xref: /openbmc/linux/fs/jfs/jfs_dtree.c (revision 64c70b1c)
1 /*
2  *   Copyright (C) International Business Machines Corp., 2000-2004
3  *
4  *   This program is free software;  you can redistribute it and/or modify
5  *   it under the terms of the GNU General Public License as published by
6  *   the Free Software Foundation; either version 2 of the License, or
7  *   (at your option) any later version.
8  *
9  *   This program is distributed in the hope that it will be useful,
10  *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
12  *   the GNU General Public License for more details.
13  *
14  *   You should have received a copy of the GNU General Public License
15  *   along with this program;  if not, write to the Free Software
16  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18 
19 /*
20  *	jfs_dtree.c: directory B+-tree manager
21  *
22  * B+-tree with variable length key directory:
23  *
24  * each directory page is structured as an array of 32-byte
25  * directory entry slots initialized as a freelist
26  * to avoid search/compaction of free space at insertion.
27  * when an entry is inserted, a number of slots are allocated
28  * from the freelist as required to store variable length data
29  * of the entry; when the entry is deleted, slots of the entry
30  * are returned to freelist.
31  *
32  * leaf entry stores full name as key and file serial number
33  * (aka inode number) as data.
34  * internal/router entry stores sufffix compressed name
35  * as key and simple extent descriptor as data.
36  *
37  * each directory page maintains a sorted entry index table
38  * which stores the start slot index of sorted entries
39  * to allow binary search on the table.
40  *
41  * directory starts as a root/leaf page in on-disk inode
42  * inline data area.
43  * when it becomes full, it starts a leaf of a external extent
44  * of length of 1 block. each time the first leaf becomes full,
45  * it is extended rather than split (its size is doubled),
46  * until its length becoms 4 KBytes, from then the extent is split
47  * with new 4 Kbyte extent when it becomes full
48  * to reduce external fragmentation of small directories.
49  *
50  * blah, blah, blah, for linear scan of directory in pieces by
51  * readdir().
52  *
53  *
54  *	case-insensitive directory file system
55  *
56  * names are stored in case-sensitive way in leaf entry.
57  * but stored, searched and compared in case-insensitive (uppercase) order
58  * (i.e., both search key and entry key are folded for search/compare):
59  * (note that case-sensitive order is BROKEN in storage, e.g.,
60  *  sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
61  *
62  *  entries which folds to the same key makes up a equivalent class
63  *  whose members are stored as contiguous cluster (may cross page boundary)
64  *  but whose order is arbitrary and acts as duplicate, e.g.,
65  *  abc, Abc, aBc, abC)
66  *
67  * once match is found at leaf, requires scan forward/backward
68  * either for, in case-insensitive search, duplicate
69  * or for, in case-sensitive search, for exact match
70  *
71  * router entry must be created/stored in case-insensitive way
72  * in internal entry:
73  * (right most key of left page and left most key of right page
74  * are folded, and its suffix compression is propagated as router
75  * key in parent)
76  * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
77  * should be made the router key for the split)
78  *
79  * case-insensitive search:
80  *
81  *	fold search key;
82  *
83  *	case-insensitive search of B-tree:
84  *	for internal entry, router key is already folded;
85  *	for leaf entry, fold the entry key before comparison.
86  *
87  *	if (leaf entry case-insensitive match found)
88  *		if (next entry satisfies case-insensitive match)
89  *			return EDUPLICATE;
90  *		if (prev entry satisfies case-insensitive match)
91  *			return EDUPLICATE;
92  *		return match;
93  *	else
94  *		return no match;
95  *
96  *	serialization:
97  * target directory inode lock is being held on entry/exit
98  * of all main directory service routines.
99  *
100  *	log based recovery:
101  */
102 
103 #include <linux/fs.h>
104 #include <linux/quotaops.h>
105 #include "jfs_incore.h"
106 #include "jfs_superblock.h"
107 #include "jfs_filsys.h"
108 #include "jfs_metapage.h"
109 #include "jfs_dmap.h"
110 #include "jfs_unicode.h"
111 #include "jfs_debug.h"
112 
113 /* dtree split parameter */
114 struct dtsplit {
115 	struct metapage *mp;
116 	s16 index;
117 	s16 nslot;
118 	struct component_name *key;
119 	ddata_t *data;
120 	struct pxdlist *pxdlist;
121 };
122 
123 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
124 
125 /* get page buffer for specified block address */
126 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC)\
127 {\
128 	BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot)\
129 	if (!(RC))\
130 	{\
131 		if (((P)->header.nextindex > (((BN)==0)?DTROOTMAXSLOT:(P)->header.maxslot)) ||\
132 		    ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT)))\
133 		{\
134 			BT_PUTPAGE(MP);\
135 			jfs_error((IP)->i_sb, "DT_GETPAGE: dtree page corrupt");\
136 			MP = NULL;\
137 			RC = -EIO;\
138 		}\
139 	}\
140 }
141 
142 /* for consistency */
143 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
144 
145 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
146 	BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
147 
148 /*
149  * forward references
150  */
151 static int dtSplitUp(tid_t tid, struct inode *ip,
152 		     struct dtsplit * split, struct btstack * btstack);
153 
154 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
155 		       struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
156 
157 static int dtExtendPage(tid_t tid, struct inode *ip,
158 			struct dtsplit * split, struct btstack * btstack);
159 
160 static int dtSplitRoot(tid_t tid, struct inode *ip,
161 		       struct dtsplit * split, struct metapage ** rmpp);
162 
163 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
164 		      dtpage_t * fp, struct btstack * btstack);
165 
166 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
167 
168 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
169 
170 static int dtReadNext(struct inode *ip,
171 		      loff_t * offset, struct btstack * btstack);
172 
173 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
174 
175 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
176 		     int flag);
177 
178 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
179 		     int flag);
180 
181 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
182 			      int ri, struct component_name * key, int flag);
183 
184 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
185 			  ddata_t * data, struct dt_lock **);
186 
187 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
188 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
189 			int do_index);
190 
191 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
192 
193 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
194 
195 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
196 
197 #define ciToUpper(c)	UniStrupr((c)->name)
198 
199 /*
200  *	read_index_page()
201  *
202  *	Reads a page of a directory's index table.
203  *	Having metadata mapped into the directory inode's address space
204  *	presents a multitude of problems.  We avoid this by mapping to
205  *	the absolute address space outside of the *_metapage routines
206  */
207 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
208 {
209 	int rc;
210 	s64 xaddr;
211 	int xflag;
212 	s32 xlen;
213 
214 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
215 	if (rc || (xaddr == 0))
216 		return NULL;
217 
218 	return read_metapage(inode, xaddr, PSIZE, 1);
219 }
220 
221 /*
222  *	get_index_page()
223  *
224  *	Same as get_index_page(), but get's a new page without reading
225  */
226 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
227 {
228 	int rc;
229 	s64 xaddr;
230 	int xflag;
231 	s32 xlen;
232 
233 	rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
234 	if (rc || (xaddr == 0))
235 		return NULL;
236 
237 	return get_metapage(inode, xaddr, PSIZE, 1);
238 }
239 
240 /*
241  *	find_index()
242  *
243  *	Returns dtree page containing directory table entry for specified
244  *	index and pointer to its entry.
245  *
246  *	mp must be released by caller.
247  */
248 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
249 					 struct metapage ** mp, s64 *lblock)
250 {
251 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
252 	s64 blkno;
253 	s64 offset;
254 	int page_offset;
255 	struct dir_table_slot *slot;
256 	static int maxWarnings = 10;
257 
258 	if (index < 2) {
259 		if (maxWarnings) {
260 			jfs_warn("find_entry called with index = %d", index);
261 			maxWarnings--;
262 		}
263 		return NULL;
264 	}
265 
266 	if (index >= jfs_ip->next_index) {
267 		jfs_warn("find_entry called with index >= next_index");
268 		return NULL;
269 	}
270 
271 	if (jfs_dirtable_inline(ip)) {
272 		/*
273 		 * Inline directory table
274 		 */
275 		*mp = NULL;
276 		slot = &jfs_ip->i_dirtable[index - 2];
277 	} else {
278 		offset = (index - 2) * sizeof(struct dir_table_slot);
279 		page_offset = offset & (PSIZE - 1);
280 		blkno = ((offset + 1) >> L2PSIZE) <<
281 		    JFS_SBI(ip->i_sb)->l2nbperpage;
282 
283 		if (*mp && (*lblock != blkno)) {
284 			release_metapage(*mp);
285 			*mp = NULL;
286 		}
287 		if (*mp == 0) {
288 			*lblock = blkno;
289 			*mp = read_index_page(ip, blkno);
290 		}
291 		if (*mp == 0) {
292 			jfs_err("free_index: error reading directory table");
293 			return NULL;
294 		}
295 
296 		slot =
297 		    (struct dir_table_slot *) ((char *) (*mp)->data +
298 					       page_offset);
299 	}
300 	return slot;
301 }
302 
303 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
304 			      u32 index)
305 {
306 	struct tlock *tlck;
307 	struct linelock *llck;
308 	struct lv *lv;
309 
310 	tlck = txLock(tid, ip, mp, tlckDATA);
311 	llck = (struct linelock *) tlck->lock;
312 
313 	if (llck->index >= llck->maxcnt)
314 		llck = txLinelock(llck);
315 	lv = &llck->lv[llck->index];
316 
317 	/*
318 	 *	Linelock slot size is twice the size of directory table
319 	 *	slot size.  512 entries per page.
320 	 */
321 	lv->offset = ((index - 2) & 511) >> 1;
322 	lv->length = 1;
323 	llck->index++;
324 }
325 
326 /*
327  *	add_index()
328  *
329  *	Adds an entry to the directory index table.  This is used to provide
330  *	each directory entry with a persistent index in which to resume
331  *	directory traversals
332  */
333 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
334 {
335 	struct super_block *sb = ip->i_sb;
336 	struct jfs_sb_info *sbi = JFS_SBI(sb);
337 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
338 	u64 blkno;
339 	struct dir_table_slot *dirtab_slot;
340 	u32 index;
341 	struct linelock *llck;
342 	struct lv *lv;
343 	struct metapage *mp;
344 	s64 offset;
345 	uint page_offset;
346 	struct tlock *tlck;
347 	s64 xaddr;
348 
349 	ASSERT(DO_INDEX(ip));
350 
351 	if (jfs_ip->next_index < 2) {
352 		jfs_warn("add_index: next_index = %d.  Resetting!",
353 			   jfs_ip->next_index);
354 		jfs_ip->next_index = 2;
355 	}
356 
357 	index = jfs_ip->next_index++;
358 
359 	if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
360 		/*
361 		 * i_size reflects size of index table, or 8 bytes per entry.
362 		 */
363 		ip->i_size = (loff_t) (index - 1) << 3;
364 
365 		/*
366 		 * dir table fits inline within inode
367 		 */
368 		dirtab_slot = &jfs_ip->i_dirtable[index-2];
369 		dirtab_slot->flag = DIR_INDEX_VALID;
370 		dirtab_slot->slot = slot;
371 		DTSaddress(dirtab_slot, bn);
372 
373 		set_cflag(COMMIT_Dirtable, ip);
374 
375 		return index;
376 	}
377 	if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
378 		struct dir_table_slot temp_table[12];
379 
380 		/*
381 		 * It's time to move the inline table to an external
382 		 * page and begin to build the xtree
383 		 */
384 		if (DQUOT_ALLOC_BLOCK(ip, sbi->nbperpage))
385 			goto clean_up;
386 		if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
387 			DQUOT_FREE_BLOCK(ip, sbi->nbperpage);
388 			goto clean_up;
389 		}
390 
391 		/*
392 		 * Save the table, we're going to overwrite it with the
393 		 * xtree root
394 		 */
395 		memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
396 
397 		/*
398 		 * Initialize empty x-tree
399 		 */
400 		xtInitRoot(tid, ip);
401 
402 		/*
403 		 * Add the first block to the xtree
404 		 */
405 		if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
406 			/* This really shouldn't fail */
407 			jfs_warn("add_index: xtInsert failed!");
408 			memcpy(&jfs_ip->i_dirtable, temp_table,
409 			       sizeof (temp_table));
410 			dbFree(ip, xaddr, sbi->nbperpage);
411 			DQUOT_FREE_BLOCK(ip, sbi->nbperpage);
412 			goto clean_up;
413 		}
414 		ip->i_size = PSIZE;
415 
416 		if ((mp = get_index_page(ip, 0)) == 0) {
417 			jfs_err("add_index: get_metapage failed!");
418 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
419 			memcpy(&jfs_ip->i_dirtable, temp_table,
420 			       sizeof (temp_table));
421 			goto clean_up;
422 		}
423 		tlck = txLock(tid, ip, mp, tlckDATA);
424 		llck = (struct linelock *) & tlck->lock;
425 		ASSERT(llck->index == 0);
426 		lv = &llck->lv[0];
427 
428 		lv->offset = 0;
429 		lv->length = 6;	/* tlckDATA slot size is 16 bytes */
430 		llck->index++;
431 
432 		memcpy(mp->data, temp_table, sizeof(temp_table));
433 
434 		mark_metapage_dirty(mp);
435 		release_metapage(mp);
436 
437 		/*
438 		 * Logging is now directed by xtree tlocks
439 		 */
440 		clear_cflag(COMMIT_Dirtable, ip);
441 	}
442 
443 	offset = (index - 2) * sizeof(struct dir_table_slot);
444 	page_offset = offset & (PSIZE - 1);
445 	blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
446 	if (page_offset == 0) {
447 		/*
448 		 * This will be the beginning of a new page
449 		 */
450 		xaddr = 0;
451 		if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
452 			jfs_warn("add_index: xtInsert failed!");
453 			goto clean_up;
454 		}
455 		ip->i_size += PSIZE;
456 
457 		if ((mp = get_index_page(ip, blkno)))
458 			memset(mp->data, 0, PSIZE);	/* Just looks better */
459 		else
460 			xtTruncate(tid, ip, offset, COMMIT_PWMAP);
461 	} else
462 		mp = read_index_page(ip, blkno);
463 
464 	if (mp == 0) {
465 		jfs_err("add_index: get/read_metapage failed!");
466 		goto clean_up;
467 	}
468 
469 	lock_index(tid, ip, mp, index);
470 
471 	dirtab_slot =
472 	    (struct dir_table_slot *) ((char *) mp->data + page_offset);
473 	dirtab_slot->flag = DIR_INDEX_VALID;
474 	dirtab_slot->slot = slot;
475 	DTSaddress(dirtab_slot, bn);
476 
477 	mark_metapage_dirty(mp);
478 	release_metapage(mp);
479 
480 	return index;
481 
482       clean_up:
483 
484 	jfs_ip->next_index--;
485 
486 	return 0;
487 }
488 
489 /*
490  *	free_index()
491  *
492  *	Marks an entry to the directory index table as free.
493  */
494 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
495 {
496 	struct dir_table_slot *dirtab_slot;
497 	s64 lblock;
498 	struct metapage *mp = NULL;
499 
500 	dirtab_slot = find_index(ip, index, &mp, &lblock);
501 
502 	if (dirtab_slot == 0)
503 		return;
504 
505 	dirtab_slot->flag = DIR_INDEX_FREE;
506 	dirtab_slot->slot = dirtab_slot->addr1 = 0;
507 	dirtab_slot->addr2 = cpu_to_le32(next);
508 
509 	if (mp) {
510 		lock_index(tid, ip, mp, index);
511 		mark_metapage_dirty(mp);
512 		release_metapage(mp);
513 	} else
514 		set_cflag(COMMIT_Dirtable, ip);
515 }
516 
517 /*
518  *	modify_index()
519  *
520  *	Changes an entry in the directory index table
521  */
522 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
523 			 int slot, struct metapage ** mp, u64 *lblock)
524 {
525 	struct dir_table_slot *dirtab_slot;
526 
527 	dirtab_slot = find_index(ip, index, mp, lblock);
528 
529 	if (dirtab_slot == 0)
530 		return;
531 
532 	DTSaddress(dirtab_slot, bn);
533 	dirtab_slot->slot = slot;
534 
535 	if (*mp) {
536 		lock_index(tid, ip, *mp, index);
537 		mark_metapage_dirty(*mp);
538 	} else
539 		set_cflag(COMMIT_Dirtable, ip);
540 }
541 
542 /*
543  *	read_index()
544  *
545  *	reads a directory table slot
546  */
547 static int read_index(struct inode *ip, u32 index,
548 		     struct dir_table_slot * dirtab_slot)
549 {
550 	s64 lblock;
551 	struct metapage *mp = NULL;
552 	struct dir_table_slot *slot;
553 
554 	slot = find_index(ip, index, &mp, &lblock);
555 	if (slot == 0) {
556 		return -EIO;
557 	}
558 
559 	memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
560 
561 	if (mp)
562 		release_metapage(mp);
563 
564 	return 0;
565 }
566 
567 /*
568  *	dtSearch()
569  *
570  * function:
571  *	Search for the entry with specified key
572  *
573  * parameter:
574  *
575  * return: 0 - search result on stack, leaf page pinned;
576  *	   errno - I/O error
577  */
578 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
579 	     struct btstack * btstack, int flag)
580 {
581 	int rc = 0;
582 	int cmp = 1;		/* init for empty page */
583 	s64 bn;
584 	struct metapage *mp;
585 	dtpage_t *p;
586 	s8 *stbl;
587 	int base, index, lim;
588 	struct btframe *btsp;
589 	pxd_t *pxd;
590 	int psize = 288;	/* initial in-line directory */
591 	ino_t inumber;
592 	struct component_name ciKey;
593 	struct super_block *sb = ip->i_sb;
594 
595 	ciKey.name =
596 	    (wchar_t *) kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
597 				GFP_NOFS);
598 	if (ciKey.name == 0) {
599 		rc = -ENOMEM;
600 		goto dtSearch_Exit2;
601 	}
602 
603 
604 	/* uppercase search key for c-i directory */
605 	UniStrcpy(ciKey.name, key->name);
606 	ciKey.namlen = key->namlen;
607 
608 	/* only uppercase if case-insensitive support is on */
609 	if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
610 		ciToUpper(&ciKey);
611 	}
612 	BT_CLR(btstack);	/* reset stack */
613 
614 	/* init level count for max pages to split */
615 	btstack->nsplit = 1;
616 
617 	/*
618 	 *	search down tree from root:
619 	 *
620 	 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
621 	 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
622 	 *
623 	 * if entry with search key K is not found
624 	 * internal page search find the entry with largest key Ki
625 	 * less than K which point to the child page to search;
626 	 * leaf page search find the entry with smallest key Kj
627 	 * greater than K so that the returned index is the position of
628 	 * the entry to be shifted right for insertion of new entry.
629 	 * for empty tree, search key is greater than any key of the tree.
630 	 *
631 	 * by convention, root bn = 0.
632 	 */
633 	for (bn = 0;;) {
634 		/* get/pin the page to search */
635 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
636 		if (rc)
637 			goto dtSearch_Exit1;
638 
639 		/* get sorted entry table of the page */
640 		stbl = DT_GETSTBL(p);
641 
642 		/*
643 		 * binary search with search key K on the current page.
644 		 */
645 		for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
646 			index = base + (lim >> 1);
647 
648 			if (p->header.flag & BT_LEAF) {
649 				/* uppercase leaf name to compare */
650 				cmp =
651 				    ciCompare(&ciKey, p, stbl[index],
652 					      JFS_SBI(sb)->mntflag);
653 			} else {
654 				/* router key is in uppercase */
655 
656 				cmp = dtCompare(&ciKey, p, stbl[index]);
657 
658 
659 			}
660 			if (cmp == 0) {
661 				/*
662 				 *	search hit
663 				 */
664 				/* search hit - leaf page:
665 				 * return the entry found
666 				 */
667 				if (p->header.flag & BT_LEAF) {
668 					inumber = le32_to_cpu(
669 			((struct ldtentry *) & p->slot[stbl[index]])->inumber);
670 
671 					/*
672 					 * search for JFS_LOOKUP
673 					 */
674 					if (flag == JFS_LOOKUP) {
675 						*data = inumber;
676 						rc = 0;
677 						goto out;
678 					}
679 
680 					/*
681 					 * search for JFS_CREATE
682 					 */
683 					if (flag == JFS_CREATE) {
684 						*data = inumber;
685 						rc = -EEXIST;
686 						goto out;
687 					}
688 
689 					/*
690 					 * search for JFS_REMOVE or JFS_RENAME
691 					 */
692 					if ((flag == JFS_REMOVE ||
693 					     flag == JFS_RENAME) &&
694 					    *data != inumber) {
695 						rc = -ESTALE;
696 						goto out;
697 					}
698 
699 					/*
700 					 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
701 					 */
702 					/* save search result */
703 					*data = inumber;
704 					btsp = btstack->top;
705 					btsp->bn = bn;
706 					btsp->index = index;
707 					btsp->mp = mp;
708 
709 					rc = 0;
710 					goto dtSearch_Exit1;
711 				}
712 
713 				/* search hit - internal page:
714 				 * descend/search its child page
715 				 */
716 				goto getChild;
717 			}
718 
719 			if (cmp > 0) {
720 				base = index + 1;
721 				--lim;
722 			}
723 		}
724 
725 		/*
726 		 *	search miss
727 		 *
728 		 * base is the smallest index with key (Kj) greater than
729 		 * search key (K) and may be zero or (maxindex + 1) index.
730 		 */
731 		/*
732 		 * search miss - leaf page
733 		 *
734 		 * return location of entry (base) where new entry with
735 		 * search key K is to be inserted.
736 		 */
737 		if (p->header.flag & BT_LEAF) {
738 			/*
739 			 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
740 			 */
741 			if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
742 			    flag == JFS_RENAME) {
743 				rc = -ENOENT;
744 				goto out;
745 			}
746 
747 			/*
748 			 * search for JFS_CREATE|JFS_FINDDIR:
749 			 *
750 			 * save search result
751 			 */
752 			*data = 0;
753 			btsp = btstack->top;
754 			btsp->bn = bn;
755 			btsp->index = base;
756 			btsp->mp = mp;
757 
758 			rc = 0;
759 			goto dtSearch_Exit1;
760 		}
761 
762 		/*
763 		 * search miss - internal page
764 		 *
765 		 * if base is non-zero, decrement base by one to get the parent
766 		 * entry of the child page to search.
767 		 */
768 		index = base ? base - 1 : base;
769 
770 		/*
771 		 * go down to child page
772 		 */
773 	      getChild:
774 		/* update max. number of pages to split */
775 		if (BT_STACK_FULL(btstack)) {
776 			/* Something's corrupted, mark filesytem dirty so
777 			 * chkdsk will fix it.
778 			 */
779 			jfs_error(sb, "stack overrun in dtSearch!");
780 			BT_STACK_DUMP(btstack);
781 			rc = -EIO;
782 			goto out;
783 		}
784 		btstack->nsplit++;
785 
786 		/* push (bn, index) of the parent page/entry */
787 		BT_PUSH(btstack, bn, index);
788 
789 		/* get the child page block number */
790 		pxd = (pxd_t *) & p->slot[stbl[index]];
791 		bn = addressPXD(pxd);
792 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
793 
794 		/* unpin the parent page */
795 		DT_PUTPAGE(mp);
796 	}
797 
798       out:
799 	DT_PUTPAGE(mp);
800 
801       dtSearch_Exit1:
802 
803 	kfree(ciKey.name);
804 
805       dtSearch_Exit2:
806 
807 	return rc;
808 }
809 
810 
811 /*
812  *	dtInsert()
813  *
814  * function: insert an entry to directory tree
815  *
816  * parameter:
817  *
818  * return: 0 - success;
819  *	   errno - failure;
820  */
821 int dtInsert(tid_t tid, struct inode *ip,
822 	 struct component_name * name, ino_t * fsn, struct btstack * btstack)
823 {
824 	int rc = 0;
825 	struct metapage *mp;	/* meta-page buffer */
826 	dtpage_t *p;		/* base B+-tree index page */
827 	s64 bn;
828 	int index;
829 	struct dtsplit split;	/* split information */
830 	ddata_t data;
831 	struct dt_lock *dtlck;
832 	int n;
833 	struct tlock *tlck;
834 	struct lv *lv;
835 
836 	/*
837 	 *	retrieve search result
838 	 *
839 	 * dtSearch() returns (leaf page pinned, index at which to insert).
840 	 * n.b. dtSearch() may return index of (maxindex + 1) of
841 	 * the full page.
842 	 */
843 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
844 
845 	/*
846 	 *	insert entry for new key
847 	 */
848 	if (DO_INDEX(ip)) {
849 		if (JFS_IP(ip)->next_index == DIREND) {
850 			DT_PUTPAGE(mp);
851 			return -EMLINK;
852 		}
853 		n = NDTLEAF(name->namlen);
854 		data.leaf.tid = tid;
855 		data.leaf.ip = ip;
856 	} else {
857 		n = NDTLEAF_LEGACY(name->namlen);
858 		data.leaf.ip = NULL;	/* signifies legacy directory format */
859 	}
860 	data.leaf.ino = *fsn;
861 
862 	/*
863 	 *	leaf page does not have enough room for new entry:
864 	 *
865 	 *	extend/split the leaf page;
866 	 *
867 	 * dtSplitUp() will insert the entry and unpin the leaf page.
868 	 */
869 	if (n > p->header.freecnt) {
870 		split.mp = mp;
871 		split.index = index;
872 		split.nslot = n;
873 		split.key = name;
874 		split.data = &data;
875 		rc = dtSplitUp(tid, ip, &split, btstack);
876 		return rc;
877 	}
878 
879 	/*
880 	 *	leaf page does have enough room for new entry:
881 	 *
882 	 *	insert the new data entry into the leaf page;
883 	 */
884 	BT_MARK_DIRTY(mp, ip);
885 	/*
886 	 * acquire a transaction lock on the leaf page
887 	 */
888 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
889 	dtlck = (struct dt_lock *) & tlck->lock;
890 	ASSERT(dtlck->index == 0);
891 	lv = & dtlck->lv[0];
892 
893 	/* linelock header */
894 	lv->offset = 0;
895 	lv->length = 1;
896 	dtlck->index++;
897 
898 	dtInsertEntry(p, index, name, &data, &dtlck);
899 
900 	/* linelock stbl of non-root leaf page */
901 	if (!(p->header.flag & BT_ROOT)) {
902 		if (dtlck->index >= dtlck->maxcnt)
903 			dtlck = (struct dt_lock *) txLinelock(dtlck);
904 		lv = & dtlck->lv[dtlck->index];
905 		n = index >> L2DTSLOTSIZE;
906 		lv->offset = p->header.stblindex + n;
907 		lv->length =
908 		    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
909 		dtlck->index++;
910 	}
911 
912 	/* unpin the leaf page */
913 	DT_PUTPAGE(mp);
914 
915 	return 0;
916 }
917 
918 
919 /*
920  *	dtSplitUp()
921  *
922  * function: propagate insertion bottom up;
923  *
924  * parameter:
925  *
926  * return: 0 - success;
927  *	   errno - failure;
928  *	leaf page unpinned;
929  */
930 static int dtSplitUp(tid_t tid,
931 	  struct inode *ip, struct dtsplit * split, struct btstack * btstack)
932 {
933 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
934 	int rc = 0;
935 	struct metapage *smp;
936 	dtpage_t *sp;		/* split page */
937 	struct metapage *rmp;
938 	dtpage_t *rp;		/* new right page split from sp */
939 	pxd_t rpxd;		/* new right page extent descriptor */
940 	struct metapage *lmp;
941 	dtpage_t *lp;		/* left child page */
942 	int skip;		/* index of entry of insertion */
943 	struct btframe *parent;	/* parent page entry on traverse stack */
944 	s64 xaddr, nxaddr;
945 	int xlen, xsize;
946 	struct pxdlist pxdlist;
947 	pxd_t *pxd;
948 	struct component_name key = { 0, NULL };
949 	ddata_t *data = split->data;
950 	int n;
951 	struct dt_lock *dtlck;
952 	struct tlock *tlck;
953 	struct lv *lv;
954 	int quota_allocation = 0;
955 
956 	/* get split page */
957 	smp = split->mp;
958 	sp = DT_PAGE(ip, smp);
959 
960 	key.name =
961 	    (wchar_t *) kmalloc((JFS_NAME_MAX + 2) * sizeof(wchar_t),
962 				GFP_NOFS);
963 	if (key.name == 0) {
964 		DT_PUTPAGE(smp);
965 		rc = -ENOMEM;
966 		goto dtSplitUp_Exit;
967 	}
968 
969 	/*
970 	 *	split leaf page
971 	 *
972 	 * The split routines insert the new entry, and
973 	 * acquire txLock as appropriate.
974 	 */
975 	/*
976 	 *	split root leaf page:
977 	 */
978 	if (sp->header.flag & BT_ROOT) {
979 		/*
980 		 * allocate a single extent child page
981 		 */
982 		xlen = 1;
983 		n = sbi->bsize >> L2DTSLOTSIZE;
984 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
985 		n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
986 		if (n <= split->nslot)
987 			xlen++;
988 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
989 			DT_PUTPAGE(smp);
990 			goto freeKeyName;
991 		}
992 
993 		pxdlist.maxnpxd = 1;
994 		pxdlist.npxd = 0;
995 		pxd = &pxdlist.pxd[0];
996 		PXDaddress(pxd, xaddr);
997 		PXDlength(pxd, xlen);
998 		split->pxdlist = &pxdlist;
999 		rc = dtSplitRoot(tid, ip, split, &rmp);
1000 
1001 		if (rc)
1002 			dbFree(ip, xaddr, xlen);
1003 		else
1004 			DT_PUTPAGE(rmp);
1005 
1006 		DT_PUTPAGE(smp);
1007 
1008 		if (!DO_INDEX(ip))
1009 			ip->i_size = xlen << sbi->l2bsize;
1010 
1011 		goto freeKeyName;
1012 	}
1013 
1014 	/*
1015 	 *	extend first leaf page
1016 	 *
1017 	 * extend the 1st extent if less than buffer page size
1018 	 * (dtExtendPage() reurns leaf page unpinned)
1019 	 */
1020 	pxd = &sp->header.self;
1021 	xlen = lengthPXD(pxd);
1022 	xsize = xlen << sbi->l2bsize;
1023 	if (xsize < PSIZE) {
1024 		xaddr = addressPXD(pxd);
1025 		n = xsize >> L2DTSLOTSIZE;
1026 		n -= (n + 31) >> L2DTSLOTSIZE;	/* stbl size */
1027 		if ((n + sp->header.freecnt) <= split->nslot)
1028 			n = xlen + (xlen << 1);
1029 		else
1030 			n = xlen;
1031 
1032 		/* Allocate blocks to quota. */
1033 		if (DQUOT_ALLOC_BLOCK(ip, n)) {
1034 			rc = -EDQUOT;
1035 			goto extendOut;
1036 		}
1037 		quota_allocation += n;
1038 
1039 		if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1040 				    (s64) n, &nxaddr)))
1041 			goto extendOut;
1042 
1043 		pxdlist.maxnpxd = 1;
1044 		pxdlist.npxd = 0;
1045 		pxd = &pxdlist.pxd[0];
1046 		PXDaddress(pxd, nxaddr)
1047 		    PXDlength(pxd, xlen + n);
1048 		split->pxdlist = &pxdlist;
1049 		if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1050 			nxaddr = addressPXD(pxd);
1051 			if (xaddr != nxaddr) {
1052 				/* free relocated extent */
1053 				xlen = lengthPXD(pxd);
1054 				dbFree(ip, nxaddr, (s64) xlen);
1055 			} else {
1056 				/* free extended delta */
1057 				xlen = lengthPXD(pxd) - n;
1058 				xaddr = addressPXD(pxd) + xlen;
1059 				dbFree(ip, xaddr, (s64) n);
1060 			}
1061 		} else if (!DO_INDEX(ip))
1062 			ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1063 
1064 
1065 	      extendOut:
1066 		DT_PUTPAGE(smp);
1067 		goto freeKeyName;
1068 	}
1069 
1070 	/*
1071 	 *	split leaf page <sp> into <sp> and a new right page <rp>.
1072 	 *
1073 	 * return <rp> pinned and its extent descriptor <rpxd>
1074 	 */
1075 	/*
1076 	 * allocate new directory page extent and
1077 	 * new index page(s) to cover page split(s)
1078 	 *
1079 	 * allocation hint: ?
1080 	 */
1081 	n = btstack->nsplit;
1082 	pxdlist.maxnpxd = pxdlist.npxd = 0;
1083 	xlen = sbi->nbperpage;
1084 	for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1085 		if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1086 			PXDaddress(pxd, xaddr);
1087 			PXDlength(pxd, xlen);
1088 			pxdlist.maxnpxd++;
1089 			continue;
1090 		}
1091 
1092 		DT_PUTPAGE(smp);
1093 
1094 		/* undo allocation */
1095 		goto splitOut;
1096 	}
1097 
1098 	split->pxdlist = &pxdlist;
1099 	if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1100 		DT_PUTPAGE(smp);
1101 
1102 		/* undo allocation */
1103 		goto splitOut;
1104 	}
1105 
1106 	if (!DO_INDEX(ip))
1107 		ip->i_size += PSIZE;
1108 
1109 	/*
1110 	 * propagate up the router entry for the leaf page just split
1111 	 *
1112 	 * insert a router entry for the new page into the parent page,
1113 	 * propagate the insert/split up the tree by walking back the stack
1114 	 * of (bn of parent page, index of child page entry in parent page)
1115 	 * that were traversed during the search for the page that split.
1116 	 *
1117 	 * the propagation of insert/split up the tree stops if the root
1118 	 * splits or the page inserted into doesn't have to split to hold
1119 	 * the new entry.
1120 	 *
1121 	 * the parent entry for the split page remains the same, and
1122 	 * a new entry is inserted at its right with the first key and
1123 	 * block number of the new right page.
1124 	 *
1125 	 * There are a maximum of 4 pages pinned at any time:
1126 	 * two children, left parent and right parent (when the parent splits).
1127 	 * keep the child pages pinned while working on the parent.
1128 	 * make sure that all pins are released at exit.
1129 	 */
1130 	while ((parent = BT_POP(btstack)) != NULL) {
1131 		/* parent page specified by stack frame <parent> */
1132 
1133 		/* keep current child pages (<lp>, <rp>) pinned */
1134 		lmp = smp;
1135 		lp = sp;
1136 
1137 		/*
1138 		 * insert router entry in parent for new right child page <rp>
1139 		 */
1140 		/* get the parent page <sp> */
1141 		DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1142 		if (rc) {
1143 			DT_PUTPAGE(lmp);
1144 			DT_PUTPAGE(rmp);
1145 			goto splitOut;
1146 		}
1147 
1148 		/*
1149 		 * The new key entry goes ONE AFTER the index of parent entry,
1150 		 * because the split was to the right.
1151 		 */
1152 		skip = parent->index + 1;
1153 
1154 		/*
1155 		 * compute the key for the router entry
1156 		 *
1157 		 * key suffix compression:
1158 		 * for internal pages that have leaf pages as children,
1159 		 * retain only what's needed to distinguish between
1160 		 * the new entry and the entry on the page to its left.
1161 		 * If the keys compare equal, retain the entire key.
1162 		 *
1163 		 * note that compression is performed only at computing
1164 		 * router key at the lowest internal level.
1165 		 * further compression of the key between pairs of higher
1166 		 * level internal pages loses too much information and
1167 		 * the search may fail.
1168 		 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1169 		 * results in two adjacent parent entries (a)(xx).
1170 		 * if split occurs between these two entries, and
1171 		 * if compression is applied, the router key of parent entry
1172 		 * of right page (x) will divert search for x into right
1173 		 * subtree and miss x in the left subtree.)
1174 		 *
1175 		 * the entire key must be retained for the next-to-leftmost
1176 		 * internal key at any level of the tree, or search may fail
1177 		 * (e.g., ?)
1178 		 */
1179 		switch (rp->header.flag & BT_TYPE) {
1180 		case BT_LEAF:
1181 			/*
1182 			 * compute the length of prefix for suffix compression
1183 			 * between last entry of left page and first entry
1184 			 * of right page
1185 			 */
1186 			if ((sp->header.flag & BT_ROOT && skip > 1) ||
1187 			    sp->header.prev != 0 || skip > 1) {
1188 				/* compute uppercase router prefix key */
1189 				rc = ciGetLeafPrefixKey(lp,
1190 							lp->header.nextindex-1,
1191 							rp, 0, &key,
1192 							sbi->mntflag);
1193 				if (rc) {
1194 					DT_PUTPAGE(lmp);
1195 					DT_PUTPAGE(rmp);
1196 					DT_PUTPAGE(smp);
1197 					goto splitOut;
1198 				}
1199 			} else {
1200 				/* next to leftmost entry of
1201 				   lowest internal level */
1202 
1203 				/* compute uppercase router key */
1204 				dtGetKey(rp, 0, &key, sbi->mntflag);
1205 				key.name[key.namlen] = 0;
1206 
1207 				if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1208 					ciToUpper(&key);
1209 			}
1210 
1211 			n = NDTINTERNAL(key.namlen);
1212 			break;
1213 
1214 		case BT_INTERNAL:
1215 			dtGetKey(rp, 0, &key, sbi->mntflag);
1216 			n = NDTINTERNAL(key.namlen);
1217 			break;
1218 
1219 		default:
1220 			jfs_err("dtSplitUp(): UFO!");
1221 			break;
1222 		}
1223 
1224 		/* unpin left child page */
1225 		DT_PUTPAGE(lmp);
1226 
1227 		/*
1228 		 * compute the data for the router entry
1229 		 */
1230 		data->xd = rpxd;	/* child page xd */
1231 
1232 		/*
1233 		 * parent page is full - split the parent page
1234 		 */
1235 		if (n > sp->header.freecnt) {
1236 			/* init for parent page split */
1237 			split->mp = smp;
1238 			split->index = skip;	/* index at insert */
1239 			split->nslot = n;
1240 			split->key = &key;
1241 			/* split->data = data; */
1242 
1243 			/* unpin right child page */
1244 			DT_PUTPAGE(rmp);
1245 
1246 			/* The split routines insert the new entry,
1247 			 * acquire txLock as appropriate.
1248 			 * return <rp> pinned and its block number <rbn>.
1249 			 */
1250 			rc = (sp->header.flag & BT_ROOT) ?
1251 			    dtSplitRoot(tid, ip, split, &rmp) :
1252 			    dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1253 			if (rc) {
1254 				DT_PUTPAGE(smp);
1255 				goto splitOut;
1256 			}
1257 
1258 			/* smp and rmp are pinned */
1259 		}
1260 		/*
1261 		 * parent page is not full - insert router entry in parent page
1262 		 */
1263 		else {
1264 			BT_MARK_DIRTY(smp, ip);
1265 			/*
1266 			 * acquire a transaction lock on the parent page
1267 			 */
1268 			tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1269 			dtlck = (struct dt_lock *) & tlck->lock;
1270 			ASSERT(dtlck->index == 0);
1271 			lv = & dtlck->lv[0];
1272 
1273 			/* linelock header */
1274 			lv->offset = 0;
1275 			lv->length = 1;
1276 			dtlck->index++;
1277 
1278 			/* linelock stbl of non-root parent page */
1279 			if (!(sp->header.flag & BT_ROOT)) {
1280 				lv++;
1281 				n = skip >> L2DTSLOTSIZE;
1282 				lv->offset = sp->header.stblindex + n;
1283 				lv->length =
1284 				    ((sp->header.nextindex -
1285 				      1) >> L2DTSLOTSIZE) - n + 1;
1286 				dtlck->index++;
1287 			}
1288 
1289 			dtInsertEntry(sp, skip, &key, data, &dtlck);
1290 
1291 			/* exit propagate up */
1292 			break;
1293 		}
1294 	}
1295 
1296 	/* unpin current split and its right page */
1297 	DT_PUTPAGE(smp);
1298 	DT_PUTPAGE(rmp);
1299 
1300 	/*
1301 	 * free remaining extents allocated for split
1302 	 */
1303       splitOut:
1304 	n = pxdlist.npxd;
1305 	pxd = &pxdlist.pxd[n];
1306 	for (; n < pxdlist.maxnpxd; n++, pxd++)
1307 		dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1308 
1309       freeKeyName:
1310 	kfree(key.name);
1311 
1312 	/* Rollback quota allocation */
1313 	if (rc && quota_allocation)
1314 		DQUOT_FREE_BLOCK(ip, quota_allocation);
1315 
1316       dtSplitUp_Exit:
1317 
1318 	return rc;
1319 }
1320 
1321 
1322 /*
1323  *	dtSplitPage()
1324  *
1325  * function: Split a non-root page of a btree.
1326  *
1327  * parameter:
1328  *
1329  * return: 0 - success;
1330  *	   errno - failure;
1331  *	return split and new page pinned;
1332  */
1333 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1334 	    struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1335 {
1336 	int rc = 0;
1337 	struct metapage *smp;
1338 	dtpage_t *sp;
1339 	struct metapage *rmp;
1340 	dtpage_t *rp;		/* new right page allocated */
1341 	s64 rbn;		/* new right page block number */
1342 	struct metapage *mp;
1343 	dtpage_t *p;
1344 	s64 nextbn;
1345 	struct pxdlist *pxdlist;
1346 	pxd_t *pxd;
1347 	int skip, nextindex, half, left, nxt, off, si;
1348 	struct ldtentry *ldtentry;
1349 	struct idtentry *idtentry;
1350 	u8 *stbl;
1351 	struct dtslot *f;
1352 	int fsi, stblsize;
1353 	int n;
1354 	struct dt_lock *sdtlck, *rdtlck;
1355 	struct tlock *tlck;
1356 	struct dt_lock *dtlck;
1357 	struct lv *slv, *rlv, *lv;
1358 
1359 	/* get split page */
1360 	smp = split->mp;
1361 	sp = DT_PAGE(ip, smp);
1362 
1363 	/*
1364 	 * allocate the new right page for the split
1365 	 */
1366 	pxdlist = split->pxdlist;
1367 	pxd = &pxdlist->pxd[pxdlist->npxd];
1368 	pxdlist->npxd++;
1369 	rbn = addressPXD(pxd);
1370 	rmp = get_metapage(ip, rbn, PSIZE, 1);
1371 	if (rmp == NULL)
1372 		return -EIO;
1373 
1374 	/* Allocate blocks to quota. */
1375 	if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) {
1376 		release_metapage(rmp);
1377 		return -EDQUOT;
1378 	}
1379 
1380 	jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1381 
1382 	BT_MARK_DIRTY(rmp, ip);
1383 	/*
1384 	 * acquire a transaction lock on the new right page
1385 	 */
1386 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1387 	rdtlck = (struct dt_lock *) & tlck->lock;
1388 
1389 	rp = (dtpage_t *) rmp->data;
1390 	*rpp = rp;
1391 	rp->header.self = *pxd;
1392 
1393 	BT_MARK_DIRTY(smp, ip);
1394 	/*
1395 	 * acquire a transaction lock on the split page
1396 	 *
1397 	 * action:
1398 	 */
1399 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1400 	sdtlck = (struct dt_lock *) & tlck->lock;
1401 
1402 	/* linelock header of split page */
1403 	ASSERT(sdtlck->index == 0);
1404 	slv = & sdtlck->lv[0];
1405 	slv->offset = 0;
1406 	slv->length = 1;
1407 	sdtlck->index++;
1408 
1409 	/*
1410 	 * initialize/update sibling pointers between sp and rp
1411 	 */
1412 	nextbn = le64_to_cpu(sp->header.next);
1413 	rp->header.next = cpu_to_le64(nextbn);
1414 	rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1415 	sp->header.next = cpu_to_le64(rbn);
1416 
1417 	/*
1418 	 * initialize new right page
1419 	 */
1420 	rp->header.flag = sp->header.flag;
1421 
1422 	/* compute sorted entry table at start of extent data area */
1423 	rp->header.nextindex = 0;
1424 	rp->header.stblindex = 1;
1425 
1426 	n = PSIZE >> L2DTSLOTSIZE;
1427 	rp->header.maxslot = n;
1428 	stblsize = (n + 31) >> L2DTSLOTSIZE;	/* in unit of slot */
1429 
1430 	/* init freelist */
1431 	fsi = rp->header.stblindex + stblsize;
1432 	rp->header.freelist = fsi;
1433 	rp->header.freecnt = rp->header.maxslot - fsi;
1434 
1435 	/*
1436 	 *	sequential append at tail: append without split
1437 	 *
1438 	 * If splitting the last page on a level because of appending
1439 	 * a entry to it (skip is maxentry), it's likely that the access is
1440 	 * sequential. Adding an empty page on the side of the level is less
1441 	 * work and can push the fill factor much higher than normal.
1442 	 * If we're wrong it's no big deal, we'll just do the split the right
1443 	 * way next time.
1444 	 * (It may look like it's equally easy to do a similar hack for
1445 	 * reverse sorted data, that is, split the tree left,
1446 	 * but it's not. Be my guest.)
1447 	 */
1448 	if (nextbn == 0 && split->index == sp->header.nextindex) {
1449 		/* linelock header + stbl (first slot) of new page */
1450 		rlv = & rdtlck->lv[rdtlck->index];
1451 		rlv->offset = 0;
1452 		rlv->length = 2;
1453 		rdtlck->index++;
1454 
1455 		/*
1456 		 * initialize freelist of new right page
1457 		 */
1458 		f = &rp->slot[fsi];
1459 		for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1460 			f->next = fsi;
1461 		f->next = -1;
1462 
1463 		/* insert entry at the first entry of the new right page */
1464 		dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1465 
1466 		goto out;
1467 	}
1468 
1469 	/*
1470 	 *	non-sequential insert (at possibly middle page)
1471 	 */
1472 
1473 	/*
1474 	 * update prev pointer of previous right sibling page;
1475 	 */
1476 	if (nextbn != 0) {
1477 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1478 		if (rc) {
1479 			discard_metapage(rmp);
1480 			return rc;
1481 		}
1482 
1483 		BT_MARK_DIRTY(mp, ip);
1484 		/*
1485 		 * acquire a transaction lock on the next page
1486 		 */
1487 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1488 		jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1489 			tlck, ip, mp);
1490 		dtlck = (struct dt_lock *) & tlck->lock;
1491 
1492 		/* linelock header of previous right sibling page */
1493 		lv = & dtlck->lv[dtlck->index];
1494 		lv->offset = 0;
1495 		lv->length = 1;
1496 		dtlck->index++;
1497 
1498 		p->header.prev = cpu_to_le64(rbn);
1499 
1500 		DT_PUTPAGE(mp);
1501 	}
1502 
1503 	/*
1504 	 * split the data between the split and right pages.
1505 	 */
1506 	skip = split->index;
1507 	half = (PSIZE >> L2DTSLOTSIZE) >> 1;	/* swag */
1508 	left = 0;
1509 
1510 	/*
1511 	 *	compute fill factor for split pages
1512 	 *
1513 	 * <nxt> traces the next entry to move to rp
1514 	 * <off> traces the next entry to stay in sp
1515 	 */
1516 	stbl = (u8 *) & sp->slot[sp->header.stblindex];
1517 	nextindex = sp->header.nextindex;
1518 	for (nxt = off = 0; nxt < nextindex; ++off) {
1519 		if (off == skip)
1520 			/* check for fill factor with new entry size */
1521 			n = split->nslot;
1522 		else {
1523 			si = stbl[nxt];
1524 			switch (sp->header.flag & BT_TYPE) {
1525 			case BT_LEAF:
1526 				ldtentry = (struct ldtentry *) & sp->slot[si];
1527 				if (DO_INDEX(ip))
1528 					n = NDTLEAF(ldtentry->namlen);
1529 				else
1530 					n = NDTLEAF_LEGACY(ldtentry->
1531 							   namlen);
1532 				break;
1533 
1534 			case BT_INTERNAL:
1535 				idtentry = (struct idtentry *) & sp->slot[si];
1536 				n = NDTINTERNAL(idtentry->namlen);
1537 				break;
1538 
1539 			default:
1540 				break;
1541 			}
1542 
1543 			++nxt;	/* advance to next entry to move in sp */
1544 		}
1545 
1546 		left += n;
1547 		if (left >= half)
1548 			break;
1549 	}
1550 
1551 	/* <nxt> poins to the 1st entry to move */
1552 
1553 	/*
1554 	 *	move entries to right page
1555 	 *
1556 	 * dtMoveEntry() initializes rp and reserves entry for insertion
1557 	 *
1558 	 * split page moved out entries are linelocked;
1559 	 * new/right page moved in entries are linelocked;
1560 	 */
1561 	/* linelock header + stbl of new right page */
1562 	rlv = & rdtlck->lv[rdtlck->index];
1563 	rlv->offset = 0;
1564 	rlv->length = 5;
1565 	rdtlck->index++;
1566 
1567 	dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1568 
1569 	sp->header.nextindex = nxt;
1570 
1571 	/*
1572 	 * finalize freelist of new right page
1573 	 */
1574 	fsi = rp->header.freelist;
1575 	f = &rp->slot[fsi];
1576 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1577 		f->next = fsi;
1578 	f->next = -1;
1579 
1580 	/*
1581 	 * Update directory index table for entries now in right page
1582 	 */
1583 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1584 		s64 lblock;
1585 
1586 		mp = NULL;
1587 		stbl = DT_GETSTBL(rp);
1588 		for (n = 0; n < rp->header.nextindex; n++) {
1589 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1590 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1591 				     rbn, n, &mp, &lblock);
1592 		}
1593 		if (mp)
1594 			release_metapage(mp);
1595 	}
1596 
1597 	/*
1598 	 * the skipped index was on the left page,
1599 	 */
1600 	if (skip <= off) {
1601 		/* insert the new entry in the split page */
1602 		dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1603 
1604 		/* linelock stbl of split page */
1605 		if (sdtlck->index >= sdtlck->maxcnt)
1606 			sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1607 		slv = & sdtlck->lv[sdtlck->index];
1608 		n = skip >> L2DTSLOTSIZE;
1609 		slv->offset = sp->header.stblindex + n;
1610 		slv->length =
1611 		    ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1612 		sdtlck->index++;
1613 	}
1614 	/*
1615 	 * the skipped index was on the right page,
1616 	 */
1617 	else {
1618 		/* adjust the skip index to reflect the new position */
1619 		skip -= nxt;
1620 
1621 		/* insert the new entry in the right page */
1622 		dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1623 	}
1624 
1625       out:
1626 	*rmpp = rmp;
1627 	*rpxdp = *pxd;
1628 
1629 	return rc;
1630 }
1631 
1632 
1633 /*
1634  *	dtExtendPage()
1635  *
1636  * function: extend 1st/only directory leaf page
1637  *
1638  * parameter:
1639  *
1640  * return: 0 - success;
1641  *	   errno - failure;
1642  *	return extended page pinned;
1643  */
1644 static int dtExtendPage(tid_t tid,
1645 	     struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1646 {
1647 	struct super_block *sb = ip->i_sb;
1648 	int rc;
1649 	struct metapage *smp, *pmp, *mp;
1650 	dtpage_t *sp, *pp;
1651 	struct pxdlist *pxdlist;
1652 	pxd_t *pxd, *tpxd;
1653 	int xlen, xsize;
1654 	int newstblindex, newstblsize;
1655 	int oldstblindex, oldstblsize;
1656 	int fsi, last;
1657 	struct dtslot *f;
1658 	struct btframe *parent;
1659 	int n;
1660 	struct dt_lock *dtlck;
1661 	s64 xaddr, txaddr;
1662 	struct tlock *tlck;
1663 	struct pxd_lock *pxdlock;
1664 	struct lv *lv;
1665 	uint type;
1666 	struct ldtentry *ldtentry;
1667 	u8 *stbl;
1668 
1669 	/* get page to extend */
1670 	smp = split->mp;
1671 	sp = DT_PAGE(ip, smp);
1672 
1673 	/* get parent/root page */
1674 	parent = BT_POP(btstack);
1675 	DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1676 	if (rc)
1677 		return (rc);
1678 
1679 	/*
1680 	 *	extend the extent
1681 	 */
1682 	pxdlist = split->pxdlist;
1683 	pxd = &pxdlist->pxd[pxdlist->npxd];
1684 	pxdlist->npxd++;
1685 
1686 	xaddr = addressPXD(pxd);
1687 	tpxd = &sp->header.self;
1688 	txaddr = addressPXD(tpxd);
1689 	/* in-place extension */
1690 	if (xaddr == txaddr) {
1691 		type = tlckEXTEND;
1692 	}
1693 	/* relocation */
1694 	else {
1695 		type = tlckNEW;
1696 
1697 		/* save moved extent descriptor for later free */
1698 		tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1699 		pxdlock = (struct pxd_lock *) & tlck->lock;
1700 		pxdlock->flag = mlckFREEPXD;
1701 		pxdlock->pxd = sp->header.self;
1702 		pxdlock->index = 1;
1703 
1704 		/*
1705 		 * Update directory index table to reflect new page address
1706 		 */
1707 		if (DO_INDEX(ip)) {
1708 			s64 lblock;
1709 
1710 			mp = NULL;
1711 			stbl = DT_GETSTBL(sp);
1712 			for (n = 0; n < sp->header.nextindex; n++) {
1713 				ldtentry =
1714 				    (struct ldtentry *) & sp->slot[stbl[n]];
1715 				modify_index(tid, ip,
1716 					     le32_to_cpu(ldtentry->index),
1717 					     xaddr, n, &mp, &lblock);
1718 			}
1719 			if (mp)
1720 				release_metapage(mp);
1721 		}
1722 	}
1723 
1724 	/*
1725 	 *	extend the page
1726 	 */
1727 	sp->header.self = *pxd;
1728 
1729 	jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1730 
1731 	BT_MARK_DIRTY(smp, ip);
1732 	/*
1733 	 * acquire a transaction lock on the extended/leaf page
1734 	 */
1735 	tlck = txLock(tid, ip, smp, tlckDTREE | type);
1736 	dtlck = (struct dt_lock *) & tlck->lock;
1737 	lv = & dtlck->lv[0];
1738 
1739 	/* update buffer extent descriptor of extended page */
1740 	xlen = lengthPXD(pxd);
1741 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1742 
1743 	/*
1744 	 * copy old stbl to new stbl at start of extended area
1745 	 */
1746 	oldstblindex = sp->header.stblindex;
1747 	oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1748 	newstblindex = sp->header.maxslot;
1749 	n = xsize >> L2DTSLOTSIZE;
1750 	newstblsize = (n + 31) >> L2DTSLOTSIZE;
1751 	memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1752 	       sp->header.nextindex);
1753 
1754 	/*
1755 	 * in-line extension: linelock old area of extended page
1756 	 */
1757 	if (type == tlckEXTEND) {
1758 		/* linelock header */
1759 		lv->offset = 0;
1760 		lv->length = 1;
1761 		dtlck->index++;
1762 		lv++;
1763 
1764 		/* linelock new stbl of extended page */
1765 		lv->offset = newstblindex;
1766 		lv->length = newstblsize;
1767 	}
1768 	/*
1769 	 * relocation: linelock whole relocated area
1770 	 */
1771 	else {
1772 		lv->offset = 0;
1773 		lv->length = sp->header.maxslot + newstblsize;
1774 	}
1775 
1776 	dtlck->index++;
1777 
1778 	sp->header.maxslot = n;
1779 	sp->header.stblindex = newstblindex;
1780 	/* sp->header.nextindex remains the same */
1781 
1782 	/*
1783 	 * add old stbl region at head of freelist
1784 	 */
1785 	fsi = oldstblindex;
1786 	f = &sp->slot[fsi];
1787 	last = sp->header.freelist;
1788 	for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1789 		f->next = last;
1790 		last = fsi;
1791 	}
1792 	sp->header.freelist = last;
1793 	sp->header.freecnt += oldstblsize;
1794 
1795 	/*
1796 	 * append free region of newly extended area at tail of freelist
1797 	 */
1798 	/* init free region of newly extended area */
1799 	fsi = n = newstblindex + newstblsize;
1800 	f = &sp->slot[fsi];
1801 	for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1802 		f->next = fsi;
1803 	f->next = -1;
1804 
1805 	/* append new free region at tail of old freelist */
1806 	fsi = sp->header.freelist;
1807 	if (fsi == -1)
1808 		sp->header.freelist = n;
1809 	else {
1810 		do {
1811 			f = &sp->slot[fsi];
1812 			fsi = f->next;
1813 		} while (fsi != -1);
1814 
1815 		f->next = n;
1816 	}
1817 
1818 	sp->header.freecnt += sp->header.maxslot - n;
1819 
1820 	/*
1821 	 * insert the new entry
1822 	 */
1823 	dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1824 
1825 	BT_MARK_DIRTY(pmp, ip);
1826 	/*
1827 	 * linelock any freeslots residing in old extent
1828 	 */
1829 	if (type == tlckEXTEND) {
1830 		n = sp->header.maxslot >> 2;
1831 		if (sp->header.freelist < n)
1832 			dtLinelockFreelist(sp, n, &dtlck);
1833 	}
1834 
1835 	/*
1836 	 *	update parent entry on the parent/root page
1837 	 */
1838 	/*
1839 	 * acquire a transaction lock on the parent/root page
1840 	 */
1841 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1842 	dtlck = (struct dt_lock *) & tlck->lock;
1843 	lv = & dtlck->lv[dtlck->index];
1844 
1845 	/* linelock parent entry - 1st slot */
1846 	lv->offset = 1;
1847 	lv->length = 1;
1848 	dtlck->index++;
1849 
1850 	/* update the parent pxd for page extension */
1851 	tpxd = (pxd_t *) & pp->slot[1];
1852 	*tpxd = *pxd;
1853 
1854 	DT_PUTPAGE(pmp);
1855 	return 0;
1856 }
1857 
1858 
1859 /*
1860  *	dtSplitRoot()
1861  *
1862  * function:
1863  *	split the full root page into
1864  *	original/root/split page and new right page
1865  *	i.e., root remains fixed in tree anchor (inode) and
1866  *	the root is copied to a single new right child page
1867  *	since root page << non-root page, and
1868  *	the split root page contains a single entry for the
1869  *	new right child page.
1870  *
1871  * parameter:
1872  *
1873  * return: 0 - success;
1874  *	   errno - failure;
1875  *	return new page pinned;
1876  */
1877 static int dtSplitRoot(tid_t tid,
1878 	    struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1879 {
1880 	struct super_block *sb = ip->i_sb;
1881 	struct metapage *smp;
1882 	dtroot_t *sp;
1883 	struct metapage *rmp;
1884 	dtpage_t *rp;
1885 	s64 rbn;
1886 	int xlen;
1887 	int xsize;
1888 	struct dtslot *f;
1889 	s8 *stbl;
1890 	int fsi, stblsize, n;
1891 	struct idtentry *s;
1892 	pxd_t *ppxd;
1893 	struct pxdlist *pxdlist;
1894 	pxd_t *pxd;
1895 	struct dt_lock *dtlck;
1896 	struct tlock *tlck;
1897 	struct lv *lv;
1898 
1899 	/* get split root page */
1900 	smp = split->mp;
1901 	sp = &JFS_IP(ip)->i_dtroot;
1902 
1903 	/*
1904 	 *	allocate/initialize a single (right) child page
1905 	 *
1906 	 * N.B. at first split, a one (or two) block to fit new entry
1907 	 * is allocated; at subsequent split, a full page is allocated;
1908 	 */
1909 	pxdlist = split->pxdlist;
1910 	pxd = &pxdlist->pxd[pxdlist->npxd];
1911 	pxdlist->npxd++;
1912 	rbn = addressPXD(pxd);
1913 	xlen = lengthPXD(pxd);
1914 	xsize = xlen << JFS_SBI(sb)->l2bsize;
1915 	rmp = get_metapage(ip, rbn, xsize, 1);
1916 	if (!rmp)
1917 		return -EIO;
1918 
1919 	rp = rmp->data;
1920 
1921 	/* Allocate blocks to quota. */
1922 	if (DQUOT_ALLOC_BLOCK(ip, lengthPXD(pxd))) {
1923 		release_metapage(rmp);
1924 		return -EDQUOT;
1925 	}
1926 
1927 	BT_MARK_DIRTY(rmp, ip);
1928 	/*
1929 	 * acquire a transaction lock on the new right page
1930 	 */
1931 	tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1932 	dtlck = (struct dt_lock *) & tlck->lock;
1933 
1934 	rp->header.flag =
1935 	    (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1936 	rp->header.self = *pxd;
1937 
1938 	/* initialize sibling pointers */
1939 	rp->header.next = 0;
1940 	rp->header.prev = 0;
1941 
1942 	/*
1943 	 *	move in-line root page into new right page extent
1944 	 */
1945 	/* linelock header + copied entries + new stbl (1st slot) in new page */
1946 	ASSERT(dtlck->index == 0);
1947 	lv = & dtlck->lv[0];
1948 	lv->offset = 0;
1949 	lv->length = 10;	/* 1 + 8 + 1 */
1950 	dtlck->index++;
1951 
1952 	n = xsize >> L2DTSLOTSIZE;
1953 	rp->header.maxslot = n;
1954 	stblsize = (n + 31) >> L2DTSLOTSIZE;
1955 
1956 	/* copy old stbl to new stbl at start of extended area */
1957 	rp->header.stblindex = DTROOTMAXSLOT;
1958 	stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1959 	memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1960 	rp->header.nextindex = sp->header.nextindex;
1961 
1962 	/* copy old data area to start of new data area */
1963 	memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1964 
1965 	/*
1966 	 * append free region of newly extended area at tail of freelist
1967 	 */
1968 	/* init free region of newly extended area */
1969 	fsi = n = DTROOTMAXSLOT + stblsize;
1970 	f = &rp->slot[fsi];
1971 	for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1972 		f->next = fsi;
1973 	f->next = -1;
1974 
1975 	/* append new free region at tail of old freelist */
1976 	fsi = sp->header.freelist;
1977 	if (fsi == -1)
1978 		rp->header.freelist = n;
1979 	else {
1980 		rp->header.freelist = fsi;
1981 
1982 		do {
1983 			f = &rp->slot[fsi];
1984 			fsi = f->next;
1985 		} while (fsi != -1);
1986 
1987 		f->next = n;
1988 	}
1989 
1990 	rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1991 
1992 	/*
1993 	 * Update directory index table for entries now in right page
1994 	 */
1995 	if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1996 		s64 lblock;
1997 		struct metapage *mp = NULL;
1998 		struct ldtentry *ldtentry;
1999 
2000 		stbl = DT_GETSTBL(rp);
2001 		for (n = 0; n < rp->header.nextindex; n++) {
2002 			ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
2003 			modify_index(tid, ip, le32_to_cpu(ldtentry->index),
2004 				     rbn, n, &mp, &lblock);
2005 		}
2006 		if (mp)
2007 			release_metapage(mp);
2008 	}
2009 	/*
2010 	 * insert the new entry into the new right/child page
2011 	 * (skip index in the new right page will not change)
2012 	 */
2013 	dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2014 
2015 	/*
2016 	 *	reset parent/root page
2017 	 *
2018 	 * set the 1st entry offset to 0, which force the left-most key
2019 	 * at any level of the tree to be less than any search key.
2020 	 *
2021 	 * The btree comparison code guarantees that the left-most key on any
2022 	 * level of the tree is never used, so it doesn't need to be filled in.
2023 	 */
2024 	BT_MARK_DIRTY(smp, ip);
2025 	/*
2026 	 * acquire a transaction lock on the root page (in-memory inode)
2027 	 */
2028 	tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2029 	dtlck = (struct dt_lock *) & tlck->lock;
2030 
2031 	/* linelock root */
2032 	ASSERT(dtlck->index == 0);
2033 	lv = & dtlck->lv[0];
2034 	lv->offset = 0;
2035 	lv->length = DTROOTMAXSLOT;
2036 	dtlck->index++;
2037 
2038 	/* update page header of root */
2039 	if (sp->header.flag & BT_LEAF) {
2040 		sp->header.flag &= ~BT_LEAF;
2041 		sp->header.flag |= BT_INTERNAL;
2042 	}
2043 
2044 	/* init the first entry */
2045 	s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2046 	ppxd = (pxd_t *) s;
2047 	*ppxd = *pxd;
2048 	s->next = -1;
2049 	s->namlen = 0;
2050 
2051 	stbl = sp->header.stbl;
2052 	stbl[0] = DTENTRYSTART;
2053 	sp->header.nextindex = 1;
2054 
2055 	/* init freelist */
2056 	fsi = DTENTRYSTART + 1;
2057 	f = &sp->slot[fsi];
2058 
2059 	/* init free region of remaining area */
2060 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2061 		f->next = fsi;
2062 	f->next = -1;
2063 
2064 	sp->header.freelist = DTENTRYSTART + 1;
2065 	sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2066 
2067 	*rmpp = rmp;
2068 
2069 	return 0;
2070 }
2071 
2072 
2073 /*
2074  *	dtDelete()
2075  *
2076  * function: delete the entry(s) referenced by a key.
2077  *
2078  * parameter:
2079  *
2080  * return:
2081  */
2082 int dtDelete(tid_t tid,
2083 	 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2084 {
2085 	int rc = 0;
2086 	s64 bn;
2087 	struct metapage *mp, *imp;
2088 	dtpage_t *p;
2089 	int index;
2090 	struct btstack btstack;
2091 	struct dt_lock *dtlck;
2092 	struct tlock *tlck;
2093 	struct lv *lv;
2094 	int i;
2095 	struct ldtentry *ldtentry;
2096 	u8 *stbl;
2097 	u32 table_index, next_index;
2098 	struct metapage *nmp;
2099 	dtpage_t *np;
2100 
2101 	/*
2102 	 *	search for the entry to delete:
2103 	 *
2104 	 * dtSearch() returns (leaf page pinned, index at which to delete).
2105 	 */
2106 	if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2107 		return rc;
2108 
2109 	/* retrieve search result */
2110 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2111 
2112 	/*
2113 	 * We need to find put the index of the next entry into the
2114 	 * directory index table in order to resume a readdir from this
2115 	 * entry.
2116 	 */
2117 	if (DO_INDEX(ip)) {
2118 		stbl = DT_GETSTBL(p);
2119 		ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2120 		table_index = le32_to_cpu(ldtentry->index);
2121 		if (index == (p->header.nextindex - 1)) {
2122 			/*
2123 			 * Last entry in this leaf page
2124 			 */
2125 			if ((p->header.flag & BT_ROOT)
2126 			    || (p->header.next == 0))
2127 				next_index = -1;
2128 			else {
2129 				/* Read next leaf page */
2130 				DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2131 					   nmp, PSIZE, np, rc);
2132 				if (rc)
2133 					next_index = -1;
2134 				else {
2135 					stbl = DT_GETSTBL(np);
2136 					ldtentry =
2137 					    (struct ldtentry *) & np->
2138 					    slot[stbl[0]];
2139 					next_index =
2140 					    le32_to_cpu(ldtentry->index);
2141 					DT_PUTPAGE(nmp);
2142 				}
2143 			}
2144 		} else {
2145 			ldtentry =
2146 			    (struct ldtentry *) & p->slot[stbl[index + 1]];
2147 			next_index = le32_to_cpu(ldtentry->index);
2148 		}
2149 		free_index(tid, ip, table_index, next_index);
2150 	}
2151 	/*
2152 	 * the leaf page becomes empty, delete the page
2153 	 */
2154 	if (p->header.nextindex == 1) {
2155 		/* delete empty page */
2156 		rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2157 	}
2158 	/*
2159 	 * the leaf page has other entries remaining:
2160 	 *
2161 	 * delete the entry from the leaf page.
2162 	 */
2163 	else {
2164 		BT_MARK_DIRTY(mp, ip);
2165 		/*
2166 		 * acquire a transaction lock on the leaf page
2167 		 */
2168 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2169 		dtlck = (struct dt_lock *) & tlck->lock;
2170 
2171 		/*
2172 		 * Do not assume that dtlck->index will be zero.  During a
2173 		 * rename within a directory, this transaction may have
2174 		 * modified this page already when adding the new entry.
2175 		 */
2176 
2177 		/* linelock header */
2178 		if (dtlck->index >= dtlck->maxcnt)
2179 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2180 		lv = & dtlck->lv[dtlck->index];
2181 		lv->offset = 0;
2182 		lv->length = 1;
2183 		dtlck->index++;
2184 
2185 		/* linelock stbl of non-root leaf page */
2186 		if (!(p->header.flag & BT_ROOT)) {
2187 			if (dtlck->index >= dtlck->maxcnt)
2188 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2189 			lv = & dtlck->lv[dtlck->index];
2190 			i = index >> L2DTSLOTSIZE;
2191 			lv->offset = p->header.stblindex + i;
2192 			lv->length =
2193 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2194 			    i + 1;
2195 			dtlck->index++;
2196 		}
2197 
2198 		/* free the leaf entry */
2199 		dtDeleteEntry(p, index, &dtlck);
2200 
2201 		/*
2202 		 * Update directory index table for entries moved in stbl
2203 		 */
2204 		if (DO_INDEX(ip) && index < p->header.nextindex) {
2205 			s64 lblock;
2206 
2207 			imp = NULL;
2208 			stbl = DT_GETSTBL(p);
2209 			for (i = index; i < p->header.nextindex; i++) {
2210 				ldtentry =
2211 				    (struct ldtentry *) & p->slot[stbl[i]];
2212 				modify_index(tid, ip,
2213 					     le32_to_cpu(ldtentry->index),
2214 					     bn, i, &imp, &lblock);
2215 			}
2216 			if (imp)
2217 				release_metapage(imp);
2218 		}
2219 
2220 		DT_PUTPAGE(mp);
2221 	}
2222 
2223 	return rc;
2224 }
2225 
2226 
2227 /*
2228  *	dtDeleteUp()
2229  *
2230  * function:
2231  *	free empty pages as propagating deletion up the tree
2232  *
2233  * parameter:
2234  *
2235  * return:
2236  */
2237 static int dtDeleteUp(tid_t tid, struct inode *ip,
2238 	   struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2239 {
2240 	int rc = 0;
2241 	struct metapage *mp;
2242 	dtpage_t *p;
2243 	int index, nextindex;
2244 	int xlen;
2245 	struct btframe *parent;
2246 	struct dt_lock *dtlck;
2247 	struct tlock *tlck;
2248 	struct lv *lv;
2249 	struct pxd_lock *pxdlock;
2250 	int i;
2251 
2252 	/*
2253 	 *	keep the root leaf page which has become empty
2254 	 */
2255 	if (BT_IS_ROOT(fmp)) {
2256 		/*
2257 		 * reset the root
2258 		 *
2259 		 * dtInitRoot() acquires txlock on the root
2260 		 */
2261 		dtInitRoot(tid, ip, PARENT(ip));
2262 
2263 		DT_PUTPAGE(fmp);
2264 
2265 		return 0;
2266 	}
2267 
2268 	/*
2269 	 *	free the non-root leaf page
2270 	 */
2271 	/*
2272 	 * acquire a transaction lock on the page
2273 	 *
2274 	 * write FREEXTENT|NOREDOPAGE log record
2275 	 * N.B. linelock is overlaid as freed extent descriptor, and
2276 	 * the buffer page is freed;
2277 	 */
2278 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2279 	pxdlock = (struct pxd_lock *) & tlck->lock;
2280 	pxdlock->flag = mlckFREEPXD;
2281 	pxdlock->pxd = fp->header.self;
2282 	pxdlock->index = 1;
2283 
2284 	/* update sibling pointers */
2285 	if ((rc = dtRelink(tid, ip, fp))) {
2286 		BT_PUTPAGE(fmp);
2287 		return rc;
2288 	}
2289 
2290 	xlen = lengthPXD(&fp->header.self);
2291 
2292 	/* Free quota allocation. */
2293 	DQUOT_FREE_BLOCK(ip, xlen);
2294 
2295 	/* free/invalidate its buffer page */
2296 	discard_metapage(fmp);
2297 
2298 	/*
2299 	 *	propagate page deletion up the directory tree
2300 	 *
2301 	 * If the delete from the parent page makes it empty,
2302 	 * continue all the way up the tree.
2303 	 * stop if the root page is reached (which is never deleted) or
2304 	 * if the entry deletion does not empty the page.
2305 	 */
2306 	while ((parent = BT_POP(btstack)) != NULL) {
2307 		/* pin the parent page <sp> */
2308 		DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2309 		if (rc)
2310 			return rc;
2311 
2312 		/*
2313 		 * free the extent of the child page deleted
2314 		 */
2315 		index = parent->index;
2316 
2317 		/*
2318 		 * delete the entry for the child page from parent
2319 		 */
2320 		nextindex = p->header.nextindex;
2321 
2322 		/*
2323 		 * the parent has the single entry being deleted:
2324 		 *
2325 		 * free the parent page which has become empty.
2326 		 */
2327 		if (nextindex == 1) {
2328 			/*
2329 			 * keep the root internal page which has become empty
2330 			 */
2331 			if (p->header.flag & BT_ROOT) {
2332 				/*
2333 				 * reset the root
2334 				 *
2335 				 * dtInitRoot() acquires txlock on the root
2336 				 */
2337 				dtInitRoot(tid, ip, PARENT(ip));
2338 
2339 				DT_PUTPAGE(mp);
2340 
2341 				return 0;
2342 			}
2343 			/*
2344 			 * free the parent page
2345 			 */
2346 			else {
2347 				/*
2348 				 * acquire a transaction lock on the page
2349 				 *
2350 				 * write FREEXTENT|NOREDOPAGE log record
2351 				 */
2352 				tlck =
2353 				    txMaplock(tid, ip,
2354 					      tlckDTREE | tlckFREE);
2355 				pxdlock = (struct pxd_lock *) & tlck->lock;
2356 				pxdlock->flag = mlckFREEPXD;
2357 				pxdlock->pxd = p->header.self;
2358 				pxdlock->index = 1;
2359 
2360 				/* update sibling pointers */
2361 				if ((rc = dtRelink(tid, ip, p))) {
2362 					DT_PUTPAGE(mp);
2363 					return rc;
2364 				}
2365 
2366 				xlen = lengthPXD(&p->header.self);
2367 
2368 				/* Free quota allocation */
2369 				DQUOT_FREE_BLOCK(ip, xlen);
2370 
2371 				/* free/invalidate its buffer page */
2372 				discard_metapage(mp);
2373 
2374 				/* propagate up */
2375 				continue;
2376 			}
2377 		}
2378 
2379 		/*
2380 		 * the parent has other entries remaining:
2381 		 *
2382 		 * delete the router entry from the parent page.
2383 		 */
2384 		BT_MARK_DIRTY(mp, ip);
2385 		/*
2386 		 * acquire a transaction lock on the page
2387 		 *
2388 		 * action: router entry deletion
2389 		 */
2390 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2391 		dtlck = (struct dt_lock *) & tlck->lock;
2392 
2393 		/* linelock header */
2394 		if (dtlck->index >= dtlck->maxcnt)
2395 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2396 		lv = & dtlck->lv[dtlck->index];
2397 		lv->offset = 0;
2398 		lv->length = 1;
2399 		dtlck->index++;
2400 
2401 		/* linelock stbl of non-root leaf page */
2402 		if (!(p->header.flag & BT_ROOT)) {
2403 			if (dtlck->index < dtlck->maxcnt)
2404 				lv++;
2405 			else {
2406 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2407 				lv = & dtlck->lv[0];
2408 			}
2409 			i = index >> L2DTSLOTSIZE;
2410 			lv->offset = p->header.stblindex + i;
2411 			lv->length =
2412 			    ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2413 			    i + 1;
2414 			dtlck->index++;
2415 		}
2416 
2417 		/* free the router entry */
2418 		dtDeleteEntry(p, index, &dtlck);
2419 
2420 		/* reset key of new leftmost entry of level (for consistency) */
2421 		if (index == 0 &&
2422 		    ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2423 			dtTruncateEntry(p, 0, &dtlck);
2424 
2425 		/* unpin the parent page */
2426 		DT_PUTPAGE(mp);
2427 
2428 		/* exit propagation up */
2429 		break;
2430 	}
2431 
2432 	if (!DO_INDEX(ip))
2433 		ip->i_size -= PSIZE;
2434 
2435 	return 0;
2436 }
2437 
2438 #ifdef _NOTYET
2439 /*
2440  * NAME:	dtRelocate()
2441  *
2442  * FUNCTION:	relocate dtpage (internal or leaf) of directory;
2443  *		This function is mainly used by defragfs utility.
2444  */
2445 int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd,
2446 	       s64 nxaddr)
2447 {
2448 	int rc = 0;
2449 	struct metapage *mp, *pmp, *lmp, *rmp;
2450 	dtpage_t *p, *pp, *rp = 0, *lp= 0;
2451 	s64 bn;
2452 	int index;
2453 	struct btstack btstack;
2454 	pxd_t *pxd;
2455 	s64 oxaddr, nextbn, prevbn;
2456 	int xlen, xsize;
2457 	struct tlock *tlck;
2458 	struct dt_lock *dtlck;
2459 	struct pxd_lock *pxdlock;
2460 	s8 *stbl;
2461 	struct lv *lv;
2462 
2463 	oxaddr = addressPXD(opxd);
2464 	xlen = lengthPXD(opxd);
2465 
2466 	jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d",
2467 		   (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr,
2468 		   xlen);
2469 
2470 	/*
2471 	 *	1. get the internal parent dtpage covering
2472 	 *	router entry for the tartget page to be relocated;
2473 	 */
2474 	rc = dtSearchNode(ip, lmxaddr, opxd, &btstack);
2475 	if (rc)
2476 		return rc;
2477 
2478 	/* retrieve search result */
2479 	DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index);
2480 	jfs_info("dtRelocate: parent router entry validated.");
2481 
2482 	/*
2483 	 *	2. relocate the target dtpage
2484 	 */
2485 	/* read in the target page from src extent */
2486 	DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc);
2487 	if (rc) {
2488 		/* release the pinned parent page */
2489 		DT_PUTPAGE(pmp);
2490 		return rc;
2491 	}
2492 
2493 	/*
2494 	 * read in sibling pages if any to update sibling pointers;
2495 	 */
2496 	rmp = NULL;
2497 	if (p->header.next) {
2498 		nextbn = le64_to_cpu(p->header.next);
2499 		DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc);
2500 		if (rc) {
2501 			DT_PUTPAGE(mp);
2502 			DT_PUTPAGE(pmp);
2503 			return (rc);
2504 		}
2505 	}
2506 
2507 	lmp = NULL;
2508 	if (p->header.prev) {
2509 		prevbn = le64_to_cpu(p->header.prev);
2510 		DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc);
2511 		if (rc) {
2512 			DT_PUTPAGE(mp);
2513 			DT_PUTPAGE(pmp);
2514 			if (rmp)
2515 				DT_PUTPAGE(rmp);
2516 			return (rc);
2517 		}
2518 	}
2519 
2520 	/* at this point, all xtpages to be updated are in memory */
2521 
2522 	/*
2523 	 * update sibling pointers of sibling dtpages if any;
2524 	 */
2525 	if (lmp) {
2526 		tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK);
2527 		dtlck = (struct dt_lock *) & tlck->lock;
2528 		/* linelock header */
2529 		ASSERT(dtlck->index == 0);
2530 		lv = & dtlck->lv[0];
2531 		lv->offset = 0;
2532 		lv->length = 1;
2533 		dtlck->index++;
2534 
2535 		lp->header.next = cpu_to_le64(nxaddr);
2536 		DT_PUTPAGE(lmp);
2537 	}
2538 
2539 	if (rmp) {
2540 		tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK);
2541 		dtlck = (struct dt_lock *) & tlck->lock;
2542 		/* linelock header */
2543 		ASSERT(dtlck->index == 0);
2544 		lv = & dtlck->lv[0];
2545 		lv->offset = 0;
2546 		lv->length = 1;
2547 		dtlck->index++;
2548 
2549 		rp->header.prev = cpu_to_le64(nxaddr);
2550 		DT_PUTPAGE(rmp);
2551 	}
2552 
2553 	/*
2554 	 * update the target dtpage to be relocated
2555 	 *
2556 	 * write LOG_REDOPAGE of LOG_NEW type for dst page
2557 	 * for the whole target page (logredo() will apply
2558 	 * after image and update bmap for allocation of the
2559 	 * dst extent), and update bmap for allocation of
2560 	 * the dst extent;
2561 	 */
2562 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW);
2563 	dtlck = (struct dt_lock *) & tlck->lock;
2564 	/* linelock header */
2565 	ASSERT(dtlck->index == 0);
2566 	lv = & dtlck->lv[0];
2567 
2568 	/* update the self address in the dtpage header */
2569 	pxd = &p->header.self;
2570 	PXDaddress(pxd, nxaddr);
2571 
2572 	/* the dst page is the same as the src page, i.e.,
2573 	 * linelock for afterimage of the whole page;
2574 	 */
2575 	lv->offset = 0;
2576 	lv->length = p->header.maxslot;
2577 	dtlck->index++;
2578 
2579 	/* update the buffer extent descriptor of the dtpage */
2580 	xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize;
2581 
2582 	/* unpin the relocated page */
2583 	DT_PUTPAGE(mp);
2584 	jfs_info("dtRelocate: target dtpage relocated.");
2585 
2586 	/* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec
2587 	 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec
2588 	 * will also force a bmap update ).
2589 	 */
2590 
2591 	/*
2592 	 *	3. acquire maplock for the source extent to be freed;
2593 	 */
2594 	/* for dtpage relocation, write a LOG_NOREDOPAGE record
2595 	 * for the source dtpage (logredo() will init NoRedoPage
2596 	 * filter and will also update bmap for free of the source
2597 	 * dtpage), and upadte bmap for free of the source dtpage;
2598 	 */
2599 	tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2600 	pxdlock = (struct pxd_lock *) & tlck->lock;
2601 	pxdlock->flag = mlckFREEPXD;
2602 	PXDaddress(&pxdlock->pxd, oxaddr);
2603 	PXDlength(&pxdlock->pxd, xlen);
2604 	pxdlock->index = 1;
2605 
2606 	/*
2607 	 *	4. update the parent router entry for relocation;
2608 	 *
2609 	 * acquire tlck for the parent entry covering the target dtpage;
2610 	 * write LOG_REDOPAGE to apply after image only;
2611 	 */
2612 	jfs_info("dtRelocate: update parent router entry.");
2613 	tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
2614 	dtlck = (struct dt_lock *) & tlck->lock;
2615 	lv = & dtlck->lv[dtlck->index];
2616 
2617 	/* update the PXD with the new address */
2618 	stbl = DT_GETSTBL(pp);
2619 	pxd = (pxd_t *) & pp->slot[stbl[index]];
2620 	PXDaddress(pxd, nxaddr);
2621 	lv->offset = stbl[index];
2622 	lv->length = 1;
2623 	dtlck->index++;
2624 
2625 	/* unpin the parent dtpage */
2626 	DT_PUTPAGE(pmp);
2627 
2628 	return rc;
2629 }
2630 
2631 /*
2632  * NAME:	dtSearchNode()
2633  *
2634  * FUNCTION:	Search for an dtpage containing a specified address
2635  *		This function is mainly used by defragfs utility.
2636  *
2637  * NOTE:	Search result on stack, the found page is pinned at exit.
2638  *		The result page must be an internal dtpage.
2639  *		lmxaddr give the address of the left most page of the
2640  *		dtree level, in which the required dtpage resides.
2641  */
2642 static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd,
2643 			struct btstack * btstack)
2644 {
2645 	int rc = 0;
2646 	s64 bn;
2647 	struct metapage *mp;
2648 	dtpage_t *p;
2649 	int psize = 288;	/* initial in-line directory */
2650 	s8 *stbl;
2651 	int i;
2652 	pxd_t *pxd;
2653 	struct btframe *btsp;
2654 
2655 	BT_CLR(btstack);	/* reset stack */
2656 
2657 	/*
2658 	 *	descend tree to the level with specified leftmost page
2659 	 *
2660 	 *  by convention, root bn = 0.
2661 	 */
2662 	for (bn = 0;;) {
2663 		/* get/pin the page to search */
2664 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
2665 		if (rc)
2666 			return rc;
2667 
2668 		/* does the xaddr of leftmost page of the levevl
2669 		 * matches levevl search key ?
2670 		 */
2671 		if (p->header.flag & BT_ROOT) {
2672 			if (lmxaddr == 0)
2673 				break;
2674 		} else if (addressPXD(&p->header.self) == lmxaddr)
2675 			break;
2676 
2677 		/*
2678 		 * descend down to leftmost child page
2679 		 */
2680 		if (p->header.flag & BT_LEAF) {
2681 			DT_PUTPAGE(mp);
2682 			return -ESTALE;
2683 		}
2684 
2685 		/* get the leftmost entry */
2686 		stbl = DT_GETSTBL(p);
2687 		pxd = (pxd_t *) & p->slot[stbl[0]];
2688 
2689 		/* get the child page block address */
2690 		bn = addressPXD(pxd);
2691 		psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
2692 		/* unpin the parent page */
2693 		DT_PUTPAGE(mp);
2694 	}
2695 
2696 	/*
2697 	 *	search each page at the current levevl
2698 	 */
2699       loop:
2700 	stbl = DT_GETSTBL(p);
2701 	for (i = 0; i < p->header.nextindex; i++) {
2702 		pxd = (pxd_t *) & p->slot[stbl[i]];
2703 
2704 		/* found the specified router entry */
2705 		if (addressPXD(pxd) == addressPXD(kpxd) &&
2706 		    lengthPXD(pxd) == lengthPXD(kpxd)) {
2707 			btsp = btstack->top;
2708 			btsp->bn = bn;
2709 			btsp->index = i;
2710 			btsp->mp = mp;
2711 
2712 			return 0;
2713 		}
2714 	}
2715 
2716 	/* get the right sibling page if any */
2717 	if (p->header.next)
2718 		bn = le64_to_cpu(p->header.next);
2719 	else {
2720 		DT_PUTPAGE(mp);
2721 		return -ESTALE;
2722 	}
2723 
2724 	/* unpin current page */
2725 	DT_PUTPAGE(mp);
2726 
2727 	/* get the right sibling page */
2728 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2729 	if (rc)
2730 		return rc;
2731 
2732 	goto loop;
2733 }
2734 #endif /* _NOTYET */
2735 
2736 /*
2737  *	dtRelink()
2738  *
2739  * function:
2740  *	link around a freed page.
2741  *
2742  * parameter:
2743  *	fp:	page to be freed
2744  *
2745  * return:
2746  */
2747 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2748 {
2749 	int rc;
2750 	struct metapage *mp;
2751 	s64 nextbn, prevbn;
2752 	struct tlock *tlck;
2753 	struct dt_lock *dtlck;
2754 	struct lv *lv;
2755 
2756 	nextbn = le64_to_cpu(p->header.next);
2757 	prevbn = le64_to_cpu(p->header.prev);
2758 
2759 	/* update prev pointer of the next page */
2760 	if (nextbn != 0) {
2761 		DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2762 		if (rc)
2763 			return rc;
2764 
2765 		BT_MARK_DIRTY(mp, ip);
2766 		/*
2767 		 * acquire a transaction lock on the next page
2768 		 *
2769 		 * action: update prev pointer;
2770 		 */
2771 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2772 		jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2773 			tlck, ip, mp);
2774 		dtlck = (struct dt_lock *) & tlck->lock;
2775 
2776 		/* linelock header */
2777 		if (dtlck->index >= dtlck->maxcnt)
2778 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2779 		lv = & dtlck->lv[dtlck->index];
2780 		lv->offset = 0;
2781 		lv->length = 1;
2782 		dtlck->index++;
2783 
2784 		p->header.prev = cpu_to_le64(prevbn);
2785 		DT_PUTPAGE(mp);
2786 	}
2787 
2788 	/* update next pointer of the previous page */
2789 	if (prevbn != 0) {
2790 		DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2791 		if (rc)
2792 			return rc;
2793 
2794 		BT_MARK_DIRTY(mp, ip);
2795 		/*
2796 		 * acquire a transaction lock on the prev page
2797 		 *
2798 		 * action: update next pointer;
2799 		 */
2800 		tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2801 		jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2802 			tlck, ip, mp);
2803 		dtlck = (struct dt_lock *) & tlck->lock;
2804 
2805 		/* linelock header */
2806 		if (dtlck->index >= dtlck->maxcnt)
2807 			dtlck = (struct dt_lock *) txLinelock(dtlck);
2808 		lv = & dtlck->lv[dtlck->index];
2809 		lv->offset = 0;
2810 		lv->length = 1;
2811 		dtlck->index++;
2812 
2813 		p->header.next = cpu_to_le64(nextbn);
2814 		DT_PUTPAGE(mp);
2815 	}
2816 
2817 	return 0;
2818 }
2819 
2820 
2821 /*
2822  *	dtInitRoot()
2823  *
2824  * initialize directory root (inline in inode)
2825  */
2826 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2827 {
2828 	struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2829 	dtroot_t *p;
2830 	int fsi;
2831 	struct dtslot *f;
2832 	struct tlock *tlck;
2833 	struct dt_lock *dtlck;
2834 	struct lv *lv;
2835 	u16 xflag_save;
2836 
2837 	/*
2838 	 * If this was previously an non-empty directory, we need to remove
2839 	 * the old directory table.
2840 	 */
2841 	if (DO_INDEX(ip)) {
2842 		if (!jfs_dirtable_inline(ip)) {
2843 			struct tblock *tblk = tid_to_tblock(tid);
2844 			/*
2845 			 * We're playing games with the tid's xflag.  If
2846 			 * we're removing a regular file, the file's xtree
2847 			 * is committed with COMMIT_PMAP, but we always
2848 			 * commit the directories xtree with COMMIT_PWMAP.
2849 			 */
2850 			xflag_save = tblk->xflag;
2851 			tblk->xflag = 0;
2852 			/*
2853 			 * xtTruncate isn't guaranteed to fully truncate
2854 			 * the xtree.  The caller needs to check i_size
2855 			 * after committing the transaction to see if
2856 			 * additional truncation is needed.  The
2857 			 * COMMIT_Stale flag tells caller that we
2858 			 * initiated the truncation.
2859 			 */
2860 			xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2861 			set_cflag(COMMIT_Stale, ip);
2862 
2863 			tblk->xflag = xflag_save;
2864 		} else
2865 			ip->i_size = 1;
2866 
2867 		jfs_ip->next_index = 2;
2868 	} else
2869 		ip->i_size = IDATASIZE;
2870 
2871 	/*
2872 	 * acquire a transaction lock on the root
2873 	 *
2874 	 * action: directory initialization;
2875 	 */
2876 	tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2877 		      tlckDTREE | tlckENTRY | tlckBTROOT);
2878 	dtlck = (struct dt_lock *) & tlck->lock;
2879 
2880 	/* linelock root */
2881 	ASSERT(dtlck->index == 0);
2882 	lv = & dtlck->lv[0];
2883 	lv->offset = 0;
2884 	lv->length = DTROOTMAXSLOT;
2885 	dtlck->index++;
2886 
2887 	p = &jfs_ip->i_dtroot;
2888 
2889 	p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2890 
2891 	p->header.nextindex = 0;
2892 
2893 	/* init freelist */
2894 	fsi = 1;
2895 	f = &p->slot[fsi];
2896 
2897 	/* init data area of root */
2898 	for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2899 		f->next = fsi;
2900 	f->next = -1;
2901 
2902 	p->header.freelist = 1;
2903 	p->header.freecnt = 8;
2904 
2905 	/* init '..' entry */
2906 	p->header.idotdot = cpu_to_le32(idotdot);
2907 
2908 	return;
2909 }
2910 
2911 /*
2912  *	add_missing_indices()
2913  *
2914  * function: Fix dtree page in which one or more entries has an invalid index.
2915  *	     fsck.jfs should really fix this, but it currently does not.
2916  *	     Called from jfs_readdir when bad index is detected.
2917  */
2918 static void add_missing_indices(struct inode *inode, s64 bn)
2919 {
2920 	struct ldtentry *d;
2921 	struct dt_lock *dtlck;
2922 	int i;
2923 	uint index;
2924 	struct lv *lv;
2925 	struct metapage *mp;
2926 	dtpage_t *p;
2927 	int rc;
2928 	s8 *stbl;
2929 	tid_t tid;
2930 	struct tlock *tlck;
2931 
2932 	tid = txBegin(inode->i_sb, 0);
2933 
2934 	DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2935 
2936 	if (rc) {
2937 		printk(KERN_ERR "DT_GETPAGE failed!\n");
2938 		goto end;
2939 	}
2940 	BT_MARK_DIRTY(mp, inode);
2941 
2942 	ASSERT(p->header.flag & BT_LEAF);
2943 
2944 	tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2945 	if (BT_IS_ROOT(mp))
2946 		tlck->type |= tlckBTROOT;
2947 
2948 	dtlck = (struct dt_lock *) &tlck->lock;
2949 
2950 	stbl = DT_GETSTBL(p);
2951 	for (i = 0; i < p->header.nextindex; i++) {
2952 		d = (struct ldtentry *) &p->slot[stbl[i]];
2953 		index = le32_to_cpu(d->index);
2954 		if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2955 			d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2956 			if (dtlck->index >= dtlck->maxcnt)
2957 				dtlck = (struct dt_lock *) txLinelock(dtlck);
2958 			lv = &dtlck->lv[dtlck->index];
2959 			lv->offset = stbl[i];
2960 			lv->length = 1;
2961 			dtlck->index++;
2962 		}
2963 	}
2964 
2965 	DT_PUTPAGE(mp);
2966 	(void) txCommit(tid, 1, &inode, 0);
2967 end:
2968 	txEnd(tid);
2969 }
2970 
2971 /*
2972  * Buffer to hold directory entry info while traversing a dtree page
2973  * before being fed to the filldir function
2974  */
2975 struct jfs_dirent {
2976 	loff_t position;
2977 	int ino;
2978 	u16 name_len;
2979 	char name[0];
2980 };
2981 
2982 /*
2983  * function to determine next variable-sized jfs_dirent in buffer
2984  */
2985 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2986 {
2987 	return (struct jfs_dirent *)
2988 		((char *)dirent +
2989 		 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2990 		   sizeof (loff_t) - 1) &
2991 		  ~(sizeof (loff_t) - 1)));
2992 }
2993 
2994 /*
2995  *	jfs_readdir()
2996  *
2997  * function: read directory entries sequentially
2998  *	from the specified entry offset
2999  *
3000  * parameter:
3001  *
3002  * return: offset = (pn, index) of start entry
3003  *	of next jfs_readdir()/dtRead()
3004  */
3005 int jfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
3006 {
3007 	struct inode *ip = filp->f_path.dentry->d_inode;
3008 	struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
3009 	int rc = 0;
3010 	loff_t dtpos;	/* legacy OS/2 style position */
3011 	struct dtoffset {
3012 		s16 pn;
3013 		s16 index;
3014 		s32 unused;
3015 	} *dtoffset = (struct dtoffset *) &dtpos;
3016 	s64 bn;
3017 	struct metapage *mp;
3018 	dtpage_t *p;
3019 	int index;
3020 	s8 *stbl;
3021 	struct btstack btstack;
3022 	int i, next;
3023 	struct ldtentry *d;
3024 	struct dtslot *t;
3025 	int d_namleft, len, outlen;
3026 	unsigned long dirent_buf;
3027 	char *name_ptr;
3028 	u32 dir_index;
3029 	int do_index = 0;
3030 	uint loop_count = 0;
3031 	struct jfs_dirent *jfs_dirent;
3032 	int jfs_dirents;
3033 	int overflow, fix_page, page_fixed = 0;
3034 	static int unique_pos = 2;	/* If we can't fix broken index */
3035 
3036 	if (filp->f_pos == DIREND)
3037 		return 0;
3038 
3039 	if (DO_INDEX(ip)) {
3040 		/*
3041 		 * persistent index is stored in directory entries.
3042 		 * Special cases:	 0 = .
3043 		 *			 1 = ..
3044 		 *			-1 = End of directory
3045 		 */
3046 		do_index = 1;
3047 
3048 		dir_index = (u32) filp->f_pos;
3049 
3050 		if (dir_index > 1) {
3051 			struct dir_table_slot dirtab_slot;
3052 
3053 			if (dtEmpty(ip) ||
3054 			    (dir_index >= JFS_IP(ip)->next_index)) {
3055 				/* Stale position.  Directory has shrunk */
3056 				filp->f_pos = DIREND;
3057 				return 0;
3058 			}
3059 		      repeat:
3060 			rc = read_index(ip, dir_index, &dirtab_slot);
3061 			if (rc) {
3062 				filp->f_pos = DIREND;
3063 				return rc;
3064 			}
3065 			if (dirtab_slot.flag == DIR_INDEX_FREE) {
3066 				if (loop_count++ > JFS_IP(ip)->next_index) {
3067 					jfs_err("jfs_readdir detected "
3068 						   "infinite loop!");
3069 					filp->f_pos = DIREND;
3070 					return 0;
3071 				}
3072 				dir_index = le32_to_cpu(dirtab_slot.addr2);
3073 				if (dir_index == -1) {
3074 					filp->f_pos = DIREND;
3075 					return 0;
3076 				}
3077 				goto repeat;
3078 			}
3079 			bn = addressDTS(&dirtab_slot);
3080 			index = dirtab_slot.slot;
3081 			DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3082 			if (rc) {
3083 				filp->f_pos = DIREND;
3084 				return 0;
3085 			}
3086 			if (p->header.flag & BT_INTERNAL) {
3087 				jfs_err("jfs_readdir: bad index table");
3088 				DT_PUTPAGE(mp);
3089 				filp->f_pos = -1;
3090 				return 0;
3091 			}
3092 		} else {
3093 			if (dir_index == 0) {
3094 				/*
3095 				 * self "."
3096 				 */
3097 				filp->f_pos = 0;
3098 				if (filldir(dirent, ".", 1, 0, ip->i_ino,
3099 					    DT_DIR))
3100 					return 0;
3101 			}
3102 			/*
3103 			 * parent ".."
3104 			 */
3105 			filp->f_pos = 1;
3106 			if (filldir(dirent, "..", 2, 1, PARENT(ip), DT_DIR))
3107 				return 0;
3108 
3109 			/*
3110 			 * Find first entry of left-most leaf
3111 			 */
3112 			if (dtEmpty(ip)) {
3113 				filp->f_pos = DIREND;
3114 				return 0;
3115 			}
3116 
3117 			if ((rc = dtReadFirst(ip, &btstack)))
3118 				return rc;
3119 
3120 			DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3121 		}
3122 	} else {
3123 		/*
3124 		 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
3125 		 *
3126 		 * pn = index = 0:	First entry "."
3127 		 * pn = 0; index = 1:	Second entry ".."
3128 		 * pn > 0:		Real entries, pn=1 -> leftmost page
3129 		 * pn = index = -1:	No more entries
3130 		 */
3131 		dtpos = filp->f_pos;
3132 		if (dtpos == 0) {
3133 			/* build "." entry */
3134 
3135 			if (filldir(dirent, ".", 1, filp->f_pos, ip->i_ino,
3136 				    DT_DIR))
3137 				return 0;
3138 			dtoffset->index = 1;
3139 			filp->f_pos = dtpos;
3140 		}
3141 
3142 		if (dtoffset->pn == 0) {
3143 			if (dtoffset->index == 1) {
3144 				/* build ".." entry */
3145 
3146 				if (filldir(dirent, "..", 2, filp->f_pos,
3147 					    PARENT(ip), DT_DIR))
3148 					return 0;
3149 			} else {
3150 				jfs_err("jfs_readdir called with "
3151 					"invalid offset!");
3152 			}
3153 			dtoffset->pn = 1;
3154 			dtoffset->index = 0;
3155 			filp->f_pos = dtpos;
3156 		}
3157 
3158 		if (dtEmpty(ip)) {
3159 			filp->f_pos = DIREND;
3160 			return 0;
3161 		}
3162 
3163 		if ((rc = dtReadNext(ip, &filp->f_pos, &btstack))) {
3164 			jfs_err("jfs_readdir: unexpected rc = %d "
3165 				"from dtReadNext", rc);
3166 			filp->f_pos = DIREND;
3167 			return 0;
3168 		}
3169 		/* get start leaf page and index */
3170 		DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
3171 
3172 		/* offset beyond directory eof ? */
3173 		if (bn < 0) {
3174 			filp->f_pos = DIREND;
3175 			return 0;
3176 		}
3177 	}
3178 
3179 	dirent_buf = __get_free_page(GFP_KERNEL);
3180 	if (dirent_buf == 0) {
3181 		DT_PUTPAGE(mp);
3182 		jfs_warn("jfs_readdir: __get_free_page failed!");
3183 		filp->f_pos = DIREND;
3184 		return -ENOMEM;
3185 	}
3186 
3187 	while (1) {
3188 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3189 		jfs_dirents = 0;
3190 		overflow = fix_page = 0;
3191 
3192 		stbl = DT_GETSTBL(p);
3193 
3194 		for (i = index; i < p->header.nextindex; i++) {
3195 			d = (struct ldtentry *) & p->slot[stbl[i]];
3196 
3197 			if (((long) jfs_dirent + d->namlen + 1) >
3198 			    (dirent_buf + PAGE_SIZE)) {
3199 				/* DBCS codepages could overrun dirent_buf */
3200 				index = i;
3201 				overflow = 1;
3202 				break;
3203 			}
3204 
3205 			d_namleft = d->namlen;
3206 			name_ptr = jfs_dirent->name;
3207 			jfs_dirent->ino = le32_to_cpu(d->inumber);
3208 
3209 			if (do_index) {
3210 				len = min(d_namleft, DTLHDRDATALEN);
3211 				jfs_dirent->position = le32_to_cpu(d->index);
3212 				/*
3213 				 * d->index should always be valid, but it
3214 				 * isn't.  fsck.jfs doesn't create the
3215 				 * directory index for the lost+found
3216 				 * directory.  Rather than let it go,
3217 				 * we can try to fix it.
3218 				 */
3219 				if ((jfs_dirent->position < 2) ||
3220 				    (jfs_dirent->position >=
3221 				     JFS_IP(ip)->next_index)) {
3222 					if (!page_fixed && !isReadOnly(ip)) {
3223 						fix_page = 1;
3224 						/*
3225 						 * setting overflow and setting
3226 						 * index to i will cause the
3227 						 * same page to be processed
3228 						 * again starting here
3229 						 */
3230 						overflow = 1;
3231 						index = i;
3232 						break;
3233 					}
3234 					jfs_dirent->position = unique_pos++;
3235 				}
3236 			} else {
3237 				jfs_dirent->position = dtpos;
3238 				len = min(d_namleft, DTLHDRDATALEN_LEGACY);
3239 			}
3240 
3241 			/* copy the name of head/only segment */
3242 			outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
3243 						   codepage);
3244 			jfs_dirent->name_len = outlen;
3245 
3246 			/* copy name in the additional segment(s) */
3247 			next = d->next;
3248 			while (next >= 0) {
3249 				t = (struct dtslot *) & p->slot[next];
3250 				name_ptr += outlen;
3251 				d_namleft -= len;
3252 				/* Sanity Check */
3253 				if (d_namleft == 0) {
3254 					jfs_error(ip->i_sb,
3255 						  "JFS:Dtree error: ino = "
3256 						  "%ld, bn=%Ld, index = %d",
3257 						  (long)ip->i_ino,
3258 						  (long long)bn,
3259 						  i);
3260 					goto skip_one;
3261 				}
3262 				len = min(d_namleft, DTSLOTDATALEN);
3263 				outlen = jfs_strfromUCS_le(name_ptr, t->name,
3264 							   len, codepage);
3265 				jfs_dirent->name_len += outlen;
3266 
3267 				next = t->next;
3268 			}
3269 
3270 			jfs_dirents++;
3271 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3272 skip_one:
3273 			if (!do_index)
3274 				dtoffset->index++;
3275 		}
3276 
3277 		if (!overflow) {
3278 			/* Point to next leaf page */
3279 			if (p->header.flag & BT_ROOT)
3280 				bn = 0;
3281 			else {
3282 				bn = le64_to_cpu(p->header.next);
3283 				index = 0;
3284 				/* update offset (pn:index) for new page */
3285 				if (!do_index) {
3286 					dtoffset->pn++;
3287 					dtoffset->index = 0;
3288 				}
3289 			}
3290 			page_fixed = 0;
3291 		}
3292 
3293 		/* unpin previous leaf page */
3294 		DT_PUTPAGE(mp);
3295 
3296 		jfs_dirent = (struct jfs_dirent *) dirent_buf;
3297 		while (jfs_dirents--) {
3298 			filp->f_pos = jfs_dirent->position;
3299 			if (filldir(dirent, jfs_dirent->name,
3300 				    jfs_dirent->name_len, filp->f_pos,
3301 				    jfs_dirent->ino, DT_UNKNOWN))
3302 				goto out;
3303 			jfs_dirent = next_jfs_dirent(jfs_dirent);
3304 		}
3305 
3306 		if (fix_page) {
3307 			add_missing_indices(ip, bn);
3308 			page_fixed = 1;
3309 		}
3310 
3311 		if (!overflow && (bn == 0)) {
3312 			filp->f_pos = DIREND;
3313 			break;
3314 		}
3315 
3316 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3317 		if (rc) {
3318 			free_page(dirent_buf);
3319 			return rc;
3320 		}
3321 	}
3322 
3323       out:
3324 	free_page(dirent_buf);
3325 
3326 	return rc;
3327 }
3328 
3329 
3330 /*
3331  *	dtReadFirst()
3332  *
3333  * function: get the leftmost page of the directory
3334  */
3335 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3336 {
3337 	int rc = 0;
3338 	s64 bn;
3339 	int psize = 288;	/* initial in-line directory */
3340 	struct metapage *mp;
3341 	dtpage_t *p;
3342 	s8 *stbl;
3343 	struct btframe *btsp;
3344 	pxd_t *xd;
3345 
3346 	BT_CLR(btstack);	/* reset stack */
3347 
3348 	/*
3349 	 *	descend leftmost path of the tree
3350 	 *
3351 	 * by convention, root bn = 0.
3352 	 */
3353 	for (bn = 0;;) {
3354 		DT_GETPAGE(ip, bn, mp, psize, p, rc);
3355 		if (rc)
3356 			return rc;
3357 
3358 		/*
3359 		 * leftmost leaf page
3360 		 */
3361 		if (p->header.flag & BT_LEAF) {
3362 			/* return leftmost entry */
3363 			btsp = btstack->top;
3364 			btsp->bn = bn;
3365 			btsp->index = 0;
3366 			btsp->mp = mp;
3367 
3368 			return 0;
3369 		}
3370 
3371 		/*
3372 		 * descend down to leftmost child page
3373 		 */
3374 		if (BT_STACK_FULL(btstack)) {
3375 			DT_PUTPAGE(mp);
3376 			jfs_error(ip->i_sb, "dtReadFirst: btstack overrun");
3377 			BT_STACK_DUMP(btstack);
3378 			return -EIO;
3379 		}
3380 		/* push (bn, index) of the parent page/entry */
3381 		BT_PUSH(btstack, bn, 0);
3382 
3383 		/* get the leftmost entry */
3384 		stbl = DT_GETSTBL(p);
3385 		xd = (pxd_t *) & p->slot[stbl[0]];
3386 
3387 		/* get the child page block address */
3388 		bn = addressPXD(xd);
3389 		psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3390 
3391 		/* unpin the parent page */
3392 		DT_PUTPAGE(mp);
3393 	}
3394 }
3395 
3396 
3397 /*
3398  *	dtReadNext()
3399  *
3400  * function: get the page of the specified offset (pn:index)
3401  *
3402  * return: if (offset > eof), bn = -1;
3403  *
3404  * note: if index > nextindex of the target leaf page,
3405  * start with 1st entry of next leaf page;
3406  */
3407 static int dtReadNext(struct inode *ip, loff_t * offset,
3408 		      struct btstack * btstack)
3409 {
3410 	int rc = 0;
3411 	struct dtoffset {
3412 		s16 pn;
3413 		s16 index;
3414 		s32 unused;
3415 	} *dtoffset = (struct dtoffset *) offset;
3416 	s64 bn;
3417 	struct metapage *mp;
3418 	dtpage_t *p;
3419 	int index;
3420 	int pn;
3421 	s8 *stbl;
3422 	struct btframe *btsp, *parent;
3423 	pxd_t *xd;
3424 
3425 	/*
3426 	 * get leftmost leaf page pinned
3427 	 */
3428 	if ((rc = dtReadFirst(ip, btstack)))
3429 		return rc;
3430 
3431 	/* get leaf page */
3432 	DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3433 
3434 	/* get the start offset (pn:index) */
3435 	pn = dtoffset->pn - 1;	/* Now pn = 0 represents leftmost leaf */
3436 	index = dtoffset->index;
3437 
3438 	/* start at leftmost page ? */
3439 	if (pn == 0) {
3440 		/* offset beyond eof ? */
3441 		if (index < p->header.nextindex)
3442 			goto out;
3443 
3444 		if (p->header.flag & BT_ROOT) {
3445 			bn = -1;
3446 			goto out;
3447 		}
3448 
3449 		/* start with 1st entry of next leaf page */
3450 		dtoffset->pn++;
3451 		dtoffset->index = index = 0;
3452 		goto a;
3453 	}
3454 
3455 	/* start at non-leftmost page: scan parent pages for large pn */
3456 	if (p->header.flag & BT_ROOT) {
3457 		bn = -1;
3458 		goto out;
3459 	}
3460 
3461 	/* start after next leaf page ? */
3462 	if (pn > 1)
3463 		goto b;
3464 
3465 	/* get leaf page pn = 1 */
3466       a:
3467 	bn = le64_to_cpu(p->header.next);
3468 
3469 	/* unpin leaf page */
3470 	DT_PUTPAGE(mp);
3471 
3472 	/* offset beyond eof ? */
3473 	if (bn == 0) {
3474 		bn = -1;
3475 		goto out;
3476 	}
3477 
3478 	goto c;
3479 
3480 	/*
3481 	 * scan last internal page level to get target leaf page
3482 	 */
3483       b:
3484 	/* unpin leftmost leaf page */
3485 	DT_PUTPAGE(mp);
3486 
3487 	/* get left most parent page */
3488 	btsp = btstack->top;
3489 	parent = btsp - 1;
3490 	bn = parent->bn;
3491 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3492 	if (rc)
3493 		return rc;
3494 
3495 	/* scan parent pages at last internal page level */
3496 	while (pn >= p->header.nextindex) {
3497 		pn -= p->header.nextindex;
3498 
3499 		/* get next parent page address */
3500 		bn = le64_to_cpu(p->header.next);
3501 
3502 		/* unpin current parent page */
3503 		DT_PUTPAGE(mp);
3504 
3505 		/* offset beyond eof ? */
3506 		if (bn == 0) {
3507 			bn = -1;
3508 			goto out;
3509 		}
3510 
3511 		/* get next parent page */
3512 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3513 		if (rc)
3514 			return rc;
3515 
3516 		/* update parent page stack frame */
3517 		parent->bn = bn;
3518 	}
3519 
3520 	/* get leaf page address */
3521 	stbl = DT_GETSTBL(p);
3522 	xd = (pxd_t *) & p->slot[stbl[pn]];
3523 	bn = addressPXD(xd);
3524 
3525 	/* unpin parent page */
3526 	DT_PUTPAGE(mp);
3527 
3528 	/*
3529 	 * get target leaf page
3530 	 */
3531       c:
3532 	DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3533 	if (rc)
3534 		return rc;
3535 
3536 	/*
3537 	 * leaf page has been completed:
3538 	 * start with 1st entry of next leaf page
3539 	 */
3540 	if (index >= p->header.nextindex) {
3541 		bn = le64_to_cpu(p->header.next);
3542 
3543 		/* unpin leaf page */
3544 		DT_PUTPAGE(mp);
3545 
3546 		/* offset beyond eof ? */
3547 		if (bn == 0) {
3548 			bn = -1;
3549 			goto out;
3550 		}
3551 
3552 		/* get next leaf page */
3553 		DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3554 		if (rc)
3555 			return rc;
3556 
3557 		/* start with 1st entry of next leaf page */
3558 		dtoffset->pn++;
3559 		dtoffset->index = 0;
3560 	}
3561 
3562       out:
3563 	/* return target leaf page pinned */
3564 	btsp = btstack->top;
3565 	btsp->bn = bn;
3566 	btsp->index = dtoffset->index;
3567 	btsp->mp = mp;
3568 
3569 	return 0;
3570 }
3571 
3572 
3573 /*
3574  *	dtCompare()
3575  *
3576  * function: compare search key with an internal entry
3577  *
3578  * return:
3579  *	< 0 if k is < record
3580  *	= 0 if k is = record
3581  *	> 0 if k is > record
3582  */
3583 static int dtCompare(struct component_name * key,	/* search key */
3584 		     dtpage_t * p,	/* directory page */
3585 		     int si)
3586 {				/* entry slot index */
3587 	wchar_t *kname;
3588 	__le16 *name;
3589 	int klen, namlen, len, rc;
3590 	struct idtentry *ih;
3591 	struct dtslot *t;
3592 
3593 	/*
3594 	 * force the left-most key on internal pages, at any level of
3595 	 * the tree, to be less than any search key.
3596 	 * this obviates having to update the leftmost key on an internal
3597 	 * page when the user inserts a new key in the tree smaller than
3598 	 * anything that has been stored.
3599 	 *
3600 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3601 	 * at any internal page at any level of the tree,
3602 	 * it descends to child of the entry anyway -
3603 	 * ? make the entry as min size dummy entry)
3604 	 *
3605 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3606 	 * return (1);
3607 	 */
3608 
3609 	kname = key->name;
3610 	klen = key->namlen;
3611 
3612 	ih = (struct idtentry *) & p->slot[si];
3613 	si = ih->next;
3614 	name = ih->name;
3615 	namlen = ih->namlen;
3616 	len = min(namlen, DTIHDRDATALEN);
3617 
3618 	/* compare with head/only segment */
3619 	len = min(klen, len);
3620 	if ((rc = UniStrncmp_le(kname, name, len)))
3621 		return rc;
3622 
3623 	klen -= len;
3624 	namlen -= len;
3625 
3626 	/* compare with additional segment(s) */
3627 	kname += len;
3628 	while (klen > 0 && namlen > 0) {
3629 		/* compare with next name segment */
3630 		t = (struct dtslot *) & p->slot[si];
3631 		len = min(namlen, DTSLOTDATALEN);
3632 		len = min(klen, len);
3633 		name = t->name;
3634 		if ((rc = UniStrncmp_le(kname, name, len)))
3635 			return rc;
3636 
3637 		klen -= len;
3638 		namlen -= len;
3639 		kname += len;
3640 		si = t->next;
3641 	}
3642 
3643 	return (klen - namlen);
3644 }
3645 
3646 
3647 
3648 
3649 /*
3650  *	ciCompare()
3651  *
3652  * function: compare search key with an (leaf/internal) entry
3653  *
3654  * return:
3655  *	< 0 if k is < record
3656  *	= 0 if k is = record
3657  *	> 0 if k is > record
3658  */
3659 static int ciCompare(struct component_name * key,	/* search key */
3660 		     dtpage_t * p,	/* directory page */
3661 		     int si,	/* entry slot index */
3662 		     int flag)
3663 {
3664 	wchar_t *kname, x;
3665 	__le16 *name;
3666 	int klen, namlen, len, rc;
3667 	struct ldtentry *lh;
3668 	struct idtentry *ih;
3669 	struct dtslot *t;
3670 	int i;
3671 
3672 	/*
3673 	 * force the left-most key on internal pages, at any level of
3674 	 * the tree, to be less than any search key.
3675 	 * this obviates having to update the leftmost key on an internal
3676 	 * page when the user inserts a new key in the tree smaller than
3677 	 * anything that has been stored.
3678 	 *
3679 	 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3680 	 * at any internal page at any level of the tree,
3681 	 * it descends to child of the entry anyway -
3682 	 * ? make the entry as min size dummy entry)
3683 	 *
3684 	 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3685 	 * return (1);
3686 	 */
3687 
3688 	kname = key->name;
3689 	klen = key->namlen;
3690 
3691 	/*
3692 	 * leaf page entry
3693 	 */
3694 	if (p->header.flag & BT_LEAF) {
3695 		lh = (struct ldtentry *) & p->slot[si];
3696 		si = lh->next;
3697 		name = lh->name;
3698 		namlen = lh->namlen;
3699 		if (flag & JFS_DIR_INDEX)
3700 			len = min(namlen, DTLHDRDATALEN);
3701 		else
3702 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3703 	}
3704 	/*
3705 	 * internal page entry
3706 	 */
3707 	else {
3708 		ih = (struct idtentry *) & p->slot[si];
3709 		si = ih->next;
3710 		name = ih->name;
3711 		namlen = ih->namlen;
3712 		len = min(namlen, DTIHDRDATALEN);
3713 	}
3714 
3715 	/* compare with head/only segment */
3716 	len = min(klen, len);
3717 	for (i = 0; i < len; i++, kname++, name++) {
3718 		/* only uppercase if case-insensitive support is on */
3719 		if ((flag & JFS_OS2) == JFS_OS2)
3720 			x = UniToupper(le16_to_cpu(*name));
3721 		else
3722 			x = le16_to_cpu(*name);
3723 		if ((rc = *kname - x))
3724 			return rc;
3725 	}
3726 
3727 	klen -= len;
3728 	namlen -= len;
3729 
3730 	/* compare with additional segment(s) */
3731 	while (klen > 0 && namlen > 0) {
3732 		/* compare with next name segment */
3733 		t = (struct dtslot *) & p->slot[si];
3734 		len = min(namlen, DTSLOTDATALEN);
3735 		len = min(klen, len);
3736 		name = t->name;
3737 		for (i = 0; i < len; i++, kname++, name++) {
3738 			/* only uppercase if case-insensitive support is on */
3739 			if ((flag & JFS_OS2) == JFS_OS2)
3740 				x = UniToupper(le16_to_cpu(*name));
3741 			else
3742 				x = le16_to_cpu(*name);
3743 
3744 			if ((rc = *kname - x))
3745 				return rc;
3746 		}
3747 
3748 		klen -= len;
3749 		namlen -= len;
3750 		si = t->next;
3751 	}
3752 
3753 	return (klen - namlen);
3754 }
3755 
3756 
3757 /*
3758  *	ciGetLeafPrefixKey()
3759  *
3760  * function: compute prefix of suffix compression
3761  *	     from two adjacent leaf entries
3762  *	     across page boundary
3763  *
3764  * return: non-zero on error
3765  *
3766  */
3767 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3768 			       int ri, struct component_name * key, int flag)
3769 {
3770 	int klen, namlen;
3771 	wchar_t *pl, *pr, *kname;
3772 	struct component_name lkey;
3773 	struct component_name rkey;
3774 
3775 	lkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3776 					GFP_KERNEL);
3777 	if (lkey.name == NULL)
3778 		return -ENOMEM;
3779 
3780 	rkey.name = kmalloc((JFS_NAME_MAX + 1) * sizeof(wchar_t),
3781 					GFP_KERNEL);
3782 	if (rkey.name == NULL) {
3783 		kfree(lkey.name);
3784 		return -ENOMEM;
3785 	}
3786 
3787 	/* get left and right key */
3788 	dtGetKey(lp, li, &lkey, flag);
3789 	lkey.name[lkey.namlen] = 0;
3790 
3791 	if ((flag & JFS_OS2) == JFS_OS2)
3792 		ciToUpper(&lkey);
3793 
3794 	dtGetKey(rp, ri, &rkey, flag);
3795 	rkey.name[rkey.namlen] = 0;
3796 
3797 
3798 	if ((flag & JFS_OS2) == JFS_OS2)
3799 		ciToUpper(&rkey);
3800 
3801 	/* compute prefix */
3802 	klen = 0;
3803 	kname = key->name;
3804 	namlen = min(lkey.namlen, rkey.namlen);
3805 	for (pl = lkey.name, pr = rkey.name;
3806 	     namlen; pl++, pr++, namlen--, klen++, kname++) {
3807 		*kname = *pr;
3808 		if (*pl != *pr) {
3809 			key->namlen = klen + 1;
3810 			goto free_names;
3811 		}
3812 	}
3813 
3814 	/* l->namlen <= r->namlen since l <= r */
3815 	if (lkey.namlen < rkey.namlen) {
3816 		*kname = *pr;
3817 		key->namlen = klen + 1;
3818 	} else			/* l->namelen == r->namelen */
3819 		key->namlen = klen;
3820 
3821 free_names:
3822 	kfree(lkey.name);
3823 	kfree(rkey.name);
3824 	return 0;
3825 }
3826 
3827 
3828 
3829 /*
3830  *	dtGetKey()
3831  *
3832  * function: get key of the entry
3833  */
3834 static void dtGetKey(dtpage_t * p, int i,	/* entry index */
3835 		     struct component_name * key, int flag)
3836 {
3837 	int si;
3838 	s8 *stbl;
3839 	struct ldtentry *lh;
3840 	struct idtentry *ih;
3841 	struct dtslot *t;
3842 	int namlen, len;
3843 	wchar_t *kname;
3844 	__le16 *name;
3845 
3846 	/* get entry */
3847 	stbl = DT_GETSTBL(p);
3848 	si = stbl[i];
3849 	if (p->header.flag & BT_LEAF) {
3850 		lh = (struct ldtentry *) & p->slot[si];
3851 		si = lh->next;
3852 		namlen = lh->namlen;
3853 		name = lh->name;
3854 		if (flag & JFS_DIR_INDEX)
3855 			len = min(namlen, DTLHDRDATALEN);
3856 		else
3857 			len = min(namlen, DTLHDRDATALEN_LEGACY);
3858 	} else {
3859 		ih = (struct idtentry *) & p->slot[si];
3860 		si = ih->next;
3861 		namlen = ih->namlen;
3862 		name = ih->name;
3863 		len = min(namlen, DTIHDRDATALEN);
3864 	}
3865 
3866 	key->namlen = namlen;
3867 	kname = key->name;
3868 
3869 	/*
3870 	 * move head/only segment
3871 	 */
3872 	UniStrncpy_from_le(kname, name, len);
3873 
3874 	/*
3875 	 * move additional segment(s)
3876 	 */
3877 	while (si >= 0) {
3878 		/* get next segment */
3879 		t = &p->slot[si];
3880 		kname += len;
3881 		namlen -= len;
3882 		len = min(namlen, DTSLOTDATALEN);
3883 		UniStrncpy_from_le(kname, t->name, len);
3884 
3885 		si = t->next;
3886 	}
3887 }
3888 
3889 
3890 /*
3891  *	dtInsertEntry()
3892  *
3893  * function: allocate free slot(s) and
3894  *	     write a leaf/internal entry
3895  *
3896  * return: entry slot index
3897  */
3898 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3899 			  ddata_t * data, struct dt_lock ** dtlock)
3900 {
3901 	struct dtslot *h, *t;
3902 	struct ldtentry *lh = NULL;
3903 	struct idtentry *ih = NULL;
3904 	int hsi, fsi, klen, len, nextindex;
3905 	wchar_t *kname;
3906 	__le16 *name;
3907 	s8 *stbl;
3908 	pxd_t *xd;
3909 	struct dt_lock *dtlck = *dtlock;
3910 	struct lv *lv;
3911 	int xsi, n;
3912 	s64 bn = 0;
3913 	struct metapage *mp = NULL;
3914 
3915 	klen = key->namlen;
3916 	kname = key->name;
3917 
3918 	/* allocate a free slot */
3919 	hsi = fsi = p->header.freelist;
3920 	h = &p->slot[fsi];
3921 	p->header.freelist = h->next;
3922 	--p->header.freecnt;
3923 
3924 	/* open new linelock */
3925 	if (dtlck->index >= dtlck->maxcnt)
3926 		dtlck = (struct dt_lock *) txLinelock(dtlck);
3927 
3928 	lv = & dtlck->lv[dtlck->index];
3929 	lv->offset = hsi;
3930 
3931 	/* write head/only segment */
3932 	if (p->header.flag & BT_LEAF) {
3933 		lh = (struct ldtentry *) h;
3934 		lh->next = h->next;
3935 		lh->inumber = cpu_to_le32(data->leaf.ino);
3936 		lh->namlen = klen;
3937 		name = lh->name;
3938 		if (data->leaf.ip) {
3939 			len = min(klen, DTLHDRDATALEN);
3940 			if (!(p->header.flag & BT_ROOT))
3941 				bn = addressPXD(&p->header.self);
3942 			lh->index = cpu_to_le32(add_index(data->leaf.tid,
3943 							  data->leaf.ip,
3944 							  bn, index));
3945 		} else
3946 			len = min(klen, DTLHDRDATALEN_LEGACY);
3947 	} else {
3948 		ih = (struct idtentry *) h;
3949 		ih->next = h->next;
3950 		xd = (pxd_t *) ih;
3951 		*xd = data->xd;
3952 		ih->namlen = klen;
3953 		name = ih->name;
3954 		len = min(klen, DTIHDRDATALEN);
3955 	}
3956 
3957 	UniStrncpy_to_le(name, kname, len);
3958 
3959 	n = 1;
3960 	xsi = hsi;
3961 
3962 	/* write additional segment(s) */
3963 	t = h;
3964 	klen -= len;
3965 	while (klen) {
3966 		/* get free slot */
3967 		fsi = p->header.freelist;
3968 		t = &p->slot[fsi];
3969 		p->header.freelist = t->next;
3970 		--p->header.freecnt;
3971 
3972 		/* is next slot contiguous ? */
3973 		if (fsi != xsi + 1) {
3974 			/* close current linelock */
3975 			lv->length = n;
3976 			dtlck->index++;
3977 
3978 			/* open new linelock */
3979 			if (dtlck->index < dtlck->maxcnt)
3980 				lv++;
3981 			else {
3982 				dtlck = (struct dt_lock *) txLinelock(dtlck);
3983 				lv = & dtlck->lv[0];
3984 			}
3985 
3986 			lv->offset = fsi;
3987 			n = 0;
3988 		}
3989 
3990 		kname += len;
3991 		len = min(klen, DTSLOTDATALEN);
3992 		UniStrncpy_to_le(t->name, kname, len);
3993 
3994 		n++;
3995 		xsi = fsi;
3996 		klen -= len;
3997 	}
3998 
3999 	/* close current linelock */
4000 	lv->length = n;
4001 	dtlck->index++;
4002 
4003 	*dtlock = dtlck;
4004 
4005 	/* terminate last/only segment */
4006 	if (h == t) {
4007 		/* single segment entry */
4008 		if (p->header.flag & BT_LEAF)
4009 			lh->next = -1;
4010 		else
4011 			ih->next = -1;
4012 	} else
4013 		/* multi-segment entry */
4014 		t->next = -1;
4015 
4016 	/* if insert into middle, shift right succeeding entries in stbl */
4017 	stbl = DT_GETSTBL(p);
4018 	nextindex = p->header.nextindex;
4019 	if (index < nextindex) {
4020 		memmove(stbl + index + 1, stbl + index, nextindex - index);
4021 
4022 		if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
4023 			s64 lblock;
4024 
4025 			/*
4026 			 * Need to update slot number for entries that moved
4027 			 * in the stbl
4028 			 */
4029 			mp = NULL;
4030 			for (n = index + 1; n <= nextindex; n++) {
4031 				lh = (struct ldtentry *) & (p->slot[stbl[n]]);
4032 				modify_index(data->leaf.tid, data->leaf.ip,
4033 					     le32_to_cpu(lh->index), bn, n,
4034 					     &mp, &lblock);
4035 			}
4036 			if (mp)
4037 				release_metapage(mp);
4038 		}
4039 	}
4040 
4041 	stbl[index] = hsi;
4042 
4043 	/* advance next available entry index of stbl */
4044 	++p->header.nextindex;
4045 }
4046 
4047 
4048 /*
4049  *	dtMoveEntry()
4050  *
4051  * function: move entries from split/left page to new/right page
4052  *
4053  *	nextindex of dst page and freelist/freecnt of both pages
4054  *	are updated.
4055  */
4056 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
4057 			struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
4058 			int do_index)
4059 {
4060 	int ssi, next;		/* src slot index */
4061 	int di;			/* dst entry index */
4062 	int dsi;		/* dst slot index */
4063 	s8 *sstbl, *dstbl;	/* sorted entry table */
4064 	int snamlen, len;
4065 	struct ldtentry *slh, *dlh = NULL;
4066 	struct idtentry *sih, *dih = NULL;
4067 	struct dtslot *h, *s, *d;
4068 	struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
4069 	struct lv *slv, *dlv;
4070 	int xssi, ns, nd;
4071 	int sfsi;
4072 
4073 	sstbl = (s8 *) & sp->slot[sp->header.stblindex];
4074 	dstbl = (s8 *) & dp->slot[dp->header.stblindex];
4075 
4076 	dsi = dp->header.freelist;	/* first (whole page) free slot */
4077 	sfsi = sp->header.freelist;
4078 
4079 	/* linelock destination entry slot */
4080 	dlv = & ddtlck->lv[ddtlck->index];
4081 	dlv->offset = dsi;
4082 
4083 	/* linelock source entry slot */
4084 	slv = & sdtlck->lv[sdtlck->index];
4085 	slv->offset = sstbl[si];
4086 	xssi = slv->offset - 1;
4087 
4088 	/*
4089 	 * move entries
4090 	 */
4091 	ns = nd = 0;
4092 	for (di = 0; si < sp->header.nextindex; si++, di++) {
4093 		ssi = sstbl[si];
4094 		dstbl[di] = dsi;
4095 
4096 		/* is next slot contiguous ? */
4097 		if (ssi != xssi + 1) {
4098 			/* close current linelock */
4099 			slv->length = ns;
4100 			sdtlck->index++;
4101 
4102 			/* open new linelock */
4103 			if (sdtlck->index < sdtlck->maxcnt)
4104 				slv++;
4105 			else {
4106 				sdtlck = (struct dt_lock *) txLinelock(sdtlck);
4107 				slv = & sdtlck->lv[0];
4108 			}
4109 
4110 			slv->offset = ssi;
4111 			ns = 0;
4112 		}
4113 
4114 		/*
4115 		 * move head/only segment of an entry
4116 		 */
4117 		/* get dst slot */
4118 		h = d = &dp->slot[dsi];
4119 
4120 		/* get src slot and move */
4121 		s = &sp->slot[ssi];
4122 		if (sp->header.flag & BT_LEAF) {
4123 			/* get source entry */
4124 			slh = (struct ldtentry *) s;
4125 			dlh = (struct ldtentry *) h;
4126 			snamlen = slh->namlen;
4127 
4128 			if (do_index) {
4129 				len = min(snamlen, DTLHDRDATALEN);
4130 				dlh->index = slh->index; /* little-endian */
4131 			} else
4132 				len = min(snamlen, DTLHDRDATALEN_LEGACY);
4133 
4134 			memcpy(dlh, slh, 6 + len * 2);
4135 
4136 			next = slh->next;
4137 
4138 			/* update dst head/only segment next field */
4139 			dsi++;
4140 			dlh->next = dsi;
4141 		} else {
4142 			sih = (struct idtentry *) s;
4143 			snamlen = sih->namlen;
4144 
4145 			len = min(snamlen, DTIHDRDATALEN);
4146 			dih = (struct idtentry *) h;
4147 			memcpy(dih, sih, 10 + len * 2);
4148 			next = sih->next;
4149 
4150 			dsi++;
4151 			dih->next = dsi;
4152 		}
4153 
4154 		/* free src head/only segment */
4155 		s->next = sfsi;
4156 		s->cnt = 1;
4157 		sfsi = ssi;
4158 
4159 		ns++;
4160 		nd++;
4161 		xssi = ssi;
4162 
4163 		/*
4164 		 * move additional segment(s) of the entry
4165 		 */
4166 		snamlen -= len;
4167 		while ((ssi = next) >= 0) {
4168 			/* is next slot contiguous ? */
4169 			if (ssi != xssi + 1) {
4170 				/* close current linelock */
4171 				slv->length = ns;
4172 				sdtlck->index++;
4173 
4174 				/* open new linelock */
4175 				if (sdtlck->index < sdtlck->maxcnt)
4176 					slv++;
4177 				else {
4178 					sdtlck =
4179 					    (struct dt_lock *)
4180 					    txLinelock(sdtlck);
4181 					slv = & sdtlck->lv[0];
4182 				}
4183 
4184 				slv->offset = ssi;
4185 				ns = 0;
4186 			}
4187 
4188 			/* get next source segment */
4189 			s = &sp->slot[ssi];
4190 
4191 			/* get next destination free slot */
4192 			d++;
4193 
4194 			len = min(snamlen, DTSLOTDATALEN);
4195 			UniStrncpy_le(d->name, s->name, len);
4196 
4197 			ns++;
4198 			nd++;
4199 			xssi = ssi;
4200 
4201 			dsi++;
4202 			d->next = dsi;
4203 
4204 			/* free source segment */
4205 			next = s->next;
4206 			s->next = sfsi;
4207 			s->cnt = 1;
4208 			sfsi = ssi;
4209 
4210 			snamlen -= len;
4211 		}		/* end while */
4212 
4213 		/* terminate dst last/only segment */
4214 		if (h == d) {
4215 			/* single segment entry */
4216 			if (dp->header.flag & BT_LEAF)
4217 				dlh->next = -1;
4218 			else
4219 				dih->next = -1;
4220 		} else
4221 			/* multi-segment entry */
4222 			d->next = -1;
4223 	}			/* end for */
4224 
4225 	/* close current linelock */
4226 	slv->length = ns;
4227 	sdtlck->index++;
4228 	*sdtlock = sdtlck;
4229 
4230 	dlv->length = nd;
4231 	ddtlck->index++;
4232 	*ddtlock = ddtlck;
4233 
4234 	/* update source header */
4235 	sp->header.freelist = sfsi;
4236 	sp->header.freecnt += nd;
4237 
4238 	/* update destination header */
4239 	dp->header.nextindex = di;
4240 
4241 	dp->header.freelist = dsi;
4242 	dp->header.freecnt -= nd;
4243 }
4244 
4245 
4246 /*
4247  *	dtDeleteEntry()
4248  *
4249  * function: free a (leaf/internal) entry
4250  *
4251  * log freelist header, stbl, and each segment slot of entry
4252  * (even though last/only segment next field is modified,
4253  * physical image logging requires all segment slots of
4254  * the entry logged to avoid applying previous updates
4255  * to the same slots)
4256  */
4257 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
4258 {
4259 	int fsi;		/* free entry slot index */
4260 	s8 *stbl;
4261 	struct dtslot *t;
4262 	int si, freecnt;
4263 	struct dt_lock *dtlck = *dtlock;
4264 	struct lv *lv;
4265 	int xsi, n;
4266 
4267 	/* get free entry slot index */
4268 	stbl = DT_GETSTBL(p);
4269 	fsi = stbl[fi];
4270 
4271 	/* open new linelock */
4272 	if (dtlck->index >= dtlck->maxcnt)
4273 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4274 	lv = & dtlck->lv[dtlck->index];
4275 
4276 	lv->offset = fsi;
4277 
4278 	/* get the head/only segment */
4279 	t = &p->slot[fsi];
4280 	if (p->header.flag & BT_LEAF)
4281 		si = ((struct ldtentry *) t)->next;
4282 	else
4283 		si = ((struct idtentry *) t)->next;
4284 	t->next = si;
4285 	t->cnt = 1;
4286 
4287 	n = freecnt = 1;
4288 	xsi = fsi;
4289 
4290 	/* find the last/only segment */
4291 	while (si >= 0) {
4292 		/* is next slot contiguous ? */
4293 		if (si != xsi + 1) {
4294 			/* close current linelock */
4295 			lv->length = n;
4296 			dtlck->index++;
4297 
4298 			/* open new linelock */
4299 			if (dtlck->index < dtlck->maxcnt)
4300 				lv++;
4301 			else {
4302 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4303 				lv = & dtlck->lv[0];
4304 			}
4305 
4306 			lv->offset = si;
4307 			n = 0;
4308 		}
4309 
4310 		n++;
4311 		xsi = si;
4312 		freecnt++;
4313 
4314 		t = &p->slot[si];
4315 		t->cnt = 1;
4316 		si = t->next;
4317 	}
4318 
4319 	/* close current linelock */
4320 	lv->length = n;
4321 	dtlck->index++;
4322 
4323 	*dtlock = dtlck;
4324 
4325 	/* update freelist */
4326 	t->next = p->header.freelist;
4327 	p->header.freelist = fsi;
4328 	p->header.freecnt += freecnt;
4329 
4330 	/* if delete from middle,
4331 	 * shift left the succedding entries in the stbl
4332 	 */
4333 	si = p->header.nextindex;
4334 	if (fi < si - 1)
4335 		memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4336 
4337 	p->header.nextindex--;
4338 }
4339 
4340 
4341 /*
4342  *	dtTruncateEntry()
4343  *
4344  * function: truncate a (leaf/internal) entry
4345  *
4346  * log freelist header, stbl, and each segment slot of entry
4347  * (even though last/only segment next field is modified,
4348  * physical image logging requires all segment slots of
4349  * the entry logged to avoid applying previous updates
4350  * to the same slots)
4351  */
4352 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4353 {
4354 	int tsi;		/* truncate entry slot index */
4355 	s8 *stbl;
4356 	struct dtslot *t;
4357 	int si, freecnt;
4358 	struct dt_lock *dtlck = *dtlock;
4359 	struct lv *lv;
4360 	int fsi, xsi, n;
4361 
4362 	/* get free entry slot index */
4363 	stbl = DT_GETSTBL(p);
4364 	tsi = stbl[ti];
4365 
4366 	/* open new linelock */
4367 	if (dtlck->index >= dtlck->maxcnt)
4368 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4369 	lv = & dtlck->lv[dtlck->index];
4370 
4371 	lv->offset = tsi;
4372 
4373 	/* get the head/only segment */
4374 	t = &p->slot[tsi];
4375 	ASSERT(p->header.flag & BT_INTERNAL);
4376 	((struct idtentry *) t)->namlen = 0;
4377 	si = ((struct idtentry *) t)->next;
4378 	((struct idtentry *) t)->next = -1;
4379 
4380 	n = 1;
4381 	freecnt = 0;
4382 	fsi = si;
4383 	xsi = tsi;
4384 
4385 	/* find the last/only segment */
4386 	while (si >= 0) {
4387 		/* is next slot contiguous ? */
4388 		if (si != xsi + 1) {
4389 			/* close current linelock */
4390 			lv->length = n;
4391 			dtlck->index++;
4392 
4393 			/* open new linelock */
4394 			if (dtlck->index < dtlck->maxcnt)
4395 				lv++;
4396 			else {
4397 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4398 				lv = & dtlck->lv[0];
4399 			}
4400 
4401 			lv->offset = si;
4402 			n = 0;
4403 		}
4404 
4405 		n++;
4406 		xsi = si;
4407 		freecnt++;
4408 
4409 		t = &p->slot[si];
4410 		t->cnt = 1;
4411 		si = t->next;
4412 	}
4413 
4414 	/* close current linelock */
4415 	lv->length = n;
4416 	dtlck->index++;
4417 
4418 	*dtlock = dtlck;
4419 
4420 	/* update freelist */
4421 	if (freecnt == 0)
4422 		return;
4423 	t->next = p->header.freelist;
4424 	p->header.freelist = fsi;
4425 	p->header.freecnt += freecnt;
4426 }
4427 
4428 
4429 /*
4430  *	dtLinelockFreelist()
4431  */
4432 static void dtLinelockFreelist(dtpage_t * p,	/* directory page */
4433 			       int m,	/* max slot index */
4434 			       struct dt_lock ** dtlock)
4435 {
4436 	int fsi;		/* free entry slot index */
4437 	struct dtslot *t;
4438 	int si;
4439 	struct dt_lock *dtlck = *dtlock;
4440 	struct lv *lv;
4441 	int xsi, n;
4442 
4443 	/* get free entry slot index */
4444 	fsi = p->header.freelist;
4445 
4446 	/* open new linelock */
4447 	if (dtlck->index >= dtlck->maxcnt)
4448 		dtlck = (struct dt_lock *) txLinelock(dtlck);
4449 	lv = & dtlck->lv[dtlck->index];
4450 
4451 	lv->offset = fsi;
4452 
4453 	n = 1;
4454 	xsi = fsi;
4455 
4456 	t = &p->slot[fsi];
4457 	si = t->next;
4458 
4459 	/* find the last/only segment */
4460 	while (si < m && si >= 0) {
4461 		/* is next slot contiguous ? */
4462 		if (si != xsi + 1) {
4463 			/* close current linelock */
4464 			lv->length = n;
4465 			dtlck->index++;
4466 
4467 			/* open new linelock */
4468 			if (dtlck->index < dtlck->maxcnt)
4469 				lv++;
4470 			else {
4471 				dtlck = (struct dt_lock *) txLinelock(dtlck);
4472 				lv = & dtlck->lv[0];
4473 			}
4474 
4475 			lv->offset = si;
4476 			n = 0;
4477 		}
4478 
4479 		n++;
4480 		xsi = si;
4481 
4482 		t = &p->slot[si];
4483 		si = t->next;
4484 	}
4485 
4486 	/* close current linelock */
4487 	lv->length = n;
4488 	dtlck->index++;
4489 
4490 	*dtlock = dtlck;
4491 }
4492 
4493 
4494 /*
4495  * NAME: dtModify
4496  *
4497  * FUNCTION: Modify the inode number part of a directory entry
4498  *
4499  * PARAMETERS:
4500  *	tid	- Transaction id
4501  *	ip	- Inode of parent directory
4502  *	key	- Name of entry to be modified
4503  *	orig_ino	- Original inode number expected in entry
4504  *	new_ino	- New inode number to put into entry
4505  *	flag	- JFS_RENAME
4506  *
4507  * RETURNS:
4508  *	-ESTALE	- If entry found does not match orig_ino passed in
4509  *	-ENOENT	- If no entry can be found to match key
4510  *	0	- If successfully modified entry
4511  */
4512 int dtModify(tid_t tid, struct inode *ip,
4513 	 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4514 {
4515 	int rc;
4516 	s64 bn;
4517 	struct metapage *mp;
4518 	dtpage_t *p;
4519 	int index;
4520 	struct btstack btstack;
4521 	struct tlock *tlck;
4522 	struct dt_lock *dtlck;
4523 	struct lv *lv;
4524 	s8 *stbl;
4525 	int entry_si;		/* entry slot index */
4526 	struct ldtentry *entry;
4527 
4528 	/*
4529 	 *	search for the entry to modify:
4530 	 *
4531 	 * dtSearch() returns (leaf page pinned, index at which to modify).
4532 	 */
4533 	if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4534 		return rc;
4535 
4536 	/* retrieve search result */
4537 	DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4538 
4539 	BT_MARK_DIRTY(mp, ip);
4540 	/*
4541 	 * acquire a transaction lock on the leaf page of named entry
4542 	 */
4543 	tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4544 	dtlck = (struct dt_lock *) & tlck->lock;
4545 
4546 	/* get slot index of the entry */
4547 	stbl = DT_GETSTBL(p);
4548 	entry_si = stbl[index];
4549 
4550 	/* linelock entry */
4551 	ASSERT(dtlck->index == 0);
4552 	lv = & dtlck->lv[0];
4553 	lv->offset = entry_si;
4554 	lv->length = 1;
4555 	dtlck->index++;
4556 
4557 	/* get the head/only segment */
4558 	entry = (struct ldtentry *) & p->slot[entry_si];
4559 
4560 	/* substitute the inode number of the entry */
4561 	entry->inumber = cpu_to_le32(new_ino);
4562 
4563 	/* unpin the leaf page */
4564 	DT_PUTPAGE(mp);
4565 
4566 	return 0;
4567 }
4568