xref: /openbmc/linux/fs/jfs/jfs_dtree.c (revision 87c2ce3b)
1 /*
2  *   Copyright (C) International Business Machines Corp., 2000-2004
3  *
4  *   This program is free software;  you can redistribute it and/or modify
5  *   it under the terms of the GNU General Public License as published by
6  *   the Free Software Foundation; either version 2 of the License, or
7  *   (at your option) any later version.
8  *
9  *   This program is distributed in the hope that it will be useful,
10  *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
12  *   the GNU General Public License for more details.
13  *
14  *   You should have received a copy of the GNU General Public License
15  *   along with this program;  if not, write to the Free Software
16  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18 
19 /*
20  *	jfs_dtree.c: directory B+-tree manager
21  *
22  * B+-tree with variable length key directory:
23  *
24  * each directory page is structured as an array of 32-byte
25  * directory entry slots initialized as a freelist
26  * to avoid search/compaction of free space at insertion.
27  * when an entry is inserted, a number of slots are allocated
28  * from the freelist as required to store variable length data
29  * of the entry; when the entry is deleted, slots of the entry
30  * are returned to freelist.
31  *
32  * leaf entry stores full name as key and file serial number
33  * (aka inode number) as data.
34  * internal/router entry stores sufffix compressed name
35  * as key and simple extent descriptor as data.
36  *
37  * each directory page maintains a sorted entry index table
38  * which stores the start slot index of sorted entries
39  * to allow binary search on the table.
40  *
41  * directory starts as a root/leaf page in on-disk inode
42  * inline data area.
43  * when it becomes full, it starts a leaf of a external extent
44  * of length of 1 block. each time the first leaf becomes full,
45  * it is extended rather than split (its size is doubled),
46  * until its length becoms 4 KBytes, from then the extent is split
47  * with new 4 Kbyte extent when it becomes full
48  * to reduce external fragmentation of small directories.
49  *
50  * blah, blah, blah, for linear scan of directory in pieces by
51  * readdir().
52  *
53  *
54  *	case-insensitive directory file system
55  *
56  * names are stored in case-sensitive way in leaf entry.
57  * but stored, searched and compared in case-insensitive (uppercase) order
58  * (i.e., both search key and entry key are folded for search/compare):
59  * (note that case-sensitive order is BROKEN in storage, e.g.,
60  *  sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
61  *
62  *  entries which folds to the same key makes up a equivalent class
63  *  whose members are stored as contiguous cluster (may cross page boundary)
64  *  but whose order is arbitrary and acts as duplicate, e.g.,
65  *  abc, Abc, aBc, abC)
66  *
67  * once match is found at leaf, requires scan forward/backward
68  * either for, in case-insensitive search, duplicate
69  * or for, in case-sensitive search, for exact match
70  *
71  * router entry must be created/stored in case-insensitive way
72  * in internal entry:
73  * (right most key of left page and left most key of right page
74  * are folded, and its suffix compression is propagated as router
75  * key in parent)
76  * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77  * should be made the router key for the split)
78  *
79  * case-insensitive search:
80  *
81  * 	fold search key;
82  *
83  *	case-insensitive search of B-tree:
84  *	for internal entry, router key is already folded;
85  *	for leaf entry, fold the entry key before comparison.
86  *
87  *	if (leaf entry case-insensitive match found)
88  *		if (next entry satisfies case-insensitive match)
89  *			return EDUPLICATE;
90  *		if (prev entry satisfies case-insensitive match)
91  *			return EDUPLICATE;
92  *		return match;
93  *	else
94  *		return no match;
95  *
96  * 	serialization:
97  * target directory inode lock is being held on entry/exit
98  * of all main directory service routines.
99  *
100  *	log based recovery:
101  */
102 
103 #include <linux/fs.h>
104 #include <linux/quotaops.h>
105 #include "jfs_incore.h"
106 #include "jfs_superblock.h"
107 #include "jfs_filsys.h"
108 #include "jfs_metapage.h"
109 #include "jfs_dmap.h"
110 #include "jfs_unicode.h"
111 #include "jfs_debug.h"
112 
113 /* dtree split parameter */
114 struct dtsplit {
115 	struct metapage *mp;
116 	s16 index;
117 	s16 nslot;
118 	struct component_name *key;
119 	ddata_t *data;
120 	struct pxdlist *pxdlist;
121 };
122 
123 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
124 
125 /* get page buffer for specified block address */
126 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\
127 {\
128 	BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\
129 	if (!(RC))\
130 	{\
131 		if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\
132 		    ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\
133 		{\
134 			BT_PUTPAGE(MP);\
135 			jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\
136 			MP = NULL;\
137 			RC = -EIO;\
138 		}\
139 	}\
140 }
141 
142 /* for consistency */
143 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
144 
145 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
146 	BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
147 
148 /*
149  * forward references
150  */
151 static int dtSplitUp(tid_t tid, struct inode *ip,
152 		     struct dtsplit * split, struct btstack * btstack);
153 
154 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
155 		       struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
156 
157 static int dtExtendPage(tid_t tid, struct inode *ip,
158 			struct dtsplit * split, struct btstack * btstack);
159 
160 static int dtSplitRoot(tid_t tid, struct inode *ip,
161 		       struct dtsplit * split, struct metapage ** rmpp);
162 
163 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
164 		      dtpage_t * fp, struct btstack * btstack);
165 
166 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
167 
168 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
169 
170 static int dtReadNext(struct inode *ip,
171 		      loff_t * offset, struct btstack * btstack);
172 
173 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
174 
175 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
176 		     int flag);
177 
178 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
179 		     int flag);
180 
181 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
182 			      int ri, struct component_name * key, int flag);
183 
184 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
185 			  ddata_t * data, struct dt_lock **);
186 
187 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
188 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
189 			int do_index);
190 
191 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
192 
193 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
194 
195 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
196 
197 #define ciToUpper(c)	UniStrupr((c)->name)
198 
199 /*
200  *	read_index_page()
201  *
202  *	Reads a page of a directory's index table.
203  *	Having metadata mapped into the directory inode's address space
204  *	presents a multitude of problems.  We avoid this by mapping to
205  *	the absolute address space outside of the *_metapage routines
206  */
207 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
208 {
209 	int rc;
210 	s64 xaddr;
211 	int xflag;
212 	s32 xlen;
213 
214 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
215 	if (rc || (xaddr == 0))
216 		return NULL;
217 
218 	return read_metapage(inode, xaddr, PSIZE, 1);
219 }
220 
221 /*
222  *	get_index_page()
223  *
224  *	Same as get_index_page(), but get's a new page without reading
225  */
226 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
227 {
228 	int rc;
229 	s64 xaddr;
230 	int xflag;
231 	s32 xlen;
232 
233 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
234 	if (rc || (xaddr == 0))
235 		return NULL;
236 
237 	return get_metapage(inode, xaddr, PSIZE, 1);
238 }
239 
240 /*
241  *	find_index()
242  *
243  *	Returns dtree page containing directory table entry for specified
244  *	index and pointer to its entry.
245  *
246  *	mp must be released by caller.
247  */
248 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
249 					 struct metapage ** mp, s64 *lblock)
250 {
251 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
252 	s64 blkno;
253 	s64 offset;
254 	int page_offset;
255 	struct dir_table_slot *slot;
256 	static int maxWarnings = 10;
257 
258 	if (index < 2) {
259 		if (maxWarnings) {
260 			jfs_warn("find_entry called with index = %d", index);
261 			maxWarnings--;
262 		}
263 		return NULL;
264 	}
265 
266 	if (index >= jfs_ip->next_index) {
267 		jfs_warn("find_entry called with index >= next_index");
268 		return NULL;
269 	}
270 
271 	if (jfs_dirtable_inline(ip)) {
272 		/*
273 		 * Inline directory table
274 		 */
275 		*mp = NULL;
276 		slot = &jfs_ip->i_dirtable[index - 2];
277 	} else {
278 		offset = (index - 2) * sizeof(struct dir_table_slot);
279 		page_offset = offset & (PSIZE - 1);
280 		blkno = ((offset + 1) >> L2PSIZE) <<
281 		    JFS_SBI(ip->i_sb)->l2nbperpage;
282 
283 		if (*mp && (*lblock != blkno)) {
284 			release_metapage(*mp);
285 			*mp = NULL;
286 		}
287 		if (*mp == 0) {
288 			*lblock = blkno;
289 			*mp = read_index_page(ip, blkno);
290 		}
291 		if (*mp == 0) {
292 			jfs_err("free_index: error reading directory table");
293 			return NULL;
294 		}
295 
296 		slot =
297 		    (struct dir_table_slot *) ((char *) (*mp)->data +
298 					       page_offset);
299 	}
300 	return slot;
301 }
302 
303 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
304 			      u32 index)
305 {
306 	struct tlock *tlck;
307 	struct linelock *llck;
308 	struct lv *lv;
309 
310 	tlck = txLock(tid, ip, mp, tlckDATA);
311 	llck = (struct linelock *) tlck->lock;
312 
313 	if (llck->index >= llck->maxcnt)
314 		llck = txLinelock(llck);
315 	lv = &llck->lv[llck->index];
316 
317 	/*
318 	 *      Linelock slot size is twice the size of directory table
319 	 *      slot size.  512 entries per page.
320 	 */
321 	lv->offset = ((index - 2) & 511) >> 1;
322 	lv->length = 1;
323 	llck->index++;
324 }
325 
326 /*
327  *	add_index()
328  *
329  *	Adds an entry to the directory index table.  This is used to provide
330  *	each directory entry with a persistent index in which to resume
331  *	directory traversals
332  */
333 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
334 {
335 	struct super_block *sb = ip->i_sb;
336 	struct jfs_sb_info *sbi = JFS_SBI(sb);
337 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
338 	u64 blkno;
339 	struct dir_table_slot *dirtab_slot;
340 	u32 index;
341 	struct linelock *llck;
342 	struct lv *lv;
343 	struct metapage *mp;
344 	s64 offset;
345 	uint page_offset;
346 	struct tlock *tlck;
347 	s64 xaddr;
348 
349 	ASSERT(DO_INDEX(ip));
350 
351 	if (jfs_ip->next_index < 2) {
352 		jfs_warn("add_index: next_index = %d.  Resetting!",
353 			   jfs_ip->next_index);
354 		jfs_ip->next_index = 2;
355 	}
356 
357 	index = jfs_ip->next_index++;
358 
359 	if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
360 		/*
361 		 * i_size reflects size of index table, or 8 bytes per entry.
362 		 */
363 		ip->i_size = (loff_t) (index - 1) << 3;
364 
365 		/*
366 		 * dir table fits inline within inode
367 		 */
368 		dirtab_slot = &jfs_ip->i_dirtable[index-2];
369 		dirtab_slot->flag = DIR_INDEX_VALID;
370 		dirtab_slot->slot = slot;
371 		DTSaddress(dirtab_slot, bn);
372 
373 		set_cflag(COMMIT_Dirtable, ip);
374 
375 		return index;
376 	}
377 	if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
378 		struct dir_table_slot temp_table[12];
379 
380 		/*
381 		 * It's time to move the inline table to an external
382 		 * page and begin to build the xtree
383 		 */
384 		if (DQUOT_ALLOC_BLOCK(ip, sbi->nbperpage))
385 			goto clean_up;
386 		if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
387 			DQUOT_FREE_BLOCK(ip, sbi->nbperpage);
388 			goto clean_up;
389 		}
390 
391 		/*
392 		 * Save the table, we're going to overwrite it with the
393 		 * xtree root
394 		 */
395 		memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
396 
397 		/*
398 		 * Initialize empty x-tree
399 		 */
400 		xtInitRoot(tid, ip);
401 
402 		/*
403 		 * Add the first block to the xtree
404 		 */
405 		if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
406 			/* This really shouldn't fail */
407 			jfs_warn("add_index: xtInsert failed!");
408 			memcpy(&jfs_ip->i_dirtable, temp_table,
409 			       sizeof (temp_table));
410 			dbFree(ip, xaddr, sbi->nbperpage);
411 			DQUOT_FREE_BLOCK(ip, sbi->nbperpage);
412 			goto clean_up;
413 		}
414 		ip->i_size = PSIZE;
415 
416 		if ((mp = get_index_page(ip, 0)) == 0) {
417 			jfs_err("add_index: get_metapage failed!");
418 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
419 			memcpy(&jfs_ip->i_dirtable, temp_table,
420 			       sizeof (temp_table));
421 			goto clean_up;
422 		}
423 		tlck = txLock(tid, ip, mp, tlckDATA);
424 		llck = (struct linelock *) & tlck->lock;
425 		ASSERT(llck->index == 0);
426 		lv = &llck->lv[0];
427 
428 		lv->offset = 0;
429 		lv->length = 6;	/* tlckDATA slot size is 16 bytes */
430 		llck->index++;
431 
432 		memcpy(mp->data, temp_table, sizeof(temp_table));
433 
434 		mark_metapage_dirty(mp);
435 		release_metapage(mp);
436 
437 		/*
438 		 * Logging is now directed by xtree tlocks
439 		 */
440 		clear_cflag(COMMIT_Dirtable, ip);
441 	}
442 
443 	offset = (index - 2) * sizeof(struct dir_table_slot);
444 	page_offset = offset & (PSIZE - 1);
445 	blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
446 	if (page_offset == 0) {
447 		/*
448 		 * This will be the beginning of a new page
449 		 */
450 		xaddr = 0;
451 		if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
452 			jfs_warn("add_index: xtInsert failed!");
453 			goto clean_up;
454 		}
455 		ip->i_size += PSIZE;
456 
457 		if ((mp = get_index_page(ip, blkno)))
458 			memset(mp->data, 0, PSIZE);	/* Just looks better */
459 		else
460 			xtTruncate(tid, ip, offset, COMMIT_PWMAP);
461 	} else
462 		mp = read_index_page(ip, blkno);
463 
464 	if (mp == 0) {
465 		jfs_err("add_index: get/read_metapage failed!");
466 		goto clean_up;
467 	}
468 
469 	lock_index(tid, ip, mp, index);
470 
471 	dirtab_slot =
472 	    (struct dir_table_slot *) ((char *) mp->data + page_offset);
473 	dirtab_slot->flag = DIR_INDEX_VALID;
474 	dirtab_slot->slot = slot;
475 	DTSaddress(dirtab_slot, bn);
476 
477 	mark_metapage_dirty(mp);
478 	release_metapage(mp);
479 
480 	return index;
481 
482       clean_up:
483 
484 	jfs_ip->next_index--;
485 
486 	return 0;
487 }
488 
489 /*
490  *	free_index()
491  *
492  *	Marks an entry to the directory index table as free.
493  */
494 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
495 {
496 	struct dir_table_slot *dirtab_slot;
497 	s64 lblock;
498 	struct metapage *mp = NULL;
499 
500 	dirtab_slot = find_index(ip, index, &mp, &lblock);
501 
502 	if (dirtab_slot == 0)
503 		return;
504 
505 	dirtab_slot->flag = DIR_INDEX_FREE;
506 	dirtab_slot->slot = dirtab_slot->addr1 = 0;
507 	dirtab_slot->addr2 = cpu_to_le32(next);
508 
509 	if (mp) {
510 		lock_index(tid, ip, mp, index);
511 		mark_metapage_dirty(mp);
512 		release_metapage(mp);
513 	} else
514 		set_cflag(COMMIT_Dirtable, ip);
515 }
516 
517 /*
518  *	modify_index()
519  *
520  *	Changes an entry in the directory index table
521  */
522 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
523 			 int slot, struct metapage ** mp, u64 *lblock)
524 {
525 	struct dir_table_slot *dirtab_slot;
526 
527 	dirtab_slot = find_index(ip, index, mp, lblock);
528 
529 	if (dirtab_slot == 0)
530 		return;
531 
532 	DTSaddress(dirtab_slot, bn);
533 	dirtab_slot->slot = slot;
534 
535 	if (*mp) {
536 		lock_index(tid, ip, *mp, index);
537 		mark_metapage_dirty(*mp);
538 	} else
539 		set_cflag(COMMIT_Dirtable, ip);
540 }
541 
542 /*
543  *	read_index()
544  *
545  *	reads a directory table slot
546  */
547 static int read_index(struct inode *ip, u32 index,
548 		     struct dir_table_slot * dirtab_slot)
549 {
550 	s64 lblock;
551 	struct metapage *mp = NULL;
552 	struct dir_table_slot *slot;
553 
554 	slot = find_index(ip, index, &mp, &lblock);
555 	if (slot == 0) {
556 		return -EIO;
557 	}
558 
559 	memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
560 
561 	if (mp)
562 		release_metapage(mp);
563 
564 	return 0;
565 }
566 
567 /*
568  *	dtSearch()
569  *
570  * function:
571  *	Search for the entry with specified key
572  *
573  * parameter:
574  *
575  * return: 0 - search result on stack, leaf page pinned;
576  *	   errno - I/O error
577  */
578 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
579 	     struct btstack * btstack, int flag)
580 {
581 	int rc = 0;
582 	int cmp = 1;		/* init for empty page */
583 	s64 bn;
584 	struct metapage *mp;
585 	dtpage_t *p;
586 	s8 *stbl;
587 	int base, index, lim;
588 	struct btframe *btsp;
589 	pxd_t *pxd;
590 	int psize = 288;	/* initial in-line directory */
591 	ino_t inumber;
592 	struct component_name ciKey;
593 	struct super_block *sb = ip->i_sb;
594 
595 	ciKey.name =
596 	    (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
597 				GFP_NOFS);
598 	if (ciKey.name == 0) {
599 		rc = -ENOMEM;
600 		goto dtSearch_Exit2;
601 	}
602 
603 
604 	/* uppercase search key for c-i directory */
605 	UniStrcpy(ciKey.name, key->name);
606 	ciKey.namlen = key->namlen;
607 
608 	/* only uppercase if case-insensitive support is on */
609 	if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
610 		ciToUpper(&ciKey);
611 	}
612 	BT_CLR(btstack);	/* reset stack */
613 
614 	/* init level count for max pages to split */
615 	btstack->nsplit = 1;
616 
617 	/*
618 	 *      search down tree from root:
619 	 *
620 	 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
621 	 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
622 	 *
623 	 * if entry with search key K is not found
624 	 * internal page search find the entry with largest key Ki
625 	 * less than K which point to the child page to search;
626 	 * leaf page search find the entry with smallest key Kj
627 	 * greater than K so that the returned index is the position of
628 	 * the entry to be shifted right for insertion of new entry.
629 	 * for empty tree, search key is greater than any key of the tree.
630 	 *
631 	 * by convention, root bn = 0.
632 	 */
633 	for (bn = 0;;) {
634 		/* get/pin the page to search */
635 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
636 		if (rc)
637 			goto dtSearch_Exit1;
638 
639 		/* get sorted entry table of the page */
640 		stbl = DT_GETSTBL(p);
641 
642 		/*
643 		 * binary search with search key K on the current page.
644 		 */
645 		for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
646 			index = base + (lim >> 1);
647 
648 			if (p->header.flag & BT_LEAF) {
649 				/* uppercase leaf name to compare */
650 				cmp =
651 				    ciCompare(&ciKey, p, stbl[index],
652 					      JFS_SBI(sb)->mntflag);
653 			} else {
654 				/* router key is in uppercase */
655 
656 				cmp = dtCompare(&ciKey, p, stbl[index]);
657 
658 
659 			}
660 			if (cmp == 0) {
661 				/*
662 				 *      search hit
663 				 */
664 				/* search hit - leaf page:
665 				 * return the entry found
666 				 */
667 				if (p->header.flag & BT_LEAF) {
668 					inumber = le32_to_cpu(
669 			((struct ldtentry *) & p->slot[stbl[index]])->inumber);
670 
671 					/*
672 					 * search for JFS_LOOKUP
673 					 */
674 					if (flag == JFS_LOOKUP) {
675 						*data = inumber;
676 						rc = 0;
677 						goto out;
678 					}
679 
680 					/*
681 					 * search for JFS_CREATE
682 					 */
683 					if (flag == JFS_CREATE) {
684 						*data = inumber;
685 						rc = -EEXIST;
686 						goto out;
687 					}
688 
689 					/*
690 					 * search for JFS_REMOVE or JFS_RENAME
691 					 */
692 					if ((flag == JFS_REMOVE ||
693 					     flag == JFS_RENAME) &&
694 					    *data != inumber) {
695 						rc = -ESTALE;
696 						goto out;
697 					}
698 
699 					/*
700 					 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
701 					 */
702 					/* save search result */
703 					*data = inumber;
704 					btsp = btstack->top;
705 					btsp->bn = bn;
706 					btsp->index = index;
707 					btsp->mp = mp;
708 
709 					rc = 0;
710 					goto dtSearch_Exit1;
711 				}
712 
713 				/* search hit - internal page:
714 				 * descend/search its child page
715 				 */
716 				goto getChild;
717 			}
718 
719 			if (cmp > 0) {
720 				base = index + 1;
721 				--lim;
722 			}
723 		}
724 
725 		/*
726 		 *      search miss
727 		 *
728 		 * base is the smallest index with key (Kj) greater than
729 		 * search key (K) and may be zero or (maxindex + 1) index.
730 		 */
731 		/*
732 		 * search miss - leaf page
733 		 *
734 		 * return location of entry (base) where new entry with
735 		 * search key K is to be inserted.
736 		 */
737 		if (p->header.flag & BT_LEAF) {
738 			/*
739 			 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
740 			 */
741 			if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
742 			    flag == JFS_RENAME) {
743 				rc = -ENOENT;
744 				goto out;
745 			}
746 
747 			/*
748 			 * search for JFS_CREATE|JFS_FINDDIR:
749 			 *
750 			 * save search result
751 			 */
752 			*data = 0;
753 			btsp = btstack->top;
754 			btsp->bn = bn;
755 			btsp->index = base;
756 			btsp->mp = mp;
757 
758 			rc = 0;
759 			goto dtSearch_Exit1;
760 		}
761 
762 		/*
763 		 * search miss - internal page
764 		 *
765 		 * if base is non-zero, decrement base by one to get the parent
766 		 * entry of the child page to search.
767 		 */
768 		index = base ? base - 1 : base;
769 
770 		/*
771 		 * go down to child page
772 		 */
773 	      getChild:
774 		/* update max. number of pages to split */
775 		if (BT_STACK_FULL(btstack)) {
776 			/* Something's corrupted, mark filesytem dirty so
777 			 * chkdsk will fix it.
778 			 */
779 			jfs_error(sb, "stack overrun in dtSearch!");
780 			BT_STACK_DUMP(btstack);
781 			rc = -EIO;
782 			goto out;
783 		}
784 		btstack->nsplit++;
785 
786 		/* push (bn, index) of the parent page/entry */
787 		BT_PUSH(btstack, bn, index);
788 
789 		/* get the child page block number */
790 		pxd = (pxd_t *) & p->slot[stbl[index]];
791 		bn = addressPXD(pxd);
792 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
793 
794 		/* unpin the parent page */
795 		DT_PUTPAGE(mp);
796 	}
797 
798       out:
799 	DT_PUTPAGE(mp);
800 
801       dtSearch_Exit1:
802 
803 	kfree(ciKey.name);
804 
805       dtSearch_Exit2:
806 
807 	return rc;
808 }
809 
810 
811 /*
812  *	dtInsert()
813  *
814  * function: insert an entry to directory tree
815  *
816  * parameter:
817  *
818  * return: 0 - success;
819  *	   errno - failure;
820  */
821 int dtInsert(tid_t tid, struct inode *ip,
822 	 struct component_name * name, ino_t * fsn, struct btstack * btstack)
823 {
824 	int rc = 0;
825 	struct metapage *mp;	/* meta-page buffer */
826 	dtpage_t *p;		/* base B+-tree index page */
827 	s64 bn;
828 	int index;
829 	struct dtsplit split;	/* split information */
830 	ddata_t data;
831 	struct dt_lock *dtlck;
832 	int n;
833 	struct tlock *tlck;
834 	struct lv *lv;
835 
836 	/*
837 	 *      retrieve search result
838 	 *
839 	 * dtSearch() returns (leaf page pinned, index at which to insert).
840 	 * n.b. dtSearch() may return index of (maxindex + 1) of
841 	 * the full page.
842 	 */
843 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
844 
845 	/*
846 	 *      insert entry for new key
847 	 */
848 	if (DO_INDEX(ip)) {
849 		if (JFS_IP(ip)->next_index == DIREND) {
850 			DT_PUTPAGE(mp);
851 			return -EMLINK;
852 		}
853 		n = NDTLEAF(name->namlen);
854 		data.leaf.tid = tid;
855 		data.leaf.ip = ip;
856 	} else {
857 		n = NDTLEAF_LEGACY(name->namlen);
858 		data.leaf.ip = NULL;	/* signifies legacy directory format */
859 	}
860 	data.leaf.ino = *fsn;
861 
862 	/*
863 	 *      leaf page does not have enough room for new entry:
864 	 *
865 	 *      extend/split the leaf page;
866 	 *
867 	 * dtSplitUp() will insert the entry and unpin the leaf page.
868 	 */
869 	if (n > p->header.freecnt) {
870 		split.mp = mp;
871 		split.index = index;
872 		split.nslot = n;
873 		split.key = name;
874 		split.data = &data;
875 		rc = dtSplitUp(tid, ip, &split, btstack);
876 		return rc;
877 	}
878 
879 	/*
880 	 *      leaf page does have enough room for new entry:
881 	 *
882 	 *      insert the new data entry into the leaf page;
883 	 */
884 	BT_MARK_DIRTY(mp, ip);
885 	/*
886 	 * acquire a transaction lock on the leaf page
887 	 */
888 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
889 	dtlck = (struct dt_lock *) & tlck->lock;
890 	ASSERT(dtlck->index == 0);
891 	lv = & dtlck->lv[0];
892 
893 	/* linelock header */
894 	lv->offset = 0;
895 	lv->length = 1;
896 	dtlck->index++;
897 
898 	dtInsertEntry(p, index, name, &data, &dtlck);
899 
900 	/* linelock stbl of non-root leaf page */
901 	if (!(p->header.flag & BT_ROOT)) {
902 		if (dtlck->index >= dtlck->maxcnt)
903 			dtlck = (struct dt_lock *) txLinelock(dtlck);
904 		lv = & dtlck->lv[dtlck->index];
905 		n = index >> L2DTSLOTSIZE;
906 		lv->offset = p->header.stblindex + n;
907 		lv->length =
908 		    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
909 		dtlck->index++;
910 	}
911 
912 	/* unpin the leaf page */
913 	DT_PUTPAGE(mp);
914 
915 	return 0;
916 }
917 
918 
919 /*
920  *	dtSplitUp()
921  *
922  * function: propagate insertion bottom up;
923  *
924  * parameter:
925  *
926  * return: 0 - success;
927  *	   errno - failure;
928  * 	leaf page unpinned;
929  */
930 static int dtSplitUp(tid_t tid,
931 	  struct inode *ip, struct dtsplit * split, struct btstack * btstack)
932 {
933 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
934 	int rc = 0;
935 	struct metapage *smp;
936 	dtpage_t *sp;		/* split page */
937 	struct metapage *rmp;
938 	dtpage_t *rp;		/* new right page split from sp */
939 	pxd_t rpxd;		/* new right page extent descriptor */
940 	struct metapage *lmp;
941 	dtpage_t *lp;		/* left child page */
942 	int skip;		/* index of entry of insertion */
943 	struct btframe *parent;	/* parent page entry on traverse stack */
944 	s64 xaddr, nxaddr;
945 	int xlen, xsize;
946 	struct pxdlist pxdlist;
947 	pxd_t *pxd;
948 	struct component_name key = { 0, NULL };
949 	ddata_t *data = split->data;
950 	int n;
951 	struct dt_lock *dtlck;
952 	struct tlock *tlck;
953 	struct lv *lv;
954 	int quota_allocation = 0;
955 
956 	/* get split page */
957 	smp = split->mp;
958 	sp = DT_PAGE(ip, smp);
959 
960 	key.name =
961 	    (wchar_t *) kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t),
962 				GFP_NOFS);
963 	if (key.name == 0) {
964 		DT_PUTPAGE(smp);
965 		rc = -ENOMEM;
966 		goto dtSplitUp_Exit;
967 	}
968 
969 	/*
970 	 *      split leaf page
971 	 *
972 	 * The split routines insert the new entry, and
973 	 * acquire txLock as appropriate.
974 	 */
975 	/*
976 	 *      split root leaf page:
977 	 */
978 	if (sp->header.flag & BT_ROOT) {
979 		/*
980 		 * allocate a single extent child page
981 		 */
982 		xlen = 1;
983 		n = sbi->bsize >> L2DTSLOTSIZE;
984 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
985 		n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
986 		if (n <= split->nslot)
987 			xlen++;
988 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
989 			DT_PUTPAGE(smp);
990 			goto freeKeyName;
991 		}
992 
993 		pxdlist.maxnpxd = 1;
994 		pxdlist.npxd = 0;
995 		pxd = &pxdlist.pxd[0];
996 		PXDaddress(pxd, xaddr);
997 		PXDlength(pxd, xlen);
998 		split->pxdlist = &pxdlist;
999 		rc = dtSplitRoot(tid, ip, split, &rmp);
1000 
1001 		if (rc)
1002 			dbFree(ip, xaddr, xlen);
1003 		else
1004 			DT_PUTPAGE(rmp);
1005 
1006 		DT_PUTPAGE(smp);
1007 
1008 		goto freeKeyName;
1009 	}
1010 
1011 	/*
1012 	 *      extend first leaf page
1013 	 *
1014 	 * extend the 1st extent if less than buffer page size
1015 	 * (dtExtendPage() reurns leaf page unpinned)
1016 	 */
1017 	pxd = &sp->header.self;
1018 	xlen = lengthPXD(pxd);
1019 	xsize = xlen << sbi->l2bsize;
1020 	if (xsize < PSIZE) {
1021 		xaddr = addressPXD(pxd);
1022 		n = xsize >> L2DTSLOTSIZE;
1023 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
1024 		if ((n + sp->header.freecnt) <= split->nslot)
1025 			n = xlen + (xlen << 1);
1026 		else
1027 			n = xlen;
1028 
1029 		/* Allocate blocks to quota. */
1030 		if (DQUOT_ALLOC_BLOCK(ip, n)) {
1031 			rc = -EDQUOT;
1032 			goto extendOut;
1033 		}
1034 		quota_allocation += n;
1035 
1036 		if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1037 				    (s64) n, &nxaddr)))
1038 			goto extendOut;
1039 
1040 		pxdlist.maxnpxd = 1;
1041 		pxdlist.npxd = 0;
1042 		pxd = &pxdlist.pxd[0];
1043 		PXDaddress(pxd, nxaddr)
1044 		    PXDlength(pxd, xlen + n);
1045 		split->pxdlist = &pxdlist;
1046 		if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1047 			nxaddr = addressPXD(pxd);
1048 			if (xaddr != nxaddr) {
1049 				/* free relocated extent */
1050 				xlen = lengthPXD(pxd);
1051 				dbFree(ip, nxaddr, (s64) xlen);
1052 			} else {
1053 				/* free extended delta */
1054 				xlen = lengthPXD(pxd) - n;
1055 				xaddr = addressPXD(pxd) + xlen;
1056 				dbFree(ip, xaddr, (s64) n);
1057 			}
1058 		}
1059 
1060 	      extendOut:
1061 		DT_PUTPAGE(smp);
1062 		goto freeKeyName;
1063 	}
1064 
1065 	/*
1066 	 *      split leaf page <sp> into <sp> and a new right page <rp>.
1067 	 *
1068 	 * return <rp> pinned and its extent descriptor <rpxd>
1069 	 */
1070 	/*
1071 	 * allocate new directory page extent and
1072 	 * new index page(s) to cover page split(s)
1073 	 *
1074 	 * allocation hint: ?
1075 	 */
1076 	n = btstack->nsplit;
1077 	pxdlist.maxnpxd = pxdlist.npxd = 0;
1078 	xlen = sbi->nbperpage;
1079 	for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1080 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1081 			PXDaddress(pxd, xaddr);
1082 			PXDlength(pxd, xlen);
1083 			pxdlist.maxnpxd++;
1084 			continue;
1085 		}
1086 
1087 		DT_PUTPAGE(smp);
1088 
1089 		/* undo allocation */
1090 		goto splitOut;
1091 	}
1092 
1093 	split->pxdlist = &pxdlist;
1094 	if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1095 		DT_PUTPAGE(smp);
1096 
1097 		/* undo allocation */
1098 		goto splitOut;
1099 	}
1100 
1101 	/*
1102 	 * propagate up the router entry for the leaf page just split
1103 	 *
1104 	 * insert a router entry for the new page into the parent page,
1105 	 * propagate the insert/split up the tree by walking back the stack
1106 	 * of (bn of parent page, index of child page entry in parent page)
1107 	 * that were traversed during the search for the page that split.
1108 	 *
1109 	 * the propagation of insert/split up the tree stops if the root
1110 	 * splits or the page inserted into doesn't have to split to hold
1111 	 * the new entry.
1112 	 *
1113 	 * the parent entry for the split page remains the same, and
1114 	 * a new entry is inserted at its right with the first key and
1115 	 * block number of the new right page.
1116 	 *
1117 	 * There are a maximum of 4 pages pinned at any time:
1118 	 * two children, left parent and right parent (when the parent splits).
1119 	 * keep the child pages pinned while working on the parent.
1120 	 * make sure that all pins are released at exit.
1121 	 */
1122 	while ((parent = BT_POP(btstack)) != NULL) {
1123 		/* parent page specified by stack frame <parent> */
1124 
1125 		/* keep current child pages (<lp>, <rp>) pinned */
1126 		lmp = smp;
1127 		lp = sp;
1128 
1129 		/*
1130 		 * insert router entry in parent for new right child page <rp>
1131 		 */
1132 		/* get the parent page <sp> */
1133 		DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1134 		if (rc) {
1135 			DT_PUTPAGE(lmp);
1136 			DT_PUTPAGE(rmp);
1137 			goto splitOut;
1138 		}
1139 
1140 		/*
1141 		 * The new key entry goes ONE AFTER the index of parent entry,
1142 		 * because the split was to the right.
1143 		 */
1144 		skip = parent->index + 1;
1145 
1146 		/*
1147 		 * compute the key for the router entry
1148 		 *
1149 		 * key suffix compression:
1150 		 * for internal pages that have leaf pages as children,
1151 		 * retain only what's needed to distinguish between
1152 		 * the new entry and the entry on the page to its left.
1153 		 * If the keys compare equal, retain the entire key.
1154 		 *
1155 		 * note that compression is performed only at computing
1156 		 * router key at the lowest internal level.
1157 		 * further compression of the key between pairs of higher
1158 		 * level internal pages loses too much information and
1159 		 * the search may fail.
1160 		 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1161 		 * results in two adjacent parent entries (a)(xx).
1162 		 * if split occurs between these two entries, and
1163 		 * if compression is applied, the router key of parent entry
1164 		 * of right page (x) will divert search for x into right
1165 		 * subtree and miss x in the left subtree.)
1166 		 *
1167 		 * the entire key must be retained for the next-to-leftmost
1168 		 * internal key at any level of the tree, or search may fail
1169 		 * (e.g., ?)
1170 		 */
1171 		switch (rp->header.flag & BT_TYPE) {
1172 		case BT_LEAF:
1173 			/*
1174 			 * compute the length of prefix for suffix compression
1175 			 * between last entry of left page and first entry
1176 			 * of right page
1177 			 */
1178 			if ((sp->header.flag & BT_ROOT && skip > 1) ||
1179 			    sp->header.prev != 0 || skip > 1) {
1180 				/* compute uppercase router prefix key */
1181 				rc = ciGetLeafPrefixKey(lp,
1182 							lp->header.nextindex-1,
1183 							rp, 0, &key,
1184 							sbi->mntflag);
1185 				if (rc) {
1186 					DT_PUTPAGE(lmp);
1187 					DT_PUTPAGE(rmp);
1188 					DT_PUTPAGE(smp);
1189 					goto splitOut;
1190 				}
1191 			} else {
1192 				/* next to leftmost entry of
1193 				   lowest internal level */
1194 
1195 				/* compute uppercase router key */
1196 				dtGetKey(rp, 0, &key, sbi->mntflag);
1197 				key.name[key.namlen] = 0;
1198 
1199 				if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1200 					ciToUpper(&key);
1201 			}
1202 
1203 			n = NDTINTERNAL(key.namlen);
1204 			break;
1205 
1206 		case BT_INTERNAL:
1207 			dtGetKey(rp, 0, &key, sbi->mntflag);
1208 			n = NDTINTERNAL(key.namlen);
1209 			break;
1210 
1211 		default:
1212 			jfs_err("dtSplitUp(): UFO!");
1213 			break;
1214 		}
1215 
1216 		/* unpin left child page */
1217 		DT_PUTPAGE(lmp);
1218 
1219 		/*
1220 		 * compute the data for the router entry
1221 		 */
1222 		data->xd = rpxd;	/* child page xd */
1223 
1224 		/*
1225 		 * parent page is full - split the parent page
1226 		 */
1227 		if (n > sp->header.freecnt) {
1228 			/* init for parent page split */
1229 			split->mp = smp;
1230 			split->index = skip;	/* index at insert */
1231 			split->nslot = n;
1232 			split->key = &key;
1233 			/* split->data = data; */
1234 
1235 			/* unpin right child page */
1236 			DT_PUTPAGE(rmp);
1237 
1238 			/* The split routines insert the new entry,
1239 			 * acquire txLock as appropriate.
1240 			 * return <rp> pinned and its block number <rbn>.
1241 			 */
1242 			rc = (sp->header.flag & BT_ROOT) ?
1243 			    dtSplitRoot(tid, ip, split, &rmp) :
1244 			    dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1245 			if (rc) {
1246 				DT_PUTPAGE(smp);
1247 				goto splitOut;
1248 			}
1249 
1250 			/* smp and rmp are pinned */
1251 		}
1252 		/*
1253 		 * parent page is not full - insert router entry in parent page
1254 		 */
1255 		else {
1256 			BT_MARK_DIRTY(smp, ip);
1257 			/*
1258 			 * acquire a transaction lock on the parent page
1259 			 */
1260 			tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1261 			dtlck = (struct dt_lock *) & tlck->lock;
1262 			ASSERT(dtlck->index == 0);
1263 			lv = & dtlck->lv[0];
1264 
1265 			/* linelock header */
1266 			lv->offset = 0;
1267 			lv->length = 1;
1268 			dtlck->index++;
1269 
1270 			/* linelock stbl of non-root parent page */
1271 			if (!(sp->header.flag & BT_ROOT)) {
1272 				lv++;
1273 				n = skip >> L2DTSLOTSIZE;
1274 				lv->offset = sp->header.stblindex + n;
1275 				lv->length =
1276 				    ((sp->header.nextindex -
1277 				      1) >> L2DTSLOTSIZE) - n + 1;
1278 				dtlck->index++;
1279 			}
1280 
1281 			dtInsertEntry(sp, skip, &key, data, &dtlck);
1282 
1283 			/* exit propagate up */
1284 			break;
1285 		}
1286 	}
1287 
1288 	/* unpin current split and its right page */
1289 	DT_PUTPAGE(smp);
1290 	DT_PUTPAGE(rmp);
1291 
1292 	/*
1293 	 * free remaining extents allocated for split
1294 	 */
1295       splitOut:
1296 	n = pxdlist.npxd;
1297 	pxd = &pxdlist.pxd[n];
1298 	for (; n < pxdlist.maxnpxd; n++, pxd++)
1299 		dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1300 
1301       freeKeyName:
1302 	kfree(key.name);
1303 
1304 	/* Rollback quota allocation */
1305 	if (rc && quota_allocation)
1306 		DQUOT_FREE_BLOCK(ip, quota_allocation);
1307 
1308       dtSplitUp_Exit:
1309 
1310 	return rc;
1311 }
1312 
1313 
1314 /*
1315  *	dtSplitPage()
1316  *
1317  * function: Split a non-root page of a btree.
1318  *
1319  * parameter:
1320  *
1321  * return: 0 - success;
1322  *	   errno - failure;
1323  *	return split and new page pinned;
1324  */
1325 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1326 	    struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1327 {
1328 	int rc = 0;
1329 	struct metapage *smp;
1330 	dtpage_t *sp;
1331 	struct metapage *rmp;
1332 	dtpage_t *rp;		/* new right page allocated */
1333 	s64 rbn;		/* new right page block number */
1334 	struct metapage *mp;
1335 	dtpage_t *p;
1336 	s64 nextbn;
1337 	struct pxdlist *pxdlist;
1338 	pxd_t *pxd;
1339 	int skip, nextindex, half, left, nxt, off, si;
1340 	struct ldtentry *ldtentry;
1341 	struct idtentry *idtentry;
1342 	u8 *stbl;
1343 	struct dtslot *f;
1344 	int fsi, stblsize;
1345 	int n;
1346 	struct dt_lock *sdtlck, *rdtlck;
1347 	struct tlock *tlck;
1348 	struct dt_lock *dtlck;
1349 	struct lv *slv, *rlv, *lv;
1350 
1351 	/* get split page */
1352 	smp = split->mp;
1353 	sp = DT_PAGE(ip, smp);
1354 
1355 	/*
1356 	 * allocate the new right page for the split
1357 	 */
1358 	pxdlist = split->pxdlist;
1359 	pxd = &pxdlist->pxd[pxdlist->npxd];
1360 	pxdlist->npxd++;
1361 	rbn = addressPXD(pxd);
1362 	rmp = get_metapage(ip, rbn, PSIZE, 1);
1363 	if (rmp == NULL)
1364 		return -EIO;
1365 
1366 	/* Allocate blocks to quota. */
1367 	if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) {
1368 		release_metapage(rmp);
1369 		return -EDQUOT;
1370 	}
1371 
1372 	jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1373 
1374 	BT_MARK_DIRTY(rmp, ip);
1375 	/*
1376 	 * acquire a transaction lock on the new right page
1377 	 */
1378 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1379 	rdtlck = (struct dt_lock *) & tlck->lock;
1380 
1381 	rp = (dtpage_t *) rmp->data;
1382 	*rpp = rp;
1383 	rp->header.self = *pxd;
1384 
1385 	BT_MARK_DIRTY(smp, ip);
1386 	/*
1387 	 * acquire a transaction lock on the split page
1388 	 *
1389 	 * action:
1390 	 */
1391 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1392 	sdtlck = (struct dt_lock *) & tlck->lock;
1393 
1394 	/* linelock header of split page */
1395 	ASSERT(sdtlck->index == 0);
1396 	slv = & sdtlck->lv[0];
1397 	slv->offset = 0;
1398 	slv->length = 1;
1399 	sdtlck->index++;
1400 
1401 	/*
1402 	 * initialize/update sibling pointers between sp and rp
1403 	 */
1404 	nextbn = le64_to_cpu(sp->header.next);
1405 	rp->header.next = cpu_to_le64(nextbn);
1406 	rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1407 	sp->header.next = cpu_to_le64(rbn);
1408 
1409 	/*
1410 	 * initialize new right page
1411 	 */
1412 	rp->header.flag = sp->header.flag;
1413 
1414 	/* compute sorted entry table at start of extent data area */
1415 	rp->header.nextindex = 0;
1416 	rp->header.stblindex = 1;
1417 
1418 	n = PSIZE >> L2DTSLOTSIZE;
1419 	rp->header.maxslot = n;
1420 	stblsize = (n + 31) >> L2DTSLOTSIZE;	/* in unit of slot */
1421 
1422 	/* init freelist */
1423 	fsi = rp->header.stblindex + stblsize;
1424 	rp->header.freelist = fsi;
1425 	rp->header.freecnt = rp->header.maxslot - fsi;
1426 
1427 	/*
1428 	 *      sequential append at tail: append without split
1429 	 *
1430 	 * If splitting the last page on a level because of appending
1431 	 * a entry to it (skip is maxentry), it's likely that the access is
1432 	 * sequential. Adding an empty page on the side of the level is less
1433 	 * work and can push the fill factor much higher than normal.
1434 	 * If we're wrong it's no big deal, we'll just do the split the right
1435 	 * way next time.
1436 	 * (It may look like it's equally easy to do a similar hack for
1437 	 * reverse sorted data, that is, split the tree left,
1438 	 * but it's not. Be my guest.)
1439 	 */
1440 	if (nextbn == 0 && split->index == sp->header.nextindex) {
1441 		/* linelock header + stbl (first slot) of new page */
1442 		rlv = & rdtlck->lv[rdtlck->index];
1443 		rlv->offset = 0;
1444 		rlv->length = 2;
1445 		rdtlck->index++;
1446 
1447 		/*
1448 		 * initialize freelist of new right page
1449 		 */
1450 		f = &rp->slot[fsi];
1451 		for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1452 			f->next = fsi;
1453 		f->next = -1;
1454 
1455 		/* insert entry at the first entry of the new right page */
1456 		dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1457 
1458 		goto out;
1459 	}
1460 
1461 	/*
1462 	 *      non-sequential insert (at possibly middle page)
1463 	 */
1464 
1465 	/*
1466 	 * update prev pointer of previous right sibling page;
1467 	 */
1468 	if (nextbn != 0) {
1469 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1470 		if (rc) {
1471 			discard_metapage(rmp);
1472 			return rc;
1473 		}
1474 
1475 		BT_MARK_DIRTY(mp, ip);
1476 		/*
1477 		 * acquire a transaction lock on the next page
1478 		 */
1479 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1480 		jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1481 			tlck, ip, mp);
1482 		dtlck = (struct dt_lock *) & tlck->lock;
1483 
1484 		/* linelock header of previous right sibling page */
1485 		lv = & dtlck->lv[dtlck->index];
1486 		lv->offset = 0;
1487 		lv->length = 1;
1488 		dtlck->index++;
1489 
1490 		p->header.prev = cpu_to_le64(rbn);
1491 
1492 		DT_PUTPAGE(mp);
1493 	}
1494 
1495 	/*
1496 	 * split the data between the split and right pages.
1497 	 */
1498 	skip = split->index;
1499 	half = (PSIZE >> L2DTSLOTSIZE) >> 1;	/* swag */
1500 	left = 0;
1501 
1502 	/*
1503 	 *      compute fill factor for split pages
1504 	 *
1505 	 * <nxt> traces the next entry to move to rp
1506 	 * <off> traces the next entry to stay in sp
1507 	 */
1508 	stbl = (u8 *) & sp->slot[sp->header.stblindex];
1509 	nextindex = sp->header.nextindex;
1510 	for (nxt = off = 0; nxt < nextindex; ++off) {
1511 		if (off == skip)
1512 			/* check for fill factor with new entry size */
1513 			n = split->nslot;
1514 		else {
1515 			si = stbl[nxt];
1516 			switch (sp->header.flag & BT_TYPE) {
1517 			case BT_LEAF:
1518 				ldtentry = (struct ldtentry *) & sp->slot[si];
1519 				if (DO_INDEX(ip))
1520 					n = NDTLEAF(ldtentry->namlen);
1521 				else
1522 					n = NDTLEAF_LEGACY(ldtentry->
1523 							   namlen);
1524 				break;
1525 
1526 			case BT_INTERNAL:
1527 				idtentry = (struct idtentry *) & sp->slot[si];
1528 				n = NDTINTERNAL(idtentry->namlen);
1529 				break;
1530 
1531 			default:
1532 				break;
1533 			}
1534 
1535 			++nxt;	/* advance to next entry to move in sp */
1536 		}
1537 
1538 		left += n;
1539 		if (left >= half)
1540 			break;
1541 	}
1542 
1543 	/* <nxt> poins to the 1st entry to move */
1544 
1545 	/*
1546 	 *      move entries to right page
1547 	 *
1548 	 * dtMoveEntry() initializes rp and reserves entry for insertion
1549 	 *
1550 	 * split page moved out entries are linelocked;
1551 	 * new/right page moved in entries are linelocked;
1552 	 */
1553 	/* linelock header + stbl of new right page */
1554 	rlv = & rdtlck->lv[rdtlck->index];
1555 	rlv->offset = 0;
1556 	rlv->length = 5;
1557 	rdtlck->index++;
1558 
1559 	dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1560 
1561 	sp->header.nextindex = nxt;
1562 
1563 	/*
1564 	 * finalize freelist of new right page
1565 	 */
1566 	fsi = rp->header.freelist;
1567 	f = &rp->slot[fsi];
1568 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1569 		f->next = fsi;
1570 	f->next = -1;
1571 
1572 	/*
1573 	 * Update directory index table for entries now in right page
1574 	 */
1575 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1576 		s64 lblock;
1577 
1578 		mp = NULL;
1579 		stbl = DT_GETSTBL(rp);
1580 		for (n = 0; n < rp->header.nextindex; n++) {
1581 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1582 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1583 				     rbn, n, &mp, &lblock);
1584 		}
1585 		if (mp)
1586 			release_metapage(mp);
1587 	}
1588 
1589 	/*
1590 	 * the skipped index was on the left page,
1591 	 */
1592 	if (skip <= off) {
1593 		/* insert the new entry in the split page */
1594 		dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1595 
1596 		/* linelock stbl of split page */
1597 		if (sdtlck->index >= sdtlck->maxcnt)
1598 			sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1599 		slv = & sdtlck->lv[sdtlck->index];
1600 		n = skip >> L2DTSLOTSIZE;
1601 		slv->offset = sp->header.stblindex + n;
1602 		slv->length =
1603 		    ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1604 		sdtlck->index++;
1605 	}
1606 	/*
1607 	 * the skipped index was on the right page,
1608 	 */
1609 	else {
1610 		/* adjust the skip index to reflect the new position */
1611 		skip -= nxt;
1612 
1613 		/* insert the new entry in the right page */
1614 		dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1615 	}
1616 
1617       out:
1618 	*rmpp = rmp;
1619 	*rpxdp = *pxd;
1620 
1621 	return rc;
1622 }
1623 
1624 
1625 /*
1626  *	dtExtendPage()
1627  *
1628  * function: extend 1st/only directory leaf page
1629  *
1630  * parameter:
1631  *
1632  * return: 0 - success;
1633  *	   errno - failure;
1634  *	return extended page pinned;
1635  */
1636 static int dtExtendPage(tid_t tid,
1637 	     struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1638 {
1639 	struct super_block *sb = ip->i_sb;
1640 	int rc;
1641 	struct metapage *smp, *pmp, *mp;
1642 	dtpage_t *sp, *pp;
1643 	struct pxdlist *pxdlist;
1644 	pxd_t *pxd, *tpxd;
1645 	int xlen, xsize;
1646 	int newstblindex, newstblsize;
1647 	int oldstblindex, oldstblsize;
1648 	int fsi, last;
1649 	struct dtslot *f;
1650 	struct btframe *parent;
1651 	int n;
1652 	struct dt_lock *dtlck;
1653 	s64 xaddr, txaddr;
1654 	struct tlock *tlck;
1655 	struct pxd_lock *pxdlock;
1656 	struct lv *lv;
1657 	uint type;
1658 	struct ldtentry *ldtentry;
1659 	u8 *stbl;
1660 
1661 	/* get page to extend */
1662 	smp = split->mp;
1663 	sp = DT_PAGE(ip, smp);
1664 
1665 	/* get parent/root page */
1666 	parent = BT_POP(btstack);
1667 	DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1668 	if (rc)
1669 		return (rc);
1670 
1671 	/*
1672 	 *      extend the extent
1673 	 */
1674 	pxdlist = split->pxdlist;
1675 	pxd = &pxdlist->pxd[pxdlist->npxd];
1676 	pxdlist->npxd++;
1677 
1678 	xaddr = addressPXD(pxd);
1679 	tpxd = &sp->header.self;
1680 	txaddr = addressPXD(tpxd);
1681 	/* in-place extension */
1682 	if (xaddr == txaddr) {
1683 		type = tlckEXTEND;
1684 	}
1685 	/* relocation */
1686 	else {
1687 		type = tlckNEW;
1688 
1689 		/* save moved extent descriptor for later free */
1690 		tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1691 		pxdlock = (struct pxd_lock *) & tlck->lock;
1692 		pxdlock->flag = mlckFREEPXD;
1693 		pxdlock->pxd = sp->header.self;
1694 		pxdlock->index = 1;
1695 
1696 		/*
1697 		 * Update directory index table to reflect new page address
1698 		 */
1699 		if (DO_INDEX(ip)) {
1700 			s64 lblock;
1701 
1702 			mp = NULL;
1703 			stbl = DT_GETSTBL(sp);
1704 			for (n = 0; n < sp->header.nextindex; n++) {
1705 				ldtentry =
1706 				    (struct ldtentry *) & sp->slot[stbl[n]];
1707 				modify_index(tid, ip,
1708 					     le32_to_cpu(ldtentry->index),
1709 					     xaddr, n, &mp, &lblock);
1710 			}
1711 			if (mp)
1712 				release_metapage(mp);
1713 		}
1714 	}
1715 
1716 	/*
1717 	 *      extend the page
1718 	 */
1719 	sp->header.self = *pxd;
1720 
1721 	jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1722 
1723 	BT_MARK_DIRTY(smp, ip);
1724 	/*
1725 	 * acquire a transaction lock on the extended/leaf page
1726 	 */
1727 	tlck = txLock(tid, ip, smp, tlckDTREE | type);
1728 	dtlck = (struct dt_lock *) & tlck->lock;
1729 	lv = & dtlck->lv[0];
1730 
1731 	/* update buffer extent descriptor of extended page */
1732 	xlen = lengthPXD(pxd);
1733 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1734 #ifdef _STILL_TO_PORT
1735 	bmSetXD(smp, xaddr, xsize);
1736 #endif				/*  _STILL_TO_PORT */
1737 
1738 	/*
1739 	 * copy old stbl to new stbl at start of extended area
1740 	 */
1741 	oldstblindex = sp->header.stblindex;
1742 	oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1743 	newstblindex = sp->header.maxslot;
1744 	n = xsize >> L2DTSLOTSIZE;
1745 	newstblsize = (n + 31) >> L2DTSLOTSIZE;
1746 	memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1747 	       sp->header.nextindex);
1748 
1749 	/*
1750 	 * in-line extension: linelock old area of extended page
1751 	 */
1752 	if (type == tlckEXTEND) {
1753 		/* linelock header */
1754 		lv->offset = 0;
1755 		lv->length = 1;
1756 		dtlck->index++;
1757 		lv++;
1758 
1759 		/* linelock new stbl of extended page */
1760 		lv->offset = newstblindex;
1761 		lv->length = newstblsize;
1762 	}
1763 	/*
1764 	 * relocation: linelock whole relocated area
1765 	 */
1766 	else {
1767 		lv->offset = 0;
1768 		lv->length = sp->header.maxslot + newstblsize;
1769 	}
1770 
1771 	dtlck->index++;
1772 
1773 	sp->header.maxslot = n;
1774 	sp->header.stblindex = newstblindex;
1775 	/* sp->header.nextindex remains the same */
1776 
1777 	/*
1778 	 * add old stbl region at head of freelist
1779 	 */
1780 	fsi = oldstblindex;
1781 	f = &sp->slot[fsi];
1782 	last = sp->header.freelist;
1783 	for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1784 		f->next = last;
1785 		last = fsi;
1786 	}
1787 	sp->header.freelist = last;
1788 	sp->header.freecnt += oldstblsize;
1789 
1790 	/*
1791 	 * append free region of newly extended area at tail of freelist
1792 	 */
1793 	/* init free region of newly extended area */
1794 	fsi = n = newstblindex + newstblsize;
1795 	f = &sp->slot[fsi];
1796 	for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1797 		f->next = fsi;
1798 	f->next = -1;
1799 
1800 	/* append new free region at tail of old freelist */
1801 	fsi = sp->header.freelist;
1802 	if (fsi == -1)
1803 		sp->header.freelist = n;
1804 	else {
1805 		do {
1806 			f = &sp->slot[fsi];
1807 			fsi = f->next;
1808 		} while (fsi != -1);
1809 
1810 		f->next = n;
1811 	}
1812 
1813 	sp->header.freecnt += sp->header.maxslot - n;
1814 
1815 	/*
1816 	 * insert the new entry
1817 	 */
1818 	dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1819 
1820 	BT_MARK_DIRTY(pmp, ip);
1821 	/*
1822 	 * linelock any freeslots residing in old extent
1823 	 */
1824 	if (type == tlckEXTEND) {
1825 		n = sp->header.maxslot >> 2;
1826 		if (sp->header.freelist < n)
1827 			dtLinelockFreelist(sp, n, &dtlck);
1828 	}
1829 
1830 	/*
1831 	 *      update parent entry on the parent/root page
1832 	 */
1833 	/*
1834 	 * acquire a transaction lock on the parent/root page
1835 	 */
1836 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1837 	dtlck = (struct dt_lock *) & tlck->lock;
1838 	lv = & dtlck->lv[dtlck->index];
1839 
1840 	/* linelock parent entry - 1st slot */
1841 	lv->offset = 1;
1842 	lv->length = 1;
1843 	dtlck->index++;
1844 
1845 	/* update the parent pxd for page extension */
1846 	tpxd = (pxd_t *) & pp->slot[1];
1847 	*tpxd = *pxd;
1848 
1849 	DT_PUTPAGE(pmp);
1850 	return 0;
1851 }
1852 
1853 
1854 /*
1855  *	dtSplitRoot()
1856  *
1857  * function:
1858  *	split the full root page into
1859  *	original/root/split page and new right page
1860  *	i.e., root remains fixed in tree anchor (inode) and
1861  *	the root is copied to a single new right child page
1862  *	since root page << non-root page, and
1863  *	the split root page contains a single entry for the
1864  *	new right child page.
1865  *
1866  * parameter:
1867  *
1868  * return: 0 - success;
1869  *	   errno - failure;
1870  *	return new page pinned;
1871  */
1872 static int dtSplitRoot(tid_t tid,
1873 	    struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1874 {
1875 	struct super_block *sb = ip->i_sb;
1876 	struct metapage *smp;
1877 	dtroot_t *sp;
1878 	struct metapage *rmp;
1879 	dtpage_t *rp;
1880 	s64 rbn;
1881 	int xlen;
1882 	int xsize;
1883 	struct dtslot *f;
1884 	s8 *stbl;
1885 	int fsi, stblsize, n;
1886 	struct idtentry *s;
1887 	pxd_t *ppxd;
1888 	struct pxdlist *pxdlist;
1889 	pxd_t *pxd;
1890 	struct dt_lock *dtlck;
1891 	struct tlock *tlck;
1892 	struct lv *lv;
1893 
1894 	/* get split root page */
1895 	smp = split->mp;
1896 	sp = &JFS_IP(ip)->i_dtroot;
1897 
1898 	/*
1899 	 *      allocate/initialize a single (right) child page
1900 	 *
1901 	 * N.B. at first split, a one (or two) block to fit new entry
1902 	 * is allocated; at subsequent split, a full page is allocated;
1903 	 */
1904 	pxdlist = split->pxdlist;
1905 	pxd = &pxdlist->pxd[pxdlist->npxd];
1906 	pxdlist->npxd++;
1907 	rbn = addressPXD(pxd);
1908 	xlen = lengthPXD(pxd);
1909 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1910 	rmp = get_metapage(ip, rbn, xsize, 1);
1911 	if (!rmp)
1912 		return -EIO;
1913 
1914 	rp = rmp->data;
1915 
1916 	/* Allocate blocks to quota. */
1917 	if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) {
1918 		release_metapage(rmp);
1919 		return -EDQUOT;
1920 	}
1921 
1922 	BT_MARK_DIRTY(rmp, ip);
1923 	/*
1924 	 * acquire a transaction lock on the new right page
1925 	 */
1926 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1927 	dtlck = (struct dt_lock *) & tlck->lock;
1928 
1929 	rp->header.flag =
1930 	    (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1931 	rp->header.self = *pxd;
1932 
1933 	/* initialize sibling pointers */
1934 	rp->header.next = 0;
1935 	rp->header.prev = 0;
1936 
1937 	/*
1938 	 *      move in-line root page into new right page extent
1939 	 */
1940 	/* linelock header + copied entries + new stbl (1st slot) in new page */
1941 	ASSERT(dtlck->index == 0);
1942 	lv = & dtlck->lv[0];
1943 	lv->offset = 0;
1944 	lv->length = 10;	/* 1 + 8 + 1 */
1945 	dtlck->index++;
1946 
1947 	n = xsize >> L2DTSLOTSIZE;
1948 	rp->header.maxslot = n;
1949 	stblsize = (n + 31) >> L2DTSLOTSIZE;
1950 
1951 	/* copy old stbl to new stbl at start of extended area */
1952 	rp->header.stblindex = DTROOTMAXSLOT;
1953 	stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1954 	memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1955 	rp->header.nextindex = sp->header.nextindex;
1956 
1957 	/* copy old data area to start of new data area */
1958 	memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1959 
1960 	/*
1961 	 * append free region of newly extended area at tail of freelist
1962 	 */
1963 	/* init free region of newly extended area */
1964 	fsi = n = DTROOTMAXSLOT + stblsize;
1965 	f = &rp->slot[fsi];
1966 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1967 		f->next = fsi;
1968 	f->next = -1;
1969 
1970 	/* append new free region at tail of old freelist */
1971 	fsi = sp->header.freelist;
1972 	if (fsi == -1)
1973 		rp->header.freelist = n;
1974 	else {
1975 		rp->header.freelist = fsi;
1976 
1977 		do {
1978 			f = &rp->slot[fsi];
1979 			fsi = f->next;
1980 		} while (fsi != -1);
1981 
1982 		f->next = n;
1983 	}
1984 
1985 	rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1986 
1987 	/*
1988 	 * Update directory index table for entries now in right page
1989 	 */
1990 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1991 		s64 lblock;
1992 		struct metapage *mp = NULL;
1993 		struct ldtentry *ldtentry;
1994 
1995 		stbl = DT_GETSTBL(rp);
1996 		for (n = 0; n < rp->header.nextindex; n++) {
1997 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1998 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1999 				     rbn, n, &mp, &lblock);
2000 		}
2001 		if (mp)
2002 			release_metapage(mp);
2003 	}
2004 	/*
2005 	 * insert the new entry into the new right/child page
2006 	 * (skip index in the new right page will not change)
2007 	 */
2008 	dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2009 
2010 	/*
2011 	 *      reset parent/root page
2012 	 *
2013 	 * set the 1st entry offset to 0, which force the left-most key
2014 	 * at any level of the tree to be less than any search key.
2015 	 *
2016 	 * The btree comparison code guarantees that the left-most key on any
2017 	 * level of the tree is never used, so it doesn't need to be filled in.
2018 	 */
2019 	BT_MARK_DIRTY(smp, ip);
2020 	/*
2021 	 * acquire a transaction lock on the root page (in-memory inode)
2022 	 */
2023 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2024 	dtlck = (struct dt_lock *) & tlck->lock;
2025 
2026 	/* linelock root */
2027 	ASSERT(dtlck->index == 0);
2028 	lv = & dtlck->lv[0];
2029 	lv->offset = 0;
2030 	lv->length = DTROOTMAXSLOT;
2031 	dtlck->index++;
2032 
2033 	/* update page header of root */
2034 	if (sp->header.flag & BT_LEAF) {
2035 		sp->header.flag &= ~BT_LEAF;
2036 		sp->header.flag |= BT_INTERNAL;
2037 	}
2038 
2039 	/* init the first entry */
2040 	s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2041 	ppxd = (pxd_t *) s;
2042 	*ppxd = *pxd;
2043 	s->next = -1;
2044 	s->namlen = 0;
2045 
2046 	stbl = sp->header.stbl;
2047 	stbl[0] = DTENTRYSTART;
2048 	sp->header.nextindex = 1;
2049 
2050 	/* init freelist */
2051 	fsi = DTENTRYSTART + 1;
2052 	f = &sp->slot[fsi];
2053 
2054 	/* init free region of remaining area */
2055 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2056 		f->next = fsi;
2057 	f->next = -1;
2058 
2059 	sp->header.freelist = DTENTRYSTART + 1;
2060 	sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2061 
2062 	*rmpp = rmp;
2063 
2064 	return 0;
2065 }
2066 
2067 
2068 /*
2069  *	dtDelete()
2070  *
2071  * function: delete the entry(s) referenced by a key.
2072  *
2073  * parameter:
2074  *
2075  * return:
2076  */
2077 int dtDelete(tid_t tid,
2078 	 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2079 {
2080 	int rc = 0;
2081 	s64 bn;
2082 	struct metapage *mp, *imp;
2083 	dtpage_t *p;
2084 	int index;
2085 	struct btstack btstack;
2086 	struct dt_lock *dtlck;
2087 	struct tlock *tlck;
2088 	struct lv *lv;
2089 	int i;
2090 	struct ldtentry *ldtentry;
2091 	u8 *stbl;
2092 	u32 table_index, next_index;
2093 	struct metapage *nmp;
2094 	dtpage_t *np;
2095 
2096 	/*
2097 	 *      search for the entry to delete:
2098 	 *
2099 	 * dtSearch() returns (leaf page pinned, index at which to delete).
2100 	 */
2101 	if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2102 		return rc;
2103 
2104 	/* retrieve search result */
2105 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2106 
2107 	/*
2108 	 * We need to find put the index of the next entry into the
2109 	 * directory index table in order to resume a readdir from this
2110 	 * entry.
2111 	 */
2112 	if (DO_INDEX(ip)) {
2113 		stbl = DT_GETSTBL(p);
2114 		ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2115 		table_index = le32_to_cpu(ldtentry->index);
2116 		if (index == (p->header.nextindex - 1)) {
2117 			/*
2118 			 * Last entry in this leaf page
2119 			 */
2120 			if ((p->header.flag & BT_ROOT)
2121 			    || (p->header.next == 0))
2122 				next_index = -1;
2123 			else {
2124 				/* Read next leaf page */
2125 				DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2126 					   nmp, PSIZE, np, rc);
2127 				if (rc)
2128 					next_index = -1;
2129 				else {
2130 					stbl = DT_GETSTBL(np);
2131 					ldtentry =
2132 					    (struct ldtentry *) & np->
2133 					    slot[stbl[0]];
2134 					next_index =
2135 					    le32_to_cpu(ldtentry->index);
2136 					DT_PUTPAGE(nmp);
2137 				}
2138 			}
2139 		} else {
2140 			ldtentry =
2141 			    (struct ldtentry *) & p->slot[stbl[index + 1]];
2142 			next_index = le32_to_cpu(ldtentry->index);
2143 		}
2144 		free_index(tid, ip, table_index, next_index);
2145 	}
2146 	/*
2147 	 * the leaf page becomes empty, delete the page
2148 	 */
2149 	if (p->header.nextindex == 1) {
2150 		/* delete empty page */
2151 		rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2152 	}
2153 	/*
2154 	 * the leaf page has other entries remaining:
2155 	 *
2156 	 * delete the entry from the leaf page.
2157 	 */
2158 	else {
2159 		BT_MARK_DIRTY(mp, ip);
2160 		/*
2161 		 * acquire a transaction lock on the leaf page
2162 		 */
2163 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2164 		dtlck = (struct dt_lock *) & tlck->lock;
2165 
2166 		/*
2167 		 * Do not assume that dtlck->index will be zero.  During a
2168 		 * rename within a directory, this transaction may have
2169 		 * modified this page already when adding the new entry.
2170 		 */
2171 
2172 		/* linelock header */
2173 		if (dtlck->index >= dtlck->maxcnt)
2174 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2175 		lv = & dtlck->lv[dtlck->index];
2176 		lv->offset = 0;
2177 		lv->length = 1;
2178 		dtlck->index++;
2179 
2180 		/* linelock stbl of non-root leaf page */
2181 		if (!(p->header.flag & BT_ROOT)) {
2182 			if (dtlck->index >= dtlck->maxcnt)
2183 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2184 			lv = & dtlck->lv[dtlck->index];
2185 			i = index >> L2DTSLOTSIZE;
2186 			lv->offset = p->header.stblindex + i;
2187 			lv->length =
2188 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2189 			    i + 1;
2190 			dtlck->index++;
2191 		}
2192 
2193 		/* free the leaf entry */
2194 		dtDeleteEntry(p, index, &dtlck);
2195 
2196 		/*
2197 		 * Update directory index table for entries moved in stbl
2198 		 */
2199 		if (DO_INDEX(ip) && index < p->header.nextindex) {
2200 			s64 lblock;
2201 
2202 			imp = NULL;
2203 			stbl = DT_GETSTBL(p);
2204 			for (i = index; i < p->header.nextindex; i++) {
2205 				ldtentry =
2206 				    (struct ldtentry *) & p->slot[stbl[i]];
2207 				modify_index(tid, ip,
2208 					     le32_to_cpu(ldtentry->index),
2209 					     bn, i, &imp, &lblock);
2210 			}
2211 			if (imp)
2212 				release_metapage(imp);
2213 		}
2214 
2215 		DT_PUTPAGE(mp);
2216 	}
2217 
2218 	return rc;
2219 }
2220 
2221 
2222 /*
2223  *	dtDeleteUp()
2224  *
2225  * function:
2226  *	free empty pages as propagating deletion up the tree
2227  *
2228  * parameter:
2229  *
2230  * return:
2231  */
2232 static int dtDeleteUp(tid_t tid, struct inode *ip,
2233 	   struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2234 {
2235 	int rc = 0;
2236 	struct metapage *mp;
2237 	dtpage_t *p;
2238 	int index, nextindex;
2239 	int xlen;
2240 	struct btframe *parent;
2241 	struct dt_lock *dtlck;
2242 	struct tlock *tlck;
2243 	struct lv *lv;
2244 	struct pxd_lock *pxdlock;
2245 	int i;
2246 
2247 	/*
2248 	 *      keep the root leaf page which has become empty
2249 	 */
2250 	if (BT_IS_ROOT(fmp)) {
2251 		/*
2252 		 * reset the root
2253 		 *
2254 		 * dtInitRoot() acquires txlock on the root
2255 		 */
2256 		dtInitRoot(tid, ip, PARENT(ip));
2257 
2258 		DT_PUTPAGE(fmp);
2259 
2260 		return 0;
2261 	}
2262 
2263 	/*
2264 	 *      free the non-root leaf page
2265 	 */
2266 	/*
2267 	 * acquire a transaction lock on the page
2268 	 *
2269 	 * write FREEXTENT|NOREDOPAGE log record
2270 	 * N.B. linelock is overlaid as freed extent descriptor, and
2271 	 * the buffer page is freed;
2272 	 */
2273 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2274 	pxdlock = (struct pxd_lock *) & tlck->lock;
2275 	pxdlock->flag = mlckFREEPXD;
2276 	pxdlock->pxd = fp->header.self;
2277 	pxdlock->index = 1;
2278 
2279 	/* update sibling pointers */
2280 	if ((rc = dtRelink(tid, ip, fp))) {
2281 		BT_PUTPAGE(fmp);
2282 		return rc;
2283 	}
2284 
2285 	xlen = lengthPXD(&fp->header.self);
2286 
2287 	/* Free quota allocation. */
2288 	DQUOT_FREE_BLOCK(ip, xlen);
2289 
2290 	/* free/invalidate its buffer page */
2291 	discard_metapage(fmp);
2292 
2293 	/*
2294 	 *      propagate page deletion up the directory tree
2295 	 *
2296 	 * If the delete from the parent page makes it empty,
2297 	 * continue all the way up the tree.
2298 	 * stop if the root page is reached (which is never deleted) or
2299 	 * if the entry deletion does not empty the page.
2300 	 */
2301 	while ((parent = BT_POP(btstack)) != NULL) {
2302 		/* pin the parent page <sp> */
2303 		DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2304 		if (rc)
2305 			return rc;
2306 
2307 		/*
2308 		 * free the extent of the child page deleted
2309 		 */
2310 		index = parent->index;
2311 
2312 		/*
2313 		 * delete the entry for the child page from parent
2314 		 */
2315 		nextindex = p->header.nextindex;
2316 
2317 		/*
2318 		 * the parent has the single entry being deleted:
2319 		 *
2320 		 * free the parent page which has become empty.
2321 		 */
2322 		if (nextindex == 1) {
2323 			/*
2324 			 * keep the root internal page which has become empty
2325 			 */
2326 			if (p->header.flag & BT_ROOT) {
2327 				/*
2328 				 * reset the root
2329 				 *
2330 				 * dtInitRoot() acquires txlock on the root
2331 				 */
2332 				dtInitRoot(tid, ip, PARENT(ip));
2333 
2334 				DT_PUTPAGE(mp);
2335 
2336 				return 0;
2337 			}
2338 			/*
2339 			 * free the parent page
2340 			 */
2341 			else {
2342 				/*
2343 				 * acquire a transaction lock on the page
2344 				 *
2345 				 * write FREEXTENT|NOREDOPAGE log record
2346 				 */
2347 				tlck =
2348 				    txMaplock(tid, ip,
2349 					      tlckDTREE | tlckFREE);
2350 				pxdlock = (struct pxd_lock *) & tlck->lock;
2351 				pxdlock->flag = mlckFREEPXD;
2352 				pxdlock->pxd = p->header.self;
2353 				pxdlock->index = 1;
2354 
2355 				/* update sibling pointers */
2356 				if ((rc = dtRelink(tid, ip, p))) {
2357 					DT_PUTPAGE(mp);
2358 					return rc;
2359 				}
2360 
2361 				xlen = lengthPXD(&p->header.self);
2362 
2363 				/* Free quota allocation */
2364 				DQUOT_FREE_BLOCK(ip, xlen);
2365 
2366 				/* free/invalidate its buffer page */
2367 				discard_metapage(mp);
2368 
2369 				/* propagate up */
2370 				continue;
2371 			}
2372 		}
2373 
2374 		/*
2375 		 * the parent has other entries remaining:
2376 		 *
2377 		 * delete the router entry from the parent page.
2378 		 */
2379 		BT_MARK_DIRTY(mp, ip);
2380 		/*
2381 		 * acquire a transaction lock on the page
2382 		 *
2383 		 * action: router entry deletion
2384 		 */
2385 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2386 		dtlck = (struct dt_lock *) & tlck->lock;
2387 
2388 		/* linelock header */
2389 		if (dtlck->index >= dtlck->maxcnt)
2390 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2391 		lv = & dtlck->lv[dtlck->index];
2392 		lv->offset = 0;
2393 		lv->length = 1;
2394 		dtlck->index++;
2395 
2396 		/* linelock stbl of non-root leaf page */
2397 		if (!(p->header.flag & BT_ROOT)) {
2398 			if (dtlck->index < dtlck->maxcnt)
2399 				lv++;
2400 			else {
2401 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2402 				lv = & dtlck->lv[0];
2403 			}
2404 			i = index >> L2DTSLOTSIZE;
2405 			lv->offset = p->header.stblindex + i;
2406 			lv->length =
2407 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2408 			    i + 1;
2409 			dtlck->index++;
2410 		}
2411 
2412 		/* free the router entry */
2413 		dtDeleteEntry(p, index, &dtlck);
2414 
2415 		/* reset key of new leftmost entry of level (for consistency) */
2416 		if (index == 0 &&
2417 		    ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2418 			dtTruncateEntry(p, 0, &dtlck);
2419 
2420 		/* unpin the parent page */
2421 		DT_PUTPAGE(mp);
2422 
2423 		/* exit propagation up */
2424 		break;
2425 	}
2426 
2427 	return 0;
2428 }
2429 
2430 #ifdef _NOTYET
2431 /*
2432  * NAME:        dtRelocate()
2433  *
2434  * FUNCTION:    relocate dtpage (internal or leaf) of directory;
2435  *              This function is mainly used by defragfs utility.
2436  */
2437 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2438 	       s64 nxaddr)
2439 {
2440 	int rc = 0;
2441 	struct metapage *mp, *pmp, *lmp, *rmp;
2442 	dtpage_t *p, *pp, *rp = 0, *lp= 0;
2443 	s64 bn;
2444 	int index;
2445 	struct btstack btstack;
2446 	pxd_t *pxd;
2447 	s64 oxaddr, nextbn, prevbn;
2448 	int xlen, xsize;
2449 	struct tlock *tlck;
2450 	struct dt_lock *dtlck;
2451 	struct pxd_lock *pxdlock;
2452 	s8 *stbl;
2453 	struct lv *lv;
2454 
2455 	oxaddr = addressPXD(opxd);
2456 	xlen = lengthPXD(opxd);
2457 
2458 	jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2459 		   (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2460 		   xlen);
2461 
2462 	/*
2463 	 *      1. get the internal parent dtpage covering
2464 	 *      router entry for the tartget page to be relocated;
2465 	 */
2466 	rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2467 	if (rc)
2468 		return rc;
2469 
2470 	/* retrieve search result */
2471 	DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2472 	jfs_info("dtRelocate: parent router entry validated.");
2473 
2474 	/*
2475 	 *      2. relocate the target dtpage
2476 	 */
2477 	/* read in the target page from src extent */
2478 	DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2479 	if (rc) {
2480 		/* release the pinned parent page */
2481 		DT_PUTPAGE(pmp);
2482 		return rc;
2483 	}
2484 
2485 	/*
2486 	 * read in sibling pages if any to update sibling pointers;
2487 	 */
2488 	rmp = NULL;
2489 	if (p->header.next) {
2490 		nextbn = le64_to_cpu(p->header.next);
2491 		DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2492 		if (rc) {
2493 			DT_PUTPAGE(mp);
2494 			DT_PUTPAGE(pmp);
2495 			return (rc);
2496 		}
2497 	}
2498 
2499 	lmp = NULL;
2500 	if (p->header.prev) {
2501 		prevbn = le64_to_cpu(p->header.prev);
2502 		DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2503 		if (rc) {
2504 			DT_PUTPAGE(mp);
2505 			DT_PUTPAGE(pmp);
2506 			if (rmp)
2507 				DT_PUTPAGE(rmp);
2508 			return (rc);
2509 		}
2510 	}
2511 
2512 	/* at this point, all xtpages to be updated are in memory */
2513 
2514 	/*
2515 	 * update sibling pointers of sibling dtpages if any;
2516 	 */
2517 	if (lmp) {
2518 		tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2519 		dtlck = (struct dt_lock *) & tlck->lock;
2520 		/* linelock header */
2521 		ASSERT(dtlck->index == 0);
2522 		lv = & dtlck->lv[0];
2523 		lv->offset = 0;
2524 		lv->length = 1;
2525 		dtlck->index++;
2526 
2527 		lp->header.next = cpu_to_le64(nxaddr);
2528 		DT_PUTPAGE(lmp);
2529 	}
2530 
2531 	if (rmp) {
2532 		tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2533 		dtlck = (struct dt_lock *) & tlck->lock;
2534 		/* linelock header */
2535 		ASSERT(dtlck->index == 0);
2536 		lv = & dtlck->lv[0];
2537 		lv->offset = 0;
2538 		lv->length = 1;
2539 		dtlck->index++;
2540 
2541 		rp->header.prev = cpu_to_le64(nxaddr);
2542 		DT_PUTPAGE(rmp);
2543 	}
2544 
2545 	/*
2546 	 * update the target dtpage to be relocated
2547 	 *
2548 	 * write LOG_REDOPAGE of LOG_NEW type for dst page
2549 	 * for the whole target page (logredo() will apply
2550 	 * after image and update bmap for allocation of the
2551 	 * dst extent), and update bmap for allocation of
2552 	 * the dst extent;
2553 	 */
2554 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2555 	dtlck = (struct dt_lock *) & tlck->lock;
2556 	/* linelock header */
2557 	ASSERT(dtlck->index == 0);
2558 	lv = & dtlck->lv[0];
2559 
2560 	/* update the self address in the dtpage header */
2561 	pxd = &p->header.self;
2562 	PXDaddress(pxd, nxaddr);
2563 
2564 	/* the dst page is the same as the src page, i.e.,
2565 	 * linelock for afterimage of the whole page;
2566 	 */
2567 	lv->offset = 0;
2568 	lv->length = p->header.maxslot;
2569 	dtlck->index++;
2570 
2571 	/* update the buffer extent descriptor of the dtpage */
2572 	xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2573 #ifdef _STILL_TO_PORT
2574 	bmSetXD(mp, nxaddr, xsize);
2575 #endif /* _STILL_TO_PORT */
2576 	/* unpin the relocated page */
2577 	DT_PUTPAGE(mp);
2578 	jfs_info("dtRelocate: target dtpage relocated.");
2579 
2580 	/* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2581 	 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2582 	 * will also force a bmap update ).
2583 	 */
2584 
2585 	/*
2586 	 *      3. acquire maplock for the source extent to be freed;
2587 	 */
2588 	/* for dtpage relocation, write a LOG_NOREDOPAGE record
2589 	 * for the source dtpage (logredo() will init NoRedoPage
2590 	 * filter and will also update bmap for free of the source
2591 	 * dtpage), and upadte bmap for free of the source dtpage;
2592 	 */
2593 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2594 	pxdlock = (struct pxd_lock *) & tlck->lock;
2595 	pxdlock->flag = mlckFREEPXD;
2596 	PXDaddress(&pxdlock->pxd, oxaddr);
2597 	PXDlength(&pxdlock->pxd, xlen);
2598 	pxdlock->index = 1;
2599 
2600 	/*
2601 	 *      4. update the parent router entry for relocation;
2602 	 *
2603 	 * acquire tlck for the parent entry covering the target dtpage;
2604 	 * write LOG_REDOPAGE to apply after image only;
2605 	 */
2606 	jfs_info("dtRelocate: update parent router entry.");
2607 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2608 	dtlck = (struct dt_lock *) & tlck->lock;
2609 	lv = & dtlck->lv[dtlck->index];
2610 
2611 	/* update the PXD with the new address */
2612 	stbl = DT_GETSTBL(pp);
2613 	pxd = (pxd_t *) & pp->slot[stbl[index]];
2614 	PXDaddress(pxd, nxaddr);
2615 	lv->offset = stbl[index];
2616 	lv->length = 1;
2617 	dtlck->index++;
2618 
2619 	/* unpin the parent dtpage */
2620 	DT_PUTPAGE(pmp);
2621 
2622 	return rc;
2623 }
2624 
2625 /*
2626  * NAME:	dtSearchNode()
2627  *
2628  * FUNCTION:	Search for an dtpage containing a specified address
2629  *              This function is mainly used by defragfs utility.
2630  *
2631  * NOTE:	Search result on stack, the found page is pinned at exit.
2632  *		The result page must be an internal dtpage.
2633  *		lmxaddr give the address of the left most page of the
2634  *		dtree level, in which the required dtpage resides.
2635  */
2636 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2637 			struct btstack * btstack)
2638 {
2639 	int rc = 0;
2640 	s64 bn;
2641 	struct metapage *mp;
2642 	dtpage_t *p;
2643 	int psize = 288;	/* initial in-line directory */
2644 	s8 *stbl;
2645 	int i;
2646 	pxd_t *pxd;
2647 	struct btframe *btsp;
2648 
2649 	BT_CLR(btstack);	/* reset stack */
2650 
2651 	/*
2652 	 *      descend tree to the level with specified leftmost page
2653 	 *
2654 	 *  by convention, root bn = 0.
2655 	 */
2656 	for (bn = 0;;) {
2657 		/* get/pin the page to search */
2658 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
2659 		if (rc)
2660 			return rc;
2661 
2662 		/* does the xaddr of leftmost page of the levevl
2663 		 * matches levevl search key ?
2664 		 */
2665 		if (p->header.flag & BT_ROOT) {
2666 			if (lmxaddr == 0)
2667 				break;
2668 		} else if (addressPXD(&p->header.self) == lmxaddr)
2669 			break;
2670 
2671 		/*
2672 		 * descend down to leftmost child page
2673 		 */
2674 		if (p->header.flag & BT_LEAF) {
2675 			DT_PUTPAGE(mp);
2676 			return -ESTALE;
2677 		}
2678 
2679 		/* get the leftmost entry */
2680 		stbl = DT_GETSTBL(p);
2681 		pxd = (pxd_t *) & p->slot[stbl[0]];
2682 
2683 		/* get the child page block address */
2684 		bn = addressPXD(pxd);
2685 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2686 		/* unpin the parent page */
2687 		DT_PUTPAGE(mp);
2688 	}
2689 
2690 	/*
2691 	 *      search each page at the current levevl
2692 	 */
2693       loop:
2694 	stbl = DT_GETSTBL(p);
2695 	for (i = 0; i < p->header.nextindex; i++) {
2696 		pxd = (pxd_t *) & p->slot[stbl[i]];
2697 
2698 		/* found the specified router entry */
2699 		if (addressPXD(pxd) == addressPXD(kpxd) &&
2700 		    lengthPXD(pxd) == lengthPXD(kpxd)) {
2701 			btsp = btstack->top;
2702 			btsp->bn = bn;
2703 			btsp->index = i;
2704 			btsp->mp = mp;
2705 
2706 			return 0;
2707 		}
2708 	}
2709 
2710 	/* get the right sibling page if any */
2711 	if (p->header.next)
2712 		bn = le64_to_cpu(p->header.next);
2713 	else {
2714 		DT_PUTPAGE(mp);
2715 		return -ESTALE;
2716 	}
2717 
2718 	/* unpin current page */
2719 	DT_PUTPAGE(mp);
2720 
2721 	/* get the right sibling page */
2722 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2723 	if (rc)
2724 		return rc;
2725 
2726 	goto loop;
2727 }
2728 #endif /* _NOTYET */
2729 
2730 /*
2731  *	dtRelink()
2732  *
2733  * function:
2734  *	link around a freed page.
2735  *
2736  * parameter:
2737  *	fp:	page to be freed
2738  *
2739  * return:
2740  */
2741 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2742 {
2743 	int rc;
2744 	struct metapage *mp;
2745 	s64 nextbn, prevbn;
2746 	struct tlock *tlck;
2747 	struct dt_lock *dtlck;
2748 	struct lv *lv;
2749 
2750 	nextbn = le64_to_cpu(p->header.next);
2751 	prevbn = le64_to_cpu(p->header.prev);
2752 
2753 	/* update prev pointer of the next page */
2754 	if (nextbn != 0) {
2755 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2756 		if (rc)
2757 			return rc;
2758 
2759 		BT_MARK_DIRTY(mp, ip);
2760 		/*
2761 		 * acquire a transaction lock on the next page
2762 		 *
2763 		 * action: update prev pointer;
2764 		 */
2765 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2766 		jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2767 			tlck, ip, mp);
2768 		dtlck = (struct dt_lock *) & tlck->lock;
2769 
2770 		/* linelock header */
2771 		if (dtlck->index >= dtlck->maxcnt)
2772 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2773 		lv = & dtlck->lv[dtlck->index];
2774 		lv->offset = 0;
2775 		lv->length = 1;
2776 		dtlck->index++;
2777 
2778 		p->header.prev = cpu_to_le64(prevbn);
2779 		DT_PUTPAGE(mp);
2780 	}
2781 
2782 	/* update next pointer of the previous page */
2783 	if (prevbn != 0) {
2784 		DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2785 		if (rc)
2786 			return rc;
2787 
2788 		BT_MARK_DIRTY(mp, ip);
2789 		/*
2790 		 * acquire a transaction lock on the prev page
2791 		 *
2792 		 * action: update next pointer;
2793 		 */
2794 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2795 		jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2796 			tlck, ip, mp);
2797 		dtlck = (struct dt_lock *) & tlck->lock;
2798 
2799 		/* linelock header */
2800 		if (dtlck->index >= dtlck->maxcnt)
2801 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2802 		lv = & dtlck->lv[dtlck->index];
2803 		lv->offset = 0;
2804 		lv->length = 1;
2805 		dtlck->index++;
2806 
2807 		p->header.next = cpu_to_le64(nextbn);
2808 		DT_PUTPAGE(mp);
2809 	}
2810 
2811 	return 0;
2812 }
2813 
2814 
2815 /*
2816  *	dtInitRoot()
2817  *
2818  * initialize directory root (inline in inode)
2819  */
2820 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2821 {
2822 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2823 	dtroot_t *p;
2824 	int fsi;
2825 	struct dtslot *f;
2826 	struct tlock *tlck;
2827 	struct dt_lock *dtlck;
2828 	struct lv *lv;
2829 	u16 xflag_save;
2830 
2831 	/*
2832 	 * If this was previously an non-empty directory, we need to remove
2833 	 * the old directory table.
2834 	 */
2835 	if (DO_INDEX(ip)) {
2836 		if (!jfs_dirtable_inline(ip)) {
2837 			struct tblock *tblk = tid_to_tblock(tid);
2838 			/*
2839 			 * We're playing games with the tid's xflag.  If
2840 			 * we're removing a regular file, the file's xtree
2841 			 * is committed with COMMIT_PMAP, but we always
2842 			 * commit the directories xtree with COMMIT_PWMAP.
2843 			 */
2844 			xflag_save = tblk->xflag;
2845 			tblk->xflag = 0;
2846 			/*
2847 			 * xtTruncate isn't guaranteed to fully truncate
2848 			 * the xtree.  The caller needs to check i_size
2849 			 * after committing the transaction to see if
2850 			 * additional truncation is needed.  The
2851 			 * COMMIT_Stale flag tells caller that we
2852 			 * initiated the truncation.
2853 			 */
2854 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2855 			set_cflag(COMMIT_Stale, ip);
2856 
2857 			tblk->xflag = xflag_save;
2858 		} else
2859 			ip->i_size = 1;
2860 
2861 		jfs_ip->next_index = 2;
2862 	} else
2863 		ip->i_size = IDATASIZE;
2864 
2865 	/*
2866 	 * acquire a transaction lock on the root
2867 	 *
2868 	 * action: directory initialization;
2869 	 */
2870 	tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2871 		      tlckDTREE | tlckENTRY | tlckBTROOT);
2872 	dtlck = (struct dt_lock *) & tlck->lock;
2873 
2874 	/* linelock root */
2875 	ASSERT(dtlck->index == 0);
2876 	lv = & dtlck->lv[0];
2877 	lv->offset = 0;
2878 	lv->length = DTROOTMAXSLOT;
2879 	dtlck->index++;
2880 
2881 	p = &jfs_ip->i_dtroot;
2882 
2883 	p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2884 
2885 	p->header.nextindex = 0;
2886 
2887 	/* init freelist */
2888 	fsi = 1;
2889 	f = &p->slot[fsi];
2890 
2891 	/* init data area of root */
2892 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2893 		f->next = fsi;
2894 	f->next = -1;
2895 
2896 	p->header.freelist = 1;
2897 	p->header.freecnt = 8;
2898 
2899 	/* init '..' entry */
2900 	p->header.idotdot = cpu_to_le32(idotdot);
2901 
2902 	return;
2903 }
2904 
2905 /*
2906  *	add_missing_indices()
2907  *
2908  * function: Fix dtree page in which one or more entries has an invalid index.
2909  *	     fsck.jfs should really fix this, but it currently does not.
2910  *	     Called from jfs_readdir when bad index is detected.
2911  */
2912 static void add_missing_indices(struct inode *inode, s64 bn)
2913 {
2914 	struct ldtentry *d;
2915 	struct dt_lock *dtlck;
2916 	int i;
2917 	uint index;
2918 	struct lv *lv;
2919 	struct metapage *mp;
2920 	dtpage_t *p;
2921 	int rc;
2922 	s8 *stbl;
2923 	tid_t tid;
2924 	struct tlock *tlck;
2925 
2926 	tid = txBegin(inode->i_sb, 0);
2927 
2928 	DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2929 
2930 	if (rc) {
2931 		printk(KERN_ERR "DT_GETPAGE failed!\n");
2932 		goto end;
2933 	}
2934 	BT_MARK_DIRTY(mp, inode);
2935 
2936 	ASSERT(p->header.flag & BT_LEAF);
2937 
2938 	tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2939 	if (BT_IS_ROOT(mp))
2940 		tlck->type |= tlckBTROOT;
2941 
2942 	dtlck = (struct dt_lock *) &tlck->lock;
2943 
2944 	stbl = DT_GETSTBL(p);
2945 	for (i = 0; i < p->header.nextindex; i++) {
2946 		d = (struct ldtentry *) &p->slot[stbl[i]];
2947 		index = le32_to_cpu(d->index);
2948 		if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2949 			d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2950 			if (dtlck->index >= dtlck->maxcnt)
2951 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2952 			lv = &dtlck->lv[dtlck->index];
2953 			lv->offset = stbl[i];
2954 			lv->length = 1;
2955 			dtlck->index++;
2956 		}
2957 	}
2958 
2959 	DT_PUTPAGE(mp);
2960 	(void) txCommit(tid, 1, &inode, 0);
2961 end:
2962 	txEnd(tid);
2963 }
2964 
2965 /*
2966  * Buffer to hold directory entry info while traversing a dtree page
2967  * before being fed to the filldir function
2968  */
2969 struct jfs_dirent {
2970 	loff_t position;
2971 	int ino;
2972 	u16 name_len;
2973 	char name[0];
2974 };
2975 
2976 /*
2977  * function to determine next variable-sized jfs_dirent in buffer
2978  */
2979 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2980 {
2981 	return (struct jfs_dirent *)
2982 		((char *)dirent +
2983 		 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2984 		   sizeof (loff_t) - 1) &
2985 		  ~(sizeof (loff_t) - 1)));
2986 }
2987 
2988 /*
2989  *	jfs_readdir()
2990  *
2991  * function: read directory entries sequentially
2992  *	from the specified entry offset
2993  *
2994  * parameter:
2995  *
2996  * return: offset = (pn, index) of start entry
2997  *	of next jfs_readdir()/dtRead()
2998  */
2999 int jfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
3000 {
3001 	struct inode *ip = filp->f_dentry->d_inode;
3002 	struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
3003 	int rc = 0;
3004 	loff_t dtpos;	/* legacy OS/2 style position */
3005 	struct dtoffset {
3006 		s16 pn;
3007 		s16 index;
3008 		s32 unused;
3009 	} *dtoffset = (struct dtoffset *) &dtpos;
3010 	s64 bn;
3011 	struct metapage *mp;
3012 	dtpage_t *p;
3013 	int index;
3014 	s8 *stbl;
3015 	struct btstack btstack;
3016 	int i, next;
3017 	struct ldtentry *d;
3018 	struct dtslot *t;
3019 	int d_namleft, len, outlen;
3020 	unsigned long dirent_buf;
3021 	char *name_ptr;
3022 	u32 dir_index;
3023 	int do_index = 0;
3024 	uint loop_count = 0;
3025 	struct jfs_dirent *jfs_dirent;
3026 	int jfs_dirents;
3027 	int overflow, fix_page, page_fixed = 0;
3028 	static int unique_pos = 2;	/* If we can't fix broken index */
3029 
3030 	if (filp->f_pos == DIREND)
3031 		return 0;
3032 
3033 	if (DO_INDEX(ip)) {
3034 		/*
3035 		 * persistent index is stored in directory entries.
3036 		 * Special cases:        0 = .
3037 		 *                       1 = ..
3038 		 *                      -1 = End of directory
3039 		 */
3040 		do_index = 1;
3041 
3042 		dir_index = (u32) filp->f_pos;
3043 
3044 		if (dir_index > 1) {
3045 			struct dir_table_slot dirtab_slot;
3046 
3047 			if (dtEmpty(ip) ||
3048 			    (dir_index >= JFS_IP(ip)->next_index)) {
3049 				/* Stale position.  Directory has shrunk */
3050 				filp->f_pos = DIREND;
3051 				return 0;
3052 			}
3053 		      repeat:
3054 			rc = read_index(ip, dir_index, &dirtab_slot);
3055 			if (rc) {
3056 				filp->f_pos = DIREND;
3057 				return rc;
3058 			}
3059 			if (dirtab_slot.flag == DIR_INDEX_FREE) {
3060 				if (loop_count++ > JFS_IP(ip)->next_index) {
3061 					jfs_err("jfs_readdir detected "
3062 						   "infinite loop!");
3063 					filp->f_pos = DIREND;
3064 					return 0;
3065 				}
3066 				dir_index = le32_to_cpu(dirtab_slot.addr2);
3067 				if (dir_index == -1) {
3068 					filp->f_pos = DIREND;
3069 					return 0;
3070 				}
3071 				goto repeat;
3072 			}
3073 			bn = addressDTS(&dirtab_slot);
3074 			index = dirtab_slot.slot;
3075 			DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3076 			if (rc) {
3077 				filp->f_pos = DIREND;
3078 				return 0;
3079 			}
3080 			if (p->header.flag & BT_INTERNAL) {
3081 				jfs_err("jfs_readdir: bad index table");
3082 				DT_PUTPAGE(mp);
3083 				filp->f_pos = -1;
3084 				return 0;
3085 			}
3086 		} else {
3087 			if (dir_index == 0) {
3088 				/*
3089 				 * self "."
3090 				 */
3091 				filp->f_pos = 0;
3092 				if (filldir(dirent, ".", 1, 0, ip->i_ino,
3093 					    DT_DIR))
3094 					return 0;
3095 			}
3096 			/*
3097 			 * parent ".."
3098 			 */
3099 			filp->f_pos = 1;
3100 			if (filldir(dirent, "..", 2, 1, PARENT(ip), DT_DIR))
3101 				return 0;
3102 
3103 			/*
3104 			 * Find first entry of left-most leaf
3105 			 */
3106 			if (dtEmpty(ip)) {
3107 				filp->f_pos = DIREND;
3108 				return 0;
3109 			}
3110 
3111 			if ((rc = dtReadFirst(ip, &btstack)))
3112 				return rc;
3113 
3114 			DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3115 		}
3116 	} else {
3117 		/*
3118 		 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3119 		 *
3120 		 * pn = index = 0:      First entry "."
3121 		 * pn = 0; index = 1:   Second entry ".."
3122 		 * pn > 0:              Real entries, pn=1 -> leftmost page
3123 		 * pn = index = -1:     No more entries
3124 		 */
3125 		dtpos = filp->f_pos;
3126 		if (dtpos == 0) {
3127 			/* build "." entry */
3128 
3129 			if (filldir(dirent, ".", 1, filp->f_pos, ip->i_ino,
3130 				    DT_DIR))
3131 				return 0;
3132 			dtoffset->index = 1;
3133 			filp->f_pos = dtpos;
3134 		}
3135 
3136 		if (dtoffset->pn == 0) {
3137 			if (dtoffset->index == 1) {
3138 				/* build ".." entry */
3139 
3140 				if (filldir(dirent, "..", 2, filp->f_pos,
3141 					    PARENT(ip), DT_DIR))
3142 					return 0;
3143 			} else {
3144 				jfs_err("jfs_readdir called with "
3145 					"invalid offset!");
3146 			}
3147 			dtoffset->pn = 1;
3148 			dtoffset->index = 0;
3149 			filp->f_pos = dtpos;
3150 		}
3151 
3152 		if (dtEmpty(ip)) {
3153 			filp->f_pos = DIREND;
3154 			return 0;
3155 		}
3156 
3157 		if ((rc = dtReadNext(ip, &filp->f_pos, &btstack))) {
3158 			jfs_err("jfs_readdir: unexpected rc = %d "
3159 				"from dtReadNext", rc);
3160 			filp->f_pos = DIREND;
3161 			return 0;
3162 		}
3163 		/* get start leaf page and index */
3164 		DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3165 
3166 		/* offset beyond directory eof ? */
3167 		if (bn < 0) {
3168 			filp->f_pos = DIREND;
3169 			return 0;
3170 		}
3171 	}
3172 
3173 	dirent_buf = __get_free_page(GFP_KERNEL);
3174 	if (dirent_buf == 0) {
3175 		DT_PUTPAGE(mp);
3176 		jfs_warn("jfs_readdir: __get_free_page failed!");
3177 		filp->f_pos = DIREND;
3178 		return -ENOMEM;
3179 	}
3180 
3181 	while (1) {
3182 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3183 		jfs_dirents = 0;
3184 		overflow = fix_page = 0;
3185 
3186 		stbl = DT_GETSTBL(p);
3187 
3188 		for (i = index; i < p->header.nextindex; i++) {
3189 			d = (struct ldtentry *) & p->slot[stbl[i]];
3190 
3191 			if (((long) jfs_dirent + d->namlen + 1) >
3192 			    (dirent_buf + PAGE_SIZE)) {
3193 				/* DBCS codepages could overrun dirent_buf */
3194 				index = i;
3195 				overflow = 1;
3196 				break;
3197 			}
3198 
3199 			d_namleft = d->namlen;
3200 			name_ptr = jfs_dirent->name;
3201 			jfs_dirent->ino = le32_to_cpu(d->inumber);
3202 
3203 			if (do_index) {
3204 				len = min(d_namleft, DTLHDRDATALEN);
3205 				jfs_dirent->position = le32_to_cpu(d->index);
3206 				/*
3207 				 * d->index should always be valid, but it
3208 				 * isn't.  fsck.jfs doesn't create the
3209 				 * directory index for the lost+found
3210 				 * directory.  Rather than let it go,
3211 				 * we can try to fix it.
3212 				 */
3213 				if ((jfs_dirent->position < 2) ||
3214 				    (jfs_dirent->position >=
3215 				     JFS_IP(ip)->next_index)) {
3216 					if (!page_fixed && !isReadOnly(ip)) {
3217 						fix_page = 1;
3218 						/*
3219 						 * setting overflow and setting
3220 						 * index to i will cause the
3221 						 * same page to be processed
3222 						 * again starting here
3223 						 */
3224 						overflow = 1;
3225 						index = i;
3226 						break;
3227 					}
3228 					jfs_dirent->position = unique_pos++;
3229 				}
3230 			} else {
3231 				jfs_dirent->position = dtpos;
3232 				len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3233 			}
3234 
3235 			/* copy the name of head/only segment */
3236 			outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3237 						   codepage);
3238 			jfs_dirent->name_len = outlen;
3239 
3240 			/* copy name in the additional segment(s) */
3241 			next = d->next;
3242 			while (next >= 0) {
3243 				t = (struct dtslot *) & p->slot[next];
3244 				name_ptr += outlen;
3245 				d_namleft -= len;
3246 				/* Sanity Check */
3247 				if (d_namleft == 0) {
3248 					jfs_error(ip->i_sb,
3249 						  "JFS:Dtree error: ino = "
3250 						  "%ld, bn=%Ld, index = %d",
3251 						  (long)ip->i_ino,
3252 						  (long long)bn,
3253 						  i);
3254 					goto skip_one;
3255 				}
3256 				len = min(d_namleft, DTSLOTDATALEN);
3257 				outlen = jfs_strfromUCS_le(name_ptr, t->name,
3258 							   len, codepage);
3259 				jfs_dirent->name_len += outlen;
3260 
3261 				next = t->next;
3262 			}
3263 
3264 			jfs_dirents++;
3265 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3266 skip_one:
3267 			if (!do_index)
3268 				dtoffset->index++;
3269 		}
3270 
3271 		if (!overflow) {
3272 			/* Point to next leaf page */
3273 			if (p->header.flag & BT_ROOT)
3274 				bn = 0;
3275 			else {
3276 				bn = le64_to_cpu(p->header.next);
3277 				index = 0;
3278 				/* update offset (pn:index) for new page */
3279 				if (!do_index) {
3280 					dtoffset->pn++;
3281 					dtoffset->index = 0;
3282 				}
3283 			}
3284 			page_fixed = 0;
3285 		}
3286 
3287 		/* unpin previous leaf page */
3288 		DT_PUTPAGE(mp);
3289 
3290 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3291 		while (jfs_dirents--) {
3292 			filp->f_pos = jfs_dirent->position;
3293 			if (filldir(dirent, jfs_dirent->name,
3294 				    jfs_dirent->name_len, filp->f_pos,
3295 				    jfs_dirent->ino, DT_UNKNOWN))
3296 				goto out;
3297 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3298 		}
3299 
3300 		if (fix_page) {
3301 			add_missing_indices(ip, bn);
3302 			page_fixed = 1;
3303 		}
3304 
3305 		if (!overflow && (bn == 0)) {
3306 			filp->f_pos = DIREND;
3307 			break;
3308 		}
3309 
3310 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3311 		if (rc) {
3312 			free_page(dirent_buf);
3313 			return rc;
3314 		}
3315 	}
3316 
3317       out:
3318 	free_page(dirent_buf);
3319 
3320 	return rc;
3321 }
3322 
3323 
3324 /*
3325  *	dtReadFirst()
3326  *
3327  * function: get the leftmost page of the directory
3328  */
3329 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3330 {
3331 	int rc = 0;
3332 	s64 bn;
3333 	int psize = 288;	/* initial in-line directory */
3334 	struct metapage *mp;
3335 	dtpage_t *p;
3336 	s8 *stbl;
3337 	struct btframe *btsp;
3338 	pxd_t *xd;
3339 
3340 	BT_CLR(btstack);	/* reset stack */
3341 
3342 	/*
3343 	 *      descend leftmost path of the tree
3344 	 *
3345 	 * by convention, root bn = 0.
3346 	 */
3347 	for (bn = 0;;) {
3348 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
3349 		if (rc)
3350 			return rc;
3351 
3352 		/*
3353 		 * leftmost leaf page
3354 		 */
3355 		if (p->header.flag & BT_LEAF) {
3356 			/* return leftmost entry */
3357 			btsp = btstack->top;
3358 			btsp->bn = bn;
3359 			btsp->index = 0;
3360 			btsp->mp = mp;
3361 
3362 			return 0;
3363 		}
3364 
3365 		/*
3366 		 * descend down to leftmost child page
3367 		 */
3368 		if (BT_STACK_FULL(btstack)) {
3369 			DT_PUTPAGE(mp);
3370 			jfs_error(ip->i_sb, "dtReadFirst: btstack overrun");
3371 			BT_STACK_DUMP(btstack);
3372 			return -EIO;
3373 		}
3374 		/* push (bn, index) of the parent page/entry */
3375 		BT_PUSH(btstack, bn, 0);
3376 
3377 		/* get the leftmost entry */
3378 		stbl = DT_GETSTBL(p);
3379 		xd = (pxd_t *) & p->slot[stbl[0]];
3380 
3381 		/* get the child page block address */
3382 		bn = addressPXD(xd);
3383 		psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3384 
3385 		/* unpin the parent page */
3386 		DT_PUTPAGE(mp);
3387 	}
3388 }
3389 
3390 
3391 /*
3392  *	dtReadNext()
3393  *
3394  * function: get the page of the specified offset (pn:index)
3395  *
3396  * return: if (offset > eof), bn = -1;
3397  *
3398  * note: if index > nextindex of the target leaf page,
3399  * start with 1st entry of next leaf page;
3400  */
3401 static int dtReadNext(struct inode *ip, loff_t * offset,
3402 		      struct btstack * btstack)
3403 {
3404 	int rc = 0;
3405 	struct dtoffset {
3406 		s16 pn;
3407 		s16 index;
3408 		s32 unused;
3409 	} *dtoffset = (struct dtoffset *) offset;
3410 	s64 bn;
3411 	struct metapage *mp;
3412 	dtpage_t *p;
3413 	int index;
3414 	int pn;
3415 	s8 *stbl;
3416 	struct btframe *btsp, *parent;
3417 	pxd_t *xd;
3418 
3419 	/*
3420 	 * get leftmost leaf page pinned
3421 	 */
3422 	if ((rc = dtReadFirst(ip, btstack)))
3423 		return rc;
3424 
3425 	/* get leaf page */
3426 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3427 
3428 	/* get the start offset (pn:index) */
3429 	pn = dtoffset->pn - 1;	/* Now pn = 0 represents leftmost leaf */
3430 	index = dtoffset->index;
3431 
3432 	/* start at leftmost page ? */
3433 	if (pn == 0) {
3434 		/* offset beyond eof ? */
3435 		if (index < p->header.nextindex)
3436 			goto out;
3437 
3438 		if (p->header.flag & BT_ROOT) {
3439 			bn = -1;
3440 			goto out;
3441 		}
3442 
3443 		/* start with 1st entry of next leaf page */
3444 		dtoffset->pn++;
3445 		dtoffset->index = index = 0;
3446 		goto a;
3447 	}
3448 
3449 	/* start at non-leftmost page: scan parent pages for large pn */
3450 	if (p->header.flag & BT_ROOT) {
3451 		bn = -1;
3452 		goto out;
3453 	}
3454 
3455 	/* start after next leaf page ? */
3456 	if (pn > 1)
3457 		goto b;
3458 
3459 	/* get leaf page pn = 1 */
3460       a:
3461 	bn = le64_to_cpu(p->header.next);
3462 
3463 	/* unpin leaf page */
3464 	DT_PUTPAGE(mp);
3465 
3466 	/* offset beyond eof ? */
3467 	if (bn == 0) {
3468 		bn = -1;
3469 		goto out;
3470 	}
3471 
3472 	goto c;
3473 
3474 	/*
3475 	 * scan last internal page level to get target leaf page
3476 	 */
3477       b:
3478 	/* unpin leftmost leaf page */
3479 	DT_PUTPAGE(mp);
3480 
3481 	/* get left most parent page */
3482 	btsp = btstack->top;
3483 	parent = btsp - 1;
3484 	bn = parent->bn;
3485 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3486 	if (rc)
3487 		return rc;
3488 
3489 	/* scan parent pages at last internal page level */
3490 	while (pn >= p->header.nextindex) {
3491 		pn -= p->header.nextindex;
3492 
3493 		/* get next parent page address */
3494 		bn = le64_to_cpu(p->header.next);
3495 
3496 		/* unpin current parent page */
3497 		DT_PUTPAGE(mp);
3498 
3499 		/* offset beyond eof ? */
3500 		if (bn == 0) {
3501 			bn = -1;
3502 			goto out;
3503 		}
3504 
3505 		/* get next parent page */
3506 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3507 		if (rc)
3508 			return rc;
3509 
3510 		/* update parent page stack frame */
3511 		parent->bn = bn;
3512 	}
3513 
3514 	/* get leaf page address */
3515 	stbl = DT_GETSTBL(p);
3516 	xd = (pxd_t *) & p->slot[stbl[pn]];
3517 	bn = addressPXD(xd);
3518 
3519 	/* unpin parent page */
3520 	DT_PUTPAGE(mp);
3521 
3522 	/*
3523 	 * get target leaf page
3524 	 */
3525       c:
3526 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3527 	if (rc)
3528 		return rc;
3529 
3530 	/*
3531 	 * leaf page has been completed:
3532 	 * start with 1st entry of next leaf page
3533 	 */
3534 	if (index >= p->header.nextindex) {
3535 		bn = le64_to_cpu(p->header.next);
3536 
3537 		/* unpin leaf page */
3538 		DT_PUTPAGE(mp);
3539 
3540 		/* offset beyond eof ? */
3541 		if (bn == 0) {
3542 			bn = -1;
3543 			goto out;
3544 		}
3545 
3546 		/* get next leaf page */
3547 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3548 		if (rc)
3549 			return rc;
3550 
3551 		/* start with 1st entry of next leaf page */
3552 		dtoffset->pn++;
3553 		dtoffset->index = 0;
3554 	}
3555 
3556       out:
3557 	/* return target leaf page pinned */
3558 	btsp = btstack->top;
3559 	btsp->bn = bn;
3560 	btsp->index = dtoffset->index;
3561 	btsp->mp = mp;
3562 
3563 	return 0;
3564 }
3565 
3566 
3567 /*
3568  *	dtCompare()
3569  *
3570  * function: compare search key with an internal entry
3571  *
3572  * return:
3573  *	< 0 if k is < record
3574  *	= 0 if k is = record
3575  *	> 0 if k is > record
3576  */
3577 static int dtCompare(struct component_name * key,	/* search key */
3578 		     dtpage_t * p,	/* directory page */
3579 		     int si)
3580 {				/* entry slot index */
3581 	wchar_t *kname;
3582 	__le16 *name;
3583 	int klen, namlen, len, rc;
3584 	struct idtentry *ih;
3585 	struct dtslot *t;
3586 
3587 	/*
3588 	 * force the left-most key on internal pages, at any level of
3589 	 * the tree, to be less than any search key.
3590 	 * this obviates having to update the leftmost key on an internal
3591 	 * page when the user inserts a new key in the tree smaller than
3592 	 * anything that has been stored.
3593 	 *
3594 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3595 	 * at any internal page at any level of the tree,
3596 	 * it descends to child of the entry anyway -
3597 	 * ? make the entry as min size dummy entry)
3598 	 *
3599 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3600 	 * return (1);
3601 	 */
3602 
3603 	kname = key->name;
3604 	klen = key->namlen;
3605 
3606 	ih = (struct idtentry *) & p->slot[si];
3607 	si = ih->next;
3608 	name = ih->name;
3609 	namlen = ih->namlen;
3610 	len = min(namlen, DTIHDRDATALEN);
3611 
3612 	/* compare with head/only segment */
3613 	len = min(klen, len);
3614 	if ((rc = UniStrncmp_le(kname, name, len)))
3615 		return rc;
3616 
3617 	klen -= len;
3618 	namlen -= len;
3619 
3620 	/* compare with additional segment(s) */
3621 	kname += len;
3622 	while (klen > 0 && namlen > 0) {
3623 		/* compare with next name segment */
3624 		t = (struct dtslot *) & p->slot[si];
3625 		len = min(namlen, DTSLOTDATALEN);
3626 		len = min(klen, len);
3627 		name = t->name;
3628 		if ((rc = UniStrncmp_le(kname, name, len)))
3629 			return rc;
3630 
3631 		klen -= len;
3632 		namlen -= len;
3633 		kname += len;
3634 		si = t->next;
3635 	}
3636 
3637 	return (klen - namlen);
3638 }
3639 
3640 
3641 
3642 
3643 /*
3644  *	ciCompare()
3645  *
3646  * function: compare search key with an (leaf/internal) entry
3647  *
3648  * return:
3649  *	< 0 if k is < record
3650  *	= 0 if k is = record
3651  *	> 0 if k is > record
3652  */
3653 static int ciCompare(struct component_name * key,	/* search key */
3654 		     dtpage_t * p,	/* directory page */
3655 		     int si,	/* entry slot index */
3656 		     int flag)
3657 {
3658 	wchar_t *kname, x;
3659 	__le16 *name;
3660 	int klen, namlen, len, rc;
3661 	struct ldtentry *lh;
3662 	struct idtentry *ih;
3663 	struct dtslot *t;
3664 	int i;
3665 
3666 	/*
3667 	 * force the left-most key on internal pages, at any level of
3668 	 * the tree, to be less than any search key.
3669 	 * this obviates having to update the leftmost key on an internal
3670 	 * page when the user inserts a new key in the tree smaller than
3671 	 * anything that has been stored.
3672 	 *
3673 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3674 	 * at any internal page at any level of the tree,
3675 	 * it descends to child of the entry anyway -
3676 	 * ? make the entry as min size dummy entry)
3677 	 *
3678 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3679 	 * return (1);
3680 	 */
3681 
3682 	kname = key->name;
3683 	klen = key->namlen;
3684 
3685 	/*
3686 	 * leaf page entry
3687 	 */
3688 	if (p->header.flag & BT_LEAF) {
3689 		lh = (struct ldtentry *) & p->slot[si];
3690 		si = lh->next;
3691 		name = lh->name;
3692 		namlen = lh->namlen;
3693 		if (flag & JFS_DIR_INDEX)
3694 			len = min(namlen, DTLHDRDATALEN);
3695 		else
3696 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3697 	}
3698 	/*
3699 	 * internal page entry
3700 	 */
3701 	else {
3702 		ih = (struct idtentry *) & p->slot[si];
3703 		si = ih->next;
3704 		name = ih->name;
3705 		namlen = ih->namlen;
3706 		len = min(namlen, DTIHDRDATALEN);
3707 	}
3708 
3709 	/* compare with head/only segment */
3710 	len = min(klen, len);
3711 	for (i = 0; i < len; i++, kname++, name++) {
3712 		/* only uppercase if case-insensitive support is on */
3713 		if ((flag & JFS_OS2) == JFS_OS2)
3714 			x = UniToupper(le16_to_cpu(*name));
3715 		else
3716 			x = le16_to_cpu(*name);
3717 		if ((rc = *kname - x))
3718 			return rc;
3719 	}
3720 
3721 	klen -= len;
3722 	namlen -= len;
3723 
3724 	/* compare with additional segment(s) */
3725 	while (klen > 0 && namlen > 0) {
3726 		/* compare with next name segment */
3727 		t = (struct dtslot *) & p->slot[si];
3728 		len = min(namlen, DTSLOTDATALEN);
3729 		len = min(klen, len);
3730 		name = t->name;
3731 		for (i = 0; i < len; i++, kname++, name++) {
3732 			/* only uppercase if case-insensitive support is on */
3733 			if ((flag & JFS_OS2) == JFS_OS2)
3734 				x = UniToupper(le16_to_cpu(*name));
3735 			else
3736 				x = le16_to_cpu(*name);
3737 
3738 			if ((rc = *kname - x))
3739 				return rc;
3740 		}
3741 
3742 		klen -= len;
3743 		namlen -= len;
3744 		si = t->next;
3745 	}
3746 
3747 	return (klen - namlen);
3748 }
3749 
3750 
3751 /*
3752  *	ciGetLeafPrefixKey()
3753  *
3754  * function: compute prefix of suffix compression
3755  *	     from two adjacent leaf entries
3756  *	     across page boundary
3757  *
3758  * return: non-zero on error
3759  *
3760  */
3761 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3762 			       int ri, struct component_name * key, int flag)
3763 {
3764 	int klen, namlen;
3765 	wchar_t *pl, *pr, *kname;
3766 	struct component_name lkey;
3767 	struct component_name rkey;
3768 
3769 	lkey.name = (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3770 					GFP_KERNEL);
3771 	if (lkey.name == NULL)
3772 		return -ENOSPC;
3773 
3774 	rkey.name = (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3775 					GFP_KERNEL);
3776 	if (rkey.name == NULL) {
3777 		kfree(lkey.name);
3778 		return -ENOSPC;
3779 	}
3780 
3781 	/* get left and right key */
3782 	dtGetKey(lp, li, &lkey, flag);
3783 	lkey.name[lkey.namlen] = 0;
3784 
3785 	if ((flag & JFS_OS2) == JFS_OS2)
3786 		ciToUpper(&lkey);
3787 
3788 	dtGetKey(rp, ri, &rkey, flag);
3789 	rkey.name[rkey.namlen] = 0;
3790 
3791 
3792 	if ((flag & JFS_OS2) == JFS_OS2)
3793 		ciToUpper(&rkey);
3794 
3795 	/* compute prefix */
3796 	klen = 0;
3797 	kname = key->name;
3798 	namlen = min(lkey.namlen, rkey.namlen);
3799 	for (pl = lkey.name, pr = rkey.name;
3800 	     namlen; pl++, pr++, namlen--, klen++, kname++) {
3801 		*kname = *pr;
3802 		if (*pl != *pr) {
3803 			key->namlen = klen + 1;
3804 			goto free_names;
3805 		}
3806 	}
3807 
3808 	/* l->namlen <= r->namlen since l <= r */
3809 	if (lkey.namlen < rkey.namlen) {
3810 		*kname = *pr;
3811 		key->namlen = klen + 1;
3812 	} else			/* l->namelen == r->namelen */
3813 		key->namlen = klen;
3814 
3815 free_names:
3816 	kfree(lkey.name);
3817 	kfree(rkey.name);
3818 	return 0;
3819 }
3820 
3821 
3822 
3823 /*
3824  *	dtGetKey()
3825  *
3826  * function: get key of the entry
3827  */
3828 static void dtGetKey(dtpage_t * p, int i,	/* entry index */
3829 		     struct component_name * key, int flag)
3830 {
3831 	int si;
3832 	s8 *stbl;
3833 	struct ldtentry *lh;
3834 	struct idtentry *ih;
3835 	struct dtslot *t;
3836 	int namlen, len;
3837 	wchar_t *kname;
3838 	__le16 *name;
3839 
3840 	/* get entry */
3841 	stbl = DT_GETSTBL(p);
3842 	si = stbl[i];
3843 	if (p->header.flag & BT_LEAF) {
3844 		lh = (struct ldtentry *) & p->slot[si];
3845 		si = lh->next;
3846 		namlen = lh->namlen;
3847 		name = lh->name;
3848 		if (flag & JFS_DIR_INDEX)
3849 			len = min(namlen, DTLHDRDATALEN);
3850 		else
3851 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3852 	} else {
3853 		ih = (struct idtentry *) & p->slot[si];
3854 		si = ih->next;
3855 		namlen = ih->namlen;
3856 		name = ih->name;
3857 		len = min(namlen, DTIHDRDATALEN);
3858 	}
3859 
3860 	key->namlen = namlen;
3861 	kname = key->name;
3862 
3863 	/*
3864 	 * move head/only segment
3865 	 */
3866 	UniStrncpy_from_le(kname, name, len);
3867 
3868 	/*
3869 	 * move additional segment(s)
3870 	 */
3871 	while (si >= 0) {
3872 		/* get next segment */
3873 		t = &p->slot[si];
3874 		kname += len;
3875 		namlen -= len;
3876 		len = min(namlen, DTSLOTDATALEN);
3877 		UniStrncpy_from_le(kname, t->name, len);
3878 
3879 		si = t->next;
3880 	}
3881 }
3882 
3883 
3884 /*
3885  *	dtInsertEntry()
3886  *
3887  * function: allocate free slot(s) and
3888  *	     write a leaf/internal entry
3889  *
3890  * return: entry slot index
3891  */
3892 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3893 			  ddata_t * data, struct dt_lock ** dtlock)
3894 {
3895 	struct dtslot *h, *t;
3896 	struct ldtentry *lh = NULL;
3897 	struct idtentry *ih = NULL;
3898 	int hsi, fsi, klen, len, nextindex;
3899 	wchar_t *kname;
3900 	__le16 *name;
3901 	s8 *stbl;
3902 	pxd_t *xd;
3903 	struct dt_lock *dtlck = *dtlock;
3904 	struct lv *lv;
3905 	int xsi, n;
3906 	s64 bn = 0;
3907 	struct metapage *mp = NULL;
3908 
3909 	klen = key->namlen;
3910 	kname = key->name;
3911 
3912 	/* allocate a free slot */
3913 	hsi = fsi = p->header.freelist;
3914 	h = &p->slot[fsi];
3915 	p->header.freelist = h->next;
3916 	--p->header.freecnt;
3917 
3918 	/* open new linelock */
3919 	if (dtlck->index >= dtlck->maxcnt)
3920 		dtlck = (struct dt_lock *) txLinelock(dtlck);
3921 
3922 	lv = & dtlck->lv[dtlck->index];
3923 	lv->offset = hsi;
3924 
3925 	/* write head/only segment */
3926 	if (p->header.flag & BT_LEAF) {
3927 		lh = (struct ldtentry *) h;
3928 		lh->next = h->next;
3929 		lh->inumber = cpu_to_le32(data->leaf.ino);
3930 		lh->namlen = klen;
3931 		name = lh->name;
3932 		if (data->leaf.ip) {
3933 			len = min(klen, DTLHDRDATALEN);
3934 			if (!(p->header.flag & BT_ROOT))
3935 				bn = addressPXD(&p->header.self);
3936 			lh->index = cpu_to_le32(add_index(data->leaf.tid,
3937 							  data->leaf.ip,
3938 							  bn, index));
3939 		} else
3940 			len = min(klen, DTLHDRDATALEN_LEGACY);
3941 	} else {
3942 		ih = (struct idtentry *) h;
3943 		ih->next = h->next;
3944 		xd = (pxd_t *) ih;
3945 		*xd = data->xd;
3946 		ih->namlen = klen;
3947 		name = ih->name;
3948 		len = min(klen, DTIHDRDATALEN);
3949 	}
3950 
3951 	UniStrncpy_to_le(name, kname, len);
3952 
3953 	n = 1;
3954 	xsi = hsi;
3955 
3956 	/* write additional segment(s) */
3957 	t = h;
3958 	klen -= len;
3959 	while (klen) {
3960 		/* get free slot */
3961 		fsi = p->header.freelist;
3962 		t = &p->slot[fsi];
3963 		p->header.freelist = t->next;
3964 		--p->header.freecnt;
3965 
3966 		/* is next slot contiguous ? */
3967 		if (fsi != xsi + 1) {
3968 			/* close current linelock */
3969 			lv->length = n;
3970 			dtlck->index++;
3971 
3972 			/* open new linelock */
3973 			if (dtlck->index < dtlck->maxcnt)
3974 				lv++;
3975 			else {
3976 				dtlck = (struct dt_lock *) txLinelock(dtlck);
3977 				lv = & dtlck->lv[0];
3978 			}
3979 
3980 			lv->offset = fsi;
3981 			n = 0;
3982 		}
3983 
3984 		kname += len;
3985 		len = min(klen, DTSLOTDATALEN);
3986 		UniStrncpy_to_le(t->name, kname, len);
3987 
3988 		n++;
3989 		xsi = fsi;
3990 		klen -= len;
3991 	}
3992 
3993 	/* close current linelock */
3994 	lv->length = n;
3995 	dtlck->index++;
3996 
3997 	*dtlock = dtlck;
3998 
3999 	/* terminate last/only segment */
4000 	if (h == t) {
4001 		/* single segment entry */
4002 		if (p->header.flag & BT_LEAF)
4003 			lh->next = -1;
4004 		else
4005 			ih->next = -1;
4006 	} else
4007 		/* multi-segment entry */
4008 		t->next = -1;
4009 
4010 	/* if insert into middle, shift right succeeding entries in stbl */
4011 	stbl = DT_GETSTBL(p);
4012 	nextindex = p->header.nextindex;
4013 	if (index < nextindex) {
4014 		memmove(stbl + index + 1, stbl + index, nextindex - index);
4015 
4016 		if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
4017 			s64 lblock;
4018 
4019 			/*
4020 			 * Need to update slot number for entries that moved
4021 			 * in the stbl
4022 			 */
4023 			mp = NULL;
4024 			for (n = index + 1; n <= nextindex; n++) {
4025 				lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4026 				modify_index(data->leaf.tid, data->leaf.ip,
4027 					     le32_to_cpu(lh->index), bn, n,
4028 					     &mp, &lblock);
4029 			}
4030 			if (mp)
4031 				release_metapage(mp);
4032 		}
4033 	}
4034 
4035 	stbl[index] = hsi;
4036 
4037 	/* advance next available entry index of stbl */
4038 	++p->header.nextindex;
4039 }
4040 
4041 
4042 /*
4043  *	dtMoveEntry()
4044  *
4045  * function: move entries from split/left page to new/right page
4046  *
4047  *	nextindex of dst page and freelist/freecnt of both pages
4048  *	are updated.
4049  */
4050 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4051 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4052 			int do_index)
4053 {
4054 	int ssi, next;		/* src slot index */
4055 	int di;			/* dst entry index */
4056 	int dsi;		/* dst slot index */
4057 	s8 *sstbl, *dstbl;	/* sorted entry table */
4058 	int snamlen, len;
4059 	struct ldtentry *slh, *dlh = NULL;
4060 	struct idtentry *sih, *dih = NULL;
4061 	struct dtslot *h, *s, *d;
4062 	struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4063 	struct lv *slv, *dlv;
4064 	int xssi, ns, nd;
4065 	int sfsi;
4066 
4067 	sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4068 	dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4069 
4070 	dsi = dp->header.freelist;	/* first (whole page) free slot */
4071 	sfsi = sp->header.freelist;
4072 
4073 	/* linelock destination entry slot */
4074 	dlv = & ddtlck->lv[ddtlck->index];
4075 	dlv->offset = dsi;
4076 
4077 	/* linelock source entry slot */
4078 	slv = & sdtlck->lv[sdtlck->index];
4079 	slv->offset = sstbl[si];
4080 	xssi = slv->offset - 1;
4081 
4082 	/*
4083 	 * move entries
4084 	 */
4085 	ns = nd = 0;
4086 	for (di = 0; si < sp->header.nextindex; si++, di++) {
4087 		ssi = sstbl[si];
4088 		dstbl[di] = dsi;
4089 
4090 		/* is next slot contiguous ? */
4091 		if (ssi != xssi + 1) {
4092 			/* close current linelock */
4093 			slv->length = ns;
4094 			sdtlck->index++;
4095 
4096 			/* open new linelock */
4097 			if (sdtlck->index < sdtlck->maxcnt)
4098 				slv++;
4099 			else {
4100 				sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4101 				slv = & sdtlck->lv[0];
4102 			}
4103 
4104 			slv->offset = ssi;
4105 			ns = 0;
4106 		}
4107 
4108 		/*
4109 		 * move head/only segment of an entry
4110 		 */
4111 		/* get dst slot */
4112 		h = d = &dp->slot[dsi];
4113 
4114 		/* get src slot and move */
4115 		s = &sp->slot[ssi];
4116 		if (sp->header.flag & BT_LEAF) {
4117 			/* get source entry */
4118 			slh = (struct ldtentry *) s;
4119 			dlh = (struct ldtentry *) h;
4120 			snamlen = slh->namlen;
4121 
4122 			if (do_index) {
4123 				len = min(snamlen, DTLHDRDATALEN);
4124 				dlh->index = slh->index; /* little-endian */
4125 			} else
4126 				len = min(snamlen, DTLHDRDATALEN_LEGACY);
4127 
4128 			memcpy(dlh, slh, 6 + len * 2);
4129 
4130 			next = slh->next;
4131 
4132 			/* update dst head/only segment next field */
4133 			dsi++;
4134 			dlh->next = dsi;
4135 		} else {
4136 			sih = (struct idtentry *) s;
4137 			snamlen = sih->namlen;
4138 
4139 			len = min(snamlen, DTIHDRDATALEN);
4140 			dih = (struct idtentry *) h;
4141 			memcpy(dih, sih, 10 + len * 2);
4142 			next = sih->next;
4143 
4144 			dsi++;
4145 			dih->next = dsi;
4146 		}
4147 
4148 		/* free src head/only segment */
4149 		s->next = sfsi;
4150 		s->cnt = 1;
4151 		sfsi = ssi;
4152 
4153 		ns++;
4154 		nd++;
4155 		xssi = ssi;
4156 
4157 		/*
4158 		 * move additional segment(s) of the entry
4159 		 */
4160 		snamlen -= len;
4161 		while ((ssi = next) >= 0) {
4162 			/* is next slot contiguous ? */
4163 			if (ssi != xssi + 1) {
4164 				/* close current linelock */
4165 				slv->length = ns;
4166 				sdtlck->index++;
4167 
4168 				/* open new linelock */
4169 				if (sdtlck->index < sdtlck->maxcnt)
4170 					slv++;
4171 				else {
4172 					sdtlck =
4173 					    (struct dt_lock *)
4174 					    txLinelock(sdtlck);
4175 					slv = & sdtlck->lv[0];
4176 				}
4177 
4178 				slv->offset = ssi;
4179 				ns = 0;
4180 			}
4181 
4182 			/* get next source segment */
4183 			s = &sp->slot[ssi];
4184 
4185 			/* get next destination free slot */
4186 			d++;
4187 
4188 			len = min(snamlen, DTSLOTDATALEN);
4189 			UniStrncpy_le(d->name, s->name, len);
4190 
4191 			ns++;
4192 			nd++;
4193 			xssi = ssi;
4194 
4195 			dsi++;
4196 			d->next = dsi;
4197 
4198 			/* free source segment */
4199 			next = s->next;
4200 			s->next = sfsi;
4201 			s->cnt = 1;
4202 			sfsi = ssi;
4203 
4204 			snamlen -= len;
4205 		}		/* end while */
4206 
4207 		/* terminate dst last/only segment */
4208 		if (h == d) {
4209 			/* single segment entry */
4210 			if (dp->header.flag & BT_LEAF)
4211 				dlh->next = -1;
4212 			else
4213 				dih->next = -1;
4214 		} else
4215 			/* multi-segment entry */
4216 			d->next = -1;
4217 	}			/* end for */
4218 
4219 	/* close current linelock */
4220 	slv->length = ns;
4221 	sdtlck->index++;
4222 	*sdtlock = sdtlck;
4223 
4224 	dlv->length = nd;
4225 	ddtlck->index++;
4226 	*ddtlock = ddtlck;
4227 
4228 	/* update source header */
4229 	sp->header.freelist = sfsi;
4230 	sp->header.freecnt += nd;
4231 
4232 	/* update destination header */
4233 	dp->header.nextindex = di;
4234 
4235 	dp->header.freelist = dsi;
4236 	dp->header.freecnt -= nd;
4237 }
4238 
4239 
4240 /*
4241  *	dtDeleteEntry()
4242  *
4243  * function: free a (leaf/internal) entry
4244  *
4245  * log freelist header, stbl, and each segment slot of entry
4246  * (even though last/only segment next field is modified,
4247  * physical image logging requires all segment slots of
4248  * the entry logged to avoid applying previous updates
4249  * to the same slots)
4250  */
4251 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4252 {
4253 	int fsi;		/* free entry slot index */
4254 	s8 *stbl;
4255 	struct dtslot *t;
4256 	int si, freecnt;
4257 	struct dt_lock *dtlck = *dtlock;
4258 	struct lv *lv;
4259 	int xsi, n;
4260 
4261 	/* get free entry slot index */
4262 	stbl = DT_GETSTBL(p);
4263 	fsi = stbl[fi];
4264 
4265 	/* open new linelock */
4266 	if (dtlck->index >= dtlck->maxcnt)
4267 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4268 	lv = & dtlck->lv[dtlck->index];
4269 
4270 	lv->offset = fsi;
4271 
4272 	/* get the head/only segment */
4273 	t = &p->slot[fsi];
4274 	if (p->header.flag & BT_LEAF)
4275 		si = ((struct ldtentry *) t)->next;
4276 	else
4277 		si = ((struct idtentry *) t)->next;
4278 	t->next = si;
4279 	t->cnt = 1;
4280 
4281 	n = freecnt = 1;
4282 	xsi = fsi;
4283 
4284 	/* find the last/only segment */
4285 	while (si >= 0) {
4286 		/* is next slot contiguous ? */
4287 		if (si != xsi + 1) {
4288 			/* close current linelock */
4289 			lv->length = n;
4290 			dtlck->index++;
4291 
4292 			/* open new linelock */
4293 			if (dtlck->index < dtlck->maxcnt)
4294 				lv++;
4295 			else {
4296 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4297 				lv = & dtlck->lv[0];
4298 			}
4299 
4300 			lv->offset = si;
4301 			n = 0;
4302 		}
4303 
4304 		n++;
4305 		xsi = si;
4306 		freecnt++;
4307 
4308 		t = &p->slot[si];
4309 		t->cnt = 1;
4310 		si = t->next;
4311 	}
4312 
4313 	/* close current linelock */
4314 	lv->length = n;
4315 	dtlck->index++;
4316 
4317 	*dtlock = dtlck;
4318 
4319 	/* update freelist */
4320 	t->next = p->header.freelist;
4321 	p->header.freelist = fsi;
4322 	p->header.freecnt += freecnt;
4323 
4324 	/* if delete from middle,
4325 	 * shift left the succedding entries in the stbl
4326 	 */
4327 	si = p->header.nextindex;
4328 	if (fi < si - 1)
4329 		memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4330 
4331 	p->header.nextindex--;
4332 }
4333 
4334 
4335 /*
4336  *	dtTruncateEntry()
4337  *
4338  * function: truncate a (leaf/internal) entry
4339  *
4340  * log freelist header, stbl, and each segment slot of entry
4341  * (even though last/only segment next field is modified,
4342  * physical image logging requires all segment slots of
4343  * the entry logged to avoid applying previous updates
4344  * to the same slots)
4345  */
4346 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4347 {
4348 	int tsi;		/* truncate entry slot index */
4349 	s8 *stbl;
4350 	struct dtslot *t;
4351 	int si, freecnt;
4352 	struct dt_lock *dtlck = *dtlock;
4353 	struct lv *lv;
4354 	int fsi, xsi, n;
4355 
4356 	/* get free entry slot index */
4357 	stbl = DT_GETSTBL(p);
4358 	tsi = stbl[ti];
4359 
4360 	/* open new linelock */
4361 	if (dtlck->index >= dtlck->maxcnt)
4362 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4363 	lv = & dtlck->lv[dtlck->index];
4364 
4365 	lv->offset = tsi;
4366 
4367 	/* get the head/only segment */
4368 	t = &p->slot[tsi];
4369 	ASSERT(p->header.flag & BT_INTERNAL);
4370 	((struct idtentry *) t)->namlen = 0;
4371 	si = ((struct idtentry *) t)->next;
4372 	((struct idtentry *) t)->next = -1;
4373 
4374 	n = 1;
4375 	freecnt = 0;
4376 	fsi = si;
4377 	xsi = tsi;
4378 
4379 	/* find the last/only segment */
4380 	while (si >= 0) {
4381 		/* is next slot contiguous ? */
4382 		if (si != xsi + 1) {
4383 			/* close current linelock */
4384 			lv->length = n;
4385 			dtlck->index++;
4386 
4387 			/* open new linelock */
4388 			if (dtlck->index < dtlck->maxcnt)
4389 				lv++;
4390 			else {
4391 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4392 				lv = & dtlck->lv[0];
4393 			}
4394 
4395 			lv->offset = si;
4396 			n = 0;
4397 		}
4398 
4399 		n++;
4400 		xsi = si;
4401 		freecnt++;
4402 
4403 		t = &p->slot[si];
4404 		t->cnt = 1;
4405 		si = t->next;
4406 	}
4407 
4408 	/* close current linelock */
4409 	lv->length = n;
4410 	dtlck->index++;
4411 
4412 	*dtlock = dtlck;
4413 
4414 	/* update freelist */
4415 	if (freecnt == 0)
4416 		return;
4417 	t->next = p->header.freelist;
4418 	p->header.freelist = fsi;
4419 	p->header.freecnt += freecnt;
4420 }
4421 
4422 
4423 /*
4424  *	dtLinelockFreelist()
4425  */
4426 static void dtLinelockFreelist(dtpage_t * p,	/* directory page */
4427 			       int m,	/* max slot index */
4428 			       struct dt_lock ** dtlock)
4429 {
4430 	int fsi;		/* free entry slot index */
4431 	struct dtslot *t;
4432 	int si;
4433 	struct dt_lock *dtlck = *dtlock;
4434 	struct lv *lv;
4435 	int xsi, n;
4436 
4437 	/* get free entry slot index */
4438 	fsi = p->header.freelist;
4439 
4440 	/* open new linelock */
4441 	if (dtlck->index >= dtlck->maxcnt)
4442 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4443 	lv = & dtlck->lv[dtlck->index];
4444 
4445 	lv->offset = fsi;
4446 
4447 	n = 1;
4448 	xsi = fsi;
4449 
4450 	t = &p->slot[fsi];
4451 	si = t->next;
4452 
4453 	/* find the last/only segment */
4454 	while (si < m && si >= 0) {
4455 		/* is next slot contiguous ? */
4456 		if (si != xsi + 1) {
4457 			/* close current linelock */
4458 			lv->length = n;
4459 			dtlck->index++;
4460 
4461 			/* open new linelock */
4462 			if (dtlck->index < dtlck->maxcnt)
4463 				lv++;
4464 			else {
4465 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4466 				lv = & dtlck->lv[0];
4467 			}
4468 
4469 			lv->offset = si;
4470 			n = 0;
4471 		}
4472 
4473 		n++;
4474 		xsi = si;
4475 
4476 		t = &p->slot[si];
4477 		si = t->next;
4478 	}
4479 
4480 	/* close current linelock */
4481 	lv->length = n;
4482 	dtlck->index++;
4483 
4484 	*dtlock = dtlck;
4485 }
4486 
4487 
4488 /*
4489  * NAME: dtModify
4490  *
4491  * FUNCTION: Modify the inode number part of a directory entry
4492  *
4493  * PARAMETERS:
4494  *	tid	- Transaction id
4495  *	ip	- Inode of parent directory
4496  *	key	- Name of entry to be modified
4497  *	orig_ino	- Original inode number expected in entry
4498  *	new_ino	- New inode number to put into entry
4499  *	flag	- JFS_RENAME
4500  *
4501  * RETURNS:
4502  *	-ESTALE	- If entry found does not match orig_ino passed in
4503  *	-ENOENT	- If no entry can be found to match key
4504  *	0	- If successfully modified entry
4505  */
4506 int dtModify(tid_t tid, struct inode *ip,
4507 	 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4508 {
4509 	int rc;
4510 	s64 bn;
4511 	struct metapage *mp;
4512 	dtpage_t *p;
4513 	int index;
4514 	struct btstack btstack;
4515 	struct tlock *tlck;
4516 	struct dt_lock *dtlck;
4517 	struct lv *lv;
4518 	s8 *stbl;
4519 	int entry_si;		/* entry slot index */
4520 	struct ldtentry *entry;
4521 
4522 	/*
4523 	 *      search for the entry to modify:
4524 	 *
4525 	 * dtSearch() returns (leaf page pinned, index at which to modify).
4526 	 */
4527 	if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4528 		return rc;
4529 
4530 	/* retrieve search result */
4531 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4532 
4533 	BT_MARK_DIRTY(mp, ip);
4534 	/*
4535 	 * acquire a transaction lock on the leaf page of named entry
4536 	 */
4537 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4538 	dtlck = (struct dt_lock *) & tlck->lock;
4539 
4540 	/* get slot index of the entry */
4541 	stbl = DT_GETSTBL(p);
4542 	entry_si = stbl[index];
4543 
4544 	/* linelock entry */
4545 	ASSERT(dtlck->index == 0);
4546 	lv = & dtlck->lv[0];
4547 	lv->offset = entry_si;
4548 	lv->length = 1;
4549 	dtlck->index++;
4550 
4551 	/* get the head/only segment */
4552 	entry = (struct ldtentry *) & p->slot[entry_si];
4553 
4554 	/* substitute the inode number of the entry */
4555 	entry->inumber = cpu_to_le32(new_ino);
4556 
4557 	/* unpin the leaf page */
4558 	DT_PUTPAGE(mp);
4559 
4560 	return 0;
4561 }
4562