 	rbn = addressPXD(pxd);
1367 	rmp = get_metapage(ip, rbn, PSIZE, 1);
1368 	if (rmp == NULL)
1369 		return -EIO;
1370 
1371 	/* Allocate blocks to quota. */
1372 	if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) {
1373 		release_metapage(rmp);
1374 		return -EDQUOT;
1375 	}
1376 
1377 	jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1378 
1379 	BT_MARK_DIRTY(rmp, ip);
1380 	/*
1381 	 * acquire a transaction lock on the new right page
1382 	 */
1383 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1384 	rdtlck = (struct dt_lock *) & tlck->lock;
1385 
1386 	rp = (dtpage_t *) rmp->data;
1387 	*rpp = rp;
1388 	rp->header.self = *pxd;
1389 
1390 	BT_MARK_DIRTY(smp, ip);
1391 	/*
1392 	 * acquire a transaction lock on the split page
1393 	 *
1394 	 * action:
1395 	 */
1396 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1397 	sdtlck = (struct dt_lock *) & tlck->lock;
1398 
1399 	/* linelock header of split page */
1400 	ASSERT(sdtlck->index == 0);
1401 	slv = & sdtlck->lv[0];
1402 	slv->offset = 0;
1403 	slv->length = 1;
1404 	sdtlck->index++;
1405 
1406 	/*
1407 	 * initialize/update sibling pointers between sp and rp
1408 	 */
1409 	nextbn = le64_to_cpu(sp->header.next);
1410 	rp->header.next = cpu_to_le64(nextbn);
1411 	rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1412 	sp->header.next = cpu_to_le64(rbn);
1413 
1414 	/*
1415 	 * initialize new right page
1416 	 */
1417 	rp->header.flag = sp->header.flag;
1418 
1419 	/* compute sorted entry table at start of extent data area */
1420 	rp->header.nextindex = 0;
1421 	rp->header.stblindex = 1;
1422 
1423 	n = PSIZE >> L2DTSLOTSIZE;
1424 	rp->header.maxslot = n;
1425 	stblsize = (n + 31) >> L2DTSLOTSIZE;	/* in unit of slot */
1426 
1427 	/* init freelist */
1428 	fsi = rp->header.stblindex + stblsize;
1429 	rp->header.freelist = fsi;
1430 	rp->header.freecnt = rp->header.maxslot - fsi;
1431 
1432 	/*
1433 	 *	sequential append at tail: append without split
1434 	 *
1435 	 * If splitting the last page on a level because of appending
1436 	 * a entry to it (skip is maxentry), it's likely that the access is
1437 	 * sequential. Adding an empty page on the side of the level is less
1438 	 * work and can push the fill factor much higher than normal.
1439 	 * If we're wrong it's no big deal, we'll just do the split the right
1440 	 * way next time.
1441 	 * (It may look like it's equally easy to do a similar hack for
1442 	 * reverse sorted data, that is, split the tree left,
1443 	 * but it's not. Be my guest.)
1444 	 */
1445 	if (nextbn == 0 && split->index == sp->header.nextindex) {
1446 		/* linelock header + stbl (first slot) of new page */
1447 		rlv = & rdtlck->lv[rdtlck->index];
1448 		rlv->offset = 0;
1449 		rlv->length = 2;
1450 		rdtlck->index++;
1451 
1452 		/*
1453 		 * initialize freelist of new right page
1454 		 */
1455 		f = &rp->slot[fsi];
1456 		for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1457 			f->next = fsi;
1458 		f->next = -1;
1459 
1460 		/* insert entry at the first entry of the new right page */
1461 		dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1462 
1463 		goto out;
1464 	}
1465 
1466 	/*
1467 	 *	non-sequential insert (at possibly middle page)
1468 	 */
1469 
1470 	/*
1471 	 * update prev pointer of previous right sibling page;
1472 	 */
1473 	if (nextbn != 0) {
1474 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1475 		if (rc) {
1476 			discard_metapage(rmp);
1477 			return rc;
1478 		}
1479 
1480 		BT_MARK_DIRTY(mp, ip);
1481 		/*
1482 		 * acquire a transaction lock on the next page
1483 		 */
1484 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1485 		jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1486 			tlck, ip, mp);
1487 		dtlck = (struct dt_lock *) & tlck->lock;
1488 
1489 		/* linelock header of previous right sibling page */
1490 		lv = & dtlck->lv[dtlck->index];
1491 		lv->offset = 0;
1492 		lv->length = 1;
1493 		dtlck->index++;
1494 
1495 		p->header.prev = cpu_to_le64(rbn);
1496 
1497 		DT_PUTPAGE(mp);
1498 	}
1499 
1500 	/*
1501 	 * split the data between the split and right pages.
1502 	 */
1503 	skip = split->index;
1504 	half = (PSIZE >> L2DTSLOTSIZE) >> 1;	/* swag */
1505 	left = 0;
1506 
1507 	/*
1508 	 *	compute fill factor for split pages
1509 	 *
1510 	 * <nxt> traces the next entry to move to rp
1511 	 * <off> traces the next entry to stay in sp
1512 	 */
1513 	stbl = (u8 *) & sp->slot[sp->header.stblindex];
1514 	nextindex = sp->header.nextindex;
1515 	for (nxt = off = 0; nxt < nextindex; ++off) {
1516 		if (off == skip)
1517 			/* check for fill factor with new entry size */
1518 			n = split->nslot;
1519 		else {
1520 			si = stbl[nxt];
1521 			switch (sp->header.flag & BT_TYPE) {
1522 			case BT_LEAF:
1523 				ldtentry = (struct ldtentry *) & sp->slot[si];
1524 				if (DO_INDEX(ip))
1525 					n = NDTLEAF(ldtentry->namlen);
1526 				else
1527 					n = NDTLEAF_LEGACY(ldtentry->
1528 							   namlen);
1529 				break;
1530 
1531 			case BT_INTERNAL:
1532 				idtentry = (struct idtentry *) & sp->slot[si];
1533 				n = NDTINTERNAL(idtentry->namlen);
1534 				break;
1535 
1536 			default:
1537 				break;
1538 			}
1539 
1540 			++nxt;	/* advance to next entry to move in sp */
1541 		}
1542 
1543 		left += n;
1544 		if (left >= half)
1545 			break;
1546 	}
1547 
1548 	/* <nxt> poins to the 1st entry to move */
1549 
1550 	/*
1551 	 *	move entries to right page
1552 	 *
1553 	 * dtMoveEntry() initializes rp and reserves entry for insertion
1554 	 *
1555 	 * split page moved out entries are linelocked;
1556 	 * new/right page moved in entries are linelocked;
1557 	 */
1558 	/* linelock header + stbl of new right page */
1559 	rlv = & rdtlck->lv[rdtlck->index];
1560 	rlv->offset = 0;
1561 	rlv->length = 5;
1562 	rdtlck->index++;
1563 
1564 	dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1565 
1566 	sp->header.nextindex = nxt;
1567 
1568 	/*
1569 	 * finalize freelist of new right page
1570 	 */
1571 	fsi = rp->header.freelist;
1572 	f = &rp->slot[fsi];
1573 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1574 		f->next = fsi;
1575 	f->next = -1;
1576 
1577 	/*
1578 	 * Update directory index table for entries now in right page
1579 	 */
1580 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1581 		s64 lblock;
1582 
1583 		mp = NULL;
1584 		stbl = DT_GETSTBL(rp);
1585 		for (n = 0; n < rp->header.nextindex; n++) {
1586 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1587 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1588 				     rbn, n, &mp, &lblock);
1589 		}
1590 		if (mp)
1591 			release_metapage(mp);
1592 	}
1593 
1594 	/*
1595 	 * the skipped index was on the left page,
1596 	 */
1597 	if (skip <= off) {
1598 		/* insert the new entry in the split page */
1599 		dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1600 
1601 		/* linelock stbl of split page */
1602 		if (sdtlck->index >= sdtlck->maxcnt)
1603 			sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1604 		slv = & sdtlck->lv[sdtlck->index];
1605 		n = skip >> L2DTSLOTSIZE;
1606 		slv->offset = sp->header.stblindex + n;
1607 		slv->length =
1608 		    ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1609 		sdtlck->index++;
1610 	}
1611 	/*
1612 	 * the skipped index was on the right page,
1613 	 */
1614 	else {
1615 		/* adjust the skip index to reflect the new position */
1616 		skip -= nxt;
1617 
1618 		/* insert the new entry in the right page */
1619 		dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1620 	}
1621 
1622       out:
1623 	*rmpp = rmp;
1624 	*rpxdp = *pxd;
1625 
1626 	return rc;
1627 }
1628 
1629 
1630 /*
1631  *	dtExtendPage()
1632  *
1633  * function: extend 1st/only directory leaf page
1634  *
1635  * parameter:
1636  *
1637  * return: 0 - success;
1638  *	   errno - failure;
1639  *	return extended page pinned;
1640  */
1641 static int dtExtendPage(tid_t tid,
1642 	     struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1643 {
1644 	struct super_block *sb = ip->i_sb;
1645 	int rc;
1646 	struct metapage *smp, *pmp, *mp;
1647 	dtpage_t *sp, *pp;
1648 	struct pxdlist *pxdlist;
1649 	pxd_t *pxd, *tpxd;
1650 	int xlen, xsize;
1651 	int newstblindex, newstblsize;
1652 	int oldstblindex, oldstblsize;
1653 	int fsi, last;
1654 	struct dtslot *f;
1655 	struct btframe *parent;
1656 	int n;
1657 	struct dt_lock *dtlck;
1658 	s64 xaddr, txaddr;
1659 	struct tlock *tlck;
1660 	struct pxd_lock *pxdlock;
1661 	struct lv *lv;
1662 	uint type;
1663 	struct ldtentry *ldtentry;
1664 	u8 *stbl;
1665 
1666 	/* get page to extend */
1667 	smp = split->mp;
1668 	sp = DT_PAGE(ip, smp);
1669 
1670 	/* get parent/root page */
1671 	parent = BT_POP(btstack);
1672 	DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1673 	if (rc)
1674 		return (rc);
1675 
1676 	/*
1677 	 *	extend the extent
1678 	 */
1679 	pxdlist = split->pxdlist;
1680 	pxd = &pxdlist->pxd[pxdlist->npxd];
1681 	pxdlist->npxd++;
1682 
1683 	xaddr = addressPXD(pxd);
1684 	tpxd = &sp->header.self;
1685 	txaddr = addressPXD(tpxd);
1686 	/* in-place extension */
1687 	if (xaddr == txaddr) {
1688 		type = tlckEXTEND;
1689 	}
1690 	/* relocation */
1691 	else {
1692 		type = tlckNEW;
1693 
1694 		/* save moved extent descriptor for later free */
1695 		tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1696 		pxdlock = (struct pxd_lock *) & tlck->lock;
1697 		pxdlock->flag = mlckFREEPXD;
1698 		pxdlock->pxd = sp->header.self;
1699 		pxdlock->index = 1;
1700 
1701 		/*
1702 		 * Update directory index table to reflect new page address
1703 		 */
1704 		if (DO_INDEX(ip)) {
1705 			s64 lblock;
1706 
1707 			mp = NULL;
1708 			stbl = DT_GETSTBL(sp);
1709 			for (n = 0; n < sp->header.nextindex; n++) {
1710 				ldtentry =
1711 				    (struct ldtentry *) & sp->slot[stbl[n]];
1712 				modify_index(tid, ip,
1713 					     le32_to_cpu(ldtentry->index),
1714 					     xaddr, n, &mp, &lblock);
1715 			}
1716 			if (mp)
1717 				release_metapage(mp);
1718 		}
1719 	}
1720 
1721 	/*
1722 	 *	extend the page
1723 	 */
1724 	sp->header.self = *pxd;
1725 
1726 	jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1727 
1728 	BT_MARK_DIRTY(smp, ip);
1729 	/*
1730 	 * acquire a transaction lock on the extended/leaf page
1731 	 */
1732 	tlck = txLock(tid, ip, smp, tlckDTREE | type);
1733 	dtlck = (struct dt_lock *) & tlck->lock;
1734 	lv = & dtlck->lv[0];
1735 
1736 	/* update buffer extent descriptor of extended page */
1737 	xlen = lengthPXD(pxd);
1738 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1739 
1740 	/*
1741 	 * copy old stbl to new stbl at start of extended area
1742 	 */
1743 	oldstblindex = sp->header.stblindex;
1744 	oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1745 	newstblindex = sp->header.maxslot;
1746 	n = xsize >> L2DTSLOTSIZE;
1747 	newstblsize = (n + 31) >> L2DTSLOTSIZE;
1748 	memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1749 	       sp->header.nextindex);
1750 
1751 	/*
1752 	 * in-line extension: linelock old area of extended page
1753 	 */
1754 	if (type == tlckEXTEND) {
1755 		/* linelock header */
1756 		lv->offset = 0;
1757 		lv->length = 1;
1758 		dtlck->index++;
1759 		lv++;
1760 
1761 		/* linelock new stbl of extended page */
1762 		lv->offset = newstblindex;
1763 		lv->length = newstblsize;
1764 	}
1765 	/*
1766 	 * relocation: linelock whole relocated area
1767 	 */
1768 	else {
1769 		lv->offset = 0;
1770 		lv->length = sp->header.maxslot + newstblsize;
1771 	}
1772 
1773 	dtlck->index++;
1774 
1775 	sp->header.maxslot = n;
1776 	sp->header.stblindex = newstblindex;
1777 	/* sp->header.nextindex remains the same */
1778 
1779 	/*
1780 	 * add old stbl region at head of freelist
1781 	 */
1782 	fsi = oldstblindex;
1783 	f = &sp->slot[fsi];
1784 	last = sp->header.freelist;
1785 	for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1786 		f->next = last;
1787 		last = fsi;
1788 	}
1789 	sp->header.freelist = last;
1790 	sp->header.freecnt += oldstblsize;
1791 
1792 	/*
1793 	 * append free region of newly extended area at tail of freelist
1794 	 */
1795 	/* init free region of newly extended area */
1796 	fsi = n = newstblindex + newstblsize;
1797 	f = &sp->slot[fsi];
1798 	for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1799 		f->next = fsi;
1800 	f->next = -1;
1801 
1802 	/* append new free region at tail of old freelist */
1803 	fsi = sp->header.freelist;
1804 	if (fsi == -1)
1805 		sp->header.freelist = n;
1806 	else {
1807 		do {
1808 			f = &sp->slot[fsi];
1809 			fsi = f->next;
1810 		} while (fsi != -1);
1811 
1812 		f->next = n;
1813 	}
1814 
1815 	sp->header.freecnt += sp->header.maxslot - n;
1816 
1817 	/*
1818 	 * insert the new entry
1819 	 */
1820 	dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1821 
1822 	BT_MARK_DIRTY(pmp, ip);
1823 	/*
1824 	 * linelock any freeslots residing in old extent
1825 	 */
1826 	if (type == tlckEXTEND) {
1827 		n = sp->header.maxslot >> 2;
1828 		if (sp->header.freelist < n)
1829 			dtLinelockFreelist(sp, n, &dtlck);
1830 	}
1831 
1832 	/*
1833 	 *	update parent entry on the parent/root page
1834 	 */
1835 	/*
1836 	 * acquire a transaction lock on the parent/root page
1837 	 */
1838 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1839 	dtlck = (struct dt_lock *) & tlck->lock;
1840 	lv = & dtlck->lv[dtlck->index];
1841 
1842 	/* linelock parent entry - 1st slot */
1843 	lv->offset = 1;
1844 	lv->length = 1;
1845 	dtlck->index++;
1846 
1847 	/* update the parent pxd for page extension */
1848 	tpxd = (pxd_t *) & pp->slot[1];
1849 	*tpxd = *pxd;
1850 
1851 	DT_PUTPAGE(pmp);
1852 	return 0;
1853 }
1854 
1855 
1856 /*
1857  *	dtSplitRoot()
1858  *
1859  * function:
1860  *	split the full root page into
1861  *	original/root/split page and new right page
1862  *	i.e., root remains fixed in tree anchor (inode) and
1863  *	the root is copied to a single new right child page
1864  *	since root page << non-root page, and
1865  *	the split root page contains a single entry for the
1866  *	new right child page.
1867  *
1868  * parameter:
1869  *
1870  * return: 0 - success;
1871  *	   errno - failure;
1872  *	return new page pinned;
1873  */
1874 static int dtSplitRoot(tid_t tid,
1875 	    struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1876 {
1877 	struct super_block *sb = ip->i_sb;
1878 	struct metapage *smp;
1879 	dtroot_t *sp;
1880 	struct metapage *rmp;
1881 	dtpage_t *rp;
1882 	s64 rbn;
1883 	int xlen;
1884 	int xsize;
1885 	struct dtslot *f;
1886 	s8 *stbl;
1887 	int fsi, stblsize, n;
1888 	struct idtentry *s;
1889 	pxd_t *ppxd;
1890 	struct pxdlist *pxdlist;
1891 	pxd_t *pxd;
1892 	struct dt_lock *dtlck;
1893 	struct tlock *tlck;
1894 	struct lv *lv;
1895 
1896 	/* get split root page */
1897 	smp = split->mp;
1898 	sp = &JFS_IP(ip)->i_dtroot;
1899 
1900 	/*
1901 	 *	allocate/initialize a single (right) child page
1902 	 *
1903 	 * N.B. at first split, a one (or two) block to fit new entry
1904 	 * is allocated; at subsequent split, a full page is allocated;
1905 	 */
1906 	pxdlist = split->pxdlist;
1907 	pxd = &pxdlist->pxd[pxdlist->npxd];
1908 	pxdlist->npxd++;
1909 	rbn = addressPXD(pxd);
1910 	xlen = lengthPXD(pxd);
1911 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1912 	rmp = get_metapage(ip, rbn, xsize, 1);
1913 	if (!rmp)
1914 		return -EIO;
1915 
1916 	rp = rmp->data;
1917 
1918 	/* Allocate blocks to quota. */
1919 	if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) {
1920 		release_metapage(rmp);
1921 		return -EDQUOT;
1922 	}
1923 
1924 	BT_MARK_DIRTY(rmp, ip);
1925 	/*
1926 	 * acquire a transaction lock on the new right page
1927 	 */
1928 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1929 	dtlck = (struct dt_lock *) & tlck->lock;
1930 
1931 	rp->header.flag =
1932 	    (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1933 	rp->header.self = *pxd;
1934 
1935 	/* initialize sibling pointers */
1936 	rp->header.next = 0;
1937 	rp->header.prev = 0;
1938 
1939 	/*
1940 	 *	move in-line root page into new right page extent
1941 	 */
1942 	/* linelock header + copied entries + new stbl (1st slot) in new page */
1943 	ASSERT(dtlck->index == 0);
1944 	lv = & dtlck->lv[0];
1945 	lv->offset = 0;
1946 	lv->length = 10;	/* 1 + 8 + 1 */
1947 	dtlck->index++;
1948 
1949 	n = xsize >> L2DTSLOTSIZE;
1950 	rp->header.maxslot = n;
1951 	stblsize = (n + 31) >> L2DTSLOTSIZE;
1952 
1953 	/* copy old stbl to new stbl at start of extended area */
1954 	rp->header.stblindex = DTROOTMAXSLOT;
1955 	stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1956 	memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1957 	rp->header.nextindex = sp->header.nextindex;
1958 
1959 	/* copy old data area to start of new data area */
1960 	memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1961 
1962 	/*
1963 	 * append free region of newly extended area at tail of freelist
1964 	 */
1965 	/* init free region of newly extended area */
1966 	fsi = n = DTROOTMAXSLOT + stblsize;
1967 	f = &rp->slot[fsi];
1968 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1969 		f->next = fsi;
1970 	f->next = -1;
1971 
1972 	/* append new free region at tail of old freelist */
1973 	fsi = sp->header.freelist;
1974 	if (fsi == -1)
1975 		rp->header.freelist = n;
1976 	else {
1977 		rp->header.freelist = fsi;
1978 
1979 		do {
1980 			f = &rp->slot[fsi];
1981 			fsi = f->next;
1982 		} while (fsi != -1);
1983 
1984 		f->next = n;
1985 	}
1986 
1987 	rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1988 
1989 	/*
1990 	 * Update directory index table for entries now in right page
1991 	 */
1992 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1993 		s64 lblock;
1994 		struct metapage *mp = NULL;
1995 		struct ldtentry *ldtentry;
1996 
1997 		stbl = DT_GETSTBL(rp);
1998 		for (n = 0; n < rp->header.nextindex; n++) {
1999 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
2000 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
2001 				     rbn, n, &mp, &lblock);
2002 		}
2003 		if (mp)
2004 			release_metapage(mp);
2005 	}
2006 	/*
2007 	 * insert the new entry into the new right/child page
2008 	 * (skip index in the new right page will not change)
2009 	 */
2010 	dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2011 
2012 	/*
2013 	 *	reset parent/root page
2014 	 *
2015 	 * set the 1st entry offset to 0, which force the left-most key
2016 	 * at any level of the tree to be less than any search key.
2017 	 *
2018 	 * The btree comparison code guarantees that the left-most key on any
2019 	 * level of the tree is never used, so it doesn't need to be filled in.
2020 	 */
2021 	BT_MARK_DIRTY(smp, ip);
2022 	/*
2023 	 * acquire a transaction lock on the root page (in-memory inode)
2024 	 */
2025 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2026 	dtlck = (struct dt_lock *) & tlck->lock;
2027 
2028 	/* linelock root */
2029 	ASSERT(dtlck->index == 0);
2030 	lv = & dtlck->lv[0];
2031 	lv->offset = 0;
2032 	lv->length = DTROOTMAXSLOT;
2033 	dtlck->index++;
2034 
2035 	/* update page header of root */
2036 	if (sp->header.flag & BT_LEAF) {
2037 		sp->header.flag &= ~BT_LEAF;
2038 		sp->header.flag |= BT_INTERNAL;
2039 	}
2040 
2041 	/* init the first entry */
2042 	s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2043 	ppxd = (pxd_t *) s;
2044 	*ppxd = *pxd;
2045 	s->next = -1;
2046 	s->namlen = 0;
2047 
2048 	stbl = sp->header.stbl;
2049 	stbl[0] = DTENTRYSTART;
2050 	sp->header.nextindex = 1;
2051 
2052 	/* init freelist */
2053 	fsi = DTENTRYSTART + 1;
2054 	f = &sp->slot[fsi];
2055 
2056 	/* init free region of remaining area */
2057 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2058 		f->next = fsi;
2059 	f->next = -1;
2060 
2061 	sp->header.freelist = DTENTRYSTART + 1;
2062 	sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2063 
2064 	*rmpp = rmp;
2065 
2066 	return 0;
2067 }
2068 
2069 
2070 /*
2071  *	dtDelete()
2072  *
2073  * function: delete the entry(s) referenced by a key.
2074  *
2075  * parameter:
2076  *
2077  * return:
2078  */
2079 int dtDelete(tid_t tid,
2080 	 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2081 {
2082 	int rc = 0;
2083 	s64 bn;
2084 	struct metapage *mp, *imp;
2085 	dtpage_t *p;
2086 	int index;
2087 	struct btstack btstack;
2088 	struct dt_lock *dtlck;
2089 	struct tlock *tlck;
2090 	struct lv *lv;
2091 	int i;
2092 	struct ldtentry *ldtentry;
2093 	u8 *stbl;
2094 	u32 table_index, next_index;
2095 	struct metapage *nmp;
2096 	dtpage_t *np;
2097 
2098 	/*
2099 	 *	search for the entry to delete:
2100 	 *
2101 	 * dtSearch() returns (leaf page pinned, index at which to delete).
2102 	 */
2103 	if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2104 		return rc;
2105 
2106 	/* retrieve search result */
2107 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2108 
2109 	/*
2110 	 * We need to find put the index of the next entry into the
2111 	 * directory index table in order to resume a readdir from this
2112 	 * entry.
2113 	 */
2114 	if (DO_INDEX(ip)) {
2115 		stbl = DT_GETSTBL(p);
2116 		ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2117 		table_index = le32_to_cpu(ldtentry->index);
2118 		if (index == (p->header.nextindex - 1)) {
2119 			/*
2120 			 * Last entry in this leaf page
2121 			 */
2122 			if ((p->header.flag & BT_ROOT)
2123 			    || (p->header.next == 0))
2124 				next_index = -1;
2125 			else {
2126 				/* Read next leaf page */
2127 				DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2128 					   nmp, PSIZE, np, rc);
2129 				if (rc)
2130 					next_index = -1;
2131 				else {
2132 					stbl = DT_GETSTBL(np);
2133 					ldtentry =
2134 					    (struct ldtentry *) & np->
2135 					    slot[stbl[0]];
2136 					next_index =
2137 					    le32_to_cpu(ldtentry->index);
2138 					DT_PUTPAGE(nmp);
2139 				}
2140 			}
2141 		} else {
2142 			ldtentry =
2143 			    (struct ldtentry *) & p->slot[stbl[index + 1]];
2144 			next_index = le32_to_cpu(ldtentry->index);
2145 		}
2146 		free_index(tid, ip, table_index, next_index);
2147 	}
2148 	/*
2149 	 * the leaf page becomes empty, delete the page
2150 	 */
2151 	if (p->header.nextindex == 1) {
2152 		/* delete empty page */
2153 		rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2154 	}
2155 	/*
2156 	 * the leaf page has other entries remaining:
2157 	 *
2158 	 * delete the entry from the leaf page.
2159 	 */
2160 	else {
2161 		BT_MARK_DIRTY(mp, ip);
2162 		/*
2163 		 * acquire a transaction lock on the leaf page
2164 		 */
2165 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2166 		dtlck = (struct dt_lock *) & tlck->lock;
2167 
2168 		/*
2169 		 * Do not assume that dtlck->index will be zero.  During a
2170 		 * rename within a directory, this transaction may have
2171 		 * modified this page already when adding the new entry.
2172 		 */
2173 
2174 		/* linelock header */
2175 		if (dtlck->index >= dtlck->maxcnt)
2176 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2177 		lv = & dtlck->lv[dtlck->index];
2178 		lv->offset = 0;
2179 		lv->length = 1;
2180 		dtlck->index++;
2181 
2182 		/* linelock stbl of non-root leaf page */
2183 		if (!(p->header.flag & BT_ROOT)) {
2184 			if (dtlck->index >= dtlck->maxcnt)
2185 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2186 			lv = & dtlck->lv[dtlck->index];
2187 			i = index >> L2DTSLOTSIZE;
2188 			lv->offset = p->header.stblindex + i;
2189 			lv->length =
2190 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2191 			    i + 1;
2192 			dtlck->index++;
2193 		}
2194 
2195 		/* free the leaf entry */
2196 		dtDeleteEntry(p, index, &dtlck);
2197 
2198 		/*
2199 		 * Update directory index table for entries moved in stbl
2200 		 */
2201 		if (DO_INDEX(ip) && index < p->header.nextindex) {
2202 			s64 lblock;
2203 
2204 			imp = NULL;
2205 			stbl = DT_GETSTBL(p);
2206 			for (i = index; i < p->header.nextindex; i++) {
2207 				ldtentry =
2208 				    (struct ldtentry *) & p->slot[stbl[i]];
2209 				modify_index(tid, ip,
2210 					     le32_to_cpu(ldtentry->index),
2211 					     bn, i, &imp, &lblock);
2212 			}
2213 			if (imp)
2214 				release_metapage(imp);
2215 		}
2216 
2217 		DT_PUTPAGE(mp);
2218 	}
2219 
2220 	return rc;
2221 }
2222 
2223 
2224 /*
2225  *	dtDeleteUp()
2226  *
2227  * function:
2228  *	free empty pages as propagating deletion up the tree
2229  *
2230  * parameter:
2231  *
2232  * return:
2233  */
2234 static int dtDeleteUp(tid_t tid, struct inode *ip,
2235 	   struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2236 {
2237 	int rc = 0;
2238 	struct metapage *mp;
2239 	dtpage_t *p;
2240 	int index, nextindex;
2241 	int xlen;
2242 	struct btframe *parent;
2243 	struct dt_lock *dtlck;
2244 	struct tlock *tlck;
2245 	struct lv *lv;
2246 	struct pxd_lock *pxdlock;
2247 	int i;
2248 
2249 	/*
2250 	 *	keep the root leaf page which has become empty
2251 	 */
2252 	if (BT_IS_ROOT(fmp)) {
2253 		/*
2254 		 * reset the root
2255 		 *
2256 		 * dtInitRoot() acquires txlock on the root
2257 		 */
2258 		dtInitRoot(tid, ip, PARENT(ip));
2259 
2260 		DT_PUTPAGE(fmp);
2261 
2262 		return 0;
2263 	}
2264 
2265 	/*
2266 	 *	free the non-root leaf page
2267 	 */
2268 	/*
2269 	 * acquire a transaction lock on the page
2270 	 *
2271 	 * write FREEXTENT|NOREDOPAGE log record
2272 	 * N.B. linelock is overlaid as freed extent descriptor, and
2273 	 * the buffer page is freed;
2274 	 */
2275 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2276 	pxdlock = (struct pxd_lock *) & tlck->lock;
2277 	pxdlock->flag = mlckFREEPXD;
2278 	pxdlock->pxd = fp->header.self;
2279 	pxdlock->index = 1;
2280 
2281 	/* update sibling pointers */
2282 	if ((rc = dtRelink(tid, ip, fp))) {
2283 		BT_PUTPAGE(fmp);
2284 		return rc;
2285 	}
2286 
2287 	xlen = lengthPXD(&fp->header.self);
2288 
2289 	/* Free quota allocation. */
2290 	DQUOT_FREE_BLOCK(ip, xlen);
2291 
2292 	/* free/invalidate its buffer page */
2293 	discard_metapage(fmp);
2294 
2295 	/*
2296 	 *	propagate page deletion up the directory tree
2297 	 *
2298 	 * If the delete from the parent page makes it empty,
2299 	 * continue all the way up the tree.
2300 	 * stop if the root page is reached (which is never deleted) or
2301 	 * if the entry deletion does not empty the page.
2302 	 */
2303 	while ((parent = BT_POP(btstack)) != NULL) {
2304 		/* pin the parent page <sp> */
2305 		DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2306 		if (rc)
2307 			return rc;
2308 
2309 		/*
2310 		 * free the extent of the child page deleted
2311 		 */
2312 		index = parent->index;
2313 
2314 		/*
2315 		 * delete the entry for the child page from parent
2316 		 */
2317 		nextindex = p->header.nextindex;
2318 
2319 		/*
2320 		 * the parent has the single entry being deleted:
2321 		 *
2322 		 * free the parent page which has become empty.
2323 		 */
2324 		if (nextindex == 1) {
2325 			/*
2326 			 * keep the root internal page which has become empty
2327 			 */
2328 			if (p->header.flag & BT_ROOT) {
2329 				/*
2330 				 * reset the root
2331 				 *
2332 				 * dtInitRoot() acquires txlock on the root
2333 				 */
2334 				dtInitRoot(tid, ip, PARENT(ip));
2335 
2336 				DT_PUTPAGE(mp);
2337 
2338 				return 0;
2339 			}
2340 			/*
2341 			 * free the parent page
2342 			 */
2343 			else {
2344 				/*
2345 				 * acquire a transaction lock on the page
2346 				 *
2347 				 * write FREEXTENT|NOREDOPAGE log record
2348 				 */
2349 				tlck =
2350 				    txMaplock(tid, ip,
2351 					      tlckDTREE | tlckFREE);
2352 				pxdlock = (struct pxd_lock *) & tlck->lock;
2353 				pxdlock->flag = mlckFREEPXD;
2354 				pxdlock->pxd = p->header.self;
2355 				pxdlock->index = 1;
2356 
2357 				/* update sibling pointers */
2358 				if ((rc = dtRelink(tid, ip, p))) {
2359 					DT_PUTPAGE(mp);
2360 					return rc;
2361 				}
2362 
2363 				xlen = lengthPXD(&p->header.self);
2364 
2365 				/* Free quota allocation */
2366 				DQUOT_FREE_BLOCK(ip, xlen);
2367 
2368 				/* free/invalidate its buffer page */
2369 				discard_metapage(mp);
2370 
2371 				/* propagate up */
2372 				continue;
2373 			}
2374 		}
2375 
2376 		/*
2377 		 * the parent has other entries remaining:
2378 		 *
2379 		 * delete the router entry from the parent page.
2380 		 */
2381 		BT_MARK_DIRTY(mp, ip);
2382 		/*
2383 		 * acquire a transaction lock on the page
2384 		 *
2385 		 * action: router entry deletion
2386 		 */
2387 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2388 		dtlck = (struct dt_lock *) & tlck->lock;
2389 
2390 		/* linelock header */
2391 		if (dtlck->index >= dtlck->maxcnt)
2392 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2393 		lv = & dtlck->lv[dtlck->index];
2394 		lv->offset = 0;
2395 		lv->length = 1;
2396 		dtlck->index++;
2397 
2398 		/* linelock stbl of non-root leaf page */
2399 		if (!(p->header.flag & BT_ROOT)) {
2400 			if (dtlck->index < dtlck->maxcnt)
2401 				lv++;
2402 			else {
2403 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2404 				lv = & dtlck->lv[0];
2405 			}
2406 			i = index >> L2DTSLOTSIZE;
2407 			lv->offset = p->header.stblindex + i;
2408 			lv->length =
2409 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2410 			    i + 1;
2411 			dtlck->index++;
2412 		}
2413 
2414 		/* free the router entry */
2415 		dtDeleteEntry(p, index, &dtlck);
2416 
2417 		/* reset key of new leftmost entry of level (for consistency) */
2418 		if (index == 0 &&
2419 		    ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2420 			dtTruncateEntry(p, 0, &dtlck);
2421 
2422 		/* unpin the parent page */
2423 		DT_PUTPAGE(mp);
2424 
2425 		/* exit propagation up */
2426 		break;
2427 	}
2428 
2429 	if (!DO_INDEX(ip))
2430 		ip->i_size -= PSIZE;
2431 
2432 	return 0;
2433 }
2434 
2435 #ifdef _NOTYET
2436 /*
2437  * NAME:	dtRelocate()
2438  *
2439  * FUNCTION:	relocate dtpage (internal or leaf) of directory;
2440  *		This function is mainly used by defragfs utility.
2441  */
2442 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2443 	       s64 nxaddr)
2444 {
2445 	int rc = 0;
2446 	struct metapage *mp, *pmp, *lmp, *rmp;
2447 	dtpage_t *p, *pp, *rp = 0, *lp= 0;
2448 	s64 bn;
2449 	int index;
2450 	struct btstack btstack;
2451 	pxd_t *pxd;
2452 	s64 oxaddr, nextbn, prevbn;
2453 	int xlen, xsize;
2454 	struct tlock *tlck;
2455 	struct dt_lock *dtlck;
2456 	struct pxd_lock *pxdlock;
2457 	s8 *stbl;
2458 	struct lv *lv;
2459 
2460 	oxaddr = addressPXD(opxd);
2461 	xlen = lengthPXD(opxd);
2462 
2463 	jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2464 		   (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2465 		   xlen);
2466 
2467 	/*
2468 	 *	1. get the internal parent dtpage covering
2469 	 *	router entry for the tartget page to be relocated;
2470 	 */
2471 	rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2472 	if (rc)
2473 		return rc;
2474 
2475 	/* retrieve search result */
2476 	DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2477 	jfs_info("dtRelocate: parent router entry validated.");
2478 
2479 	/*
2480 	 *	2. relocate the target dtpage
2481 	 */
2482 	/* read in the target page from src extent */
2483 	DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2484 	if (rc) {
2485 		/* release the pinned parent page */
2486 		DT_PUTPAGE(pmp);
2487 		return rc;
2488 	}
2489 
2490 	/*
2491 	 * read in sibling pages if any to update sibling pointers;
2492 	 */
2493 	rmp = NULL;
2494 	if (p->header.next) {
2495 		nextbn = le64_to_cpu(p->header.next);
2496 		DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2497 		if (rc) {
2498 			DT_PUTPAGE(mp);
2499 			DT_PUTPAGE(pmp);
2500 			return (rc);
2501 		}
2502 	}
2503 
2504 	lmp = NULL;
2505 	if (p->header.prev) {
2506 		prevbn = le64_to_cpu(p->header.prev);
2507 		DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2508 		if (rc) {
2509 			DT_PUTPAGE(mp);
2510 			DT_PUTPAGE(pmp);
2511 			if (rmp)
2512 				DT_PUTPAGE(rmp);
2513 			return (rc);
2514 		}
2515 	}
2516 
2517 	/* at this point, all xtpages to be updated are in memory */
2518 
2519 	/*
2520 	 * update sibling pointers of sibling dtpages if any;
2521 	 */
2522 	if (lmp) {
2523 		tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2524 		dtlck = (struct dt_lock *) & tlck->lock;
2525 		/* linelock header */
2526 		ASSERT(dtlck->index == 0);
2527 		lv = & dtlck->lv[0];
2528 		lv->offset = 0;
2529 		lv->length = 1;
2530 		dtlck->index++;
2531 
2532 		lp->header.next = cpu_to_le64(nxaddr);
2533 		DT_PUTPAGE(lmp);
2534 	}
2535 
2536 	if (rmp) {
2537 		tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2538 		dtlck = (struct dt_lock *) & tlck->lock;
2539 		/* linelock header */
2540 		ASSERT(dtlck->index == 0);
2541 		lv = & dtlck->lv[0];
2542 		lv->offset = 0;
2543 		lv->length = 1;
2544 		dtlck->index++;
2545 
2546 		rp->header.prev = cpu_to_le64(nxaddr);
2547 		DT_PUTPAGE(rmp);
2548 	}
2549 
2550 	/*
2551 	 * update the target dtpage to be relocated
2552 	 *
2553 	 * write LOG_REDOPAGE of LOG_NEW type for dst page
2554 	 * for the whole target page (logredo() will apply
2555 	 * after image and update bmap for allocation of the
2556 	 * dst extent), and update bmap for allocation of
2557 	 * the dst extent;
2558 	 */
2559 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2560 	dtlck = (struct dt_lock *) & tlck->lock;
2561 	/* linelock header */
2562 	ASSERT(dtlck->index == 0);
2563 	lv = & dtlck->lv[0];
2564 
2565 	/* update the self address in the dtpage header */
2566 	pxd = &p->header.self;
2567 	PXDaddress(pxd, nxaddr);
2568 
2569 	/* the dst page is the same as the src page, i.e.,
2570 	 * linelock for afterimage of the whole page;
2571 	 */
2572 	lv->offset = 0;
2573 	lv->length = p->header.maxslot;
2574 	dtlck->index++;
2575 
2576 	/* update the buffer extent descriptor of the dtpage */
2577 	xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2578 
2579 	/* unpin the relocated page */
2580 	DT_PUTPAGE(mp);
2581 	jfs_info("dtRelocate: target dtpage relocated.");
2582 
2583 	/* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2584 	 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2585 	 * will also force a bmap update ).
2586 	 */
2587 
2588 	/*
2589 	 *	3. acquire maplock for the source extent to be freed;
2590 	 */
2591 	/* for dtpage relocation, write a LOG_NOREDOPAGE record
2592 	 * for the source dtpage (logredo() will init NoRedoPage
2593 	 * filter and will also update bmap for free of the source
2594 	 * dtpage), and upadte bmap for free of the source dtpage;
2595 	 */
2596 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2597 	pxdlock = (struct pxd_lock *) & tlck->lock;
2598 	pxdlock->flag = mlckFREEPXD;
2599 	PXDaddress(&pxdlock->pxd, oxaddr);
2600 	PXDlength(&pxdlock->pxd, xlen);
2601 	pxdlock->index = 1;
2602 
2603 	/*
2604 	 *	4. update the parent router entry for relocation;
2605 	 *
2606 	 * acquire tlck for the parent entry covering the target dtpage;
2607 	 * write LOG_REDOPAGE to apply after image only;
2608 	 */
2609 	jfs_info("dtRelocate: update parent router entry.");
2610 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2611 	dtlck = (struct dt_lock *) & tlck->lock;
2612 	lv = & dtlck->lv[dtlck->index];
2613 
2614 	/* update the PXD with the new address */
2615 	stbl = DT_GETSTBL(pp);
2616 	pxd = (pxd_t *) & pp->slot[stbl[index]];
2617 	PXDaddress(pxd, nxaddr);
2618 	lv->offset = stbl[index];
2619 	lv->length = 1;
2620 	dtlck->index++;
2621 
2622 	/* unpin the parent dtpage */
2623 	DT_PUTPAGE(pmp);
2624 
2625 	return rc;
2626 }
2627 
2628 /*
2629  * NAME:	dtSearchNode()
2630  *
2631  * FUNCTION:	Search for an dtpage containing a specified address
2632  *		This function is mainly used by defragfs utility.
2633  *
2634  * NOTE:	Search result on stack, the found page is pinned at exit.
2635  *		The result page must be an internal dtpage.
2636  *		lmxaddr give the address of the left most page of the
2637  *		dtree level, in which the required dtpage resides.
2638  */
2639 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2640 			struct btstack * btstack)
2641 {
2642 	int rc = 0;
2643 	s64 bn;
2644 	struct metapage *mp;
2645 	dtpage_t *p;
2646 	int psize = 288;	/* initial in-line directory */
2647 	s8 *stbl;
2648 	int i;
2649 	pxd_t *pxd;
2650 	struct btframe *btsp;
2651 
2652 	BT_CLR(btstack);	/* reset stack */
2653 
2654 	/*
2655 	 *	descend tree to the level with specified leftmost page
2656 	 *
2657 	 *  by convention, root bn = 0.
2658 	 */
2659 	for (bn = 0;;) {
2660 		/* get/pin the page to search */
2661 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
2662 		if (rc)
2663 			return rc;
2664 
2665 		/* does the xaddr of leftmost page of the levevl
2666 		 * matches levevl search key ?
2667 		 */
2668 		if (p->header.flag & BT_ROOT) {
2669 			if (lmxaddr == 0)
2670 				break;
2671 		} else if (addressPXD(&p->header.self) == lmxaddr)
2672 			break;
2673 
2674 		/*
2675 		 * descend down to leftmost child page
2676 		 */
2677 		if (p->header.flag & BT_LEAF) {
2678 			DT_PUTPAGE(mp);
2679 			return -ESTALE;
2680 		}
2681 
2682 		/* get the leftmost entry */
2683 		stbl = DT_GETSTBL(p);
2684 		pxd = (pxd_t *) & p->slot[stbl[0]];
2685 
2686 		/* get the child page block address */
2687 		bn = addressPXD(pxd);
2688 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2689 		/* unpin the parent page */
2690 		DT_PUTPAGE(mp);
2691 	}
2692 
2693 	/*
2694 	 *	search each page at the current levevl
2695 	 */
2696       loop:
2697 	stbl = DT_GETSTBL(p);
2698 	for (i = 0; i < p->header.nextindex; i++) {
2699 		pxd = (pxd_t *) & p->slot[stbl[i]];
2700 
2701 		/* found the specified router entry */
2702 		if (addressPXD(pxd) == addressPXD(kpxd) &&
2703 		    lengthPXD(pxd) == lengthPXD(kpxd)) {
2704 			btsp = btstack->top;
2705 			btsp->bn = bn;
2706 			btsp->index = i;
2707 			btsp->mp = mp;
2708 
2709 			return 0;
2710 		}
2711 	}
2712 
2713 	/* get the right sibling page if any */
2714 	if (p->header.next)
2715 		bn = le64_to_cpu(p->header.next);
2716 	else {
2717 		DT_PUTPAGE(mp);
2718 		return -ESTALE;
2719 	}
2720 
2721 	/* unpin current page */
2722 	DT_PUTPAGE(mp);
2723 
2724 	/* get the right sibling page */
2725 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2726 	if (rc)
2727 		return rc;
2728 
2729 	goto loop;
2730 }
2731 #endif /* _NOTYET */
2732 
2733 /*
2734  *	dtRelink()
2735  *
2736  * function:
2737  *	link around a freed page.
2738  *
2739  * parameter:
2740  *	fp:	page to be freed
2741  *
2742  * return:
2743  */
2744 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2745 {
2746 	int rc;
2747 	struct metapage *mp;
2748 	s64 nextbn, prevbn;
2749 	struct tlock *tlck;
2750 	struct dt_lock *dtlck;
2751 	struct lv *lv;
2752 
2753 	nextbn = le64_to_cpu(p->header.next);
2754 	prevbn = le64_to_cpu(p->header.prev);
2755 
2756 	/* update prev pointer of the next page */
2757 	if (nextbn != 0) {
2758 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2759 		if (rc)
2760 			return rc;
2761 
2762 		BT_MARK_DIRTY(mp, ip);
2763 		/*
2764 		 * acquire a transaction lock on the next page
2765 		 *
2766 		 * action: update prev pointer;
2767 		 */
2768 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2769 		jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2770 			tlck, ip, mp);
2771 		dtlck = (struct dt_lock *) & tlck->lock;
2772 
2773 		/* linelock header */
2774 		if (dtlck->index >= dtlck->maxcnt)
2775 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2776 		lv = & dtlck->lv[dtlck->index];
2777 		lv->offset = 0;
2778 		lv->length = 1;
2779 		dtlck->index++;
2780 
2781 		p->header.prev = cpu_to_le64(prevbn);
2782 		DT_PUTPAGE(mp);
2783 	}
2784 
2785 	/* update next pointer of the previous page */
2786 	if (prevbn != 0) {
2787 		DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2788 		if (rc)
2789 			return rc;
2790 
2791 		BT_MARK_DIRTY(mp, ip);
2792 		/*
2793 		 * acquire a transaction lock on the prev page
2794 		 *
2795 		 * action: update next pointer;
2796 		 */
2797 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2798 		jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2799 			tlck, ip, mp);
2800 		dtlck = (struct dt_lock *) & tlck->lock;
2801 
2802 		/* linelock header */
2803 		if (dtlck->index >= dtlck->maxcnt)
2804 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2805 		lv = & dtlck->lv[dtlck->index];
2806 		lv->offset = 0;
2807 		lv->length = 1;
2808 		dtlck->index++;
2809 
2810 		p->header.next = cpu_to_le64(nextbn);
2811 		DT_PUTPAGE(mp);
2812 	}
2813 
2814 	return 0;
2815 }
2816 
2817 
2818 /*
2819  *	dtInitRoot()
2820  *
2821  * initialize directory root (inline in inode)
2822  */
2823 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2824 {
2825 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2826 	dtroot_t *p;
2827 	int fsi;
2828 	struct dtslot *f;
2829 	struct tlock *tlck;
2830 	struct dt_lock *dtlck;
2831 	struct lv *lv;
2832 	u16 xflag_save;
2833 
2834 	/*
2835 	 * If this was previously an non-empty directory, we need to remove
2836 	 * the old directory table.
2837 	 */
2838 	if (DO_INDEX(ip)) {
2839 		if (!jfs_dirtable_inline(ip)) {
2840 			struct tblock *tblk = tid_to_tblock(tid);
2841 			/*
2842 			 * We're playing games with the tid's xflag.  If
2843 			 * we're removing a regular file, the file's xtree
2844 			 * is committed with COMMIT_PMAP, but we always
2845 			 * commit the directories xtree with COMMIT_PWMAP.
2846 			 */
2847 			xflag_save = tblk->xflag;
2848 			tblk->xflag = 0;
2849 			/*
2850 			 * xtTruncate isn't guaranteed to fully truncate
2851 			 * the xtree.  The caller needs to check i_size
2852 			 * after committing the transaction to see if
2853 			 * additional truncation is needed.  The
2854 			 * COMMIT_Stale flag tells caller that we
2855 			 * initiated the truncation.
2856 			 */
2857 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2858 			set_cflag(COMMIT_Stale, ip);
2859 
2860 			tblk->xflag = xflag_save;
2861 		} else
2862 			ip->i_size = 1;
2863 
2864 		jfs_ip->next_index = 2;
2865 	} else
2866 		ip->i_size = IDATASIZE;
2867 
2868 	/*
2869 	 * acquire a transaction lock on the root
2870 	 *
2871 	 * action: directory initialization;
2872 	 */
2873 	tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2874 		      tlckDTREE | tlckENTRY | tlckBTROOT);
2875 	dtlck = (struct dt_lock *) & tlck->lock;
2876 
2877 	/* linelock root */
2878 	ASSERT(dtlck->index == 0);
2879 	lv = & dtlck->lv[0];
2880 	lv->offset = 0;
2881 	lv->length = DTROOTMAXSLOT;
2882 	dtlck->index++;
2883 
2884 	p = &jfs_ip->i_dtroot;
2885 
2886 	p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2887 
2888 	p->header.nextindex = 0;
2889 
2890 	/* init freelist */
2891 	fsi = 1;
2892 	f = &p->slot[fsi];
2893 
2894 	/* init data area of root */
2895 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2896 		f->next = fsi;
2897 	f->next = -1;
2898 
2899 	p->header.freelist = 1;
2900 	p->header.freecnt = 8;
2901 
2902 	/* init '..' entry */
2903 	p->header.idotdot = cpu_to_le32(idotdot);
2904 
2905 	return;
2906 }
2907 
2908 /*
2909  *	add_missing_indices()
2910  *
2911  * function: Fix dtree page in which one or more entries has an invalid index.
2912  *	     fsck.jfs should really fix this, but it currently does not.
2913  *	     Called from jfs_readdir when bad index is detected.
2914  */
2915 static void add_missing_indices(struct inode *inode, s64 bn)
2916 {
2917 	struct ldtentry *d;
2918 	struct dt_lock *dtlck;
2919 	int i;
2920 	uint index;
2921 	struct lv *lv;
2922 	struct metapage *mp;
2923 	dtpage_t *p;
2924 	int rc;
2925 	s8 *stbl;
2926 	tid_t tid;
2927 	struct tlock *tlck;
2928 
2929 	tid = txBegin(inode->i_sb, 0);
2930 
2931 	DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2932 
2933 	if (rc) {
2934 		printk(KERN_ERR "DT_GETPAGE failed!\n");
2935 		goto end;
2936 	}
2937 	BT_MARK_DIRTY(mp, inode);
2938 
2939 	ASSERT(p->header.flag & BT_LEAF);
2940 
2941 	tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2942 	if (BT_IS_ROOT(mp))
2943 		tlck->type |= tlckBTROOT;
2944 
2945 	dtlck = (struct dt_lock *) &tlck->lock;
2946 
2947 	stbl = DT_GETSTBL(p);
2948 	for (i = 0; i < p->header.nextindex; i++) {
2949 		d = (struct ldtentry *) &p->slot[stbl[i]];
2950 		index = le32_to_cpu(d->index);
2951 		if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2952 			d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2953 			if (dtlck->index >= dtlck->maxcnt)
2954 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2955 			lv = &dtlck->lv[dtlck->index];
2956 			lv->offset = stbl[i];
2957 			lv->length = 1;
2958 			dtlck->index++;
2959 		}
2960 	}
2961 
2962 	DT_PUTPAGE(mp);
2963 	(void) txCommit(tid, 1, &inode, 0);
2964 end:
2965 	txEnd(tid);
2966 }
2967 
2968 /*
2969  * Buffer to hold directory entry info while traversing a dtree page
2970  * before being fed to the filldir function
2971  */
2972 struct jfs_dirent {
2973 	loff_t position;
2974 	int ino;
2975 	u16 name_len;
2976 	char name[0];
2977 };
2978 
2979 /*
2980  * function to determine next variable-sized jfs_dirent in buffer
2981  */
2982 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2983 {
2984 	return (struct jfs_dirent *)
2985 		((char *)dirent +
2986 		 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2987 		   sizeof (loff_t) - 1) &
2988 		  ~(sizeof (loff_t) - 1)));
2989 }
2990 
2991 /*
2992  *	jfs_readdir()
2993  *
2994  * function: read directory entries sequentially
2995  *	from the specified entry offset
2996  *
2997  * parameter:
2998  *
2999  * return: offset = (pn, index) of start entry
3000  *	of next jfs_readdir()/dtRead()
3001  */
3002 int jfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
3003 {
3004 	struct inode *ip = filp->f_path.dentry->d_inode;
3005 	struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
3006 	int rc = 0;
3007 	loff_t dtpos;	/* legacy OS/2 style position */
3008 	struct dtoffset {
3009 		s16 pn;
3010 		s16 index;
3011 		s32 unused;
3012 	} *dtoffset = (struct dtoffset *) &dtpos;
3013 	s64 bn;
3014 	struct metapage *mp;
3015 	dtpage_t *p;
3016 	int index;
3017 	s8 *stbl;
3018 	struct btstack btstack;
3019 	int i, next;
3020 	struct ldtentry *d;
3021 	struct dtslot *t;
3022 	int d_namleft, len, outlen;
3023 	unsigned long dirent_buf;
3024 	char *name_ptr;
3025 	u32 dir_index;
3026 	int do_index = 0;
3027 	uint loop_count = 0;
3028 	struct jfs_dirent *jfs_dirent;
3029 	int jfs_dirents;
3030 	int overflow, fix_page, page_fixed = 0;
3031 	static int unique_pos = 2;	/* If we can't fix broken index */
3032 
3033 	if (filp->f_pos == DIREND)
3034 		return 0;
3035 
3036 	if (DO_INDEX(ip)) {
3037 		/*
3038 		 * persistent index is stored in directory entries.
3039 		 * Special cases:	 0 = .
3040 		 *			 1 = ..
3041 		 *			-1 = End of directory
3042 		 */
3043 		do_index = 1;
3044 
3045 		dir_index = (u32) filp->f_pos;
3046 
3047 		if (dir_index > 1) {
3048 			struct dir_table_slot dirtab_slot;
3049 
3050 			if (dtEmpty(ip) ||
3051 			    (dir_index >= JFS_IP(ip)->next_index)) {
3052 				/* Stale position.  Directory has shrunk */
3053 				filp->f_pos = DIREND;
3054 				return 0;
3055 			}
3056 		      repeat:
3057 			rc = read_index(ip, dir_index, &dirtab_slot);
3058 			if (rc) {
3059 				filp->f_pos = DIREND;
3060 				return rc;
3061 			}
3062 			if (dirtab_slot.flag == DIR_INDEX_FREE) {
3063 				if (loop_count++ > JFS_IP(ip)->next_index) {
3064 					jfs_err("jfs_readdir detected "
3065 						   "infinite loop!");
3066 					filp->f_pos = DIREND;
3067 					return 0;
3068 				}
3069 				dir_index = le32_to_cpu(dirtab_slot.addr2);
3070 				if (dir_index == -1) {
3071 					filp->f_pos = DIREND;
3072 					return 0;
3073 				}
3074 				goto repeat;
3075 			}
3076 			bn = addressDTS(&dirtab_slot);
3077 			index = dirtab_slot.slot;
3078 			DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3079 			if (rc) {
3080 				filp->f_pos = DIREND;
3081 				return 0;
3082 			}
3083 			if (p->header.flag & BT_INTERNAL) {
3084 				jfs_err("jfs_readdir: bad index table");
3085 				DT_PUTPAGE(mp);
3086 				filp->f_pos = -1;
3087 				return 0;
3088 			}
3089 		} else {
3090 			if (dir_index == 0) {
3091 				/*
3092 				 * self "."
3093 				 */
3094 				filp->f_pos = 0;
3095 				if (filldir(dirent, ".", 1, 0, ip->i_ino,
3096 					    DT_DIR))
3097 					return 0;
3098 			}
3099 			/*
3100 			 * parent ".."
3101 			 */
3102 			filp->f_pos = 1;
3103 			if (filldir(dirent, "..", 2, 1, PARENT(ip), DT_DIR))
3104 				return 0;
3105 
3106 			/*
3107 			 * Find first entry of left-most leaf
3108 			 */
3109 			if (dtEmpty(ip)) {
3110 				filp->f_pos = DIREND;
3111 				return 0;
3112 			}
3113 
3114 			if ((rc = dtReadFirst(ip, &btstack)))
3115 				return rc;
3116 
3117 			DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3118 		}
3119 	} else {
3120 		/*
3121 		 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3122 		 *
3123 		 * pn = index = 0:	First entry "."
3124 		 * pn = 0; index = 1:	Second entry ".."
3125 		 * pn > 0:		Real entries, pn=1 -> leftmost page
3126 		 * pn = index = -1:	No more entries
3127 		 */
3128 		dtpos = filp->f_pos;
3129 		if (dtpos == 0) {
3130 			/* build "." entry */
3131 
3132 			if (filldir(dirent, ".", 1, filp->f_pos, ip->i_ino,
3133 				    DT_DIR))
3134 				return 0;
3135 			dtoffset->index = 1;
3136 			filp->f_pos = dtpos;
3137 		}
3138 
3139 		if (dtoffset->pn == 0) {
3140 			if (dtoffset->index == 1) {
3141 				/* build ".." entry */
3142 
3143 				if (filldir(dirent, "..", 2, filp->f_pos,
3144 					    PARENT(ip), DT_DIR))
3145 					return 0;
3146 			} else {
3147 				jfs_err("jfs_readdir called with "
3148 					"invalid offset!");
3149 			}
3150 			dtoffset->pn = 1;
3151 			dtoffset->index = 0;
3152 			filp->f_pos = dtpos;
3153 		}
3154 
3155 		if (dtEmpty(ip)) {
3156 			filp->f_pos = DIREND;
3157 			return 0;
3158 		}
3159 
3160 		if ((rc = dtReadNext(ip, &filp->f_pos, &btstack))) {
3161 			jfs_err("jfs_readdir: unexpected rc = %d "
3162 				"from dtReadNext", rc);
3163 			filp->f_pos = DIREND;
3164 			return 0;
3165 		}
3166 		/* get start leaf page and index */
3167 		DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3168 
3169 		/* offset beyond directory eof ? */
3170 		if (bn < 0) {
3171 			filp->f_pos = DIREND;
3172 			return 0;
3173 		}
3174 	}
3175 
3176 	dirent_buf = __get_free_page(GFP_KERNEL);
3177 	if (dirent_buf == 0) {
3178 		DT_PUTPAGE(mp);
3179 		jfs_warn("jfs_readdir: __get_free_page failed!");
3180 		filp->f_pos = DIREND;
3181 		return -ENOMEM;
3182 	}
3183 
3184 	while (1) {
3185 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3186 		jfs_dirents = 0;
3187 		overflow = fix_page = 0;
3188 
3189 		stbl = DT_GETSTBL(p);
3190 
3191 		for (i = index; i < p->header.nextindex; i++) {
3192 			d = (struct ldtentry *) & p->slot[stbl[i]];
3193 
3194 			if (((long) jfs_dirent + d->namlen + 1) >
3195 			    (dirent_buf + PAGE_SIZE)) {
3196 				/* DBCS codepages could overrun dirent_buf */
3197 				index = i;
3198 				overflow = 1;
3199 				break;
3200 			}
3201 
3202 			d_namleft = d->namlen;
3203 			name_ptr = jfs_dirent->name;
3204 			jfs_dirent->ino = le32_to_cpu(d->inumber);
3205 
3206 			if (do_index) {
3207 				len = min(d_namleft, DTLHDRDATALEN);
3208 				jfs_dirent->position = le32_to_cpu(d->index);
3209 				/*
3210 				 * d->index should always be valid, but it
3211 				 * isn't.  fsck.jfs doesn't create the
3212 				 * directory index for the lost+found
3213 				 * directory.  Rather than let it go,
3214 				 * we can try to fix it.
3215 				 */
3216 				if ((jfs_dirent->position < 2) ||
3217 				    (jfs_dirent->position >=
3218 				     JFS_IP(ip)->next_index)) {
3219 					if (!page_fixed && !isReadOnly(ip)) {
3220 						fix_page = 1;
3221 						/*
3222 						 * setting overflow and setting
3223 						 * index to i will cause the
3224 						 * same page to be processed
3225 						 * again starting here
3226 						 */
3227 						overflow = 1;
3228 						index = i;
3229 						break;
3230 					}
3231 					jfs_dirent->position = unique_pos++;
3232 				}
3233 			} else {
3234 				jfs_dirent->position = dtpos;
3235 				len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3236 			}
3237 
3238 			/* copy the name of head/only segment */
3239 			outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3240 						   codepage);
3241 			jfs_dirent->name_len = outlen;
3242 
3243 			/* copy name in the additional segment(s) */
3244 			next = d->next;
3245 			while (next >= 0) {
3246 				t = (struct dtslot *) & p->slot[next];
3247 				name_ptr += outlen;
3248 				d_namleft -= len;
3249 				/* Sanity Check */
3250 				if (d_namleft == 0) {
3251 					jfs_error(ip->i_sb,
3252 						  "JFS:Dtree error: ino = "
3253 						  "%ld, bn=%Ld, index = %d",
3254 						  (long)ip->i_ino,
3255 						  (long long)bn,
3256 						  i);
3257 					goto skip_one;
3258 				}
3259 				len = min(d_namleft, DTSLOTDATALEN);
3260 				outlen = jfs_strfromUCS_le(name_ptr, t->name,
3261 							   len, codepage);
3262 				jfs_dirent->name_len += outlen;
3263 
3264 				next = t->next;
3265 			}
3266 
3267 			jfs_dirents++;
3268 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3269 skip_one:
3270 			if (!do_index)
3271 				dtoffset->index++;
3272 		}
3273 
3274 		if (!overflow) {
3275 			/* Point to next leaf page */
3276 			if (p->header.flag & BT_ROOT)
3277 				bn = 0;
3278 			else {
3279 				bn = le64_to_cpu(p->header.next);
3280 				index = 0;
3281 				/* update offset (pn:index) for new page */
3282 				if (!do_index) {
3283 					dtoffset->pn++;
3284 					dtoffset->index = 0;
3285 				}
3286 			}
3287 			page_fixed = 0;
3288 		}
3289 
3290 		/* unpin previous leaf page */
3291 		DT_PUTPAGE(mp);
3292 
3293 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3294 		while (jfs_dirents--) {
3295 			filp->f_pos = jfs_dirent->position;
3296 			if (filldir(dirent, jfs_dirent->name,
3297 				    jfs_dirent->name_len, filp->f_pos,
3298 				    jfs_dirent->ino, DT_UNKNOWN))
3299 				goto out;
3300 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3301 		}
3302 
3303 		if (fix_page) {
3304 			add_missing_indices(ip, bn);
3305 			page_fixed = 1;
3306 		}
3307 
3308 		if (!overflow && (bn == 0)) {
3309 			filp->f_pos = DIREND;
3310 			break;
3311 		}
3312 
3313 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3314 		if (rc) {
3315 			free_page(dirent_buf);
3316 			return rc;
3317 		}
3318 	}
3319 
3320       out:
3321 	free_page(dirent_buf);
3322 
3323 	return rc;
3324 }
3325 
3326 
3327 /*
3328  *	dtReadFirst()
3329  *
3330  * function: get the leftmost page of the directory
3331  */
3332 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3333 {
3334 	int rc = 0;
3335 	s64 bn;
3336 	int psize = 288;	/* initial in-line directory */
3337 	struct metapage *mp;
3338 	dtpage_t *p;
3339 	s8 *stbl;
3340 	struct btframe *btsp;
3341 	pxd_t *xd;
3342 
3343 	BT_CLR(btstack);	/* reset stack */
3344 
3345 	/*
3346 	 *	descend leftmost path of the tree
3347 	 *
3348 	 * by convention, root bn = 0.
3349 	 */
3350 	for (bn = 0;;) {
3351 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
3352 		if (rc)
3353 			return rc;
3354 
3355 		/*
3356 		 * leftmost leaf page
3357 		 */
3358 		if (p->header.flag & BT_LEAF) {
3359 			/* return leftmost entry */
3360 			btsp = btstack->top;
3361 			btsp->bn = bn;
3362 			btsp->index = 0;
3363 			btsp->mp = mp;
3364 
3365 			return 0;
3366 		}
3367 
3368 		/*
3369 		 * descend down to leftmost child page
3370 		 */
3371 		if (BT_STACK_FULL(btstack)) {
3372 			DT_PUTPAGE(mp);
3373 			jfs_error(ip->i_sb, "dtReadFirst: btstack overrun");
3374 			BT_STACK_DUMP(btstack);
3375 			return -EIO;
3376 		}
3377 		/* push (bn, index) of the parent page/entry */
3378 		BT_PUSH(btstack, bn, 0);
3379 
3380 		/* get the leftmost entry */
3381 		stbl = DT_GETSTBL(p);
3382 		xd = (pxd_t *) & p->slot[stbl[0]];
3383 
3384 		/* get the child page block address */
3385 		bn = addressPXD(xd);
3386 		psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3387 
3388 		/* unpin the parent page */
3389 		DT_PUTPAGE(mp);
3390 	}
3391 }
3392 
3393 
3394 /*
3395  *	dtReadNext()
3396  *
3397  * function: get the page of the specified offset (pn:index)
3398  *
3399  * return: if (offset > eof), bn = -1;
3400  *
3401  * note: if index > nextindex of the target leaf page,
3402  * start with 1st entry of next leaf page;
3403  */
3404 static int dtReadNext(struct inode *ip, loff_t * offset,
3405 		      struct btstack * btstack)
3406 {
3407 	int rc = 0;
3408 	struct dtoffset {
3409 		s16 pn;
3410 		s16 index;
3411 		s32 unused;
3412 	} *dtoffset = (struct dtoffset *) offset;
3413 	s64 bn;
3414 	struct metapage *mp;
3415 	dtpage_t *p;
3416 	int index;
3417 	int pn;
3418 	s8 *stbl;
3419 	struct btframe *btsp, *parent;
3420 	pxd_t *xd;
3421 
3422 	/*
3423 	 * get leftmost leaf page pinned
3424 	 */
3425 	if ((rc = dtReadFirst(ip, btstack)))
3426 		return rc;
3427 
3428 	/* get leaf page */
3429 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3430 
3431 	/* get the start offset (pn:index) */
3432 	pn = dtoffset->pn - 1;	/* Now pn = 0 represents leftmost leaf */
3433 	index = dtoffset->index;
3434 
3435 	/* start at leftmost page ? */
3436 	if (pn == 0) {
3437 		/* offset beyond eof ? */
3438 		if (index < p->header.nextindex)
3439 			goto out;
3440 
3441 		if (p->header.flag & BT_ROOT) {
3442 			bn = -1;
3443 			goto out;
3444 		}
3445 
3446 		/* start with 1st entry of next leaf page */
3447 		dtoffset->pn++;
3448 		dtoffset->index = index = 0;
3449 		goto a;
3450 	}
3451 
3452 	/* start at non-leftmost page: scan parent pages for large pn */
3453 	if (p->header.flag & BT_ROOT) {
3454 		bn = -1;
3455 		goto out;
3456 	}
3457 
3458 	/* start after next leaf page ? */
3459 	if (pn > 1)
3460 		goto b;
3461 
3462 	/* get leaf page pn = 1 */
3463       a:
3464 	bn = le64_to_cpu(p->header.next);
3465 
3466 	/* unpin leaf page */
3467 	DT_PUTPAGE(mp);
3468 
3469 	/* offset beyond eof ? */
3470 	if (bn == 0) {
3471 		bn = -1;
3472 		goto out;
3473 	}
3474 
3475 	goto c;
3476 
3477 	/*
3478 	 * scan last internal page level to get target leaf page
3479 	 */
3480       b:
3481 	/* unpin leftmost leaf page */
3482 	DT_PUTPAGE(mp);
3483 
3484 	/* get left most parent page */
3485 	btsp = btstack->top;
3486 	parent = btsp - 1;
3487 	bn = parent->bn;
3488 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3489 	if (rc)
3490 		return rc;
3491 
3492 	/* scan parent pages at last internal page level */
3493 	while (pn >= p->header.nextindex) {
3494 		pn -= p->header.nextindex;
3495 
3496 		/* get next parent page address */
3497 		bn = le64_to_cpu(p->header.next);
3498 
3499 		/* unpin current parent page */
3500 		DT_PUTPAGE(mp);
3501 
3502 		/* offset beyond eof ? */
3503 		if (bn == 0) {
3504 			bn = -1;
3505 			goto out;
3506 		}
3507 
3508 		/* get next parent page */
3509 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3510 		if (rc)
3511 			return rc;
3512 
3513 		/* update parent page stack frame */
3514 		parent->bn = bn;
3515 	}
3516 
3517 	/* get leaf page address */
3518 	stbl = DT_GETSTBL(p);
3519 	xd = (pxd_t *) & p->slot[stbl[pn]];
3520 	bn = addressPXD(xd);
3521 
3522 	/* unpin parent page */
3523 	DT_PUTPAGE(mp);
3524 
3525 	/*
3526 	 * get target leaf page
3527 	 */
3528       c:
3529 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3530 	if (rc)
3531 		return rc;
3532 
3533 	/*
3534 	 * leaf page has been completed:
3535 	 * start with 1st entry of next leaf page
3536 	 */
3537 	if (index >= p->header.nextindex) {
3538 		bn = le64_to_cpu(p->header.next);
3539 
3540 		/* unpin leaf page */
3541 		DT_PUTPAGE(mp);
3542 
3543 		/* offset beyond eof ? */
3544 		if (bn == 0) {
3545 			bn = -1;
3546 			goto out;
3547 		}
3548 
3549 		/* get next leaf page */
3550 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3551 		if (rc)
3552 			return rc;
3553 
3554 		/* start with 1st entry of next leaf page */
3555 		dtoffset->pn++;
3556 		dtoffset->index = 0;
3557 	}
3558 
3559       out:
3560 	/* return target leaf page pinned */
3561 	btsp = btstack->top;
3562 	btsp->bn = bn;
3563 	btsp->index = dtoffset->index;
3564 	btsp->mp = mp;
3565 
3566 	return 0;
3567 }
3568 
3569 
3570 /*
3571  *	dtCompare()
3572  *
3573  * function: compare search key with an internal entry
3574  *
3575  * return:
3576  *	< 0 if k is < record
3577  *	= 0 if k is = record
3578  *	> 0 if k is > record
3579  */
3580 static int dtCompare(struct component_name * key,	/* search key */
3581 		     dtpage_t * p,	/* directory page */
3582 		     int si)
3583 {				/* entry slot index */
3584 	wchar_t *kname;
3585 	__le16 *name;
3586 	int klen, namlen, len, rc;
3587 	struct idtentry *ih;
3588 	struct dtslot *t;
3589 
3590 	/*
3591 	 * force the left-most key on internal pages, at any level of
3592 	 * the tree, to be less than any search key.
3593 	 * this obviates having to update the leftmost key on an internal
3594 	 * page when the user inserts a new key in the tree smaller than
3595 	 * anything that has been stored.
3596 	 *
3597 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3598 	 * at any internal page at any level of the tree,
3599 	 * it descends to child of the entry anyway -
3600 	 * ? make the entry as min size dummy entry)
3601 	 *
3602 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3603 	 * return (1);
3604 	 */
3605 
3606 	kname = key->name;
3607 	klen = key->namlen;
3608 
3609 	ih = (struct idtentry *) & p->slot[si];
3610 	si = ih->next;
3611 	name = ih->name;
3612 	namlen = ih->namlen;
3613 	len = min(namlen, DTIHDRDATALEN);
3614 
3615 	/* compare with head/only segment */
3616 	len = min(klen, len);
3617 	if ((rc = UniStrncmp_le(kname, name, len)))
3618 		return rc;
3619 
3620 	klen -= len;
3621 	namlen -= len;
3622 
3623 	/* compare with additional segment(s) */
3624 	kname += len;
3625 	while (klen > 0 && namlen > 0) {
3626 		/* compare with next name segment */
3627 		t = (struct dtslot *) & p->slot[si];
3628 		len = min(namlen, DTSLOTDATALEN);
3629 		len = min(klen, len);
3630 		name = t->name;
3631 		if ((rc = UniStrncmp_le(kname, name, len)))
3632 			return rc;
3633 
3634 		klen -= len;
3635 		namlen -= len;
3636 		kname += len;
3637 		si = t->next;
3638 	}
3639 
3640 	return (klen - namlen);
3641 }
3642 
3643 
3644 
3645 
3646 /*
3647  *	ciCompare()
3648  *
3649  * function: compare search key with an (leaf/internal) entry
3650  *
3651  * return:
3652  *	< 0 if k is < record
3653  *	= 0 if k is = record
3654  *	> 0 if k is > record
3655  */
3656 static int ciCompare(struct component_name * key,	/* search key */
3657 		     dtpage_t * p,	/* directory page */
3658 		     int si,	/* entry slot index */
3659 		     int flag)
3660 {
3661 	wchar_t *kname, x;
3662 	__le16 *name;
3663 	int klen, namlen, len, rc;
3664 	struct ldtentry *lh;
3665 	struct idtentry *ih;
3666 	struct dtslot *t;
3667 	int i;
3668 
3669 	/*
3670 	 * force the left-most key on internal pages, at any level of
3671 	 * the tree, to be less than any search key.
3672 	 * this obviates having to update the leftmost key on an internal
3673 	 * page when the user inserts a new key in the tree smaller than
3674 	 * anything that has been stored.
3675 	 *
3676 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3677 	 * at any internal page at any level of the tree,
3678 	 * it descends to child of the entry anyway -
3679 	 * ? make the entry as min size dummy entry)
3680 	 *
3681 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3682 	 * return (1);
3683 	 */
3684 
3685 	kname = key->name;
3686 	klen = key->namlen;
3687 
3688 	/*
3689 	 * leaf page entry
3690 	 */
3691 	if (p->header.flag & BT_LEAF) {
3692 		lh = (struct ldtentry *) & p->slot[si];
3693 		si = lh->next;
3694 		name = lh->name;
3695 		namlen = lh->namlen;
3696 		if (flag & JFS_DIR_INDEX)
3697 			len = min(namlen, DTLHDRDATALEN);
3698 		else
3699 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3700 	}
3701 	/*
3702 	 * internal page entry
3703 	 */
3704 	else {
3705 		ih = (struct idtentry *) & p->slot[si];
3706 		si = ih->next;
3707 		name = ih->name;
3708 		namlen = ih->namlen;
3709 		len = min(namlen, DTIHDRDATALEN);
3710 	}
3711 
3712 	/* compare with head/only segment */
3713 	len = min(klen, len);
3714 	for (i = 0; i < len; i++, kname++, name++) {
3715 		/* only uppercase if case-insensitive support is on */
3716 		if ((flag & JFS_OS2) == JFS_OS2)
3717 			x = UniToupper(le16_to_cpu(*name));
3718 		else
3719 			x = le16_to_cpu(*name);
3720 		if ((rc = *kname - x))
3721 			return rc;
3722 	}
3723 
3724 	klen -= len;
3725 	namlen -= len;
3726 
3727 	/* compare with additional segment(s) */
3728 	while (klen > 0 && namlen > 0) {
3729 		/* compare with next name segment */
3730 		t = (struct dtslot *) & p->slot[si];
3731 		len = min(namlen, DTSLOTDATALEN);
3732 		len = min(klen, len);
3733 		name = t->name;
3734 		for (i = 0; i < len; i++, kname++, name++) {
3735 			/* only uppercase if case-insensitive support is on */
3736 			if ((flag & JFS_OS2) == JFS_OS2)
3737 				x = UniToupper(le16_to_cpu(*name));
3738 			else
3739 				x = le16_to_cpu(*name);
3740 
3741 			if ((rc = *kname - x))
3742 				return rc;
3743 		}
3744 
3745 		klen -= len;
3746 		namlen -= len;
3747 		si = t->next;
3748 	}
3749 
3750 	return (klen - namlen);
3751 }
3752 
3753 
3754 /*
3755  *	ciGetLeafPrefixKey()
3756  *
3757  * function: compute prefix of suffix compression
3758  *	     from two adjacent leaf entries
3759  *	     across page boundary
3760  *
3761  * return: non-zero on error
3762  *
3763  */
3764 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3765 			       int ri, struct component_name * key, int flag)
3766 {
3767 	int klen, namlen;
3768 	wchar_t *pl, *pr, *kname;
3769 	struct component_name lkey;
3770 	struct component_name rkey;
3771 
3772 	lkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3773 					GFP_KERNEL);
3774 	if (lkey.name == NULL)
3775 		return -ENOMEM;
3776 
3777 	rkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3778 					GFP_KERNEL);
3779 	if (rkey.name == NULL) {
3780 		kfree(lkey.name);
3781 		return -ENOMEM;
3782 	}
3783 
3784 	/* get left and right key */
3785 	dtGetKey(lp, li, &lkey, flag);
3786 	lkey.name[lkey.namlen] = 0;
3787 
3788 	if ((flag & JFS_OS2) == JFS_OS2)
3789 		ciToUpper(&lkey);
3790 
3791 	dtGetKey(rp, ri, &rkey, flag);
3792 	rkey.name[rkey.namlen] = 0;
3793 
3794 
3795 	if ((flag & JFS_OS2) == JFS_OS2)
3796 		ciToUpper(&rkey);
3797 
3798 	/* compute prefix */
3799 	klen = 0;
3800 	kname = key->name;
3801 	namlen = min(lkey.namlen, rkey.namlen);
3802 	for (pl = lkey.name, pr = rkey.name;
3803 	     namlen; pl++, pr++, namlen--, klen++, kname++) {
3804 		*kname = *pr;
3805 		if (*pl != *pr) {
3806 			key->namlen = klen + 1;
3807 			goto free_names;
3808 		}
3809 	}
3810 
3811 	/* l->namlen <= r->namlen since l <= r */
3812 	if (lkey.namlen < rkey.namlen) {
3813 		*kname = *pr;
3814 		key->namlen = klen + 1;
3815 	} else			/* l->namelen == r->namelen */
3816 		key->namlen = klen;
3817 
3818 free_names:
3819 	kfree(lkey.name);
3820 	kfree(rkey.name);
3821 	return 0;
3822 }
3823 
3824 
3825 
3826 /*
3827  *	dtGetKey()
3828  *
3829  * function: get key of the entry
3830  */
3831 static void dtGetKey(dtpage_t * p, int i,	/* entry index */
3832 		     struct component_name * key, int flag)
3833 {
3834 	int si;
3835 	s8 *stbl;
3836 	struct ldtentry *lh;
3837 	struct idtentry *ih;
3838 	struct dtslot *t;
3839 	int namlen, len;
3840 	wchar_t *kname;
3841 	__le16 *name;
3842 
3843 	/* get entry */
3844 	stbl = DT_GETSTBL(p);
3845 	si = stbl[i];
3846 	if (p->header.flag & BT_LEAF) {
3847 		lh = (struct ldtentry *) & p->slot[si];
3848 		si = lh->next;
3849 		namlen = lh->namlen;
3850 		name = lh->name;
3851 		if (flag & JFS_DIR_INDEX)
3852 			len = min(namlen, DTLHDRDATALEN);
3853 		else
3854 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3855 	} else {
3856 		ih = (struct idtentry *) & p->slot[si];
3857 		si = ih->next;
3858 		namlen = ih->namlen;
3859 		name = ih->name;
3860 		len = min(namlen, DTIHDRDATALEN);
3861 	}
3862 
3863 	key->namlen = namlen;
3864 	kname = key->name;
3865 
3866 	/*
3867 	 * move head/only segment
3868 	 */
3869 	UniStrncpy_from_le(kname, name, len);
3870 
3871 	/*
3872 	 * move additional segment(s)
3873 	 */
3874 	while (si >= 0) {
3875 		/* get next segment */
3876 		t = &p->slot[si];
3877 		kname += len;
3878 		namlen -= len;
3879 		len = min(namlen, DTSLOTDATALEN);
3880 		UniStrncpy_from_le(kname, t->name, len);
3881 
3882 		si = t->next;
3883 	}
3884 }
3885 
3886 
3887 /*
3888  *	dtInsertEntry()
3889  *
3890  * function: allocate free slot(s) and
3891  *	     write a leaf/internal entry
3892  *
3893  * return: entry slot index
3894  */
3895 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3896 			  ddata_t * data, struct dt_lock ** dtlock)
3897 {
3898 	struct dtslot *h, *t;
3899 	struct ldtentry *lh = NULL;
3900 	struct idtentry *ih = NULL;
3901 	int hsi, fsi, klen, len, nextindex;
3902 	wchar_t *kname;
3903 	__le16 *name;
3904 	s8 *stbl;
3905 	pxd_t *xd;
3906 	struct dt_lock *dtlck = *dtlock;
3907 	struct lv *lv;
3908 	int xsi, n;
3909 	s64 bn = 0;
3910 	struct metapage *mp = NULL;
3911 
3912 	klen = key->namlen;
3913 	kname = key->name;
3914 
3915 	/* allocate a free slot */
3916 	hsi = fsi = p->header.freelist;
3917 	h = &p->slot[fsi];
3918 	p->header.freelist = h->next;
3919 	--p->header.freecnt;
3920 
3921 	/* open new linelock */
3922 	if (dtlck->index >= dtlck->maxcnt)
3923 		dtlck = (struct dt_lock *) txLinelock(dtlck);
3924 
3925 	lv = & dtlck->lv[dtlck->index];
3926 	lv->offset = hsi;
3927 
3928 	/* write head/only segment */
3929 	if (p->header.flag & BT_LEAF) {
3930 		lh = (struct ldtentry *) h;
3931 		lh->next = h->next;
3932 		lh->inumber = cpu_to_le32(data->leaf.ino);
3933 		lh->namlen = klen;
3934 		name = lh->name;
3935 		if (data->leaf.ip) {
3936 			len = min(klen, DTLHDRDATALEN);
3937 			if (!(p->header.flag & BT_ROOT))
3938 				bn = addressPXD(&p->header.self);
3939 			lh->index = cpu_to_le32(add_index(data->leaf.tid,
3940 							  data->leaf.ip,
3941 							  bn, index));
3942 		} else
3943 			len = min(klen, DTLHDRDATALEN_LEGACY);
3944 	} else {
3945 		ih = (struct idtentry *) h;
3946 		ih->next = h->next;
3947 		xd = (pxd_t *) ih;
3948 		*xd = data->xd;
3949 		ih->namlen = klen;
3950 		name = ih->name;
3951 		len = min(klen, DTIHDRDATALEN);
3952 	}
3953 
3954 	UniStrncpy_to_le(name, kname, len);
3955 
3956 	n = 1;
3957 	xsi = hsi;
3958 
3959 	/* write additional segment(s) */
3960 	t = h;
3961 	klen -= len;
3962 	while (klen) {
3963 		/* get free slot */
3964 		fsi = p->header.freelist;
3965 		t = &p->slot[fsi];
3966 		p->header.freelist = t->next;
3967 		--p->header.freecnt;
3968 
3969 		/* is next slot contiguous ? */
3970 		if (fsi != xsi + 1) {
3971 			/* close current linelock */
3972 			lv->length = n;
3973 			dtlck->index++;
3974 
3975 			/* open new linelock */
3976 			if (dtlck->index < dtlck->maxcnt)
3977 				lv++;
3978 			else {
3979 				dtlck = (struct dt_lock *) txLinelock(dtlck);
3980 				lv = & dtlck->lv[0];
3981 			}
3982 
3983 			lv->offset = fsi;
3984 			n = 0;
3985 		}
3986 
3987 		kname += len;
3988 		len = min(klen, DTSLOTDATALEN);
3989 		UniStrncpy_to_le(t->name, kname, len);
3990 
3991 		n++;
3992 		xsi = fsi;
3993 		klen -= len;
3994 	}
3995 
3996 	/* close current linelock */
3997 	lv->length = n;
3998 	dtlck->index++;
3999 
4000 	*dtlock = dtlck;
4001 
4002 	/* terminate last/only segment */
4003 	if (h == t) {
4004 		/* single segment entry */
4005 		if (p->header.flag & BT_LEAF)
4006 			lh->next = -1;
4007 		else
4008 			ih->next = -1;
4009 	} else
4010 		/* multi-segment entry */
4011 		t->next = -1;
4012 
4013 	/* if insert into middle, shift right succeeding entries in stbl */
4014 	stbl = DT_GETSTBL(p);
4015 	nextindex = p->header.nextindex;
4016 	if (index < nextindex) {
4017 		memmove(stbl + index + 1, stbl + index, nextindex - index);
4018 
4019 		if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
4020 			s64 lblock;
4021 
4022 			/*
4023 			 * Need to update slot number for entries that moved
4024 			 * in the stbl
4025 			 */
4026 			mp = NULL;
4027 			for (n = index + 1; n <= nextindex; n++) {
4028 				lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4029 				modify_index(data->leaf.tid, data->leaf.ip,
4030 					     le32_to_cpu(lh->index), bn, n,
4031 					     &mp, &lblock);
4032 			}
4033 			if (mp)
4034 				release_metapage(mp);
4035 		}
4036 	}
4037 
4038 	stbl[index] = hsi;
4039 
4040 	/* advance next available entry index of stbl */
4041 	++p->header.nextindex;
4042 }
4043 
4044 
4045 /*
4046  *	dtMoveEntry()
4047  *
4048  * function: move entries from split/left page to new/right page
4049  *
4050  *	nextindex of dst page and freelist/freecnt of both pages
4051  *	are updated.
4052  */
4053 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4054 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4055 			int do_index)
4056 {
4057 	int ssi, next;		/* src slot index */
4058 	int di;			/* dst entry index */
4059 	int dsi;		/* dst slot index */
4060 	s8 *sstbl, *dstbl;	/* sorted entry table */
4061 	int snamlen, len;
4062 	struct ldtentry *slh, *dlh = NULL;
4063 	struct idtentry *sih, *dih = NULL;
4064 	struct dtslot *h, *s, *d;
4065 	struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4066 	struct lv *slv, *dlv;
4067 	int xssi, ns, nd;
4068 	int sfsi;
4069 
4070 	sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4071 	dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4072 
4073 	dsi = dp->header.freelist;	/* first (whole page) free slot */
4074 	sfsi = sp->header.freelist;
4075 
4076 	/* linelock destination entry slot */
4077 	dlv = & ddtlck->lv[ddtlck->index];
4078 	dlv->offset = dsi;
4079 
4080 	/* linelock source entry slot */
4081 	slv = & sdtlck->lv[sdtlck->index];
4082 	slv->offset = sstbl[si];
4083 	xssi = slv->offset - 1;
4084 
4085 	/*
4086 	 * move entries
4087 	 */
4088 	ns = nd = 0;
4089 	for (di = 0; si < sp->header.nextindex; si++, di++) {
4090 		ssi = sstbl[si];
4091 		dstbl[di] = dsi;
4092 
4093 		/* is next slot contiguous ? */
4094 		if (ssi != xssi + 1) {
4095 			/* close current linelock */
4096 			slv->length = ns;
4097 			sdtlck->index++;
4098 
4099 			/* open new linelock */
4100 			if (sdtlck->index < sdtlck->maxcnt)
4101 				slv++;
4102 			else {
4103 				sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4104 				slv = & sdtlck->lv[0];
4105 			}
4106 
4107 			slv->offset = ssi;
4108 			ns = 0;
4109 		}
4110 
4111 		/*
4112 		 * move head/only segment of an entry
4113 		 */
4114 		/* get dst slot */
4115 		h = d = &dp->slot[dsi];
4116 
4117 		/* get src slot and move */
4118 		s = &sp->slot[ssi];
4119 		if (sp->header.flag & BT_LEAF) {
4120 			/* get source entry */
4121 			slh = (struct ldtentry *) s;
4122 			dlh = (struct ldtentry *) h;
4123 			snamlen = slh->namlen;
4124 
4125 			if (do_index) {
4126 				len = min(snamlen, DTLHDRDATALEN);
4127 				dlh->index = slh->index; /* little-endian */
4128 			} else
4129 				len = min(snamlen, DTLHDRDATALEN_LEGACY);
4130 
4131 			memcpy(dlh, slh, 6 + len * 2);
4132 
4133 			next = slh->next;
4134 
4135 			/* update dst head/only segment next field */
4136 			dsi++;
4137 			dlh->next = dsi;
4138 		} else {
4139 			sih = (struct idtentry *) s;
4140 			snamlen = sih->namlen;
4141 
4142 			len = min(snamlen, DTIHDRDATALEN);
4143 			dih = (struct idtentry *) h;
4144 			memcpy(dih, sih, 10 + len * 2);
4145 			next = sih->next;
4146 
4147 			dsi++;
4148 			dih->next = dsi;
4149 		}
4150 
4151 		/* free src head/only segment */
4152 		s->next = sfsi;
4153 		s->cnt = 1;
4154 		sfsi = ssi;
4155 
4156 		ns++;
4157 		nd++;
4158 		xssi = ssi;
4159 
4160 		/*
4161 		 * move additional segment(s) of the entry
4162 		 */
4163 		snamlen -= len;
4164 		while ((ssi = next) >= 0) {
4165 			/* is next slot contiguous ? */
4166 			if (ssi != xssi + 1) {
4167 				/* close current linelock */
4168 				slv->length = ns;
4169 				sdtlck->index++;
4170 
4171 				/* open new linelock */
4172 				if (sdtlck->index < sdtlck->maxcnt)
4173 					slv++;
4174 				else {
4175 					sdtlck =
4176 					    (struct dt_lock *)
4177 					    txLinelock(sdtlck);
4178 					slv = & sdtlck->lv[0];
4179 				}
4180 
4181 				slv->offset = ssi;
4182 				ns = 0;
4183 			}
4184 
4185 			/* get next source segment */
4186 			s = &sp->slot[ssi];
4187 
4188 			/* get next destination free slot */
4189 			d++;
4190 
4191 			len = min(snamlen, DTSLOTDATALEN);
4192 			UniStrncpy_le(d->name, s->name, len);
4193 
4194 			ns++;
4195 			nd++;
4196 			xssi = ssi;
4197 
4198 			dsi++;
4199 			d->next = dsi;
4200 
4201 			/* free source segment */
4202 			next = s->next;
4203 			s->next = sfsi;
4204 			s->cnt = 1;
4205 			sfsi = ssi;
4206 
4207 			snamlen -= len;
4208 		}		/* end while */
4209 
4210 		/* terminate dst last/only segment */
4211 		if (h == d) {
4212 			/* single segment entry */
4213 			if (dp->header.flag & BT_LEAF)
4214 				dlh->next = -1;
4215 			else
4216 				dih->next = -1;
4217 		} else
4218 			/* multi-segment entry */
4219 			d->next = -1;
4220 	}			/* end for */
4221 
4222 	/* close current linelock */
4223 	slv->length = ns;
4224 	sdtlck->index++;
4225 	*sdtlock = sdtlck;
4226 
4227 	dlv->length = nd;
4228 	ddtlck->index++;
4229 	*ddtlock = ddtlck;
4230 
4231 	/* update source header */
4232 	sp->header.freelist = sfsi;
4233 	sp->header.freecnt += nd;
4234 
4235 	/* update destination header */
4236 	dp->header.nextindex = di;
4237 
4238 	dp->header.freelist = dsi;
4239 	dp->header.freecnt -= nd;
4240 }
4241 
4242 
4243 /*
4244  *	dtDeleteEntry()
4245  *
4246  * function: free a (leaf/internal) entry
4247  *
4248  * log freelist header, stbl, and each segment slot of entry
4249  * (even though last/only segment next field is modified,
4250  * physical image logging requires all segment slots of
4251  * the entry logged to avoid applying previous updates
4252  * to the same slots)
4253  */
4254 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4255 {
4256 	int fsi;		/* free entry slot index */
4257 	s8 *stbl;
4258 	struct dtslot *t;
4259 	int si, freecnt;
4260 	struct dt_lock *dtlck = *dtlock;
4261 	struct lv *lv;
4262 	int xsi, n;
4263 
4264 	/* get free entry slot index */
4265 	stbl = DT_GETSTBL(p);
4266 	fsi = stbl[fi];
4267 
4268 	/* open new linelock */
4269 	if (dtlck->index >= dtlck->maxcnt)
4270 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4271 	lv = & dtlck->lv[dtlck->index];
4272 
4273 	lv->offset = fsi;
4274 
4275 	/* get the head/only segment */
4276 	t = &p->slot[fsi];
4277 	if (p->header.flag & BT_LEAF)
4278 		si = ((struct ldtentry *) t)->next;
4279 	else
4280 		si = ((struct idtentry *) t)->next;
4281 	t->next = si;
4282 	t->cnt = 1;
4283 
4284 	n = freecnt = 1;
4285 	xsi = fsi;
4286 
4287 	/* find the last/only segment */
4288 	while (si >= 0) {
4289 		/* is next slot contiguous ? */
4290 		if (si != xsi + 1) {
4291 			/* close current linelock */
4292 			lv->length = n;
4293 			dtlck->index++;
4294 
4295 			/* open new linelock */
4296 			if (dtlck->index < dtlck->maxcnt)
4297 				lv++;
4298 			else {
4299 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4300 				lv = & dtlck->lv[0];
4301 			}
4302 
4303 			lv->offset = si;
4304 			n = 0;
4305 		}
4306 
4307 		n++;
4308 		xsi = si;
4309 		freecnt++;
4310 
4311 		t = &p->slot[si];
4312 		t->cnt = 1;
4313 		si = t->next;
4314 	}
4315 
4316 	/* close current linelock */
4317 	lv->length = n;
4318 	dtlck->index++;
4319 
4320 	*dtlock = dtlck;
4321 
4322 	/* update freelist */
4323 	t->next = p->header.freelist;
4324 	p->header.freelist = fsi;
4325 	p->header.freecnt += freecnt;
4326 
4327 	/* if delete from middle,
4328 	 * shift left the succedding entries in the stbl
4329 	 */
4330 	si = p->header.nextindex;
4331 	if (fi < si - 1)
4332 		memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4333 
4334 	p->header.nextindex--;
4335 }
4336 
4337 
4338 /*
4339  *	dtTruncateEntry()
4340  *
4341  * function: truncate a (leaf/internal) entry
4342  *
4343  * log freelist header, stbl, and each segment slot of entry
4344  * (even though last/only segment next field is modified,
4345  * physical image logging requires all segment slots of
4346  * the entry logged to avoid applying previous updates
4347  * to the same slots)
4348  */
4349 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4350 {
4351 	int tsi;		/* truncate entry slot index */
4352 	s8 *stbl;
4353 	struct dtslot *t;
4354 	int si, freecnt;
4355 	struct dt_lock *dtlck = *dtlock;
4356 	struct lv *lv;
4357 	int fsi, xsi, n;
4358 
4359 	/* get free entry slot index */
4360 	stbl = DT_GETSTBL(p);
4361 	tsi = stbl[ti];
4362 
4363 	/* open new linelock */
4364 	if (dtlck->index >= dtlck->maxcnt)
4365 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4366 	lv = & dtlck->lv[dtlck->index];
4367 
4368 	lv->offset = tsi;
4369 
4370 	/* get the head/only segment */
4371 	t = &p->slot[tsi];
4372 	ASSERT(p->header.flag & BT_INTERNAL);
4373 	((struct idtentry *) t)->namlen = 0;
4374 	si = ((struct idtentry *) t)->next;
4375 	((struct idtentry *) t)->next = -1;
4376 
4377 	n = 1;
4378 	freecnt = 0;
4379 	fsi = si;
4380 	xsi = tsi;
4381 
4382 	/* find the last/only segment */
4383 	while (si >= 0) {
4384 		/* is next slot contiguous ? */
4385 		if (si != xsi + 1) {
4386 			/* close current linelock */
4387 			lv->length = n;
4388 			dtlck->index++;
4389 
4390 			/* open new linelock */
4391 			if (dtlck->index < dtlck->maxcnt)
4392 				lv++;
4393 			else {
4394 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4395 				lv = & dtlck->lv[0];
4396 			}
4397 
4398 			lv->offset = si;
4399 			n = 0;
4400 		}
4401 
4402 		n++;
4403 		xsi = si;
4404 		freecnt++;
4405 
4406 		t = &p->slot[si];
4407 		t->cnt = 1;
4408 		si = t->next;
4409 	}
4410 
4411 	/* close current linelock */
4412 	lv->length = n;
4413 	dtlck->index++;
4414 
4415 	*dtlock = dtlck;
4416 
4417 	/* update freelist */
4418 	if (freecnt == 0)
4419 		return;
4420 	t->next = p->header.freelist;
4421 	p->header.freelist = fsi;
4422 	p->header.freecnt += freecnt;
4423 }
4424 
4425 
4426 /*
4427  *	dtLinelockFreelist()
4428  */
4429 static void dtLinelockFreelist(dtpage_t * p,	/* directory page */
4430 			       int m,	/* max slot index */
4431 			       struct dt_lock ** dtlock)
4432 {
4433 	int fsi;		/* free entry slot index */
4434 	struct dtslot *t;
4435 	int si;
4436 	struct dt_lock *dtlck = *dtlock;
4437 	struct lv *lv;
4438 	int xsi, n;
4439 
4440 	/* get free entry slot index */
4441 	fsi = p->header.freelist;
4442 
4443 	/* open new linelock */
4444 	if (dtlck->index >= dtlck->maxcnt)
4445 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4446 	lv = & dtlck->lv[dtlck->index];
4447 
4448 	lv->offset = fsi;
4449 
4450 	n = 1;
4451 	xsi = fsi;
4452 
4453 	t = &p->slot[fsi];
4454 	si = t->next;
4455 
4456 	/* find the last/only segment */
4457 	while (si < m && si >= 0) {
4458 		/* is next slot contiguous ? */
4459 		if (si != xsi + 1) {
4460 			/* close current linelock */
4461 			lv->length = n;
4462 			dtlck->index++;
4463 
4464 			/* open new linelock */
4465 			if (dtlck->index < dtlck->maxcnt)
4466 				lv++;
4467 			else {
4468 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4469 				lv = & dtlck->lv[0];
4470 			}
4471 
4472 			lv->offset = si;
4473 			n = 0;
4474 		}
4475 
4476 		n++;
4477 		xsi = si;
4478 
4479 		t = &p->slot[si];
4480 		si = t->next;
4481 	}
4482 
4483 	/* close current linelock */
4484 	lv->length = n;
4485 	dtlck->index++;
4486 
4487 	*dtlock = dtlck;
4488 }
4489 
4490 
4491 /*
4492  * NAME: dtModify
4493  *
4494  * FUNCTION: Modify the inode number part of a directory entry
4495  *
4496  * PARAMETERS:
4497  *	tid	- Transaction id
4498  *	ip	- Inode of parent directory
4499  *	key	- Name of entry to be modified
4500  *	orig_ino	- Original inode number expected in entry
4501  *	new_ino	- New inode number to put into entry
4502  *	flag	- JFS_RENAME
4503  *
4504  * RETURNS:
4505  *	-ESTALE	- If entry found does not match orig_ino passed in
4506  *	-ENOENT	- If no entry can be found to match key
4507  *	0	- If successfully modified entry
4508  */
4509 int dtModify(tid_t tid, struct inode *ip,
4510 	 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4511 {
4512 	int rc;
4513 	s64 bn;
4514 	struct metapage *mp;
4515 	dtpage_t *p;
4516 	int index;
4517 	struct btstack btstack;
4518 	struct tlock *tlck;
4519 	struct dt_lock *dtlck;
4520 	struct lv *lv;
4521 	s8 *stbl;
4522 	int entry_si;		/* entry slot index */
4523 	struct ldtentry *entry;
4524 
4525 	/*
4526 	 *	search for the entry to modify:
4527 	 *
4528 	 * dtSearch() returns (leaf page pinned, index at which to modify).
4529 	 */
4530 	if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4531 		return rc;
4532 
4533 	/* retrieve search result */
4534 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4535 
4536 	BT_MARK_DIRTY(mp, ip);
4537 	/*
4538 	 * acquire a transaction lock on the leaf page of named entry
4539 	 */
4540 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4541 	dtlck = (struct dt_lock *) & tlck->lock;
4542 
4543 	/* get slot index of the entry */
4544 	stbl = DT_GETSTBL(p);
4545 	entry_si = stbl[index];
4546 
4547 	/* linelock entry */
4548 	ASSERT(dtlck->index == 0);
4549 	lv = & dtlck->lv[0];
4550 	lv->offset = entry_si;
4551 	lv->length = 1;
4552 	dtlck->index++;
4553 
4554 	/* get the head/only segment */
4555 	entry = (struct ldtentry *) & p->slot[entry_si];
4556 
4557 	/* substitute the inode number of the entry */
4558 	entry->inumber = cpu_to_le32(new_ino);
4559 
4560 	/* unpin the leaf page */
4561 	DT_PUTPAGE(mp);
4562 
4563 	return 0;
4564 }
4565