1 /* 2 * Copyright (C) International Business Machines Corp., 2000-2004 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See 12 * the GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program; if not, write to the Free Software 16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 17 */ 18 19 /* 20 * jfs_dtree.c: directory B+-tree manager 21 * 22 * B+-tree with variable length key directory: 23 * 24 * each directory page is structured as an array of 32-byte 25 * directory entry slots initialized as a freelist 26 * to avoid search/compaction of free space at insertion. 27 * when an entry is inserted, a number of slots are allocated 28 * from the freelist as required to store variable length data 29 * of the entry; when the entry is deleted, slots of the entry 30 * are returned to freelist. 31 * 32 * leaf entry stores full name as key and file serial number 33 * (aka inode number) as data. 34 * internal/router entry stores sufffix compressed name 35 * as key and simple extent descriptor as data. 36 * 37 * each directory page maintains a sorted entry index table 38 * which stores the start slot index of sorted entries 39 * to allow binary search on the table. 40 * 41 * directory starts as a root/leaf page in on-disk inode 42 * inline data area. 43 * when it becomes full, it starts a leaf of a external extent 44 * of length of 1 block. each time the first leaf becomes full, 45 * it is extended rather than split (its size is doubled), 46 * until its length becoms 4 KBytes, from then the extent is split 47 * with new 4 Kbyte extent when it becomes full 48 * to reduce external fragmentation of small directories. 49 * 50 * blah, blah, blah, for linear scan of directory in pieces by 51 * readdir(). 52 * 53 * 54 * case-insensitive directory file system 55 * 56 * names are stored in case-sensitive way in leaf entry. 57 * but stored, searched and compared in case-insensitive (uppercase) order 58 * (i.e., both search key and entry key are folded for search/compare): 59 * (note that case-sensitive order is BROKEN in storage, e.g., 60 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad 61 * 62 * entries which folds to the same key makes up a equivalent class 63 * whose members are stored as contiguous cluster (may cross page boundary) 64 * but whose order is arbitrary and acts as duplicate, e.g., 65 * abc, Abc, aBc, abC) 66 * 67 * once match is found at leaf, requires scan forward/backward 68 * either for, in case-insensitive search, duplicate 69 * or for, in case-sensitive search, for exact match 70 * 71 * router entry must be created/stored in case-insensitive way 72 * in internal entry: 73 * (right most key of left page and left most key of right page 74 * are folded, and its suffix compression is propagated as router 75 * key in parent) 76 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB> 77 * should be made the router key for the split) 78 * 79 * case-insensitive search: 80 * 81 * fold search key; 82 * 83 * case-insensitive search of B-tree: 84 * for internal entry, router key is already folded; 85 * for leaf entry, fold the entry key before comparison. 86 * 87 * if (leaf entry case-insensitive match found) 88 * if (next entry satisfies case-insensitive match) 89 * return EDUPLICATE; 90 * if (prev entry satisfies case-insensitive match) 91 * return EDUPLICATE; 92 * return match; 93 * else 94 * return no match; 95 * 96 * serialization: 97 * target directory inode lock is being held on entry/exit 98 * of all main directory service routines. 99 * 100 * log based recovery: 101 */ 102 103 #include <linux/fs.h> 104 #include <linux/quotaops.h> 105 #include "jfs_incore.h" 106 #include "jfs_superblock.h" 107 #include "jfs_filsys.h" 108 #include "jfs_metapage.h" 109 #include "jfs_dmap.h" 110 #include "jfs_unicode.h" 111 #include "jfs_debug.h" 112 113 /* dtree split parameter */ 114 struct dtsplit { 115 struct metapage *mp; 116 s16 index; 117 s16 nslot; 118 struct component_name *key; 119 ddata_t *data; 120 struct pxdlist *pxdlist; 121 }; 122 123 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot) 124 125 /* get page buffer for specified block address */ 126 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\ 127 {\ 128 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\ 129 if (!(RC))\ 130 {\ 131 if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\ 132 ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\ 133 {\ 134 BT_PUTPAGE(MP);\ 135 jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\ 136 MP = NULL;\ 137 RC = -EIO;\ 138 }\ 139 }\ 140 } 141 142 /* for consistency */ 143 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP) 144 145 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \ 146 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot) 147 148 /* 149 * forward references 150 */ 151 static int dtSplitUp(tid_t tid, struct inode *ip, 152 struct dtsplit * split, struct btstack * btstack); 153 154 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split, 155 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp); 156 157 static int dtExtendPage(tid_t tid, struct inode *ip, 158 struct dtsplit * split, struct btstack * btstack); 159 160 static int dtSplitRoot(tid_t tid, struct inode *ip, 161 struct dtsplit * split, struct metapage ** rmpp); 162 163 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp, 164 dtpage_t * fp, struct btstack * btstack); 165 166 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p); 167 168 static int dtReadFirst(struct inode *ip, struct btstack * btstack); 169 170 static int dtReadNext(struct inode *ip, 171 loff_t * offset, struct btstack * btstack); 172 173 static int dtCompare(struct component_name * key, dtpage_t * p, int si); 174 175 static int ciCompare(struct component_name * key, dtpage_t * p, int si, 176 int flag); 177 178 static void dtGetKey(dtpage_t * p, int i, struct component_name * key, 179 int flag); 180 181 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp, 182 int ri, struct component_name * key, int flag); 183 184 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key, 185 ddata_t * data, struct dt_lock **); 186 187 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp, 188 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock, 189 int do_index); 190 191 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock); 192 193 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock); 194 195 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock); 196 197 #define ciToUpper(c) UniStrupr((c)->name) 198 199 /* 200 * read_index_page() 201 * 202 * Reads a page of a directory's index table. 203 * Having metadata mapped into the directory inode's address space 204 * presents a multitude of problems. We avoid this by mapping to 205 * the absolute address space outside of the *_metapage routines 206 */ 207 static struct metapage *read_index_page(struct inode *inode, s64 blkno) 208 { 209 int rc; 210 s64 xaddr; 211 int xflag; 212 s32 xlen; 213 214 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1); 215 if (rc || (xaddr == 0)) 216 return NULL; 217 218 return read_metapage(inode, xaddr, PSIZE, 1); 219 } 220 221 /* 222 * get_index_page() 223 * 224 * Same as get_index_page(), but get's a new page without reading 225 */ 226 static struct metapage *get_index_page(struct inode *inode, s64 blkno) 227 { 228 int rc; 229 s64 xaddr; 230 int xflag; 231 s32 xlen; 232 233 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1); 234 if (rc || (xaddr == 0)) 235 return NULL; 236 237 return get_metapage(inode, xaddr, PSIZE, 1); 238 } 239 240 /* 241 * find_index() 242 * 243 * Returns dtree page containing directory table entry for specified 244 * index and pointer to its entry. 245 * 246 * mp must be released by caller. 247 */ 248 static struct dir_table_slot *find_index(struct inode *ip, u32 index, 249 struct metapage ** mp, s64 *lblock) 250 { 251 struct jfs_inode_info *jfs_ip = JFS_IP(ip); 252 s64 blkno; 253 s64 offset; 254 int page_offset; 255 struct dir_table_slot *slot; 256 static int maxWarnings = 10; 257 258 if (index < 2) { 259 if (maxWarnings) { 260 jfs_warn("find_entry called with index = %d", index); 261 maxWarnings--; 262 } 263 return NULL; 264 } 265 266 if (index >= jfs_ip->next_index) { 267 jfs_warn("find_entry called with index >= next_index"); 268 return NULL; 269 } 270 271 if (jfs_dirtable_inline(ip)) { 272 /* 273 * Inline directory table 274 */ 275 *mp = NULL; 276 slot = &jfs_ip->i_dirtable[index - 2]; 277 } else { 278 offset = (index - 2) * sizeof(struct dir_table_slot); 279 page_offset = offset & (PSIZE - 1); 280 blkno = ((offset + 1) >> L2PSIZE) << 281 JFS_SBI(ip->i_sb)->l2nbperpage; 282 283 if (*mp && (*lblock != blkno)) { 284 release_metapage(*mp); 285 *mp = NULL; 286 } 287 if (*mp == 0) { 288 *lblock = blkno; 289 *mp = read_index_page(ip, blkno); 290 } 291 if (*mp == 0) { 292 jfs_err("free_index: error reading directory table"); 293 return NULL; 294 } 295 296 slot = 297 (struct dir_table_slot *) ((char *) (*mp)->data + 298 page_offset); 299 } 300 return slot; 301 } 302 303 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp, 304 u32 index) 305 { 306 struct tlock *tlck; 307 struct linelock *llck; 308 struct lv *lv; 309 310 tlck = txLock(tid, ip, mp, tlckDATA); 311 llck = (struct linelock *) tlck->lock; 312 313 if (llck->index >= llck->maxcnt) 314 llck = txLinelock(llck); 315 lv = &llck->lv[llck->index]; 316 317 /* 318 * Linelock slot size is twice the size of directory table 319 * slot size. 512 entries per page. 320 */ 321 lv->offset = ((index - 2) & 511) >> 1; 322 lv->length = 1; 323 llck->index++; 324 } 325 326 /* 327 * add_index() 328 * 329 * Adds an entry to the directory index table. This is used to provide 330 * each directory entry with a persistent index in which to resume 331 * directory traversals 332 */ 333 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot) 334 { 335 struct super_block *sb = ip->i_sb; 336 struct jfs_sb_info *sbi = JFS_SBI(sb); 337 struct jfs_inode_info *jfs_ip = JFS_IP(ip); 338 u64 blkno; 339 struct dir_table_slot *dirtab_slot; 340 u32 index; 341 struct linelock *llck; 342 struct lv *lv; 343 struct metapage *mp; 344 s64 offset; 345 uint page_offset; 346 struct tlock *tlck; 347 s64 xaddr; 348 349 ASSERT(DO_INDEX(ip)); 350 351 if (jfs_ip->next_index < 2) { 352 jfs_warn("add_index: next_index = %d. Resetting!", 353 jfs_ip->next_index); 354 jfs_ip->next_index = 2; 355 } 356 357 index = jfs_ip->next_index++; 358 359 if (index <= MAX_INLINE_DIRTABLE_ENTRY) { 360 /* 361 * i_size reflects size of index table, or 8 bytes per entry. 362 */ 363 ip->i_size = (loff_t) (index - 1) << 3; 364 365 /* 366 * dir table fits inline within inode 367 */ 368 dirtab_slot = &jfs_ip->i_dirtable[index-2]; 369 dirtab_slot->flag = DIR_INDEX_VALID; 370 dirtab_slot->slot = slot; 371 DTSaddress(dirtab_slot, bn); 372 373 set_cflag(COMMIT_Dirtable, ip); 374 375 return index; 376 } 377 if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) { 378 struct dir_table_slot temp_table[12]; 379 380 /* 381 * It's time to move the inline table to an external 382 * page and begin to build the xtree 383 */ 384 if (DQUOT_ALLOC_BLOCK(ip, sbi->nbperpage)) 385 goto clean_up; 386 if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) { 387 DQUOT_FREE_BLOCK(ip, sbi->nbperpage); 388 goto clean_up; 389 } 390 391 /* 392 * Save the table, we're going to overwrite it with the 393 * xtree root 394 */ 395 memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table)); 396 397 /* 398 * Initialize empty x-tree 399 */ 400 xtInitRoot(tid, ip); 401 402 /* 403 * Add the first block to the xtree 404 */ 405 if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) { 406 /* This really shouldn't fail */ 407 jfs_warn("add_index: xtInsert failed!"); 408 memcpy(&jfs_ip->i_dirtable, temp_table, 409 sizeof (temp_table)); 410 dbFree(ip, xaddr, sbi->nbperpage); 411 DQUOT_FREE_BLOCK(ip, sbi->nbperpage); 412 goto clean_up; 413 } 414 ip->i_size = PSIZE; 415 416 if ((mp = get_index_page(ip, 0)) == 0) { 417 jfs_err("add_index: get_metapage failed!"); 418 xtTruncate(tid, ip, 0, COMMIT_PWMAP); 419 memcpy(&jfs_ip->i_dirtable, temp_table, 420 sizeof (temp_table)); 421 goto clean_up; 422 } 423 tlck = txLock(tid, ip, mp, tlckDATA); 424 llck = (struct linelock *) & tlck->lock; 425 ASSERT(llck->index == 0); 426 lv = &llck->lv[0]; 427 428 lv->offset = 0; 429 lv->length = 6; /* tlckDATA slot size is 16 bytes */ 430 llck->index++; 431 432 memcpy(mp->data, temp_table, sizeof(temp_table)); 433 434 mark_metapage_dirty(mp); 435 release_metapage(mp); 436 437 /* 438 * Logging is now directed by xtree tlocks 439 */ 440 clear_cflag(COMMIT_Dirtable, ip); 441 } 442 443 offset = (index - 2) * sizeof(struct dir_table_slot); 444 page_offset = offset & (PSIZE - 1); 445 blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage; 446 if (page_offset == 0) { 447 /* 448 * This will be the beginning of a new page 449 */ 450 xaddr = 0; 451 if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) { 452 jfs_warn("add_index: xtInsert failed!"); 453 goto clean_up; 454 } 455 ip->i_size += PSIZE; 456 457 if ((mp = get_index_page(ip, blkno))) 458 memset(mp->data, 0, PSIZE); /* Just looks better */ 459 else 460 xtTruncate(tid, ip, offset, COMMIT_PWMAP); 461 } else 462 mp = read_index_page(ip, blkno); 463 464 if (mp == 0) { 465 jfs_err("add_index: get/read_metapage failed!"); 466 goto clean_up; 467 } 468 469 lock_index(tid, ip, mp, index); 470 471 dirtab_slot = 472 (struct dir_table_slot *) ((char *) mp->data + page_offset); 473 dirtab_slot->flag = DIR_INDEX_VALID; 474 dirtab_slot->slot = slot; 475 DTSaddress(dirtab_slot, bn); 476 477 mark_metapage_dirty(mp); 478 release_metapage(mp); 479 480 return index; 481 482 clean_up: 483 484 jfs_ip->next_index--; 485 486 return 0; 487 } 488 489 /* 490 * free_index() 491 * 492 * Marks an entry to the directory index table as free. 493 */ 494 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next) 495 { 496 struct dir_table_slot *dirtab_slot; 497 s64 lblock; 498 struct metapage *mp = NULL; 499 500 dirtab_slot = find_index(ip, index, &mp, &lblock); 501 502 if (dirtab_slot == 0) 503 return; 504 505 dirtab_slot->flag = DIR_INDEX_FREE; 506 dirtab_slot->slot = dirtab_slot->addr1 = 0; 507 dirtab_slot->addr2 = cpu_to_le32(next); 508 509 if (mp) { 510 lock_index(tid, ip, mp, index); 511 mark_metapage_dirty(mp); 512 release_metapage(mp); 513 } else 514 set_cflag(COMMIT_Dirtable, ip); 515 } 516 517 /* 518 * modify_index() 519 * 520 * Changes an entry in the directory index table 521 */ 522 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn, 523 int slot, struct metapage ** mp, u64 *lblock) 524 { 525 struct dir_table_slot *dirtab_slot; 526 527 dirtab_slot = find_index(ip, index, mp, lblock); 528 529 if (dirtab_slot == 0) 530 return; 531 532 DTSaddress(dirtab_slot, bn); 533 dirtab_slot->slot = slot; 534 535 if (*mp) { 536 lock_index(tid, ip, *mp, index); 537 mark_metapage_dirty(*mp); 538 } else 539 set_cflag(COMMIT_Dirtable, ip); 540 } 541 542 /* 543 * read_index() 544 * 545 * reads a directory table slot 546 */ 547 static int read_index(struct inode *ip, u32 index, 548 struct dir_table_slot * dirtab_slot) 549 { 550 s64 lblock; 551 struct metapage *mp = NULL; 552 struct dir_table_slot *slot; 553 554 slot = find_index(ip, index, &mp, &lblock); 555 if (slot == 0) { 556 return -EIO; 557 } 558 559 memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot)); 560 561 if (mp) 562 release_metapage(mp); 563 564 return 0; 565 } 566 567 /* 568 * dtSearch() 569 * 570 * function: 571 * Search for the entry with specified key 572 * 573 * parameter: 574 * 575 * return: 0 - search result on stack, leaf page pinned; 576 * errno - I/O error 577 */ 578 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data, 579 struct btstack * btstack, int flag) 580 { 581 int rc = 0; 582 int cmp = 1; /* init for empty page */ 583 s64 bn; 584 struct metapage *mp; 585 dtpage_t *p; 586 s8 *stbl; 587 int base, index, lim; 588 struct btframe *btsp; 589 pxd_t *pxd; 590 int psize = 288; /* initial in-line directory */ 591 ino_t inumber; 592 struct component_name ciKey; 593 struct super_block *sb = ip->i_sb; 594 595 ciKey.name = 596 (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t), 597 GFP_NOFS); 598 if (ciKey.name == 0) { 599 rc = -ENOMEM; 600 goto dtSearch_Exit2; 601 } 602 603 604 /* uppercase search key for c-i directory */ 605 UniStrcpy(ciKey.name, key->name); 606 ciKey.namlen = key->namlen; 607 608 /* only uppercase if case-insensitive support is on */ 609 if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) { 610 ciToUpper(&ciKey); 611 } 612 BT_CLR(btstack); /* reset stack */ 613 614 /* init level count for max pages to split */ 615 btstack->nsplit = 1; 616 617 /* 618 * search down tree from root: 619 * 620 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of 621 * internal page, child page Pi contains entry with k, Ki <= K < Kj. 622 * 623 * if entry with search key K is not found 624 * internal page search find the entry with largest key Ki 625 * less than K which point to the child page to search; 626 * leaf page search find the entry with smallest key Kj 627 * greater than K so that the returned index is the position of 628 * the entry to be shifted right for insertion of new entry. 629 * for empty tree, search key is greater than any key of the tree. 630 * 631 * by convention, root bn = 0. 632 */ 633 for (bn = 0;;) { 634 /* get/pin the page to search */ 635 DT_GETPAGE(ip, bn, mp, psize, p, rc); 636 if (rc) 637 goto dtSearch_Exit1; 638 639 /* get sorted entry table of the page */ 640 stbl = DT_GETSTBL(p); 641 642 /* 643 * binary search with search key K on the current page. 644 */ 645 for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) { 646 index = base + (lim >> 1); 647 648 if (p->header.flag & BT_LEAF) { 649 /* uppercase leaf name to compare */ 650 cmp = 651 ciCompare(&ciKey, p, stbl[index], 652 JFS_SBI(sb)->mntflag); 653 } else { 654 /* router key is in uppercase */ 655 656 cmp = dtCompare(&ciKey, p, stbl[index]); 657 658 659 } 660 if (cmp == 0) { 661 /* 662 * search hit 663 */ 664 /* search hit - leaf page: 665 * return the entry found 666 */ 667 if (p->header.flag & BT_LEAF) { 668 inumber = le32_to_cpu( 669 ((struct ldtentry *) & p->slot[stbl[index]])->inumber); 670 671 /* 672 * search for JFS_LOOKUP 673 */ 674 if (flag == JFS_LOOKUP) { 675 *data = inumber; 676 rc = 0; 677 goto out; 678 } 679 680 /* 681 * search for JFS_CREATE 682 */ 683 if (flag == JFS_CREATE) { 684 *data = inumber; 685 rc = -EEXIST; 686 goto out; 687 } 688 689 /* 690 * search for JFS_REMOVE or JFS_RENAME 691 */ 692 if ((flag == JFS_REMOVE || 693 flag == JFS_RENAME) && 694 *data != inumber) { 695 rc = -ESTALE; 696 goto out; 697 } 698 699 /* 700 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME 701 */ 702 /* save search result */ 703 *data = inumber; 704 btsp = btstack->top; 705 btsp->bn = bn; 706 btsp->index = index; 707 btsp->mp = mp; 708 709 rc = 0; 710 goto dtSearch_Exit1; 711 } 712 713 /* search hit - internal page: 714 * descend/search its child page 715 */ 716 goto getChild; 717 } 718 719 if (cmp > 0) { 720 base = index + 1; 721 --lim; 722 } 723 } 724 725 /* 726 * search miss 727 * 728 * base is the smallest index with key (Kj) greater than 729 * search key (K) and may be zero or (maxindex + 1) index. 730 */ 731 /* 732 * search miss - leaf page 733 * 734 * return location of entry (base) where new entry with 735 * search key K is to be inserted. 736 */ 737 if (p->header.flag & BT_LEAF) { 738 /* 739 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME 740 */ 741 if (flag == JFS_LOOKUP || flag == JFS_REMOVE || 742 flag == JFS_RENAME) { 743 rc = -ENOENT; 744 goto out; 745 } 746 747 /* 748 * search for JFS_CREATE|JFS_FINDDIR: 749 * 750 * save search result 751 */ 752 *data = 0; 753 btsp = btstack->top; 754 btsp->bn = bn; 755 btsp->index = base; 756 btsp->mp = mp; 757 758 rc = 0; 759 goto dtSearch_Exit1; 760 } 761 762 /* 763 * search miss - internal page 764 * 765 * if base is non-zero, decrement base by one to get the parent 766 * entry of the child page to search. 767 */ 768 index = base ? base - 1 : base; 769 770 /* 771 * go down to child page 772 */ 773 getChild: 774 /* update max. number of pages to split */ 775 if (BT_STACK_FULL(btstack)) { 776 /* Something's corrupted, mark filesytem dirty so 777 * chkdsk will fix it. 778 */ 779 jfs_error(sb, "stack overrun in dtSearch!"); 780 BT_STACK_DUMP(btstack); 781 rc = -EIO; 782 goto out; 783 } 784 btstack->nsplit++; 785 786 /* push (bn, index) of the parent page/entry */ 787 BT_PUSH(btstack, bn, index); 788 789 /* get the child page block number */ 790 pxd = (pxd_t *) & p->slot[stbl[index]]; 791 bn = addressPXD(pxd); 792 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize; 793 794 /* unpin the parent page */ 795 DT_PUTPAGE(mp); 796 } 797 798 out: 799 DT_PUTPAGE(mp); 800 801 dtSearch_Exit1: 802 803 kfree(ciKey.name); 804 805 dtSearch_Exit2: 806 807 return rc; 808 } 809 810 811 /* 812 * dtInsert() 813 * 814 * function: insert an entry to directory tree 815 * 816 * parameter: 817 * 818 * return: 0 - success; 819 * errno - failure; 820 */ 821 int dtInsert(tid_t tid, struct inode *ip, 822 struct component_name * name, ino_t * fsn, struct btstack * btstack) 823 { 824 int rc = 0; 825 struct metapage *mp; /* meta-page buffer */ 826 dtpage_t *p; /* base B+-tree index page */ 827 s64 bn; 828 int index; 829 struct dtsplit split; /* split information */ 830 ddata_t data; 831 struct dt_lock *dtlck; 832 int n; 833 struct tlock *tlck; 834 struct lv *lv; 835 836 /* 837 * retrieve search result 838 * 839 * dtSearch() returns (leaf page pinned, index at which to insert). 840 * n.b. dtSearch() may return index of (maxindex + 1) of 841 * the full page. 842 */ 843 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index); 844 845 /* 846 * insert entry for new key 847 */ 848 if (DO_INDEX(ip)) { 849 if (JFS_IP(ip)->next_index == DIREND) { 850 DT_PUTPAGE(mp); 851 return -EMLINK; 852 } 853 n = NDTLEAF(name->namlen); 854 data.leaf.tid = tid; 855 data.leaf.ip = ip; 856 } else { 857 n = NDTLEAF_LEGACY(name->namlen); 858 data.leaf.ip = NULL; /* signifies legacy directory format */ 859 } 860 data.leaf.ino = *fsn; 861 862 /* 863 * leaf page does not have enough room for new entry: 864 * 865 * extend/split the leaf page; 866 * 867 * dtSplitUp() will insert the entry and unpin the leaf page. 868 */ 869 if (n > p->header.freecnt) { 870 split.mp = mp; 871 split.index = index; 872 split.nslot = n; 873 split.key = name; 874 split.data = &data; 875 rc = dtSplitUp(tid, ip, &split, btstack); 876 return rc; 877 } 878 879 /* 880 * leaf page does have enough room for new entry: 881 * 882 * insert the new data entry into the leaf page; 883 */ 884 BT_MARK_DIRTY(mp, ip); 885 /* 886 * acquire a transaction lock on the leaf page 887 */ 888 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY); 889 dtlck = (struct dt_lock *) & tlck->lock; 890 ASSERT(dtlck->index == 0); 891 lv = & dtlck->lv[0]; 892 893 /* linelock header */ 894 lv->offset = 0; 895 lv->length = 1; 896 dtlck->index++; 897 898 dtInsertEntry(p, index, name, &data, &dtlck); 899 900 /* linelock stbl of non-root leaf page */ 901 if (!(p->header.flag & BT_ROOT)) { 902 if (dtlck->index >= dtlck->maxcnt) 903 dtlck = (struct dt_lock *) txLinelock(dtlck); 904 lv = & dtlck->lv[dtlck->index]; 905 n = index >> L2DTSLOTSIZE; 906 lv->offset = p->header.stblindex + n; 907 lv->length = 908 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1; 909 dtlck->index++; 910 } 911 912 /* unpin the leaf page */ 913 DT_PUTPAGE(mp); 914 915 return 0; 916 } 917 918 919 /* 920 * dtSplitUp() 921 * 922 * function: propagate insertion bottom up; 923 * 924 * parameter: 925 * 926 * return: 0 - success; 927 * errno - failure; 928 * leaf page unpinned; 929 */ 930 static int dtSplitUp(tid_t tid, 931 struct inode *ip, struct dtsplit * split, struct btstack * btstack) 932 { 933 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb); 934 int rc = 0; 935 struct metapage *smp; 936 dtpage_t *sp; /* split page */ 937 struct metapage *rmp; 938 dtpage_t *rp; /* new right page split from sp */ 939 pxd_t rpxd; /* new right page extent descriptor */ 940 struct metapage *lmp; 941 dtpage_t *lp; /* left child page */ 942 int skip; /* index of entry of insertion */ 943 struct btframe *parent; /* parent page entry on traverse stack */ 944 s64 xaddr, nxaddr; 945 int xlen, xsize; 946 struct pxdlist pxdlist; 947 pxd_t *pxd; 948 struct component_name key = { 0, NULL }; 949 ddata_t *data = split->data; 950 int n; 951 struct dt_lock *dtlck; 952 struct tlock *tlck; 953 struct lv *lv; 954 int quota_allocation = 0; 955 956 /* get split page */ 957 smp = split->mp; 958 sp = DT_PAGE(ip, smp); 959 960 key.name = 961 (wchar_t *) kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t), 962 GFP_NOFS); 963 if (key.name == 0) { 964 DT_PUTPAGE(smp); 965 rc = -ENOMEM; 966 goto dtSplitUp_Exit; 967 } 968 969 /* 970 * split leaf page 971 * 972 * The split routines insert the new entry, and 973 * acquire txLock as appropriate. 974 */ 975 /* 976 * split root leaf page: 977 */ 978 if (sp->header.flag & BT_ROOT) { 979 /* 980 * allocate a single extent child page 981 */ 982 xlen = 1; 983 n = sbi->bsize >> L2DTSLOTSIZE; 984 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */ 985 n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */ 986 if (n <= split->nslot) 987 xlen++; 988 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) { 989 DT_PUTPAGE(smp); 990 goto freeKeyName; 991 } 992 993 pxdlist.maxnpxd = 1; 994 pxdlist.npxd = 0; 995 pxd = &pxdlist.pxd[0]; 996 PXDaddress(pxd, xaddr); 997 PXDlength(pxd, xlen); 998 split->pxdlist = &pxdlist; 999 rc = dtSplitRoot(tid, ip, split, &rmp); 1000 1001 if (rc) 1002 dbFree(ip, xaddr, xlen); 1003 else 1004 DT_PUTPAGE(rmp); 1005 1006 DT_PUTPAGE(smp); 1007 1008 if (!DO_INDEX(ip)) 1009 ip->i_size = xlen << sbi->l2bsize; 1010 1011 goto freeKeyName; 1012 } 1013 1014 /* 1015 * extend first leaf page 1016 * 1017 * extend the 1st extent if less than buffer page size 1018 * (dtExtendPage() reurns leaf page unpinned) 1019 */ 1020 pxd = &sp->header.self; 1021 xlen = lengthPXD(pxd); 1022 xsize = xlen << sbi->l2bsize; 1023 if (xsize < PSIZE) { 1024 xaddr = addressPXD(pxd); 1025 n = xsize >> L2DTSLOTSIZE; 1026 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */ 1027 if ((n + sp->header.freecnt) <= split->nslot) 1028 n = xlen + (xlen << 1); 1029 else 1030 n = xlen; 1031 1032 /* Allocate blocks to quota. */ 1033 if (DQUOT_ALLOC_BLOCK(ip, n)) { 1034 rc = -EDQUOT; 1035 goto extendOut; 1036 } 1037 quota_allocation += n; 1038 1039 if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen, 1040 (s64) n, &nxaddr))) 1041 goto extendOut; 1042 1043 pxdlist.maxnpxd = 1; 1044 pxdlist.npxd = 0; 1045 pxd = &pxdlist.pxd[0]; 1046 PXDaddress(pxd, nxaddr) 1047 PXDlength(pxd, xlen + n); 1048 split->pxdlist = &pxdlist; 1049 if ((rc = dtExtendPage(tid, ip, split, btstack))) { 1050 nxaddr = addressPXD(pxd); 1051 if (xaddr != nxaddr) { 1052 /* free relocated extent */ 1053 xlen = lengthPXD(pxd); 1054 dbFree(ip, nxaddr, (s64) xlen); 1055 } else { 1056 /* free extended delta */ 1057 xlen = lengthPXD(pxd) - n; 1058 xaddr = addressPXD(pxd) + xlen; 1059 dbFree(ip, xaddr, (s64) n); 1060 } 1061 } else if (!DO_INDEX(ip)) 1062 ip->i_size = lengthPXD(pxd) << sbi->l2bsize; 1063 1064 1065 extendOut: 1066 DT_PUTPAGE(smp); 1067 goto freeKeyName; 1068 } 1069 1070 /* 1071 * split leaf page <sp> into <sp> and a new right page <rp>. 1072 * 1073 * return <rp> pinned and its extent descriptor <rpxd> 1074 */ 1075 /* 1076 * allocate new directory page extent and 1077 * new index page(s) to cover page split(s) 1078 * 1079 * allocation hint: ? 1080 */ 1081 n = btstack->nsplit; 1082 pxdlist.maxnpxd = pxdlist.npxd = 0; 1083 xlen = sbi->nbperpage; 1084 for (pxd = pxdlist.pxd; n > 0; n--, pxd++) { 1085 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) { 1086 PXDaddress(pxd, xaddr); 1087 PXDlength(pxd, xlen); 1088 pxdlist.maxnpxd++; 1089 continue; 1090 } 1091 1092 DT_PUTPAGE(smp); 1093 1094 /* undo allocation */ 1095 goto splitOut; 1096 } 1097 1098 split->pxdlist = &pxdlist; 1099 if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) { 1100 DT_PUTPAGE(smp); 1101 1102 /* undo allocation */ 1103 goto splitOut; 1104 } 1105 1106 if (!DO_INDEX(ip)) 1107 ip->i_size += PSIZE; 1108 1109 /* 1110 * propagate up the router entry for the leaf page just split 1111 * 1112 * insert a router entry for the new page into the parent page, 1113 * propagate the insert/split up the tree by walking back the stack 1114 * of (bn of parent page, index of child page entry in parent page) 1115 * that were traversed during the search for the page that split. 1116 * 1117 * the propagation of insert/split up the tree stops if the root 1118 * splits or the page inserted into doesn't have to split to hold 1119 * the new entry. 1120 * 1121 * the parent entry for the split page remains the same, and 1122 * a new entry is inserted at its right with the first key and 1123 * block number of the new right page. 1124 * 1125 * There are a maximum of 4 pages pinned at any time: 1126 * two children, left parent and right parent (when the parent splits). 1127 * keep the child pages pinned while working on the parent. 1128 * make sure that all pins are released at exit. 1129 */ 1130 while ((parent = BT_POP(btstack)) != NULL) { 1131 /* parent page specified by stack frame <parent> */ 1132 1133 /* keep current child pages (<lp>, <rp>) pinned */ 1134 lmp = smp; 1135 lp = sp; 1136 1137 /* 1138 * insert router entry in parent for new right child page <rp> 1139 */ 1140 /* get the parent page <sp> */ 1141 DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc); 1142 if (rc) { 1143 DT_PUTPAGE(lmp); 1144 DT_PUTPAGE(rmp); 1145 goto splitOut; 1146 } 1147 1148 /* 1149 * The new key entry goes ONE AFTER the index of parent entry, 1150 * because the split was to the right. 1151 */ 1152 skip = parent->index + 1; 1153 1154 /* 1155 * compute the key for the router entry 1156 * 1157 * key suffix compression: 1158 * for internal pages that have leaf pages as children, 1159 * retain only what's needed to distinguish between 1160 * the new entry and the entry on the page to its left. 1161 * If the keys compare equal, retain the entire key. 1162 * 1163 * note that compression is performed only at computing 1164 * router key at the lowest internal level. 1165 * further compression of the key between pairs of higher 1166 * level internal pages loses too much information and 1167 * the search may fail. 1168 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,} 1169 * results in two adjacent parent entries (a)(xx). 1170 * if split occurs between these two entries, and 1171 * if compression is applied, the router key of parent entry 1172 * of right page (x) will divert search for x into right 1173 * subtree and miss x in the left subtree.) 1174 * 1175 * the entire key must be retained for the next-to-leftmost 1176 * internal key at any level of the tree, or search may fail 1177 * (e.g., ?) 1178 */ 1179 switch (rp->header.flag & BT_TYPE) { 1180 case BT_LEAF: 1181 /* 1182 * compute the length of prefix for suffix compression 1183 * between last entry of left page and first entry 1184 * of right page 1185 */ 1186 if ((sp->header.flag & BT_ROOT && skip > 1) || 1187 sp->header.prev != 0 || skip > 1) { 1188 /* compute uppercase router prefix key */ 1189 rc = ciGetLeafPrefixKey(lp, 1190 lp->header.nextindex-1, 1191 rp, 0, &key, 1192 sbi->mntflag); 1193 if (rc) { 1194 DT_PUTPAGE(lmp); 1195 DT_PUTPAGE(rmp); 1196 DT_PUTPAGE(smp); 1197 goto splitOut; 1198 } 1199 } else { 1200 /* next to leftmost entry of 1201 lowest internal level */ 1202 1203 /* compute uppercase router key */ 1204 dtGetKey(rp, 0, &key, sbi->mntflag); 1205 key.name[key.namlen] = 0; 1206 1207 if ((sbi->mntflag & JFS_OS2) == JFS_OS2) 1208 ciToUpper(&key); 1209 } 1210 1211 n = NDTINTERNAL(key.namlen); 1212 break; 1213 1214 case BT_INTERNAL: 1215 dtGetKey(rp, 0, &key, sbi->mntflag); 1216 n = NDTINTERNAL(key.namlen); 1217 break; 1218 1219 default: 1220 jfs_err("dtSplitUp(): UFO!"); 1221 break; 1222 } 1223 1224 /* unpin left child page */ 1225 DT_PUTPAGE(lmp); 1226 1227 /* 1228 * compute the data for the router entry 1229 */ 1230 data->xd = rpxd; /* child page xd */ 1231 1232 /* 1233 * parent page is full - split the parent page 1234 */ 1235 if (n > sp->header.freecnt) { 1236 /* init for parent page split */ 1237 split->mp = smp; 1238 split->index = skip; /* index at insert */ 1239 split->nslot = n; 1240 split->key = &key; 1241 /* split->data = data; */ 1242 1243 /* unpin right child page */ 1244 DT_PUTPAGE(rmp); 1245 1246 /* The split routines insert the new entry, 1247 * acquire txLock as appropriate. 1248 * return <rp> pinned and its block number <rbn>. 1249 */ 1250 rc = (sp->header.flag & BT_ROOT) ? 1251 dtSplitRoot(tid, ip, split, &rmp) : 1252 dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd); 1253 if (rc) { 1254 DT_PUTPAGE(smp); 1255 goto splitOut; 1256 } 1257 1258 /* smp and rmp are pinned */ 1259 } 1260 /* 1261 * parent page is not full - insert router entry in parent page 1262 */ 1263 else { 1264 BT_MARK_DIRTY(smp, ip); 1265 /* 1266 * acquire a transaction lock on the parent page 1267 */ 1268 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY); 1269 dtlck = (struct dt_lock *) & tlck->lock; 1270 ASSERT(dtlck->index == 0); 1271 lv = & dtlck->lv[0]; 1272 1273 /* linelock header */ 1274 lv->offset = 0; 1275 lv->length = 1; 1276 dtlck->index++; 1277 1278 /* linelock stbl of non-root parent page */ 1279 if (!(sp->header.flag & BT_ROOT)) { 1280 lv++; 1281 n = skip >> L2DTSLOTSIZE; 1282 lv->offset = sp->header.stblindex + n; 1283 lv->length = 1284 ((sp->header.nextindex - 1285 1) >> L2DTSLOTSIZE) - n + 1; 1286 dtlck->index++; 1287 } 1288 1289 dtInsertEntry(sp, skip, &key, data, &dtlck); 1290 1291 /* exit propagate up */ 1292 break; 1293 } 1294 } 1295 1296 /* unpin current split and its right page */ 1297 DT_PUTPAGE(smp); 1298 DT_PUTPAGE(rmp); 1299 1300 /* 1301 * free remaining extents allocated for split 1302 */ 1303 splitOut: 1304 n = pxdlist.npxd; 1305 pxd = &pxdlist.pxd[n]; 1306 for (; n < pxdlist.maxnpxd; n++, pxd++) 1307 dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd)); 1308 1309 freeKeyName: 1310 kfree(key.name); 1311 1312 /* Rollback quota allocation */ 1313 if (rc && quota_allocation) 1314 DQUOT_FREE_BLOCK(ip, quota_allocation); 1315 1316 dtSplitUp_Exit: 1317 1318 return rc; 1319 } 1320 1321 1322 /* 1323 * dtSplitPage() 1324 * 1325 * function: Split a non-root page of a btree. 1326 * 1327 * parameter: 1328 * 1329 * return: 0 - success; 1330 * errno - failure; 1331 * return split and new page pinned; 1332 */ 1333 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split, 1334 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp) 1335 { 1336 int rc = 0; 1337 struct metapage *smp; 1338 dtpage_t *sp; 1339 struct metapage *rmp; 1340 dtpage_t *rp; /* new right page allocated */ 1341 s64 rbn; /* new right page block number */ 1342 struct metapage *mp; 1343 dtpage_t *p; 1344 s64 nextbn; 1345 struct pxdlist *pxdlist; 1346 pxd_t *pxd; 1347 int skip, nextindex, half, left, nxt, off, si; 1348 struct ldtentry *ldtentry; 1349 struct idtentry *idtentry; 1350 u8 *stbl; 1351 struct dtslot *f; 1352 int fsi, stblsize; 1353 int n; 1354 struct dt_lock *sdtlck, *rdtlck; 1355 struct tlock *tlck; 1356 struct dt_lock *dtlck; 1357 struct lv *slv, *rlv, *lv; 1358 1359 /* get split page */ 1360 smp = split->mp; 1361 sp = DT_PAGE(ip, smp); 1362 1363 /* 1364 * allocate the new right page for the split 1365 */ 1366 pxdlist = split->pxdlist; 1367 pxd = &pxdlist->pxd[pxdlist->npxd]; 1368 pxdlist->npxd++; 1369 rbn = addressPXD(pxd); 1370 rmp = get_metapage(ip, rbn, PSIZE, 1); 1371 if (rmp == NULL) 1372 return -EIO; 1373 1374 /* Allocate blocks to quota. */ 1375 if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) { 1376 release_metapage(rmp); 1377 return -EDQUOT; 1378 } 1379 1380 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp); 1381 1382 BT_MARK_DIRTY(rmp, ip); 1383 /* 1384 * acquire a transaction lock on the new right page 1385 */ 1386 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW); 1387 rdtlck = (struct dt_lock *) & tlck->lock; 1388 1389 rp = (dtpage_t *) rmp->data; 1390 *rpp = rp; 1391 rp->header.self = *pxd; 1392 1393 BT_MARK_DIRTY(smp, ip); 1394 /* 1395 * acquire a transaction lock on the split page 1396 * 1397 * action: 1398 */ 1399 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY); 1400 sdtlck = (struct dt_lock *) & tlck->lock; 1401 1402 /* linelock header of split page */ 1403 ASSERT(sdtlck->index == 0); 1404 slv = & sdtlck->lv[0]; 1405 slv->offset = 0; 1406 slv->length = 1; 1407 sdtlck->index++; 1408 1409 /* 1410 * initialize/update sibling pointers between sp and rp 1411 */ 1412 nextbn = le64_to_cpu(sp->header.next); 1413 rp->header.next = cpu_to_le64(nextbn); 1414 rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self)); 1415 sp->header.next = cpu_to_le64(rbn); 1416 1417 /* 1418 * initialize new right page 1419 */ 1420 rp->header.flag = sp->header.flag; 1421 1422 /* compute sorted entry table at start of extent data area */ 1423 rp->header.nextindex = 0; 1424 rp->header.stblindex = 1; 1425 1426 n = PSIZE >> L2DTSLOTSIZE; 1427 rp->header.maxslot = n; 1428 stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */ 1429 1430 /* init freelist */ 1431 fsi = rp->header.stblindex + stblsize; 1432 rp->header.freelist = fsi; 1433 rp->header.freecnt = rp->header.maxslot - fsi; 1434 1435 /* 1436 * sequential append at tail: append without split 1437 * 1438 * If splitting the last page on a level because of appending 1439 * a entry to it (skip is maxentry), it's likely that the access is 1440 * sequential. Adding an empty page on the side of the level is less 1441 * work and can push the fill factor much higher than normal. 1442 * If we're wrong it's no big deal, we'll just do the split the right 1443 * way next time. 1444 * (It may look like it's equally easy to do a similar hack for 1445 * reverse sorted data, that is, split the tree left, 1446 * but it's not. Be my guest.) 1447 */ 1448 if (nextbn == 0 && split->index == sp->header.nextindex) { 1449 /* linelock header + stbl (first slot) of new page */ 1450 rlv = & rdtlck->lv[rdtlck->index]; 1451 rlv->offset = 0; 1452 rlv->length = 2; 1453 rdtlck->index++; 1454 1455 /* 1456 * initialize freelist of new right page 1457 */ 1458 f = &rp->slot[fsi]; 1459 for (fsi++; fsi < rp->header.maxslot; f++, fsi++) 1460 f->next = fsi; 1461 f->next = -1; 1462 1463 /* insert entry at the first entry of the new right page */ 1464 dtInsertEntry(rp, 0, split->key, split->data, &rdtlck); 1465 1466 goto out; 1467 } 1468 1469 /* 1470 * non-sequential insert (at possibly middle page) 1471 */ 1472 1473 /* 1474 * update prev pointer of previous right sibling page; 1475 */ 1476 if (nextbn != 0) { 1477 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc); 1478 if (rc) { 1479 discard_metapage(rmp); 1480 return rc; 1481 } 1482 1483 BT_MARK_DIRTY(mp, ip); 1484 /* 1485 * acquire a transaction lock on the next page 1486 */ 1487 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK); 1488 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p", 1489 tlck, ip, mp); 1490 dtlck = (struct dt_lock *) & tlck->lock; 1491 1492 /* linelock header of previous right sibling page */ 1493 lv = & dtlck->lv[dtlck->index]; 1494 lv->offset = 0; 1495 lv->length = 1; 1496 dtlck->index++; 1497 1498 p->header.prev = cpu_to_le64(rbn); 1499 1500 DT_PUTPAGE(mp); 1501 } 1502 1503 /* 1504 * split the data between the split and right pages. 1505 */ 1506 skip = split->index; 1507 half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */ 1508 left = 0; 1509 1510 /* 1511 * compute fill factor for split pages 1512 * 1513 * <nxt> traces the next entry to move to rp 1514 * <off> traces the next entry to stay in sp 1515 */ 1516 stbl = (u8 *) & sp->slot[sp->header.stblindex]; 1517 nextindex = sp->header.nextindex; 1518 for (nxt = off = 0; nxt < nextindex; ++off) { 1519 if (off == skip) 1520 /* check for fill factor with new entry size */ 1521 n = split->nslot; 1522 else { 1523 si = stbl[nxt]; 1524 switch (sp->header.flag & BT_TYPE) { 1525 case BT_LEAF: 1526 ldtentry = (struct ldtentry *) & sp->slot[si]; 1527 if (DO_INDEX(ip)) 1528 n = NDTLEAF(ldtentry->namlen); 1529 else 1530 n = NDTLEAF_LEGACY(ldtentry-> 1531 namlen); 1532 break; 1533 1534 case BT_INTERNAL: 1535 idtentry = (struct idtentry *) & sp->slot[si]; 1536 n = NDTINTERNAL(idtentry->namlen); 1537 break; 1538 1539 default: 1540 break; 1541 } 1542 1543 ++nxt; /* advance to next entry to move in sp */ 1544 } 1545 1546 left += n; 1547 if (left >= half) 1548 break; 1549 } 1550 1551 /* <nxt> poins to the 1st entry to move */ 1552 1553 /* 1554 * move entries to right page 1555 * 1556 * dtMoveEntry() initializes rp and reserves entry for insertion 1557 * 1558 * split page moved out entries are linelocked; 1559 * new/right page moved in entries are linelocked; 1560 */ 1561 /* linelock header + stbl of new right page */ 1562 rlv = & rdtlck->lv[rdtlck->index]; 1563 rlv->offset = 0; 1564 rlv->length = 5; 1565 rdtlck->index++; 1566 1567 dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip)); 1568 1569 sp->header.nextindex = nxt; 1570 1571 /* 1572 * finalize freelist of new right page 1573 */ 1574 fsi = rp->header.freelist; 1575 f = &rp->slot[fsi]; 1576 for (fsi++; fsi < rp->header.maxslot; f++, fsi++) 1577 f->next = fsi; 1578 f->next = -1; 1579 1580 /* 1581 * Update directory index table for entries now in right page 1582 */ 1583 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) { 1584 s64 lblock; 1585 1586 mp = NULL; 1587 stbl = DT_GETSTBL(rp); 1588 for (n = 0; n < rp->header.nextindex; n++) { 1589 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]]; 1590 modify_index(tid, ip, le32_to_cpu(ldtentry->index), 1591 rbn, n, &mp, &lblock); 1592 } 1593 if (mp) 1594 release_metapage(mp); 1595 } 1596 1597 /* 1598 * the skipped index was on the left page, 1599 */ 1600 if (skip <= off) { 1601 /* insert the new entry in the split page */ 1602 dtInsertEntry(sp, skip, split->key, split->data, &sdtlck); 1603 1604 /* linelock stbl of split page */ 1605 if (sdtlck->index >= sdtlck->maxcnt) 1606 sdtlck = (struct dt_lock *) txLinelock(sdtlck); 1607 slv = & sdtlck->lv[sdtlck->index]; 1608 n = skip >> L2DTSLOTSIZE; 1609 slv->offset = sp->header.stblindex + n; 1610 slv->length = 1611 ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1; 1612 sdtlck->index++; 1613 } 1614 /* 1615 * the skipped index was on the right page, 1616 */ 1617 else { 1618 /* adjust the skip index to reflect the new position */ 1619 skip -= nxt; 1620 1621 /* insert the new entry in the right page */ 1622 dtInsertEntry(rp, skip, split->key, split->data, &rdtlck); 1623 } 1624 1625 out: 1626 *rmpp = rmp; 1627 *rpxdp = *pxd; 1628 1629 return rc; 1630 } 1631 1632 1633 /* 1634 * dtExtendPage() 1635 * 1636 * function: extend 1st/only directory leaf page 1637 * 1638 * parameter: 1639 * 1640 * return: 0 - success; 1641 * errno - failure; 1642 * return extended page pinned; 1643 */ 1644 static int dtExtendPage(tid_t tid, 1645 struct inode *ip, struct dtsplit * split, struct btstack * btstack) 1646 { 1647 struct super_block *sb = ip->i_sb; 1648 int rc; 1649 struct metapage *smp, *pmp, *mp; 1650 dtpage_t *sp, *pp; 1651 struct pxdlist *pxdlist; 1652 pxd_t *pxd, *tpxd; 1653 int xlen, xsize; 1654 int newstblindex, newstblsize; 1655 int oldstblindex, oldstblsize; 1656 int fsi, last; 1657 struct dtslot *f; 1658 struct btframe *parent; 1659 int n; 1660 struct dt_lock *dtlck; 1661 s64 xaddr, txaddr; 1662 struct tlock *tlck; 1663 struct pxd_lock *pxdlock; 1664 struct lv *lv; 1665 uint type; 1666 struct ldtentry *ldtentry; 1667 u8 *stbl; 1668 1669 /* get page to extend */ 1670 smp = split->mp; 1671 sp = DT_PAGE(ip, smp); 1672 1673 /* get parent/root page */ 1674 parent = BT_POP(btstack); 1675 DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc); 1676 if (rc) 1677 return (rc); 1678 1679 /* 1680 * extend the extent 1681 */ 1682 pxdlist = split->pxdlist; 1683 pxd = &pxdlist->pxd[pxdlist->npxd]; 1684 pxdlist->npxd++; 1685 1686 xaddr = addressPXD(pxd); 1687 tpxd = &sp->header.self; 1688 txaddr = addressPXD(tpxd); 1689 /* in-place extension */ 1690 if (xaddr == txaddr) { 1691 type = tlckEXTEND; 1692 } 1693 /* relocation */ 1694 else { 1695 type = tlckNEW; 1696 1697 /* save moved extent descriptor for later free */ 1698 tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE); 1699 pxdlock = (struct pxd_lock *) & tlck->lock; 1700 pxdlock->flag = mlckFREEPXD; 1701 pxdlock->pxd = sp->header.self; 1702 pxdlock->index = 1; 1703 1704 /* 1705 * Update directory index table to reflect new page address 1706 */ 1707 if (DO_INDEX(ip)) { 1708 s64 lblock; 1709 1710 mp = NULL; 1711 stbl = DT_GETSTBL(sp); 1712 for (n = 0; n < sp->header.nextindex; n++) { 1713 ldtentry = 1714 (struct ldtentry *) & sp->slot[stbl[n]]; 1715 modify_index(tid, ip, 1716 le32_to_cpu(ldtentry->index), 1717 xaddr, n, &mp, &lblock); 1718 } 1719 if (mp) 1720 release_metapage(mp); 1721 } 1722 } 1723 1724 /* 1725 * extend the page 1726 */ 1727 sp->header.self = *pxd; 1728 1729 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp); 1730 1731 BT_MARK_DIRTY(smp, ip); 1732 /* 1733 * acquire a transaction lock on the extended/leaf page 1734 */ 1735 tlck = txLock(tid, ip, smp, tlckDTREE | type); 1736 dtlck = (struct dt_lock *) & tlck->lock; 1737 lv = & dtlck->lv[0]; 1738 1739 /* update buffer extent descriptor of extended page */ 1740 xlen = lengthPXD(pxd); 1741 xsize = xlen << JFS_SBI(sb)->l2bsize; 1742 1743 /* 1744 * copy old stbl to new stbl at start of extended area 1745 */ 1746 oldstblindex = sp->header.stblindex; 1747 oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE; 1748 newstblindex = sp->header.maxslot; 1749 n = xsize >> L2DTSLOTSIZE; 1750 newstblsize = (n + 31) >> L2DTSLOTSIZE; 1751 memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex], 1752 sp->header.nextindex); 1753 1754 /* 1755 * in-line extension: linelock old area of extended page 1756 */ 1757 if (type == tlckEXTEND) { 1758 /* linelock header */ 1759 lv->offset = 0; 1760 lv->length = 1; 1761 dtlck->index++; 1762 lv++; 1763 1764 /* linelock new stbl of extended page */ 1765 lv->offset = newstblindex; 1766 lv->length = newstblsize; 1767 } 1768 /* 1769 * relocation: linelock whole relocated area 1770 */ 1771 else { 1772 lv->offset = 0; 1773 lv->length = sp->header.maxslot + newstblsize; 1774 } 1775 1776 dtlck->index++; 1777 1778 sp->header.maxslot = n; 1779 sp->header.stblindex = newstblindex; 1780 /* sp->header.nextindex remains the same */ 1781 1782 /* 1783 * add old stbl region at head of freelist 1784 */ 1785 fsi = oldstblindex; 1786 f = &sp->slot[fsi]; 1787 last = sp->header.freelist; 1788 for (n = 0; n < oldstblsize; n++, fsi++, f++) { 1789 f->next = last; 1790 last = fsi; 1791 } 1792 sp->header.freelist = last; 1793 sp->header.freecnt += oldstblsize; 1794 1795 /* 1796 * append free region of newly extended area at tail of freelist 1797 */ 1798 /* init free region of newly extended area */ 1799 fsi = n = newstblindex + newstblsize; 1800 f = &sp->slot[fsi]; 1801 for (fsi++; fsi < sp->header.maxslot; f++, fsi++) 1802 f->next = fsi; 1803 f->next = -1; 1804 1805 /* append new free region at tail of old freelist */ 1806 fsi = sp->header.freelist; 1807 if (fsi == -1) 1808 sp->header.freelist = n; 1809 else { 1810 do { 1811 f = &sp->slot[fsi]; 1812 fsi = f->next; 1813 } while (fsi != -1); 1814 1815 f->next = n; 1816 } 1817 1818 sp->header.freecnt += sp->header.maxslot - n; 1819 1820 /* 1821 * insert the new entry 1822 */ 1823 dtInsertEntry(sp, split->index, split->key, split->data, &dtlck); 1824 1825 BT_MARK_DIRTY(pmp, ip); 1826 /* 1827 * linelock any freeslots residing in old extent 1828 */ 1829 if (type == tlckEXTEND) { 1830 n = sp->header.maxslot >> 2; 1831 if (sp->header.freelist < n) 1832 dtLinelockFreelist(sp, n, &dtlck); 1833 } 1834 1835 /* 1836 * update parent entry on the parent/root page 1837 */ 1838 /* 1839 * acquire a transaction lock on the parent/root page 1840 */ 1841 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY); 1842 dtlck = (struct dt_lock *) & tlck->lock; 1843 lv = & dtlck->lv[dtlck->index]; 1844 1845 /* linelock parent entry - 1st slot */ 1846 lv->offset = 1; 1847 lv->length = 1; 1848 dtlck->index++; 1849 1850 /* update the parent pxd for page extension */ 1851 tpxd = (pxd_t *) & pp->slot[1]; 1852 *tpxd = *pxd; 1853 1854 DT_PUTPAGE(pmp); 1855 return 0; 1856 } 1857 1858 1859 /* 1860 * dtSplitRoot() 1861 * 1862 * function: 1863 * split the full root page into 1864 * original/root/split page and new right page 1865 * i.e., root remains fixed in tree anchor (inode) and 1866 * the root is copied to a single new right child page 1867 * since root page << non-root page, and 1868 * the split root page contains a single entry for the 1869 * new right child page. 1870 * 1871 * parameter: 1872 * 1873 * return: 0 - success; 1874 * errno - failure; 1875 * return new page pinned; 1876 */ 1877 static int dtSplitRoot(tid_t tid, 1878 struct inode *ip, struct dtsplit * split, struct metapage ** rmpp) 1879 { 1880 struct super_block *sb = ip->i_sb; 1881 struct metapage *smp; 1882 dtroot_t *sp; 1883 struct metapage *rmp; 1884 dtpage_t *rp; 1885 s64 rbn; 1886 int xlen; 1887 int xsize; 1888 struct dtslot *f; 1889 s8 *stbl; 1890 int fsi, stblsize, n; 1891 struct idtentry *s; 1892 pxd_t *ppxd; 1893 struct pxdlist *pxdlist; 1894 pxd_t *pxd; 1895 struct dt_lock *dtlck; 1896 struct tlock *tlck; 1897 struct lv *lv; 1898 1899 /* get split root page */ 1900 smp = split->mp; 1901 sp = &JFS_IP(ip)->i_dtroot; 1902 1903 /* 1904 * allocate/initialize a single (right) child page 1905 * 1906 * N.B. at first split, a one (or two) block to fit new entry 1907 * is allocated; at subsequent split, a full page is allocated; 1908 */ 1909 pxdlist = split->pxdlist; 1910 pxd = &pxdlist->pxd[pxdlist->npxd]; 1911 pxdlist->npxd++; 1912 rbn = addressPXD(pxd); 1913 xlen = lengthPXD(pxd); 1914 xsize = xlen << JFS_SBI(sb)->l2bsize; 1915 rmp = get_metapage(ip, rbn, xsize, 1); 1916 if (!rmp) 1917 return -EIO; 1918 1919 rp = rmp->data; 1920 1921 /* Allocate blocks to quota. */ 1922 if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) { 1923 release_metapage(rmp); 1924 return -EDQUOT; 1925 } 1926 1927 BT_MARK_DIRTY(rmp, ip); 1928 /* 1929 * acquire a transaction lock on the new right page 1930 */ 1931 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW); 1932 dtlck = (struct dt_lock *) & tlck->lock; 1933 1934 rp->header.flag = 1935 (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL; 1936 rp->header.self = *pxd; 1937 1938 /* initialize sibling pointers */ 1939 rp->header.next = 0; 1940 rp->header.prev = 0; 1941 1942 /* 1943 * move in-line root page into new right page extent 1944 */ 1945 /* linelock header + copied entries + new stbl (1st slot) in new page */ 1946 ASSERT(dtlck->index == 0); 1947 lv = & dtlck->lv[0]; 1948 lv->offset = 0; 1949 lv->length = 10; /* 1 + 8 + 1 */ 1950 dtlck->index++; 1951 1952 n = xsize >> L2DTSLOTSIZE; 1953 rp->header.maxslot = n; 1954 stblsize = (n + 31) >> L2DTSLOTSIZE; 1955 1956 /* copy old stbl to new stbl at start of extended area */ 1957 rp->header.stblindex = DTROOTMAXSLOT; 1958 stbl = (s8 *) & rp->slot[DTROOTMAXSLOT]; 1959 memcpy(stbl, sp->header.stbl, sp->header.nextindex); 1960 rp->header.nextindex = sp->header.nextindex; 1961 1962 /* copy old data area to start of new data area */ 1963 memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE); 1964 1965 /* 1966 * append free region of newly extended area at tail of freelist 1967 */ 1968 /* init free region of newly extended area */ 1969 fsi = n = DTROOTMAXSLOT + stblsize; 1970 f = &rp->slot[fsi]; 1971 for (fsi++; fsi < rp->header.maxslot; f++, fsi++) 1972 f->next = fsi; 1973 f->next = -1; 1974 1975 /* append new free region at tail of old freelist */ 1976 fsi = sp->header.freelist; 1977 if (fsi == -1) 1978 rp->header.freelist = n; 1979 else { 1980 rp->header.freelist = fsi; 1981 1982 do { 1983 f = &rp->slot[fsi]; 1984 fsi = f->next; 1985 } while (fsi != -1); 1986 1987 f->next = n; 1988 } 1989 1990 rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n; 1991 1992 /* 1993 * Update directory index table for entries now in right page 1994 */ 1995 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) { 1996 s64 lblock; 1997 struct metapage *mp = NULL; 1998 struct ldtentry *ldtentry; 1999 2000 stbl = DT_GETSTBL(rp); 2001 for (n = 0; n < rp->header.nextindex; n++) { 2002 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]]; 2003 modify_index(tid, ip, le32_to_cpu(ldtentry->index), 2004 rbn, n, &mp, &lblock); 2005 } 2006 if (mp) 2007 release_metapage(mp); 2008 } 2009 /* 2010 * insert the new entry into the new right/child page 2011 * (skip index in the new right page will not change) 2012 */ 2013 dtInsertEntry(rp, split->index, split->key, split->data, &dtlck); 2014 2015 /* 2016 * reset parent/root page 2017 * 2018 * set the 1st entry offset to 0, which force the left-most key 2019 * at any level of the tree to be less than any search key. 2020 * 2021 * The btree comparison code guarantees that the left-most key on any 2022 * level of the tree is never used, so it doesn't need to be filled in. 2023 */ 2024 BT_MARK_DIRTY(smp, ip); 2025 /* 2026 * acquire a transaction lock on the root page (in-memory inode) 2027 */ 2028 tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT); 2029 dtlck = (struct dt_lock *) & tlck->lock; 2030 2031 /* linelock root */ 2032 ASSERT(dtlck->index == 0); 2033 lv = & dtlck->lv[0]; 2034 lv->offset = 0; 2035 lv->length = DTROOTMAXSLOT; 2036 dtlck->index++; 2037 2038 /* update page header of root */ 2039 if (sp->header.flag & BT_LEAF) { 2040 sp->header.flag &= ~BT_LEAF; 2041 sp->header.flag |= BT_INTERNAL; 2042 } 2043 2044 /* init the first entry */ 2045 s = (struct idtentry *) & sp->slot[DTENTRYSTART]; 2046 ppxd = (pxd_t *) s; 2047 *ppxd = *pxd; 2048 s->next = -1; 2049 s->namlen = 0; 2050 2051 stbl = sp->header.stbl; 2052 stbl[0] = DTENTRYSTART; 2053 sp->header.nextindex = 1; 2054 2055 /* init freelist */ 2056 fsi = DTENTRYSTART + 1; 2057 f = &sp->slot[fsi]; 2058 2059 /* init free region of remaining area */ 2060 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++) 2061 f->next = fsi; 2062 f->next = -1; 2063 2064 sp->header.freelist = DTENTRYSTART + 1; 2065 sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1); 2066 2067 *rmpp = rmp; 2068 2069 return 0; 2070 } 2071 2072 2073 /* 2074 * dtDelete() 2075 * 2076 * function: delete the entry(s) referenced by a key. 2077 * 2078 * parameter: 2079 * 2080 * return: 2081 */ 2082 int dtDelete(tid_t tid, 2083 struct inode *ip, struct component_name * key, ino_t * ino, int flag) 2084 { 2085 int rc = 0; 2086 s64 bn; 2087 struct metapage *mp, *imp; 2088 dtpage_t *p; 2089 int index; 2090 struct btstack btstack; 2091 struct dt_lock *dtlck; 2092 struct tlock *tlck; 2093 struct lv *lv; 2094 int i; 2095 struct ldtentry *ldtentry; 2096 u8 *stbl; 2097 u32 table_index, next_index; 2098 struct metapage *nmp; 2099 dtpage_t *np; 2100 2101 /* 2102 * search for the entry to delete: 2103 * 2104 * dtSearch() returns (leaf page pinned, index at which to delete). 2105 */ 2106 if ((rc = dtSearch(ip, key, ino, &btstack, flag))) 2107 return rc; 2108 2109 /* retrieve search result */ 2110 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index); 2111 2112 /* 2113 * We need to find put the index of the next entry into the 2114 * directory index table in order to resume a readdir from this 2115 * entry. 2116 */ 2117 if (DO_INDEX(ip)) { 2118 stbl = DT_GETSTBL(p); 2119 ldtentry = (struct ldtentry *) & p->slot[stbl[index]]; 2120 table_index = le32_to_cpu(ldtentry->index); 2121 if (index == (p->header.nextindex - 1)) { 2122 /* 2123 * Last entry in this leaf page 2124 */ 2125 if ((p->header.flag & BT_ROOT) 2126 || (p->header.next == 0)) 2127 next_index = -1; 2128 else { 2129 /* Read next leaf page */ 2130 DT_GETPAGE(ip, le64_to_cpu(p->header.next), 2131 nmp, PSIZE, np, rc); 2132 if (rc) 2133 next_index = -1; 2134 else { 2135 stbl = DT_GETSTBL(np); 2136 ldtentry = 2137 (struct ldtentry *) & np-> 2138 slot[stbl[0]]; 2139 next_index = 2140 le32_to_cpu(ldtentry->index); 2141 DT_PUTPAGE(nmp); 2142 } 2143 } 2144 } else { 2145 ldtentry = 2146 (struct ldtentry *) & p->slot[stbl[index + 1]]; 2147 next_index = le32_to_cpu(ldtentry->index); 2148 } 2149 free_index(tid, ip, table_index, next_index); 2150 } 2151 /* 2152 * the leaf page becomes empty, delete the page 2153 */ 2154 if (p->header.nextindex == 1) { 2155 /* delete empty page */ 2156 rc = dtDeleteUp(tid, ip, mp, p, &btstack); 2157 } 2158 /* 2159 * the leaf page has other entries remaining: 2160 * 2161 * delete the entry from the leaf page. 2162 */ 2163 else { 2164 BT_MARK_DIRTY(mp, ip); 2165 /* 2166 * acquire a transaction lock on the leaf page 2167 */ 2168 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY); 2169 dtlck = (struct dt_lock *) & tlck->lock; 2170 2171 /* 2172 * Do not assume that dtlck->index will be zero. During a 2173 * rename within a directory, this transaction may have 2174 * modified this page already when adding the new entry. 2175 */ 2176 2177 /* linelock header */ 2178 if (dtlck->index >= dtlck->maxcnt) 2179 dtlck = (struct dt_lock *) txLinelock(dtlck); 2180 lv = & dtlck->lv[dtlck->index]; 2181 lv->offset = 0; 2182 lv->length = 1; 2183 dtlck->index++; 2184 2185 /* linelock stbl of non-root leaf page */ 2186 if (!(p->header.flag & BT_ROOT)) { 2187 if (dtlck->index >= dtlck->maxcnt) 2188 dtlck = (struct dt_lock *) txLinelock(dtlck); 2189 lv = & dtlck->lv[dtlck->index]; 2190 i = index >> L2DTSLOTSIZE; 2191 lv->offset = p->header.stblindex + i; 2192 lv->length = 2193 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - 2194 i + 1; 2195 dtlck->index++; 2196 } 2197 2198 /* free the leaf entry */ 2199 dtDeleteEntry(p, index, &dtlck); 2200 2201 /* 2202 * Update directory index table for entries moved in stbl 2203 */ 2204 if (DO_INDEX(ip) && index < p->header.nextindex) { 2205 s64 lblock; 2206 2207 imp = NULL; 2208 stbl = DT_GETSTBL(p); 2209 for (i = index; i < p->header.nextindex; i++) { 2210 ldtentry = 2211 (struct ldtentry *) & p->slot[stbl[i]]; 2212 modify_index(tid, ip, 2213 le32_to_cpu(ldtentry->index), 2214 bn, i, &imp, &lblock); 2215 } 2216 if (imp) 2217 release_metapage(imp); 2218 } 2219 2220 DT_PUTPAGE(mp); 2221 } 2222 2223 return rc; 2224 } 2225 2226 2227 /* 2228 * dtDeleteUp() 2229 * 2230 * function: 2231 * free empty pages as propagating deletion up the tree 2232 * 2233 * parameter: 2234 * 2235 * return: 2236 */ 2237 static int dtDeleteUp(tid_t tid, struct inode *ip, 2238 struct metapage * fmp, dtpage_t * fp, struct btstack * btstack) 2239 { 2240 int rc = 0; 2241 struct metapage *mp; 2242 dtpage_t *p; 2243 int index, nextindex; 2244 int xlen; 2245 struct btframe *parent; 2246 struct dt_lock *dtlck; 2247 struct tlock *tlck; 2248 struct lv *lv; 2249 struct pxd_lock *pxdlock; 2250 int i; 2251 2252 /* 2253 * keep the root leaf page which has become empty 2254 */ 2255 if (BT_IS_ROOT(fmp)) { 2256 /* 2257 * reset the root 2258 * 2259 * dtInitRoot() acquires txlock on the root 2260 */ 2261 dtInitRoot(tid, ip, PARENT(ip)); 2262 2263 DT_PUTPAGE(fmp); 2264 2265 return 0; 2266 } 2267 2268 /* 2269 * free the non-root leaf page 2270 */ 2271 /* 2272 * acquire a transaction lock on the page 2273 * 2274 * write FREEXTENT|NOREDOPAGE log record 2275 * N.B. linelock is overlaid as freed extent descriptor, and 2276 * the buffer page is freed; 2277 */ 2278 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE); 2279 pxdlock = (struct pxd_lock *) & tlck->lock; 2280 pxdlock->flag = mlckFREEPXD; 2281 pxdlock->pxd = fp->header.self; 2282 pxdlock->index = 1; 2283 2284 /* update sibling pointers */ 2285 if ((rc = dtRelink(tid, ip, fp))) { 2286 BT_PUTPAGE(fmp); 2287 return rc; 2288 } 2289 2290 xlen = lengthPXD(&fp->header.self); 2291 2292 /* Free quota allocation. */ 2293 DQUOT_FREE_BLOCK(ip, xlen); 2294 2295 /* free/invalidate its buffer page */ 2296 discard_metapage(fmp); 2297 2298 /* 2299 * propagate page deletion up the directory tree 2300 * 2301 * If the delete from the parent page makes it empty, 2302 * continue all the way up the tree. 2303 * stop if the root page is reached (which is never deleted) or 2304 * if the entry deletion does not empty the page. 2305 */ 2306 while ((parent = BT_POP(btstack)) != NULL) { 2307 /* pin the parent page <sp> */ 2308 DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc); 2309 if (rc) 2310 return rc; 2311 2312 /* 2313 * free the extent of the child page deleted 2314 */ 2315 index = parent->index; 2316 2317 /* 2318 * delete the entry for the child page from parent 2319 */ 2320 nextindex = p->header.nextindex; 2321 2322 /* 2323 * the parent has the single entry being deleted: 2324 * 2325 * free the parent page which has become empty. 2326 */ 2327 if (nextindex == 1) { 2328 /* 2329 * keep the root internal page which has become empty 2330 */ 2331 if (p->header.flag & BT_ROOT) { 2332 /* 2333 * reset the root 2334 * 2335 * dtInitRoot() acquires txlock on the root 2336 */ 2337 dtInitRoot(tid, ip, PARENT(ip)); 2338 2339 DT_PUTPAGE(mp); 2340 2341 return 0; 2342 } 2343 /* 2344 * free the parent page 2345 */ 2346 else { 2347 /* 2348 * acquire a transaction lock on the page 2349 * 2350 * write FREEXTENT|NOREDOPAGE log record 2351 */ 2352 tlck = 2353 txMaplock(tid, ip, 2354 tlckDTREE | tlckFREE); 2355 pxdlock = (struct pxd_lock *) & tlck->lock; 2356 pxdlock->flag = mlckFREEPXD; 2357 pxdlock->pxd = p->header.self; 2358 pxdlock->index = 1; 2359 2360 /* update sibling pointers */ 2361 if ((rc = dtRelink(tid, ip, p))) { 2362 DT_PUTPAGE(mp); 2363 return rc; 2364 } 2365 2366 xlen = lengthPXD(&p->header.self); 2367 2368 /* Free quota allocation */ 2369 DQUOT_FREE_BLOCK(ip, xlen); 2370 2371 /* free/invalidate its buffer page */ 2372 discard_metapage(mp); 2373 2374 /* propagate up */ 2375 continue; 2376 } 2377 } 2378 2379 /* 2380 * the parent has other entries remaining: 2381 * 2382 * delete the router entry from the parent page. 2383 */ 2384 BT_MARK_DIRTY(mp, ip); 2385 /* 2386 * acquire a transaction lock on the page 2387 * 2388 * action: router entry deletion 2389 */ 2390 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY); 2391 dtlck = (struct dt_lock *) & tlck->lock; 2392 2393 /* linelock header */ 2394 if (dtlck->index >= dtlck->maxcnt) 2395 dtlck = (struct dt_lock *) txLinelock(dtlck); 2396 lv = & dtlck->lv[dtlck->index]; 2397 lv->offset = 0; 2398 lv->length = 1; 2399 dtlck->index++; 2400 2401 /* linelock stbl of non-root leaf page */ 2402 if (!(p->header.flag & BT_ROOT)) { 2403 if (dtlck->index < dtlck->maxcnt) 2404 lv++; 2405 else { 2406 dtlck = (struct dt_lock *) txLinelock(dtlck); 2407 lv = & dtlck->lv[0]; 2408 } 2409 i = index >> L2DTSLOTSIZE; 2410 lv->offset = p->header.stblindex + i; 2411 lv->length = 2412 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - 2413 i + 1; 2414 dtlck->index++; 2415 } 2416 2417 /* free the router entry */ 2418 dtDeleteEntry(p, index, &dtlck); 2419 2420 /* reset key of new leftmost entry of level (for consistency) */ 2421 if (index == 0 && 2422 ((p->header.flag & BT_ROOT) || p->header.prev == 0)) 2423 dtTruncateEntry(p, 0, &dtlck); 2424 2425 /* unpin the parent page */ 2426 DT_PUTPAGE(mp); 2427 2428 /* exit propagation up */ 2429 break; 2430 } 2431 2432 if (!DO_INDEX(ip)) 2433 ip->i_size -= PSIZE; 2434 2435 return 0; 2436 } 2437 2438 #ifdef _NOTYET 2439 /* 2440 * NAME: dtRelocate() 2441 * 2442 * FUNCTION: relocate dtpage (internal or leaf) of directory; 2443 * This function is mainly used by defragfs utility. 2444 */ 2445 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd, 2446 s64 nxaddr) 2447 { 2448 int rc = 0; 2449 struct metapage *mp, *pmp, *lmp, *rmp; 2450 dtpage_t *p, *pp, *rp = 0, *lp= 0; 2451 s64 bn; 2452 int index; 2453 struct btstack btstack; 2454 pxd_t *pxd; 2455 s64 oxaddr, nextbn, prevbn; 2456 int xlen, xsize; 2457 struct tlock *tlck; 2458 struct dt_lock *dtlck; 2459 struct pxd_lock *pxdlock; 2460 s8 *stbl; 2461 struct lv *lv; 2462 2463 oxaddr = addressPXD(opxd); 2464 xlen = lengthPXD(opxd); 2465 2466 jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d", 2467 (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr, 2468 xlen); 2469 2470 /* 2471 * 1. get the internal parent dtpage covering 2472 * router entry for the tartget page to be relocated; 2473 */ 2474 rc = dtSearchNode(ip, lmxaddr, opxd, &btstack); 2475 if (rc) 2476 return rc; 2477 2478 /* retrieve search result */ 2479 DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index); 2480 jfs_info("dtRelocate: parent router entry validated."); 2481 2482 /* 2483 * 2. relocate the target dtpage 2484 */ 2485 /* read in the target page from src extent */ 2486 DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc); 2487 if (rc) { 2488 /* release the pinned parent page */ 2489 DT_PUTPAGE(pmp); 2490 return rc; 2491 } 2492 2493 /* 2494 * read in sibling pages if any to update sibling pointers; 2495 */ 2496 rmp = NULL; 2497 if (p->header.next) { 2498 nextbn = le64_to_cpu(p->header.next); 2499 DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc); 2500 if (rc) { 2501 DT_PUTPAGE(mp); 2502 DT_PUTPAGE(pmp); 2503 return (rc); 2504 } 2505 } 2506 2507 lmp = NULL; 2508 if (p->header.prev) { 2509 prevbn = le64_to_cpu(p->header.prev); 2510 DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc); 2511 if (rc) { 2512 DT_PUTPAGE(mp); 2513 DT_PUTPAGE(pmp); 2514 if (rmp) 2515 DT_PUTPAGE(rmp); 2516 return (rc); 2517 } 2518 } 2519 2520 /* at this point, all xtpages to be updated are in memory */ 2521 2522 /* 2523 * update sibling pointers of sibling dtpages if any; 2524 */ 2525 if (lmp) { 2526 tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK); 2527 dtlck = (struct dt_lock *) & tlck->lock; 2528 /* linelock header */ 2529 ASSERT(dtlck->index == 0); 2530 lv = & dtlck->lv[0]; 2531 lv->offset = 0; 2532 lv->length = 1; 2533 dtlck->index++; 2534 2535 lp->header.next = cpu_to_le64(nxaddr); 2536 DT_PUTPAGE(lmp); 2537 } 2538 2539 if (rmp) { 2540 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK); 2541 dtlck = (struct dt_lock *) & tlck->lock; 2542 /* linelock header */ 2543 ASSERT(dtlck->index == 0); 2544 lv = & dtlck->lv[0]; 2545 lv->offset = 0; 2546 lv->length = 1; 2547 dtlck->index++; 2548 2549 rp->header.prev = cpu_to_le64(nxaddr); 2550 DT_PUTPAGE(rmp); 2551 } 2552 2553 /* 2554 * update the target dtpage to be relocated 2555 * 2556 * write LOG_REDOPAGE of LOG_NEW type for dst page 2557 * for the whole target page (logredo() will apply 2558 * after image and update bmap for allocation of the 2559 * dst extent), and update bmap for allocation of 2560 * the dst extent; 2561 */ 2562 tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW); 2563 dtlck = (struct dt_lock *) & tlck->lock; 2564 /* linelock header */ 2565 ASSERT(dtlck->index == 0); 2566 lv = & dtlck->lv[0]; 2567 2568 /* update the self address in the dtpage header */ 2569 pxd = &p->header.self; 2570 PXDaddress(pxd, nxaddr); 2571 2572 /* the dst page is the same as the src page, i.e., 2573 * linelock for afterimage of the whole page; 2574 */ 2575 lv->offset = 0; 2576 lv->length = p->header.maxslot; 2577 dtlck->index++; 2578 2579 /* update the buffer extent descriptor of the dtpage */ 2580 xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize; 2581 2582 /* unpin the relocated page */ 2583 DT_PUTPAGE(mp); 2584 jfs_info("dtRelocate: target dtpage relocated."); 2585 2586 /* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec 2587 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec 2588 * will also force a bmap update ). 2589 */ 2590 2591 /* 2592 * 3. acquire maplock for the source extent to be freed; 2593 */ 2594 /* for dtpage relocation, write a LOG_NOREDOPAGE record 2595 * for the source dtpage (logredo() will init NoRedoPage 2596 * filter and will also update bmap for free of the source 2597 * dtpage), and upadte bmap for free of the source dtpage; 2598 */ 2599 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE); 2600 pxdlock = (struct pxd_lock *) & tlck->lock; 2601 pxdlock->flag = mlckFREEPXD; 2602 PXDaddress(&pxdlock->pxd, oxaddr); 2603 PXDlength(&pxdlock->pxd, xlen); 2604 pxdlock->index = 1; 2605 2606 /* 2607 * 4. update the parent router entry for relocation; 2608 * 2609 * acquire tlck for the parent entry covering the target dtpage; 2610 * write LOG_REDOPAGE to apply after image only; 2611 */ 2612 jfs_info("dtRelocate: update parent router entry."); 2613 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY); 2614 dtlck = (struct dt_lock *) & tlck->lock; 2615 lv = & dtlck->lv[dtlck->index]; 2616 2617 /* update the PXD with the new address */ 2618 stbl = DT_GETSTBL(pp); 2619 pxd = (pxd_t *) & pp->slot[stbl[index]]; 2620 PXDaddress(pxd, nxaddr); 2621 lv->offset = stbl[index]; 2622 lv->length = 1; 2623 dtlck->index++; 2624 2625 /* unpin the parent dtpage */ 2626 DT_PUTPAGE(pmp); 2627 2628 return rc; 2629 } 2630 2631 /* 2632 * NAME: dtSearchNode() 2633 * 2634 * FUNCTION: Search for an dtpage containing a specified address 2635 * This function is mainly used by defragfs utility. 2636 * 2637 * NOTE: Search result on stack, the found page is pinned at exit. 2638 * The result page must be an internal dtpage. 2639 * lmxaddr give the address of the left most page of the 2640 * dtree level, in which the required dtpage resides. 2641 */ 2642 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd, 2643 struct btstack * btstack) 2644 { 2645 int rc = 0; 2646 s64 bn; 2647 struct metapage *mp; 2648 dtpage_t *p; 2649 int psize = 288; /* initial in-line directory */ 2650 s8 *stbl; 2651 int i; 2652 pxd_t *pxd; 2653 struct btframe *btsp; 2654 2655 BT_CLR(btstack); /* reset stack */ 2656 2657 /* 2658 * descend tree to the level with specified leftmost page 2659 * 2660 * by convention, root bn = 0. 2661 */ 2662 for (bn = 0;;) { 2663 /* get/pin the page to search */ 2664 DT_GETPAGE(ip, bn, mp, psize, p, rc); 2665 if (rc) 2666 return rc; 2667 2668 /* does the xaddr of leftmost page of the levevl 2669 * matches levevl search key ? 2670 */ 2671 if (p->header.flag & BT_ROOT) { 2672 if (lmxaddr == 0) 2673 break; 2674 } else if (addressPXD(&p->header.self) == lmxaddr) 2675 break; 2676 2677 /* 2678 * descend down to leftmost child page 2679 */ 2680 if (p->header.flag & BT_LEAF) { 2681 DT_PUTPAGE(mp); 2682 return -ESTALE; 2683 } 2684 2685 /* get the leftmost entry */ 2686 stbl = DT_GETSTBL(p); 2687 pxd = (pxd_t *) & p->slot[stbl[0]]; 2688 2689 /* get the child page block address */ 2690 bn = addressPXD(pxd); 2691 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize; 2692 /* unpin the parent page */ 2693 DT_PUTPAGE(mp); 2694 } 2695 2696 /* 2697 * search each page at the current levevl 2698 */ 2699 loop: 2700 stbl = DT_GETSTBL(p); 2701 for (i = 0; i < p->header.nextindex; i++) { 2702 pxd = (pxd_t *) & p->slot[stbl[i]]; 2703 2704 /* found the specified router entry */ 2705 if (addressPXD(pxd) == addressPXD(kpxd) && 2706 lengthPXD(pxd) == lengthPXD(kpxd)) { 2707 btsp = btstack->top; 2708 btsp->bn = bn; 2709 btsp->index = i; 2710 btsp->mp = mp; 2711 2712 return 0; 2713 } 2714 } 2715 2716 /* get the right sibling page if any */ 2717 if (p->header.next) 2718 bn = le64_to_cpu(p->header.next); 2719 else { 2720 DT_PUTPAGE(mp); 2721 return -ESTALE; 2722 } 2723 2724 /* unpin current page */ 2725 DT_PUTPAGE(mp); 2726 2727 /* get the right sibling page */ 2728 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 2729 if (rc) 2730 return rc; 2731 2732 goto loop; 2733 } 2734 #endif /* _NOTYET */ 2735 2736 /* 2737 * dtRelink() 2738 * 2739 * function: 2740 * link around a freed page. 2741 * 2742 * parameter: 2743 * fp: page to be freed 2744 * 2745 * return: 2746 */ 2747 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p) 2748 { 2749 int rc; 2750 struct metapage *mp; 2751 s64 nextbn, prevbn; 2752 struct tlock *tlck; 2753 struct dt_lock *dtlck; 2754 struct lv *lv; 2755 2756 nextbn = le64_to_cpu(p->header.next); 2757 prevbn = le64_to_cpu(p->header.prev); 2758 2759 /* update prev pointer of the next page */ 2760 if (nextbn != 0) { 2761 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc); 2762 if (rc) 2763 return rc; 2764 2765 BT_MARK_DIRTY(mp, ip); 2766 /* 2767 * acquire a transaction lock on the next page 2768 * 2769 * action: update prev pointer; 2770 */ 2771 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK); 2772 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p", 2773 tlck, ip, mp); 2774 dtlck = (struct dt_lock *) & tlck->lock; 2775 2776 /* linelock header */ 2777 if (dtlck->index >= dtlck->maxcnt) 2778 dtlck = (struct dt_lock *) txLinelock(dtlck); 2779 lv = & dtlck->lv[dtlck->index]; 2780 lv->offset = 0; 2781 lv->length = 1; 2782 dtlck->index++; 2783 2784 p->header.prev = cpu_to_le64(prevbn); 2785 DT_PUTPAGE(mp); 2786 } 2787 2788 /* update next pointer of the previous page */ 2789 if (prevbn != 0) { 2790 DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc); 2791 if (rc) 2792 return rc; 2793 2794 BT_MARK_DIRTY(mp, ip); 2795 /* 2796 * acquire a transaction lock on the prev page 2797 * 2798 * action: update next pointer; 2799 */ 2800 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK); 2801 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p", 2802 tlck, ip, mp); 2803 dtlck = (struct dt_lock *) & tlck->lock; 2804 2805 /* linelock header */ 2806 if (dtlck->index >= dtlck->maxcnt) 2807 dtlck = (struct dt_lock *) txLinelock(dtlck); 2808 lv = & dtlck->lv[dtlck->index]; 2809 lv->offset = 0; 2810 lv->length = 1; 2811 dtlck->index++; 2812 2813 p->header.next = cpu_to_le64(nextbn); 2814 DT_PUTPAGE(mp); 2815 } 2816 2817 return 0; 2818 } 2819 2820 2821 /* 2822 * dtInitRoot() 2823 * 2824 * initialize directory root (inline in inode) 2825 */ 2826 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot) 2827 { 2828 struct jfs_inode_info *jfs_ip = JFS_IP(ip); 2829 dtroot_t *p; 2830 int fsi; 2831 struct dtslot *f; 2832 struct tlock *tlck; 2833 struct dt_lock *dtlck; 2834 struct lv *lv; 2835 u16 xflag_save; 2836 2837 /* 2838 * If this was previously an non-empty directory, we need to remove 2839 * the old directory table. 2840 */ 2841 if (DO_INDEX(ip)) { 2842 if (!jfs_dirtable_inline(ip)) { 2843 struct tblock *tblk = tid_to_tblock(tid); 2844 /* 2845 * We're playing games with the tid's xflag. If 2846 * we're removing a regular file, the file's xtree 2847 * is committed with COMMIT_PMAP, but we always 2848 * commit the directories xtree with COMMIT_PWMAP. 2849 */ 2850 xflag_save = tblk->xflag; 2851 tblk->xflag = 0; 2852 /* 2853 * xtTruncate isn't guaranteed to fully truncate 2854 * the xtree. The caller needs to check i_size 2855 * after committing the transaction to see if 2856 * additional truncation is needed. The 2857 * COMMIT_Stale flag tells caller that we 2858 * initiated the truncation. 2859 */ 2860 xtTruncate(tid, ip, 0, COMMIT_PWMAP); 2861 set_cflag(COMMIT_Stale, ip); 2862 2863 tblk->xflag = xflag_save; 2864 } else 2865 ip->i_size = 1; 2866 2867 jfs_ip->next_index = 2; 2868 } else 2869 ip->i_size = IDATASIZE; 2870 2871 /* 2872 * acquire a transaction lock on the root 2873 * 2874 * action: directory initialization; 2875 */ 2876 tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag, 2877 tlckDTREE | tlckENTRY | tlckBTROOT); 2878 dtlck = (struct dt_lock *) & tlck->lock; 2879 2880 /* linelock root */ 2881 ASSERT(dtlck->index == 0); 2882 lv = & dtlck->lv[0]; 2883 lv->offset = 0; 2884 lv->length = DTROOTMAXSLOT; 2885 dtlck->index++; 2886 2887 p = &jfs_ip->i_dtroot; 2888 2889 p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF; 2890 2891 p->header.nextindex = 0; 2892 2893 /* init freelist */ 2894 fsi = 1; 2895 f = &p->slot[fsi]; 2896 2897 /* init data area of root */ 2898 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++) 2899 f->next = fsi; 2900 f->next = -1; 2901 2902 p->header.freelist = 1; 2903 p->header.freecnt = 8; 2904 2905 /* init '..' entry */ 2906 p->header.idotdot = cpu_to_le32(idotdot); 2907 2908 return; 2909 } 2910 2911 /* 2912 * add_missing_indices() 2913 * 2914 * function: Fix dtree page in which one or more entries has an invalid index. 2915 * fsck.jfs should really fix this, but it currently does not. 2916 * Called from jfs_readdir when bad index is detected. 2917 */ 2918 static void add_missing_indices(struct inode *inode, s64 bn) 2919 { 2920 struct ldtentry *d; 2921 struct dt_lock *dtlck; 2922 int i; 2923 uint index; 2924 struct lv *lv; 2925 struct metapage *mp; 2926 dtpage_t *p; 2927 int rc; 2928 s8 *stbl; 2929 tid_t tid; 2930 struct tlock *tlck; 2931 2932 tid = txBegin(inode->i_sb, 0); 2933 2934 DT_GETPAGE(inode, bn, mp, PSIZE, p, rc); 2935 2936 if (rc) { 2937 printk(KERN_ERR "DT_GETPAGE failed!\n"); 2938 goto end; 2939 } 2940 BT_MARK_DIRTY(mp, inode); 2941 2942 ASSERT(p->header.flag & BT_LEAF); 2943 2944 tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY); 2945 if (BT_IS_ROOT(mp)) 2946 tlck->type |= tlckBTROOT; 2947 2948 dtlck = (struct dt_lock *) &tlck->lock; 2949 2950 stbl = DT_GETSTBL(p); 2951 for (i = 0; i < p->header.nextindex; i++) { 2952 d = (struct ldtentry *) &p->slot[stbl[i]]; 2953 index = le32_to_cpu(d->index); 2954 if ((index < 2) || (index >= JFS_IP(inode)->next_index)) { 2955 d->index = cpu_to_le32(add_index(tid, inode, bn, i)); 2956 if (dtlck->index >= dtlck->maxcnt) 2957 dtlck = (struct dt_lock *) txLinelock(dtlck); 2958 lv = &dtlck->lv[dtlck->index]; 2959 lv->offset = stbl[i]; 2960 lv->length = 1; 2961 dtlck->index++; 2962 } 2963 } 2964 2965 DT_PUTPAGE(mp); 2966 (void) txCommit(tid, 1, &inode, 0); 2967 end: 2968 txEnd(tid); 2969 } 2970 2971 /* 2972 * Buffer to hold directory entry info while traversing a dtree page 2973 * before being fed to the filldir function 2974 */ 2975 struct jfs_dirent { 2976 loff_t position; 2977 int ino; 2978 u16 name_len; 2979 char name[0]; 2980 }; 2981 2982 /* 2983 * function to determine next variable-sized jfs_dirent in buffer 2984 */ 2985 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent) 2986 { 2987 return (struct jfs_dirent *) 2988 ((char *)dirent + 2989 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 + 2990 sizeof (loff_t) - 1) & 2991 ~(sizeof (loff_t) - 1))); 2992 } 2993 2994 /* 2995 * jfs_readdir() 2996 * 2997 * function: read directory entries sequentially 2998 * from the specified entry offset 2999 * 3000 * parameter: 3001 * 3002 * return: offset = (pn, index) of start entry 3003 * of next jfs_readdir()/dtRead() 3004 */ 3005 int jfs_readdir(struct file *filp, void *dirent, filldir_t filldir) 3006 { 3007 struct inode *ip = filp->f_path.dentry->d_inode; 3008 struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab; 3009 int rc = 0; 3010 loff_t dtpos; /* legacy OS/2 style position */ 3011 struct dtoffset { 3012 s16 pn; 3013 s16 index; 3014 s32 unused; 3015 } *dtoffset = (struct dtoffset *) &dtpos; 3016 s64 bn; 3017 struct metapage *mp; 3018 dtpage_t *p; 3019 int index; 3020 s8 *stbl; 3021 struct btstack btstack; 3022 int i, next; 3023 struct ldtentry *d; 3024 struct dtslot *t; 3025 int d_namleft, len, outlen; 3026 unsigned long dirent_buf; 3027 char *name_ptr; 3028 u32 dir_index; 3029 int do_index = 0; 3030 uint loop_count = 0; 3031 struct jfs_dirent *jfs_dirent; 3032 int jfs_dirents; 3033 int overflow, fix_page, page_fixed = 0; 3034 static int unique_pos = 2; /* If we can't fix broken index */ 3035 3036 if (filp->f_pos == DIREND) 3037 return 0; 3038 3039 if (DO_INDEX(ip)) { 3040 /* 3041 * persistent index is stored in directory entries. 3042 * Special cases: 0 = . 3043 * 1 = .. 3044 * -1 = End of directory 3045 */ 3046 do_index = 1; 3047 3048 dir_index = (u32) filp->f_pos; 3049 3050 if (dir_index > 1) { 3051 struct dir_table_slot dirtab_slot; 3052 3053 if (dtEmpty(ip) || 3054 (dir_index >= JFS_IP(ip)->next_index)) { 3055 /* Stale position. Directory has shrunk */ 3056 filp->f_pos = DIREND; 3057 return 0; 3058 } 3059 repeat: 3060 rc = read_index(ip, dir_index, &dirtab_slot); 3061 if (rc) { 3062 filp->f_pos = DIREND; 3063 return rc; 3064 } 3065 if (dirtab_slot.flag == DIR_INDEX_FREE) { 3066 if (loop_count++ > JFS_IP(ip)->next_index) { 3067 jfs_err("jfs_readdir detected " 3068 "infinite loop!"); 3069 filp->f_pos = DIREND; 3070 return 0; 3071 } 3072 dir_index = le32_to_cpu(dirtab_slot.addr2); 3073 if (dir_index == -1) { 3074 filp->f_pos = DIREND; 3075 return 0; 3076 } 3077 goto repeat; 3078 } 3079 bn = addressDTS(&dirtab_slot); 3080 index = dirtab_slot.slot; 3081 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3082 if (rc) { 3083 filp->f_pos = DIREND; 3084 return 0; 3085 } 3086 if (p->header.flag & BT_INTERNAL) { 3087 jfs_err("jfs_readdir: bad index table"); 3088 DT_PUTPAGE(mp); 3089 filp->f_pos = -1; 3090 return 0; 3091 } 3092 } else { 3093 if (dir_index == 0) { 3094 /* 3095 * self "." 3096 */ 3097 filp->f_pos = 0; 3098 if (filldir(dirent, ".", 1, 0, ip->i_ino, 3099 DT_DIR)) 3100 return 0; 3101 } 3102 /* 3103 * parent ".." 3104 */ 3105 filp->f_pos = 1; 3106 if (filldir(dirent, "..", 2, 1, PARENT(ip), DT_DIR)) 3107 return 0; 3108 3109 /* 3110 * Find first entry of left-most leaf 3111 */ 3112 if (dtEmpty(ip)) { 3113 filp->f_pos = DIREND; 3114 return 0; 3115 } 3116 3117 if ((rc = dtReadFirst(ip, &btstack))) 3118 return rc; 3119 3120 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index); 3121 } 3122 } else { 3123 /* 3124 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6 3125 * 3126 * pn = index = 0: First entry "." 3127 * pn = 0; index = 1: Second entry ".." 3128 * pn > 0: Real entries, pn=1 -> leftmost page 3129 * pn = index = -1: No more entries 3130 */ 3131 dtpos = filp->f_pos; 3132 if (dtpos == 0) { 3133 /* build "." entry */ 3134 3135 if (filldir(dirent, ".", 1, filp->f_pos, ip->i_ino, 3136 DT_DIR)) 3137 return 0; 3138 dtoffset->index = 1; 3139 filp->f_pos = dtpos; 3140 } 3141 3142 if (dtoffset->pn == 0) { 3143 if (dtoffset->index == 1) { 3144 /* build ".." entry */ 3145 3146 if (filldir(dirent, "..", 2, filp->f_pos, 3147 PARENT(ip), DT_DIR)) 3148 return 0; 3149 } else { 3150 jfs_err("jfs_readdir called with " 3151 "invalid offset!"); 3152 } 3153 dtoffset->pn = 1; 3154 dtoffset->index = 0; 3155 filp->f_pos = dtpos; 3156 } 3157 3158 if (dtEmpty(ip)) { 3159 filp->f_pos = DIREND; 3160 return 0; 3161 } 3162 3163 if ((rc = dtReadNext(ip, &filp->f_pos, &btstack))) { 3164 jfs_err("jfs_readdir: unexpected rc = %d " 3165 "from dtReadNext", rc); 3166 filp->f_pos = DIREND; 3167 return 0; 3168 } 3169 /* get start leaf page and index */ 3170 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index); 3171 3172 /* offset beyond directory eof ? */ 3173 if (bn < 0) { 3174 filp->f_pos = DIREND; 3175 return 0; 3176 } 3177 } 3178 3179 dirent_buf = __get_free_page(GFP_KERNEL); 3180 if (dirent_buf == 0) { 3181 DT_PUTPAGE(mp); 3182 jfs_warn("jfs_readdir: __get_free_page failed!"); 3183 filp->f_pos = DIREND; 3184 return -ENOMEM; 3185 } 3186 3187 while (1) { 3188 jfs_dirent = (struct jfs_dirent *) dirent_buf; 3189 jfs_dirents = 0; 3190 overflow = fix_page = 0; 3191 3192 stbl = DT_GETSTBL(p); 3193 3194 for (i = index; i < p->header.nextindex; i++) { 3195 d = (struct ldtentry *) & p->slot[stbl[i]]; 3196 3197 if (((long) jfs_dirent + d->namlen + 1) > 3198 (dirent_buf + PAGE_SIZE)) { 3199 /* DBCS codepages could overrun dirent_buf */ 3200 index = i; 3201 overflow = 1; 3202 break; 3203 } 3204 3205 d_namleft = d->namlen; 3206 name_ptr = jfs_dirent->name; 3207 jfs_dirent->ino = le32_to_cpu(d->inumber); 3208 3209 if (do_index) { 3210 len = min(d_namleft, DTLHDRDATALEN); 3211 jfs_dirent->position = le32_to_cpu(d->index); 3212 /* 3213 * d->index should always be valid, but it 3214 * isn't. fsck.jfs doesn't create the 3215 * directory index for the lost+found 3216 * directory. Rather than let it go, 3217 * we can try to fix it. 3218 */ 3219 if ((jfs_dirent->position < 2) || 3220 (jfs_dirent->position >= 3221 JFS_IP(ip)->next_index)) { 3222 if (!page_fixed && !isReadOnly(ip)) { 3223 fix_page = 1; 3224 /* 3225 * setting overflow and setting 3226 * index to i will cause the 3227 * same page to be processed 3228 * again starting here 3229 */ 3230 overflow = 1; 3231 index = i; 3232 break; 3233 } 3234 jfs_dirent->position = unique_pos++; 3235 } 3236 } else { 3237 jfs_dirent->position = dtpos; 3238 len = min(d_namleft, DTLHDRDATALEN_LEGACY); 3239 } 3240 3241 /* copy the name of head/only segment */ 3242 outlen = jfs_strfromUCS_le(name_ptr, d->name, len, 3243 codepage); 3244 jfs_dirent->name_len = outlen; 3245 3246 /* copy name in the additional segment(s) */ 3247 next = d->next; 3248 while (next >= 0) { 3249 t = (struct dtslot *) & p->slot[next]; 3250 name_ptr += outlen; 3251 d_namleft -= len; 3252 /* Sanity Check */ 3253 if (d_namleft == 0) { 3254 jfs_error(ip->i_sb, 3255 "JFS:Dtree error: ino = " 3256 "%ld, bn=%Ld, index = %d", 3257 (long)ip->i_ino, 3258 (long long)bn, 3259 i); 3260 goto skip_one; 3261 } 3262 len = min(d_namleft, DTSLOTDATALEN); 3263 outlen = jfs_strfromUCS_le(name_ptr, t->name, 3264 len, codepage); 3265 jfs_dirent->name_len += outlen; 3266 3267 next = t->next; 3268 } 3269 3270 jfs_dirents++; 3271 jfs_dirent = next_jfs_dirent(jfs_dirent); 3272 skip_one: 3273 if (!do_index) 3274 dtoffset->index++; 3275 } 3276 3277 if (!overflow) { 3278 /* Point to next leaf page */ 3279 if (p->header.flag & BT_ROOT) 3280 bn = 0; 3281 else { 3282 bn = le64_to_cpu(p->header.next); 3283 index = 0; 3284 /* update offset (pn:index) for new page */ 3285 if (!do_index) { 3286 dtoffset->pn++; 3287 dtoffset->index = 0; 3288 } 3289 } 3290 page_fixed = 0; 3291 } 3292 3293 /* unpin previous leaf page */ 3294 DT_PUTPAGE(mp); 3295 3296 jfs_dirent = (struct jfs_dirent *) dirent_buf; 3297 while (jfs_dirents--) { 3298 filp->f_pos = jfs_dirent->position; 3299 if (filldir(dirent, jfs_dirent->name, 3300 jfs_dirent->name_len, filp->f_pos, 3301 jfs_dirent->ino, DT_UNKNOWN)) 3302 goto out; 3303 jfs_dirent = next_jfs_dirent(jfs_dirent); 3304 } 3305 3306 if (fix_page) { 3307 add_missing_indices(ip, bn); 3308 page_fixed = 1; 3309 } 3310 3311 if (!overflow && (bn == 0)) { 3312 filp->f_pos = DIREND; 3313 break; 3314 } 3315 3316 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3317 if (rc) { 3318 free_page(dirent_buf); 3319 return rc; 3320 } 3321 } 3322 3323 out: 3324 free_page(dirent_buf); 3325 3326 return rc; 3327 } 3328 3329 3330 /* 3331 * dtReadFirst() 3332 * 3333 * function: get the leftmost page of the directory 3334 */ 3335 static int dtReadFirst(struct inode *ip, struct btstack * btstack) 3336 { 3337 int rc = 0; 3338 s64 bn; 3339 int psize = 288; /* initial in-line directory */ 3340 struct metapage *mp; 3341 dtpage_t *p; 3342 s8 *stbl; 3343 struct btframe *btsp; 3344 pxd_t *xd; 3345 3346 BT_CLR(btstack); /* reset stack */ 3347 3348 /* 3349 * descend leftmost path of the tree 3350 * 3351 * by convention, root bn = 0. 3352 */ 3353 for (bn = 0;;) { 3354 DT_GETPAGE(ip, bn, mp, psize, p, rc); 3355 if (rc) 3356 return rc; 3357 3358 /* 3359 * leftmost leaf page 3360 */ 3361 if (p->header.flag & BT_LEAF) { 3362 /* return leftmost entry */ 3363 btsp = btstack->top; 3364 btsp->bn = bn; 3365 btsp->index = 0; 3366 btsp->mp = mp; 3367 3368 return 0; 3369 } 3370 3371 /* 3372 * descend down to leftmost child page 3373 */ 3374 if (BT_STACK_FULL(btstack)) { 3375 DT_PUTPAGE(mp); 3376 jfs_error(ip->i_sb, "dtReadFirst: btstack overrun"); 3377 BT_STACK_DUMP(btstack); 3378 return -EIO; 3379 } 3380 /* push (bn, index) of the parent page/entry */ 3381 BT_PUSH(btstack, bn, 0); 3382 3383 /* get the leftmost entry */ 3384 stbl = DT_GETSTBL(p); 3385 xd = (pxd_t *) & p->slot[stbl[0]]; 3386 3387 /* get the child page block address */ 3388 bn = addressPXD(xd); 3389 psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize; 3390 3391 /* unpin the parent page */ 3392 DT_PUTPAGE(mp); 3393 } 3394 } 3395 3396 3397 /* 3398 * dtReadNext() 3399 * 3400 * function: get the page of the specified offset (pn:index) 3401 * 3402 * return: if (offset > eof), bn = -1; 3403 * 3404 * note: if index > nextindex of the target leaf page, 3405 * start with 1st entry of next leaf page; 3406 */ 3407 static int dtReadNext(struct inode *ip, loff_t * offset, 3408 struct btstack * btstack) 3409 { 3410 int rc = 0; 3411 struct dtoffset { 3412 s16 pn; 3413 s16 index; 3414 s32 unused; 3415 } *dtoffset = (struct dtoffset *) offset; 3416 s64 bn; 3417 struct metapage *mp; 3418 dtpage_t *p; 3419 int index; 3420 int pn; 3421 s8 *stbl; 3422 struct btframe *btsp, *parent; 3423 pxd_t *xd; 3424 3425 /* 3426 * get leftmost leaf page pinned 3427 */ 3428 if ((rc = dtReadFirst(ip, btstack))) 3429 return rc; 3430 3431 /* get leaf page */ 3432 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index); 3433 3434 /* get the start offset (pn:index) */ 3435 pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */ 3436 index = dtoffset->index; 3437 3438 /* start at leftmost page ? */ 3439 if (pn == 0) { 3440 /* offset beyond eof ? */ 3441 if (index < p->header.nextindex) 3442 goto out; 3443 3444 if (p->header.flag & BT_ROOT) { 3445 bn = -1; 3446 goto out; 3447 } 3448 3449 /* start with 1st entry of next leaf page */ 3450 dtoffset->pn++; 3451 dtoffset->index = index = 0; 3452 goto a; 3453 } 3454 3455 /* start at non-leftmost page: scan parent pages for large pn */ 3456 if (p->header.flag & BT_ROOT) { 3457 bn = -1; 3458 goto out; 3459 } 3460 3461 /* start after next leaf page ? */ 3462 if (pn > 1) 3463 goto b; 3464 3465 /* get leaf page pn = 1 */ 3466 a: 3467 bn = le64_to_cpu(p->header.next); 3468 3469 /* unpin leaf page */ 3470 DT_PUTPAGE(mp); 3471 3472 /* offset beyond eof ? */ 3473 if (bn == 0) { 3474 bn = -1; 3475 goto out; 3476 } 3477 3478 goto c; 3479 3480 /* 3481 * scan last internal page level to get target leaf page 3482 */ 3483 b: 3484 /* unpin leftmost leaf page */ 3485 DT_PUTPAGE(mp); 3486 3487 /* get left most parent page */ 3488 btsp = btstack->top; 3489 parent = btsp - 1; 3490 bn = parent->bn; 3491 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3492 if (rc) 3493 return rc; 3494 3495 /* scan parent pages at last internal page level */ 3496 while (pn >= p->header.nextindex) { 3497 pn -= p->header.nextindex; 3498 3499 /* get next parent page address */ 3500 bn = le64_to_cpu(p->header.next); 3501 3502 /* unpin current parent page */ 3503 DT_PUTPAGE(mp); 3504 3505 /* offset beyond eof ? */ 3506 if (bn == 0) { 3507 bn = -1; 3508 goto out; 3509 } 3510 3511 /* get next parent page */ 3512 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3513 if (rc) 3514 return rc; 3515 3516 /* update parent page stack frame */ 3517 parent->bn = bn; 3518 } 3519 3520 /* get leaf page address */ 3521 stbl = DT_GETSTBL(p); 3522 xd = (pxd_t *) & p->slot[stbl[pn]]; 3523 bn = addressPXD(xd); 3524 3525 /* unpin parent page */ 3526 DT_PUTPAGE(mp); 3527 3528 /* 3529 * get target leaf page 3530 */ 3531 c: 3532 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3533 if (rc) 3534 return rc; 3535 3536 /* 3537 * leaf page has been completed: 3538 * start with 1st entry of next leaf page 3539 */ 3540 if (index >= p->header.nextindex) { 3541 bn = le64_to_cpu(p->header.next); 3542 3543 /* unpin leaf page */ 3544 DT_PUTPAGE(mp); 3545 3546 /* offset beyond eof ? */ 3547 if (bn == 0) { 3548 bn = -1; 3549 goto out; 3550 } 3551 3552 /* get next leaf page */ 3553 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3554 if (rc) 3555 return rc; 3556 3557 /* start with 1st entry of next leaf page */ 3558 dtoffset->pn++; 3559 dtoffset->index = 0; 3560 } 3561 3562 out: 3563 /* return target leaf page pinned */ 3564 btsp = btstack->top; 3565 btsp->bn = bn; 3566 btsp->index = dtoffset->index; 3567 btsp->mp = mp; 3568 3569 return 0; 3570 } 3571 3572 3573 /* 3574 * dtCompare() 3575 * 3576 * function: compare search key with an internal entry 3577 * 3578 * return: 3579 * < 0 if k is < record 3580 * = 0 if k is = record 3581 * > 0 if k is > record 3582 */ 3583 static int dtCompare(struct component_name * key, /* search key */ 3584 dtpage_t * p, /* directory page */ 3585 int si) 3586 { /* entry slot index */ 3587 wchar_t *kname; 3588 __le16 *name; 3589 int klen, namlen, len, rc; 3590 struct idtentry *ih; 3591 struct dtslot *t; 3592 3593 /* 3594 * force the left-most key on internal pages, at any level of 3595 * the tree, to be less than any search key. 3596 * this obviates having to update the leftmost key on an internal 3597 * page when the user inserts a new key in the tree smaller than 3598 * anything that has been stored. 3599 * 3600 * (? if/when dtSearch() narrows down to 1st entry (index = 0), 3601 * at any internal page at any level of the tree, 3602 * it descends to child of the entry anyway - 3603 * ? make the entry as min size dummy entry) 3604 * 3605 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF)) 3606 * return (1); 3607 */ 3608 3609 kname = key->name; 3610 klen = key->namlen; 3611 3612 ih = (struct idtentry *) & p->slot[si]; 3613 si = ih->next; 3614 name = ih->name; 3615 namlen = ih->namlen; 3616 len = min(namlen, DTIHDRDATALEN); 3617 3618 /* compare with head/only segment */ 3619 len = min(klen, len); 3620 if ((rc = UniStrncmp_le(kname, name, len))) 3621 return rc; 3622 3623 klen -= len; 3624 namlen -= len; 3625 3626 /* compare with additional segment(s) */ 3627 kname += len; 3628 while (klen > 0 && namlen > 0) { 3629 /* compare with next name segment */ 3630 t = (struct dtslot *) & p->slot[si]; 3631 len = min(namlen, DTSLOTDATALEN); 3632 len = min(klen, len); 3633 name = t->name; 3634 if ((rc = UniStrncmp_le(kname, name, len))) 3635 return rc; 3636 3637 klen -= len; 3638 namlen -= len; 3639 kname += len; 3640 si = t->next; 3641 } 3642 3643 return (klen - namlen); 3644 } 3645 3646 3647 3648 3649 /* 3650 * ciCompare() 3651 * 3652 * function: compare search key with an (leaf/internal) entry 3653 * 3654 * return: 3655 * < 0 if k is < record 3656 * = 0 if k is = record 3657 * > 0 if k is > record 3658 */ 3659 static int ciCompare(struct component_name * key, /* search key */ 3660 dtpage_t * p, /* directory page */ 3661 int si, /* entry slot index */ 3662 int flag) 3663 { 3664 wchar_t *kname, x; 3665 __le16 *name; 3666 int klen, namlen, len, rc; 3667 struct ldtentry *lh; 3668 struct idtentry *ih; 3669 struct dtslot *t; 3670 int i; 3671 3672 /* 3673 * force the left-most key on internal pages, at any level of 3674 * the tree, to be less than any search key. 3675 * this obviates having to update the leftmost key on an internal 3676 * page when the user inserts a new key in the tree smaller than 3677 * anything that has been stored. 3678 * 3679 * (? if/when dtSearch() narrows down to 1st entry (index = 0), 3680 * at any internal page at any level of the tree, 3681 * it descends to child of the entry anyway - 3682 * ? make the entry as min size dummy entry) 3683 * 3684 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF)) 3685 * return (1); 3686 */ 3687 3688 kname = key->name; 3689 klen = key->namlen; 3690 3691 /* 3692 * leaf page entry 3693 */ 3694 if (p->header.flag & BT_LEAF) { 3695 lh = (struct ldtentry *) & p->slot[si]; 3696 si = lh->next; 3697 name = lh->name; 3698 namlen = lh->namlen; 3699 if (flag & JFS_DIR_INDEX) 3700 len = min(namlen, DTLHDRDATALEN); 3701 else 3702 len = min(namlen, DTLHDRDATALEN_LEGACY); 3703 } 3704 /* 3705 * internal page entry 3706 */ 3707 else { 3708 ih = (struct idtentry *) & p->slot[si]; 3709 si = ih->next; 3710 name = ih->name; 3711 namlen = ih->namlen; 3712 len = min(namlen, DTIHDRDATALEN); 3713 } 3714 3715 /* compare with head/only segment */ 3716 len = min(klen, len); 3717 for (i = 0; i < len; i++, kname++, name++) { 3718 /* only uppercase if case-insensitive support is on */ 3719 if ((flag & JFS_OS2) == JFS_OS2) 3720 x = UniToupper(le16_to_cpu(*name)); 3721 else 3722 x = le16_to_cpu(*name); 3723 if ((rc = *kname - x)) 3724 return rc; 3725 } 3726 3727 klen -= len; 3728 namlen -= len; 3729 3730 /* compare with additional segment(s) */ 3731 while (klen > 0 && namlen > 0) { 3732 /* compare with next name segment */ 3733 t = (struct dtslot *) & p->slot[si]; 3734 len = min(namlen, DTSLOTDATALEN); 3735 len = min(klen, len); 3736 name = t->name; 3737 for (i = 0; i < len; i++, kname++, name++) { 3738 /* only uppercase if case-insensitive support is on */ 3739 if ((flag & JFS_OS2) == JFS_OS2) 3740 x = UniToupper(le16_to_cpu(*name)); 3741 else 3742 x = le16_to_cpu(*name); 3743 3744 if ((rc = *kname - x)) 3745 return rc; 3746 } 3747 3748 klen -= len; 3749 namlen -= len; 3750 si = t->next; 3751 } 3752 3753 return (klen - namlen); 3754 } 3755 3756 3757 /* 3758 * ciGetLeafPrefixKey() 3759 * 3760 * function: compute prefix of suffix compression 3761 * from two adjacent leaf entries 3762 * across page boundary 3763 * 3764 * return: non-zero on error 3765 * 3766 */ 3767 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp, 3768 int ri, struct component_name * key, int flag) 3769 { 3770 int klen, namlen; 3771 wchar_t *pl, *pr, *kname; 3772 struct component_name lkey; 3773 struct component_name rkey; 3774 3775 lkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t), 3776 GFP_KERNEL); 3777 if (lkey.name == NULL) 3778 return -ENOMEM; 3779 3780 rkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t), 3781 GFP_KERNEL); 3782 if (rkey.name == NULL) { 3783 kfree(lkey.name); 3784 return -ENOMEM; 3785 } 3786 3787 /* get left and right key */ 3788 dtGetKey(lp, li, &lkey, flag); 3789 lkey.name[lkey.namlen] = 0; 3790 3791 if ((flag & JFS_OS2) == JFS_OS2) 3792 ciToUpper(&lkey); 3793 3794 dtGetKey(rp, ri, &rkey, flag); 3795 rkey.name[rkey.namlen] = 0; 3796 3797 3798 if ((flag & JFS_OS2) == JFS_OS2) 3799 ciToUpper(&rkey); 3800 3801 /* compute prefix */ 3802 klen = 0; 3803 kname = key->name; 3804 namlen = min(lkey.namlen, rkey.namlen); 3805 for (pl = lkey.name, pr = rkey.name; 3806 namlen; pl++, pr++, namlen--, klen++, kname++) { 3807 *kname = *pr; 3808 if (*pl != *pr) { 3809 key->namlen = klen + 1; 3810 goto free_names; 3811 } 3812 } 3813 3814 /* l->namlen <= r->namlen since l <= r */ 3815 if (lkey.namlen < rkey.namlen) { 3816 *kname = *pr; 3817 key->namlen = klen + 1; 3818 } else /* l->namelen == r->namelen */ 3819 key->namlen = klen; 3820 3821 free_names: 3822 kfree(lkey.name); 3823 kfree(rkey.name); 3824 return 0; 3825 } 3826 3827 3828 3829 /* 3830 * dtGetKey() 3831 * 3832 * function: get key of the entry 3833 */ 3834 static void dtGetKey(dtpage_t * p, int i, /* entry index */ 3835 struct component_name * key, int flag) 3836 { 3837 int si; 3838 s8 *stbl; 3839 struct ldtentry *lh; 3840 struct idtentry *ih; 3841 struct dtslot *t; 3842 int namlen, len; 3843 wchar_t *kname; 3844 __le16 *name; 3845 3846 /* get entry */ 3847 stbl = DT_GETSTBL(p); 3848 si = stbl[i]; 3849 if (p->header.flag & BT_LEAF) { 3850 lh = (struct ldtentry *) & p->slot[si]; 3851 si = lh->next; 3852 namlen = lh->namlen; 3853 name = lh->name; 3854 if (flag & JFS_DIR_INDEX) 3855 len = min(namlen, DTLHDRDATALEN); 3856 else 3857 len = min(namlen, DTLHDRDATALEN_LEGACY); 3858 } else { 3859 ih = (struct idtentry *) & p->slot[si]; 3860 si = ih->next; 3861 namlen = ih->namlen; 3862 name = ih->name; 3863 len = min(namlen, DTIHDRDATALEN); 3864 } 3865 3866 key->namlen = namlen; 3867 kname = key->name; 3868 3869 /* 3870 * move head/only segment 3871 */ 3872 UniStrncpy_from_le(kname, name, len); 3873 3874 /* 3875 * move additional segment(s) 3876 */ 3877 while (si >= 0) { 3878 /* get next segment */ 3879 t = &p->slot[si]; 3880 kname += len; 3881 namlen -= len; 3882 len = min(namlen, DTSLOTDATALEN); 3883 UniStrncpy_from_le(kname, t->name, len); 3884 3885 si = t->next; 3886 } 3887 } 3888 3889 3890 /* 3891 * dtInsertEntry() 3892 * 3893 * function: allocate free slot(s) and 3894 * write a leaf/internal entry 3895 * 3896 * return: entry slot index 3897 */ 3898 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key, 3899 ddata_t * data, struct dt_lock ** dtlock) 3900 { 3901 struct dtslot *h, *t; 3902 struct ldtentry *lh = NULL; 3903 struct idtentry *ih = NULL; 3904 int hsi, fsi, klen, len, nextindex; 3905 wchar_t *kname; 3906 __le16 *name; 3907 s8 *stbl; 3908 pxd_t *xd; 3909 struct dt_lock *dtlck = *dtlock; 3910 struct lv *lv; 3911 int xsi, n; 3912 s64 bn = 0; 3913 struct metapage *mp = NULL; 3914 3915 klen = key->namlen; 3916 kname = key->name; 3917 3918 /* allocate a free slot */ 3919 hsi = fsi = p->header.freelist; 3920 h = &p->slot[fsi]; 3921 p->header.freelist = h->next; 3922 --p->header.freecnt; 3923 3924 /* open new linelock */ 3925 if (dtlck->index >= dtlck->maxcnt) 3926 dtlck = (struct dt_lock *) txLinelock(dtlck); 3927 3928 lv = & dtlck->lv[dtlck->index]; 3929 lv->offset = hsi; 3930 3931 /* write head/only segment */ 3932 if (p->header.flag & BT_LEAF) { 3933 lh = (struct ldtentry *) h; 3934 lh->next = h->next; 3935 lh->inumber = cpu_to_le32(data->leaf.ino); 3936 lh->namlen = klen; 3937 name = lh->name; 3938 if (data->leaf.ip) { 3939 len = min(klen, DTLHDRDATALEN); 3940 if (!(p->header.flag & BT_ROOT)) 3941 bn = addressPXD(&p->header.self); 3942 lh->index = cpu_to_le32(add_index(data->leaf.tid, 3943 data->leaf.ip, 3944 bn, index)); 3945 } else 3946 len = min(klen, DTLHDRDATALEN_LEGACY); 3947 } else { 3948 ih = (struct idtentry *) h; 3949 ih->next = h->next; 3950 xd = (pxd_t *) ih; 3951 *xd = data->xd; 3952 ih->namlen = klen; 3953 name = ih->name; 3954 len = min(klen, DTIHDRDATALEN); 3955 } 3956 3957 UniStrncpy_to_le(name, kname, len); 3958 3959 n = 1; 3960 xsi = hsi; 3961 3962 /* write additional segment(s) */ 3963 t = h; 3964 klen -= len; 3965 while (klen) { 3966 /* get free slot */ 3967 fsi = p->header.freelist; 3968 t = &p->slot[fsi]; 3969 p->header.freelist = t->next; 3970 --p->header.freecnt; 3971 3972 /* is next slot contiguous ? */ 3973 if (fsi != xsi + 1) { 3974 /* close current linelock */ 3975 lv->length = n; 3976 dtlck->index++; 3977 3978 /* open new linelock */ 3979 if (dtlck->index < dtlck->maxcnt) 3980 lv++; 3981 else { 3982 dtlck = (struct dt_lock *) txLinelock(dtlck); 3983 lv = & dtlck->lv[0]; 3984 } 3985 3986 lv->offset = fsi; 3987 n = 0; 3988 } 3989 3990 kname += len; 3991 len = min(klen, DTSLOTDATALEN); 3992 UniStrncpy_to_le(t->name, kname, len); 3993 3994 n++; 3995 xsi = fsi; 3996 klen -= len; 3997 } 3998 3999 /* close current linelock */ 4000 lv->length = n; 4001 dtlck->index++; 4002 4003 *dtlock = dtlck; 4004 4005 /* terminate last/only segment */ 4006 if (h == t) { 4007 /* single segment entry */ 4008 if (p->header.flag & BT_LEAF) 4009 lh->next = -1; 4010 else 4011 ih->next = -1; 4012 } else 4013 /* multi-segment entry */ 4014 t->next = -1; 4015 4016 /* if insert into middle, shift right succeeding entries in stbl */ 4017 stbl = DT_GETSTBL(p); 4018 nextindex = p->header.nextindex; 4019 if (index < nextindex) { 4020 memmove(stbl + index + 1, stbl + index, nextindex - index); 4021 4022 if ((p->header.flag & BT_LEAF) && data->leaf.ip) { 4023 s64 lblock; 4024 4025 /* 4026 * Need to update slot number for entries that moved 4027 * in the stbl 4028 */ 4029 mp = NULL; 4030 for (n = index + 1; n <= nextindex; n++) { 4031 lh = (struct ldtentry *) & (p->slot[stbl[n]]); 4032 modify_index(data->leaf.tid, data->leaf.ip, 4033 le32_to_cpu(lh->index), bn, n, 4034 &mp, &lblock); 4035 } 4036 if (mp) 4037 release_metapage(mp); 4038 } 4039 } 4040 4041 stbl[index] = hsi; 4042 4043 /* advance next available entry index of stbl */ 4044 ++p->header.nextindex; 4045 } 4046 4047 4048 /* 4049 * dtMoveEntry() 4050 * 4051 * function: move entries from split/left page to new/right page 4052 * 4053 * nextindex of dst page and freelist/freecnt of both pages 4054 * are updated. 4055 */ 4056 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp, 4057 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock, 4058 int do_index) 4059 { 4060 int ssi, next; /* src slot index */ 4061 int di; /* dst entry index */ 4062 int dsi; /* dst slot index */ 4063 s8 *sstbl, *dstbl; /* sorted entry table */ 4064 int snamlen, len; 4065 struct ldtentry *slh, *dlh = NULL; 4066 struct idtentry *sih, *dih = NULL; 4067 struct dtslot *h, *s, *d; 4068 struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock; 4069 struct lv *slv, *dlv; 4070 int xssi, ns, nd; 4071 int sfsi; 4072 4073 sstbl = (s8 *) & sp->slot[sp->header.stblindex]; 4074 dstbl = (s8 *) & dp->slot[dp->header.stblindex]; 4075 4076 dsi = dp->header.freelist; /* first (whole page) free slot */ 4077 sfsi = sp->header.freelist; 4078 4079 /* linelock destination entry slot */ 4080 dlv = & ddtlck->lv[ddtlck->index]; 4081 dlv->offset = dsi; 4082 4083 /* linelock source entry slot */ 4084 slv = & sdtlck->lv[sdtlck->index]; 4085 slv->offset = sstbl[si]; 4086 xssi = slv->offset - 1; 4087 4088 /* 4089 * move entries 4090 */ 4091 ns = nd = 0; 4092 for (di = 0; si < sp->header.nextindex; si++, di++) { 4093 ssi = sstbl[si]; 4094 dstbl[di] = dsi; 4095 4096 /* is next slot contiguous ? */ 4097 if (ssi != xssi + 1) { 4098 /* close current linelock */ 4099 slv->length = ns; 4100 sdtlck->index++; 4101 4102 /* open new linelock */ 4103 if (sdtlck->index < sdtlck->maxcnt) 4104 slv++; 4105 else { 4106 sdtlck = (struct dt_lock *) txLinelock(sdtlck); 4107 slv = & sdtlck->lv[0]; 4108 } 4109 4110 slv->offset = ssi; 4111 ns = 0; 4112 } 4113 4114 /* 4115 * move head/only segment of an entry 4116 */ 4117 /* get dst slot */ 4118 h = d = &dp->slot[dsi]; 4119 4120 /* get src slot and move */ 4121 s = &sp->slot[ssi]; 4122 if (sp->header.flag & BT_LEAF) { 4123 /* get source entry */ 4124 slh = (struct ldtentry *) s; 4125 dlh = (struct ldtentry *) h; 4126 snamlen = slh->namlen; 4127 4128 if (do_index) { 4129 len = min(snamlen, DTLHDRDATALEN); 4130 dlh->index = slh->index; /* little-endian */ 4131 } else 4132 len = min(snamlen, DTLHDRDATALEN_LEGACY); 4133 4134 memcpy(dlh, slh, 6 + len * 2); 4135 4136 next = slh->next; 4137 4138 /* update dst head/only segment next field */ 4139 dsi++; 4140 dlh->next = dsi; 4141 } else { 4142 sih = (struct idtentry *) s; 4143 snamlen = sih->namlen; 4144 4145 len = min(snamlen, DTIHDRDATALEN); 4146 dih = (struct idtentry *) h; 4147 memcpy(dih, sih, 10 + len * 2); 4148 next = sih->next; 4149 4150 dsi++; 4151 dih->next = dsi; 4152 } 4153 4154 /* free src head/only segment */ 4155 s->next = sfsi; 4156 s->cnt = 1; 4157 sfsi = ssi; 4158 4159 ns++; 4160 nd++; 4161 xssi = ssi; 4162 4163 /* 4164 * move additional segment(s) of the entry 4165 */ 4166 snamlen -= len; 4167 while ((ssi = next) >= 0) { 4168 /* is next slot contiguous ? */ 4169 if (ssi != xssi + 1) { 4170 /* close current linelock */ 4171 slv->length = ns; 4172 sdtlck->index++; 4173 4174 /* open new linelock */ 4175 if (sdtlck->index < sdtlck->maxcnt) 4176 slv++; 4177 else { 4178 sdtlck = 4179 (struct dt_lock *) 4180 txLinelock(sdtlck); 4181 slv = & sdtlck->lv[0]; 4182 } 4183 4184 slv->offset = ssi; 4185 ns = 0; 4186 } 4187 4188 /* get next source segment */ 4189 s = &sp->slot[ssi]; 4190 4191 /* get next destination free slot */ 4192 d++; 4193 4194 len = min(snamlen, DTSLOTDATALEN); 4195 UniStrncpy_le(d->name, s->name, len); 4196 4197 ns++; 4198 nd++; 4199 xssi = ssi; 4200 4201 dsi++; 4202 d->next = dsi; 4203 4204 /* free source segment */ 4205 next = s->next; 4206 s->next = sfsi; 4207 s->cnt = 1; 4208 sfsi = ssi; 4209 4210 snamlen -= len; 4211 } /* end while */ 4212 4213 /* terminate dst last/only segment */ 4214 if (h == d) { 4215 /* single segment entry */ 4216 if (dp->header.flag & BT_LEAF) 4217 dlh->next = -1; 4218 else 4219 dih->next = -1; 4220 } else 4221 /* multi-segment entry */ 4222 d->next = -1; 4223 } /* end for */ 4224 4225 /* close current linelock */ 4226 slv->length = ns; 4227 sdtlck->index++; 4228 *sdtlock = sdtlck; 4229 4230 dlv->length = nd; 4231 ddtlck->index++; 4232 *ddtlock = ddtlck; 4233 4234 /* update source header */ 4235 sp->header.freelist = sfsi; 4236 sp->header.freecnt += nd; 4237 4238 /* update destination header */ 4239 dp->header.nextindex = di; 4240 4241 dp->header.freelist = dsi; 4242 dp->header.freecnt -= nd; 4243 } 4244 4245 4246 /* 4247 * dtDeleteEntry() 4248 * 4249 * function: free a (leaf/internal) entry 4250 * 4251 * log freelist header, stbl, and each segment slot of entry 4252 * (even though last/only segment next field is modified, 4253 * physical image logging requires all segment slots of 4254 * the entry logged to avoid applying previous updates 4255 * to the same slots) 4256 */ 4257 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock) 4258 { 4259 int fsi; /* free entry slot index */ 4260 s8 *stbl; 4261 struct dtslot *t; 4262 int si, freecnt; 4263 struct dt_lock *dtlck = *dtlock; 4264 struct lv *lv; 4265 int xsi, n; 4266 4267 /* get free entry slot index */ 4268 stbl = DT_GETSTBL(p); 4269 fsi = stbl[fi]; 4270 4271 /* open new linelock */ 4272 if (dtlck->index >= dtlck->maxcnt) 4273 dtlck = (struct dt_lock *) txLinelock(dtlck); 4274 lv = & dtlck->lv[dtlck->index]; 4275 4276 lv->offset = fsi; 4277 4278 /* get the head/only segment */ 4279 t = &p->slot[fsi]; 4280 if (p->header.flag & BT_LEAF) 4281 si = ((struct ldtentry *) t)->next; 4282 else 4283 si = ((struct idtentry *) t)->next; 4284 t->next = si; 4285 t->cnt = 1; 4286 4287 n = freecnt = 1; 4288 xsi = fsi; 4289 4290 /* find the last/only segment */ 4291 while (si >= 0) { 4292 /* is next slot contiguous ? */ 4293 if (si != xsi + 1) { 4294 /* close current linelock */ 4295 lv->length = n; 4296 dtlck->index++; 4297 4298 /* open new linelock */ 4299 if (dtlck->index < dtlck->maxcnt) 4300 lv++; 4301 else { 4302 dtlck = (struct dt_lock *) txLinelock(dtlck); 4303 lv = & dtlck->lv[0]; 4304 } 4305 4306 lv->offset = si; 4307 n = 0; 4308 } 4309 4310 n++; 4311 xsi = si; 4312 freecnt++; 4313 4314 t = &p->slot[si]; 4315 t->cnt = 1; 4316 si = t->next; 4317 } 4318 4319 /* close current linelock */ 4320 lv->length = n; 4321 dtlck->index++; 4322 4323 *dtlock = dtlck; 4324 4325 /* update freelist */ 4326 t->next = p->header.freelist; 4327 p->header.freelist = fsi; 4328 p->header.freecnt += freecnt; 4329 4330 /* if delete from middle, 4331 * shift left the succedding entries in the stbl 4332 */ 4333 si = p->header.nextindex; 4334 if (fi < si - 1) 4335 memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1); 4336 4337 p->header.nextindex--; 4338 } 4339 4340 4341 /* 4342 * dtTruncateEntry() 4343 * 4344 * function: truncate a (leaf/internal) entry 4345 * 4346 * log freelist header, stbl, and each segment slot of entry 4347 * (even though last/only segment next field is modified, 4348 * physical image logging requires all segment slots of 4349 * the entry logged to avoid applying previous updates 4350 * to the same slots) 4351 */ 4352 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock) 4353 { 4354 int tsi; /* truncate entry slot index */ 4355 s8 *stbl; 4356 struct dtslot *t; 4357 int si, freecnt; 4358 struct dt_lock *dtlck = *dtlock; 4359 struct lv *lv; 4360 int fsi, xsi, n; 4361 4362 /* get free entry slot index */ 4363 stbl = DT_GETSTBL(p); 4364 tsi = stbl[ti]; 4365 4366 /* open new linelock */ 4367 if (dtlck->index >= dtlck->maxcnt) 4368 dtlck = (struct dt_lock *) txLinelock(dtlck); 4369 lv = & dtlck->lv[dtlck->index]; 4370 4371 lv->offset = tsi; 4372 4373 /* get the head/only segment */ 4374 t = &p->slot[tsi]; 4375 ASSERT(p->header.flag & BT_INTERNAL); 4376 ((struct idtentry *) t)->namlen = 0; 4377 si = ((struct idtentry *) t)->next; 4378 ((struct idtentry *) t)->next = -1; 4379 4380 n = 1; 4381 freecnt = 0; 4382 fsi = si; 4383 xsi = tsi; 4384 4385 /* find the last/only segment */ 4386 while (si >= 0) { 4387 /* is next slot contiguous ? */ 4388 if (si != xsi + 1) { 4389 /* close current linelock */ 4390 lv->length = n; 4391 dtlck->index++; 4392 4393 /* open new linelock */ 4394 if (dtlck->index < dtlck->maxcnt) 4395 lv++; 4396 else { 4397 dtlck = (struct dt_lock *) txLinelock(dtlck); 4398 lv = & dtlck->lv[0]; 4399 } 4400 4401 lv->offset = si; 4402 n = 0; 4403 } 4404 4405 n++; 4406 xsi = si; 4407 freecnt++; 4408 4409 t = &p->slot[si]; 4410 t->cnt = 1; 4411 si = t->next; 4412 } 4413 4414 /* close current linelock */ 4415 lv->length = n; 4416 dtlck->index++; 4417 4418 *dtlock = dtlck; 4419 4420 /* update freelist */ 4421 if (freecnt == 0) 4422 return; 4423 t->next = p->header.freelist; 4424 p->header.freelist = fsi; 4425 p->header.freecnt += freecnt; 4426 } 4427 4428 4429 /* 4430 * dtLinelockFreelist() 4431 */ 4432 static void dtLinelockFreelist(dtpage_t * p, /* directory page */ 4433 int m, /* max slot index */ 4434 struct dt_lock ** dtlock) 4435 { 4436 int fsi; /* free entry slot index */ 4437 struct dtslot *t; 4438 int si; 4439 struct dt_lock *dtlck = *dtlock; 4440 struct lv *lv; 4441 int xsi, n; 4442 4443 /* get free entry slot index */ 4444 fsi = p->header.freelist; 4445 4446 /* open new linelock */ 4447 if (dtlck->index >= dtlck->maxcnt) 4448 dtlck = (struct dt_lock *) txLinelock(dtlck); 4449 lv = & dtlck->lv[dtlck->index]; 4450 4451 lv->offset = fsi; 4452 4453 n = 1; 4454 xsi = fsi; 4455 4456 t = &p->slot[fsi]; 4457 si = t->next; 4458 4459 /* find the last/only segment */ 4460 while (si < m && si >= 0) { 4461 /* is next slot contiguous ? */ 4462 if (si != xsi + 1) { 4463 /* close current linelock */ 4464 lv->length = n; 4465 dtlck->index++; 4466 4467 /* open new linelock */ 4468 if (dtlck->index < dtlck->maxcnt) 4469 lv++; 4470 else { 4471 dtlck = (struct dt_lock *) txLinelock(dtlck); 4472 lv = & dtlck->lv[0]; 4473 } 4474 4475 lv->offset = si; 4476 n = 0; 4477 } 4478 4479 n++; 4480 xsi = si; 4481 4482 t = &p->slot[si]; 4483 si = t->next; 4484 } 4485 4486 /* close current linelock */ 4487 lv->length = n; 4488 dtlck->index++; 4489 4490 *dtlock = dtlck; 4491 } 4492 4493 4494 /* 4495 * NAME: dtModify 4496 * 4497 * FUNCTION: Modify the inode number part of a directory entry 4498 * 4499 * PARAMETERS: 4500 * tid - Transaction id 4501 * ip - Inode of parent directory 4502 * key - Name of entry to be modified 4503 * orig_ino - Original inode number expected in entry 4504 * new_ino - New inode number to put into entry 4505 * flag - JFS_RENAME 4506 * 4507 * RETURNS: 4508 * -ESTALE - If entry found does not match orig_ino passed in 4509 * -ENOENT - If no entry can be found to match key 4510 * 0 - If successfully modified entry 4511 */ 4512 int dtModify(tid_t tid, struct inode *ip, 4513 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag) 4514 { 4515 int rc; 4516 s64 bn; 4517 struct metapage *mp; 4518 dtpage_t *p; 4519 int index; 4520 struct btstack btstack; 4521 struct tlock *tlck; 4522 struct dt_lock *dtlck; 4523 struct lv *lv; 4524 s8 *stbl; 4525 int entry_si; /* entry slot index */ 4526 struct ldtentry *entry; 4527 4528 /* 4529 * search for the entry to modify: 4530 * 4531 * dtSearch() returns (leaf page pinned, index at which to modify). 4532 */ 4533 if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag))) 4534 return rc; 4535 4536 /* retrieve search result */ 4537 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index); 4538 4539 BT_MARK_DIRTY(mp, ip); 4540 /* 4541 * acquire a transaction lock on the leaf page of named entry 4542 */ 4543 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY); 4544 dtlck = (struct dt_lock *) & tlck->lock; 4545 4546 /* get slot index of the entry */ 4547 stbl = DT_GETSTBL(p); 4548 entry_si = stbl[index]; 4549 4550 /* linelock entry */ 4551 ASSERT(dtlck->index == 0); 4552 lv = & dtlck->lv[0]; 4553 lv->offset = entry_si; 4554 lv->length = 1; 4555 dtlck->index++; 4556 4557 /* get the head/only segment */ 4558 entry = (struct ldtentry *) & p->slot[entry_si]; 4559 4560 /* substitute the inode number of the entry */ 4561 entry->inumber = cpu_to_le32(new_ino); 4562 4563 /* unpin the leaf page */ 4564 DT_PUTPAGE(mp); 4565 4566 return 0; 4567 } 4568