1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 */
5
6 /*
7 * jfs_dtree.c: directory B+-tree manager
8 *
9 * B+-tree with variable length key directory:
10 *
11 * each directory page is structured as an array of 32-byte
12 * directory entry slots initialized as a freelist
13 * to avoid search/compaction of free space at insertion.
14 * when an entry is inserted, a number of slots are allocated
15 * from the freelist as required to store variable length data
16 * of the entry; when the entry is deleted, slots of the entry
17 * are returned to freelist.
18 *
19 * leaf entry stores full name as key and file serial number
20 * (aka inode number) as data.
21 * internal/router entry stores sufffix compressed name
22 * as key and simple extent descriptor as data.
23 *
24 * each directory page maintains a sorted entry index table
25 * which stores the start slot index of sorted entries
26 * to allow binary search on the table.
27 *
28 * directory starts as a root/leaf page in on-disk inode
29 * inline data area.
30 * when it becomes full, it starts a leaf of a external extent
31 * of length of 1 block. each time the first leaf becomes full,
32 * it is extended rather than split (its size is doubled),
33 * until its length becoms 4 KBytes, from then the extent is split
34 * with new 4 Kbyte extent when it becomes full
35 * to reduce external fragmentation of small directories.
36 *
37 * blah, blah, blah, for linear scan of directory in pieces by
38 * readdir().
39 *
40 *
41 * case-insensitive directory file system
42 *
43 * names are stored in case-sensitive way in leaf entry.
44 * but stored, searched and compared in case-insensitive (uppercase) order
45 * (i.e., both search key and entry key are folded for search/compare):
46 * (note that case-sensitive order is BROKEN in storage, e.g.,
47 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad
48 *
49 * entries which folds to the same key makes up a equivalent class
50 * whose members are stored as contiguous cluster (may cross page boundary)
51 * but whose order is arbitrary and acts as duplicate, e.g.,
52 * abc, Abc, aBc, abC)
53 *
54 * once match is found at leaf, requires scan forward/backward
55 * either for, in case-insensitive search, duplicate
56 * or for, in case-sensitive search, for exact match
57 *
58 * router entry must be created/stored in case-insensitive way
59 * in internal entry:
60 * (right most key of left page and left most key of right page
61 * are folded, and its suffix compression is propagated as router
62 * key in parent)
63 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB>
64 * should be made the router key for the split)
65 *
66 * case-insensitive search:
67 *
68 * fold search key;
69 *
70 * case-insensitive search of B-tree:
71 * for internal entry, router key is already folded;
72 * for leaf entry, fold the entry key before comparison.
73 *
74 * if (leaf entry case-insensitive match found)
75 * if (next entry satisfies case-insensitive match)
76 * return EDUPLICATE;
77 * if (prev entry satisfies case-insensitive match)
78 * return EDUPLICATE;
79 * return match;
80 * else
81 * return no match;
82 *
83 * serialization:
84 * target directory inode lock is being held on entry/exit
85 * of all main directory service routines.
86 *
87 * log based recovery:
88 */
89
90 #include <linux/fs.h>
91 #include <linux/quotaops.h>
92 #include <linux/slab.h>
93 #include "jfs_incore.h"
94 #include "jfs_superblock.h"
95 #include "jfs_filsys.h"
96 #include "jfs_metapage.h"
97 #include "jfs_dmap.h"
98 #include "jfs_unicode.h"
99 #include "jfs_debug.h"
100
101 /* dtree split parameter */
102 struct dtsplit {
103 struct metapage *mp;
104 s16 index;
105 s16 nslot;
106 struct component_name *key;
107 ddata_t *data;
108 struct pxdlist *pxdlist;
109 };
110
111 #define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot)
112
113 /* get page buffer for specified block address */
114 #define DT_GETPAGE(IP, BN, MP, SIZE, P, RC) \
115 do { \
116 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot); \
117 if (!(RC)) { \
118 if (((P)->header.nextindex > \
119 (((BN) == 0) ? DTROOTMAXSLOT : (P)->header.maxslot)) || \
120 ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT))) { \
121 BT_PUTPAGE(MP); \
122 jfs_error((IP)->i_sb, \
123 "DT_GETPAGE: dtree page corrupt\n"); \
124 MP = NULL; \
125 RC = -EIO; \
126 } \
127 } \
128 } while (0)
129
130 /* for consistency */
131 #define DT_PUTPAGE(MP) BT_PUTPAGE(MP)
132
133 #define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \
134 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot)
135
136 /*
137 * forward references
138 */
139 static int dtSplitUp(tid_t tid, struct inode *ip,
140 struct dtsplit * split, struct btstack * btstack);
141
142 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
143 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp);
144
145 static int dtExtendPage(tid_t tid, struct inode *ip,
146 struct dtsplit * split, struct btstack * btstack);
147
148 static int dtSplitRoot(tid_t tid, struct inode *ip,
149 struct dtsplit * split, struct metapage ** rmpp);
150
151 static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp,
152 dtpage_t * fp, struct btstack * btstack);
153
154 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p);
155
156 static int dtReadFirst(struct inode *ip, struct btstack * btstack);
157
158 static int dtReadNext(struct inode *ip,
159 loff_t * offset, struct btstack * btstack);
160
161 static int dtCompare(struct component_name * key, dtpage_t * p, int si);
162
163 static int ciCompare(struct component_name * key, dtpage_t * p, int si,
164 int flag);
165
166 static void dtGetKey(dtpage_t * p, int i, struct component_name * key,
167 int flag);
168
169 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
170 int ri, struct component_name * key, int flag);
171
172 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
173 ddata_t * data, struct dt_lock **);
174
175 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
176 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
177 int do_index);
178
179 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock);
180
181 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock);
182
183 static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock);
184
185 #define ciToUpper(c) UniStrupr((c)->name)
186
187 /*
188 * read_index_page()
189 *
190 * Reads a page of a directory's index table.
191 * Having metadata mapped into the directory inode's address space
192 * presents a multitude of problems. We avoid this by mapping to
193 * the absolute address space outside of the *_metapage routines
194 */
read_index_page(struct inode * inode,s64 blkno)195 static struct metapage *read_index_page(struct inode *inode, s64 blkno)
196 {
197 int rc;
198 s64 xaddr;
199 int xflag;
200 s32 xlen;
201
202 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
203 if (rc || (xaddr == 0))
204 return NULL;
205
206 return read_metapage(inode, xaddr, PSIZE, 1);
207 }
208
209 /*
210 * get_index_page()
211 *
212 * Same as get_index_page(), but get's a new page without reading
213 */
get_index_page(struct inode * inode,s64 blkno)214 static struct metapage *get_index_page(struct inode *inode, s64 blkno)
215 {
216 int rc;
217 s64 xaddr;
218 int xflag;
219 s32 xlen;
220
221 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1);
222 if (rc || (xaddr == 0))
223 return NULL;
224
225 return get_metapage(inode, xaddr, PSIZE, 1);
226 }
227
228 /*
229 * find_index()
230 *
231 * Returns dtree page containing directory table entry for specified
232 * index and pointer to its entry.
233 *
234 * mp must be released by caller.
235 */
find_index(struct inode * ip,u32 index,struct metapage ** mp,s64 * lblock)236 static struct dir_table_slot *find_index(struct inode *ip, u32 index,
237 struct metapage ** mp, s64 *lblock)
238 {
239 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
240 s64 blkno;
241 s64 offset;
242 int page_offset;
243 struct dir_table_slot *slot;
244 static int maxWarnings = 10;
245
246 if (index < 2) {
247 if (maxWarnings) {
248 jfs_warn("find_entry called with index = %d", index);
249 maxWarnings--;
250 }
251 return NULL;
252 }
253
254 if (index >= jfs_ip->next_index) {
255 jfs_warn("find_entry called with index >= next_index");
256 return NULL;
257 }
258
259 if (jfs_dirtable_inline(ip)) {
260 /*
261 * Inline directory table
262 */
263 *mp = NULL;
264 slot = &jfs_ip->i_dirtable[index - 2];
265 } else {
266 offset = (index - 2) * sizeof(struct dir_table_slot);
267 page_offset = offset & (PSIZE - 1);
268 blkno = ((offset + 1) >> L2PSIZE) <<
269 JFS_SBI(ip->i_sb)->l2nbperpage;
270
271 if (*mp && (*lblock != blkno)) {
272 release_metapage(*mp);
273 *mp = NULL;
274 }
275 if (!(*mp)) {
276 *lblock = blkno;
277 *mp = read_index_page(ip, blkno);
278 }
279 if (!(*mp)) {
280 jfs_err("free_index: error reading directory table");
281 return NULL;
282 }
283
284 slot =
285 (struct dir_table_slot *) ((char *) (*mp)->data +
286 page_offset);
287 }
288 return slot;
289 }
290
lock_index(tid_t tid,struct inode * ip,struct metapage * mp,u32 index)291 static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp,
292 u32 index)
293 {
294 struct tlock *tlck;
295 struct linelock *llck;
296 struct lv *lv;
297
298 tlck = txLock(tid, ip, mp, tlckDATA);
299 llck = (struct linelock *) tlck->lock;
300
301 if (llck->index >= llck->maxcnt)
302 llck = txLinelock(llck);
303 lv = &llck->lv[llck->index];
304
305 /*
306 * Linelock slot size is twice the size of directory table
307 * slot size. 512 entries per page.
308 */
309 lv->offset = ((index - 2) & 511) >> 1;
310 lv->length = 1;
311 llck->index++;
312 }
313
314 /*
315 * add_index()
316 *
317 * Adds an entry to the directory index table. This is used to provide
318 * each directory entry with a persistent index in which to resume
319 * directory traversals
320 */
add_index(tid_t tid,struct inode * ip,s64 bn,int slot)321 static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot)
322 {
323 struct super_block *sb = ip->i_sb;
324 struct jfs_sb_info *sbi = JFS_SBI(sb);
325 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
326 u64 blkno;
327 struct dir_table_slot *dirtab_slot;
328 u32 index;
329 struct linelock *llck;
330 struct lv *lv;
331 struct metapage *mp;
332 s64 offset;
333 uint page_offset;
334 struct tlock *tlck;
335 s64 xaddr;
336
337 ASSERT(DO_INDEX(ip));
338
339 if (jfs_ip->next_index < 2) {
340 jfs_warn("add_index: next_index = %d. Resetting!",
341 jfs_ip->next_index);
342 jfs_ip->next_index = 2;
343 }
344
345 index = jfs_ip->next_index++;
346
347 if (index <= MAX_INLINE_DIRTABLE_ENTRY) {
348 /*
349 * i_size reflects size of index table, or 8 bytes per entry.
350 */
351 ip->i_size = (loff_t) (index - 1) << 3;
352
353 /*
354 * dir table fits inline within inode
355 */
356 dirtab_slot = &jfs_ip->i_dirtable[index-2];
357 dirtab_slot->flag = DIR_INDEX_VALID;
358 dirtab_slot->slot = slot;
359 DTSaddress(dirtab_slot, bn);
360
361 set_cflag(COMMIT_Dirtable, ip);
362
363 return index;
364 }
365 if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) {
366 struct dir_table_slot temp_table[12];
367
368 /*
369 * It's time to move the inline table to an external
370 * page and begin to build the xtree
371 */
372 if (dquot_alloc_block(ip, sbi->nbperpage))
373 goto clean_up;
374 if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) {
375 dquot_free_block(ip, sbi->nbperpage);
376 goto clean_up;
377 }
378
379 /*
380 * Save the table, we're going to overwrite it with the
381 * xtree root
382 */
383 memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table));
384
385 /*
386 * Initialize empty x-tree
387 */
388 xtInitRoot(tid, ip);
389
390 /*
391 * Add the first block to the xtree
392 */
393 if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) {
394 /* This really shouldn't fail */
395 jfs_warn("add_index: xtInsert failed!");
396 memcpy(&jfs_ip->i_dirtable, temp_table,
397 sizeof (temp_table));
398 dbFree(ip, xaddr, sbi->nbperpage);
399 dquot_free_block(ip, sbi->nbperpage);
400 goto clean_up;
401 }
402 ip->i_size = PSIZE;
403
404 mp = get_index_page(ip, 0);
405 if (!mp) {
406 jfs_err("add_index: get_metapage failed!");
407 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
408 memcpy(&jfs_ip->i_dirtable, temp_table,
409 sizeof (temp_table));
410 goto clean_up;
411 }
412 tlck = txLock(tid, ip, mp, tlckDATA);
413 llck = (struct linelock *) & tlck->lock;
414 ASSERT(llck->index == 0);
415 lv = &llck->lv[0];
416
417 lv->offset = 0;
418 lv->length = 6; /* tlckDATA slot size is 16 bytes */
419 llck->index++;
420
421 memcpy(mp->data, temp_table, sizeof(temp_table));
422
423 mark_metapage_dirty(mp);
424 release_metapage(mp);
425
426 /*
427 * Logging is now directed by xtree tlocks
428 */
429 clear_cflag(COMMIT_Dirtable, ip);
430 }
431
432 offset = (index - 2) * sizeof(struct dir_table_slot);
433 page_offset = offset & (PSIZE - 1);
434 blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage;
435 if (page_offset == 0) {
436 /*
437 * This will be the beginning of a new page
438 */
439 xaddr = 0;
440 if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) {
441 jfs_warn("add_index: xtInsert failed!");
442 goto clean_up;
443 }
444 ip->i_size += PSIZE;
445
446 if ((mp = get_index_page(ip, blkno)))
447 memset(mp->data, 0, PSIZE); /* Just looks better */
448 else
449 xtTruncate(tid, ip, offset, COMMIT_PWMAP);
450 } else
451 mp = read_index_page(ip, blkno);
452
453 if (!mp) {
454 jfs_err("add_index: get/read_metapage failed!");
455 goto clean_up;
456 }
457
458 lock_index(tid, ip, mp, index);
459
460 dirtab_slot =
461 (struct dir_table_slot *) ((char *) mp->data + page_offset);
462 dirtab_slot->flag = DIR_INDEX_VALID;
463 dirtab_slot->slot = slot;
464 DTSaddress(dirtab_slot, bn);
465
466 mark_metapage_dirty(mp);
467 release_metapage(mp);
468
469 return index;
470
471 clean_up:
472
473 jfs_ip->next_index--;
474
475 return 0;
476 }
477
478 /*
479 * free_index()
480 *
481 * Marks an entry to the directory index table as free.
482 */
free_index(tid_t tid,struct inode * ip,u32 index,u32 next)483 static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next)
484 {
485 struct dir_table_slot *dirtab_slot;
486 s64 lblock;
487 struct metapage *mp = NULL;
488
489 dirtab_slot = find_index(ip, index, &mp, &lblock);
490
491 if (!dirtab_slot)
492 return;
493
494 dirtab_slot->flag = DIR_INDEX_FREE;
495 dirtab_slot->slot = dirtab_slot->addr1 = 0;
496 dirtab_slot->addr2 = cpu_to_le32(next);
497
498 if (mp) {
499 lock_index(tid, ip, mp, index);
500 mark_metapage_dirty(mp);
501 release_metapage(mp);
502 } else
503 set_cflag(COMMIT_Dirtable, ip);
504 }
505
506 /*
507 * modify_index()
508 *
509 * Changes an entry in the directory index table
510 */
modify_index(tid_t tid,struct inode * ip,u32 index,s64 bn,int slot,struct metapage ** mp,s64 * lblock)511 static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn,
512 int slot, struct metapage ** mp, s64 *lblock)
513 {
514 struct dir_table_slot *dirtab_slot;
515
516 dirtab_slot = find_index(ip, index, mp, lblock);
517
518 if (!dirtab_slot)
519 return;
520
521 DTSaddress(dirtab_slot, bn);
522 dirtab_slot->slot = slot;
523
524 if (*mp) {
525 lock_index(tid, ip, *mp, index);
526 mark_metapage_dirty(*mp);
527 } else
528 set_cflag(COMMIT_Dirtable, ip);
529 }
530
531 /*
532 * read_index()
533 *
534 * reads a directory table slot
535 */
read_index(struct inode * ip,u32 index,struct dir_table_slot * dirtab_slot)536 static int read_index(struct inode *ip, u32 index,
537 struct dir_table_slot * dirtab_slot)
538 {
539 s64 lblock;
540 struct metapage *mp = NULL;
541 struct dir_table_slot *slot;
542
543 slot = find_index(ip, index, &mp, &lblock);
544 if (!slot) {
545 return -EIO;
546 }
547
548 memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot));
549
550 if (mp)
551 release_metapage(mp);
552
553 return 0;
554 }
555
556 /*
557 * dtSearch()
558 *
559 * function:
560 * Search for the entry with specified key
561 *
562 * parameter:
563 *
564 * return: 0 - search result on stack, leaf page pinned;
565 * errno - I/O error
566 */
dtSearch(struct inode * ip,struct component_name * key,ino_t * data,struct btstack * btstack,int flag)567 int dtSearch(struct inode *ip, struct component_name * key, ino_t * data,
568 struct btstack * btstack, int flag)
569 {
570 int rc = 0;
571 int cmp = 1; /* init for empty page */
572 s64 bn;
573 struct metapage *mp;
574 dtpage_t *p;
575 s8 *stbl;
576 int base, index, lim;
577 struct btframe *btsp;
578 pxd_t *pxd;
579 int psize = 288; /* initial in-line directory */
580 ino_t inumber;
581 struct component_name ciKey;
582 struct super_block *sb = ip->i_sb;
583
584 ciKey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
585 GFP_NOFS);
586 if (!ciKey.name) {
587 rc = -ENOMEM;
588 goto dtSearch_Exit2;
589 }
590
591
592 /* uppercase search key for c-i directory */
593 UniStrcpy(ciKey.name, key->name);
594 ciKey.namlen = key->namlen;
595
596 /* only uppercase if case-insensitive support is on */
597 if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) {
598 ciToUpper(&ciKey);
599 }
600 BT_CLR(btstack); /* reset stack */
601
602 /* init level count for max pages to split */
603 btstack->nsplit = 1;
604
605 /*
606 * search down tree from root:
607 *
608 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of
609 * internal page, child page Pi contains entry with k, Ki <= K < Kj.
610 *
611 * if entry with search key K is not found
612 * internal page search find the entry with largest key Ki
613 * less than K which point to the child page to search;
614 * leaf page search find the entry with smallest key Kj
615 * greater than K so that the returned index is the position of
616 * the entry to be shifted right for insertion of new entry.
617 * for empty tree, search key is greater than any key of the tree.
618 *
619 * by convention, root bn = 0.
620 */
621 for (bn = 0;;) {
622 /* get/pin the page to search */
623 DT_GETPAGE(ip, bn, mp, psize, p, rc);
624 if (rc)
625 goto dtSearch_Exit1;
626
627 /* get sorted entry table of the page */
628 stbl = DT_GETSTBL(p);
629
630 /*
631 * binary search with search key K on the current page.
632 */
633 for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) {
634 index = base + (lim >> 1);
635
636 if (stbl[index] < 0) {
637 rc = -EIO;
638 goto out;
639 }
640
641 if (p->header.flag & BT_LEAF) {
642 /* uppercase leaf name to compare */
643 cmp =
644 ciCompare(&ciKey, p, stbl[index],
645 JFS_SBI(sb)->mntflag);
646 } else {
647 /* router key is in uppercase */
648
649 cmp = dtCompare(&ciKey, p, stbl[index]);
650
651
652 }
653 if (cmp == 0) {
654 /*
655 * search hit
656 */
657 /* search hit - leaf page:
658 * return the entry found
659 */
660 if (p->header.flag & BT_LEAF) {
661 inumber = le32_to_cpu(
662 ((struct ldtentry *) & p->slot[stbl[index]])->inumber);
663
664 /*
665 * search for JFS_LOOKUP
666 */
667 if (flag == JFS_LOOKUP) {
668 *data = inumber;
669 rc = 0;
670 goto out;
671 }
672
673 /*
674 * search for JFS_CREATE
675 */
676 if (flag == JFS_CREATE) {
677 *data = inumber;
678 rc = -EEXIST;
679 goto out;
680 }
681
682 /*
683 * search for JFS_REMOVE or JFS_RENAME
684 */
685 if ((flag == JFS_REMOVE ||
686 flag == JFS_RENAME) &&
687 *data != inumber) {
688 rc = -ESTALE;
689 goto out;
690 }
691
692 /*
693 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME
694 */
695 /* save search result */
696 *data = inumber;
697 btsp = btstack->top;
698 btsp->bn = bn;
699 btsp->index = index;
700 btsp->mp = mp;
701
702 rc = 0;
703 goto dtSearch_Exit1;
704 }
705
706 /* search hit - internal page:
707 * descend/search its child page
708 */
709 goto getChild;
710 }
711
712 if (cmp > 0) {
713 base = index + 1;
714 --lim;
715 }
716 }
717
718 /*
719 * search miss
720 *
721 * base is the smallest index with key (Kj) greater than
722 * search key (K) and may be zero or (maxindex + 1) index.
723 */
724 /*
725 * search miss - leaf page
726 *
727 * return location of entry (base) where new entry with
728 * search key K is to be inserted.
729 */
730 if (p->header.flag & BT_LEAF) {
731 /*
732 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME
733 */
734 if (flag == JFS_LOOKUP || flag == JFS_REMOVE ||
735 flag == JFS_RENAME) {
736 rc = -ENOENT;
737 goto out;
738 }
739
740 /*
741 * search for JFS_CREATE|JFS_FINDDIR:
742 *
743 * save search result
744 */
745 *data = 0;
746 btsp = btstack->top;
747 btsp->bn = bn;
748 btsp->index = base;
749 btsp->mp = mp;
750
751 rc = 0;
752 goto dtSearch_Exit1;
753 }
754
755 /*
756 * search miss - internal page
757 *
758 * if base is non-zero, decrement base by one to get the parent
759 * entry of the child page to search.
760 */
761 index = base ? base - 1 : base;
762
763 /*
764 * go down to child page
765 */
766 getChild:
767 /* update max. number of pages to split */
768 if (BT_STACK_FULL(btstack)) {
769 /* Something's corrupted, mark filesystem dirty so
770 * chkdsk will fix it.
771 */
772 jfs_error(sb, "stack overrun!\n");
773 BT_STACK_DUMP(btstack);
774 rc = -EIO;
775 goto out;
776 }
777 btstack->nsplit++;
778
779 /* push (bn, index) of the parent page/entry */
780 BT_PUSH(btstack, bn, index);
781
782 /* get the child page block number */
783 pxd = (pxd_t *) & p->slot[stbl[index]];
784 bn = addressPXD(pxd);
785 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize;
786
787 /* unpin the parent page */
788 DT_PUTPAGE(mp);
789 }
790
791 out:
792 DT_PUTPAGE(mp);
793
794 dtSearch_Exit1:
795
796 kfree(ciKey.name);
797
798 dtSearch_Exit2:
799
800 return rc;
801 }
802
803
804 /*
805 * dtInsert()
806 *
807 * function: insert an entry to directory tree
808 *
809 * parameter:
810 *
811 * return: 0 - success;
812 * errno - failure;
813 */
dtInsert(tid_t tid,struct inode * ip,struct component_name * name,ino_t * fsn,struct btstack * btstack)814 int dtInsert(tid_t tid, struct inode *ip,
815 struct component_name * name, ino_t * fsn, struct btstack * btstack)
816 {
817 int rc = 0;
818 struct metapage *mp; /* meta-page buffer */
819 dtpage_t *p; /* base B+-tree index page */
820 s64 bn;
821 int index;
822 struct dtsplit split; /* split information */
823 ddata_t data;
824 struct dt_lock *dtlck;
825 int n;
826 struct tlock *tlck;
827 struct lv *lv;
828
829 /*
830 * retrieve search result
831 *
832 * dtSearch() returns (leaf page pinned, index at which to insert).
833 * n.b. dtSearch() may return index of (maxindex + 1) of
834 * the full page.
835 */
836 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
837 if (p->header.freelist == 0)
838 return -EINVAL;
839
840 /*
841 * insert entry for new key
842 */
843 if (DO_INDEX(ip)) {
844 if (JFS_IP(ip)->next_index == DIREND) {
845 DT_PUTPAGE(mp);
846 return -EMLINK;
847 }
848 n = NDTLEAF(name->namlen);
849 data.leaf.tid = tid;
850 data.leaf.ip = ip;
851 } else {
852 n = NDTLEAF_LEGACY(name->namlen);
853 data.leaf.ip = NULL; /* signifies legacy directory format */
854 }
855 data.leaf.ino = *fsn;
856
857 /*
858 * leaf page does not have enough room for new entry:
859 *
860 * extend/split the leaf page;
861 *
862 * dtSplitUp() will insert the entry and unpin the leaf page.
863 */
864 if (n > p->header.freecnt) {
865 split.mp = mp;
866 split.index = index;
867 split.nslot = n;
868 split.key = name;
869 split.data = &data;
870 rc = dtSplitUp(tid, ip, &split, btstack);
871 return rc;
872 }
873
874 /*
875 * leaf page does have enough room for new entry:
876 *
877 * insert the new data entry into the leaf page;
878 */
879 BT_MARK_DIRTY(mp, ip);
880 /*
881 * acquire a transaction lock on the leaf page
882 */
883 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
884 dtlck = (struct dt_lock *) & tlck->lock;
885 ASSERT(dtlck->index == 0);
886 lv = & dtlck->lv[0];
887
888 /* linelock header */
889 lv->offset = 0;
890 lv->length = 1;
891 dtlck->index++;
892
893 dtInsertEntry(p, index, name, &data, &dtlck);
894
895 /* linelock stbl of non-root leaf page */
896 if (!(p->header.flag & BT_ROOT)) {
897 if (dtlck->index >= dtlck->maxcnt)
898 dtlck = (struct dt_lock *) txLinelock(dtlck);
899 lv = & dtlck->lv[dtlck->index];
900 n = index >> L2DTSLOTSIZE;
901 lv->offset = p->header.stblindex + n;
902 lv->length =
903 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
904 dtlck->index++;
905 }
906
907 /* unpin the leaf page */
908 DT_PUTPAGE(mp);
909
910 return 0;
911 }
912
913
914 /*
915 * dtSplitUp()
916 *
917 * function: propagate insertion bottom up;
918 *
919 * parameter:
920 *
921 * return: 0 - success;
922 * errno - failure;
923 * leaf page unpinned;
924 */
dtSplitUp(tid_t tid,struct inode * ip,struct dtsplit * split,struct btstack * btstack)925 static int dtSplitUp(tid_t tid,
926 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
927 {
928 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
929 int rc = 0;
930 struct metapage *smp;
931 dtpage_t *sp; /* split page */
932 struct metapage *rmp;
933 dtpage_t *rp; /* new right page split from sp */
934 pxd_t rpxd; /* new right page extent descriptor */
935 struct metapage *lmp;
936 dtpage_t *lp; /* left child page */
937 int skip; /* index of entry of insertion */
938 struct btframe *parent; /* parent page entry on traverse stack */
939 s64 xaddr, nxaddr;
940 int xlen, xsize;
941 struct pxdlist pxdlist;
942 pxd_t *pxd;
943 struct component_name key = { 0, NULL };
944 ddata_t *data = split->data;
945 int n;
946 struct dt_lock *dtlck;
947 struct tlock *tlck;
948 struct lv *lv;
949 int quota_allocation = 0;
950
951 /* get split page */
952 smp = split->mp;
953 sp = DT_PAGE(ip, smp);
954
955 key.name = kmalloc_array(JFS_NAME_MAX + 2, sizeof(wchar_t), GFP_NOFS);
956 if (!key.name) {
957 DT_PUTPAGE(smp);
958 rc = -ENOMEM;
959 goto dtSplitUp_Exit;
960 }
961
962 /*
963 * split leaf page
964 *
965 * The split routines insert the new entry, and
966 * acquire txLock as appropriate.
967 */
968 /*
969 * split root leaf page:
970 */
971 if (sp->header.flag & BT_ROOT) {
972 /*
973 * allocate a single extent child page
974 */
975 xlen = 1;
976 n = sbi->bsize >> L2DTSLOTSIZE;
977 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
978 n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */
979 if (n <= split->nslot)
980 xlen++;
981 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) {
982 DT_PUTPAGE(smp);
983 goto freeKeyName;
984 }
985
986 pxdlist.maxnpxd = 1;
987 pxdlist.npxd = 0;
988 pxd = &pxdlist.pxd[0];
989 PXDaddress(pxd, xaddr);
990 PXDlength(pxd, xlen);
991 split->pxdlist = &pxdlist;
992 rc = dtSplitRoot(tid, ip, split, &rmp);
993
994 if (rc)
995 dbFree(ip, xaddr, xlen);
996 else
997 DT_PUTPAGE(rmp);
998
999 DT_PUTPAGE(smp);
1000
1001 if (!DO_INDEX(ip))
1002 ip->i_size = xlen << sbi->l2bsize;
1003
1004 goto freeKeyName;
1005 }
1006
1007 /*
1008 * extend first leaf page
1009 *
1010 * extend the 1st extent if less than buffer page size
1011 * (dtExtendPage() reurns leaf page unpinned)
1012 */
1013 pxd = &sp->header.self;
1014 xlen = lengthPXD(pxd);
1015 xsize = xlen << sbi->l2bsize;
1016 if (xsize < PSIZE) {
1017 xaddr = addressPXD(pxd);
1018 n = xsize >> L2DTSLOTSIZE;
1019 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */
1020 if ((n + sp->header.freecnt) <= split->nslot)
1021 n = xlen + (xlen << 1);
1022 else
1023 n = xlen;
1024
1025 /* Allocate blocks to quota. */
1026 rc = dquot_alloc_block(ip, n);
1027 if (rc)
1028 goto extendOut;
1029 quota_allocation += n;
1030
1031 if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen,
1032 (s64) n, &nxaddr)))
1033 goto extendOut;
1034
1035 pxdlist.maxnpxd = 1;
1036 pxdlist.npxd = 0;
1037 pxd = &pxdlist.pxd[0];
1038 PXDaddress(pxd, nxaddr);
1039 PXDlength(pxd, xlen + n);
1040 split->pxdlist = &pxdlist;
1041 if ((rc = dtExtendPage(tid, ip, split, btstack))) {
1042 nxaddr = addressPXD(pxd);
1043 if (xaddr != nxaddr) {
1044 /* free relocated extent */
1045 xlen = lengthPXD(pxd);
1046 dbFree(ip, nxaddr, (s64) xlen);
1047 } else {
1048 /* free extended delta */
1049 xlen = lengthPXD(pxd) - n;
1050 xaddr = addressPXD(pxd) + xlen;
1051 dbFree(ip, xaddr, (s64) n);
1052 }
1053 } else if (!DO_INDEX(ip))
1054 ip->i_size = lengthPXD(pxd) << sbi->l2bsize;
1055
1056
1057 extendOut:
1058 DT_PUTPAGE(smp);
1059 goto freeKeyName;
1060 }
1061
1062 /*
1063 * split leaf page <sp> into <sp> and a new right page <rp>.
1064 *
1065 * return <rp> pinned and its extent descriptor <rpxd>
1066 */
1067 /*
1068 * allocate new directory page extent and
1069 * new index page(s) to cover page split(s)
1070 *
1071 * allocation hint: ?
1072 */
1073 n = btstack->nsplit;
1074 pxdlist.maxnpxd = pxdlist.npxd = 0;
1075 xlen = sbi->nbperpage;
1076 for (pxd = pxdlist.pxd; n > 0; n--, pxd++) {
1077 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) {
1078 PXDaddress(pxd, xaddr);
1079 PXDlength(pxd, xlen);
1080 pxdlist.maxnpxd++;
1081 continue;
1082 }
1083
1084 DT_PUTPAGE(smp);
1085
1086 /* undo allocation */
1087 goto splitOut;
1088 }
1089
1090 split->pxdlist = &pxdlist;
1091 if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) {
1092 DT_PUTPAGE(smp);
1093
1094 /* undo allocation */
1095 goto splitOut;
1096 }
1097
1098 if (!DO_INDEX(ip))
1099 ip->i_size += PSIZE;
1100
1101 /*
1102 * propagate up the router entry for the leaf page just split
1103 *
1104 * insert a router entry for the new page into the parent page,
1105 * propagate the insert/split up the tree by walking back the stack
1106 * of (bn of parent page, index of child page entry in parent page)
1107 * that were traversed during the search for the page that split.
1108 *
1109 * the propagation of insert/split up the tree stops if the root
1110 * splits or the page inserted into doesn't have to split to hold
1111 * the new entry.
1112 *
1113 * the parent entry for the split page remains the same, and
1114 * a new entry is inserted at its right with the first key and
1115 * block number of the new right page.
1116 *
1117 * There are a maximum of 4 pages pinned at any time:
1118 * two children, left parent and right parent (when the parent splits).
1119 * keep the child pages pinned while working on the parent.
1120 * make sure that all pins are released at exit.
1121 */
1122 while ((parent = BT_POP(btstack)) != NULL) {
1123 /* parent page specified by stack frame <parent> */
1124
1125 /* keep current child pages (<lp>, <rp>) pinned */
1126 lmp = smp;
1127 lp = sp;
1128
1129 /*
1130 * insert router entry in parent for new right child page <rp>
1131 */
1132 /* get the parent page <sp> */
1133 DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc);
1134 if (rc) {
1135 DT_PUTPAGE(lmp);
1136 DT_PUTPAGE(rmp);
1137 goto splitOut;
1138 }
1139
1140 /*
1141 * The new key entry goes ONE AFTER the index of parent entry,
1142 * because the split was to the right.
1143 */
1144 skip = parent->index + 1;
1145
1146 /*
1147 * compute the key for the router entry
1148 *
1149 * key suffix compression:
1150 * for internal pages that have leaf pages as children,
1151 * retain only what's needed to distinguish between
1152 * the new entry and the entry on the page to its left.
1153 * If the keys compare equal, retain the entire key.
1154 *
1155 * note that compression is performed only at computing
1156 * router key at the lowest internal level.
1157 * further compression of the key between pairs of higher
1158 * level internal pages loses too much information and
1159 * the search may fail.
1160 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,}
1161 * results in two adjacent parent entries (a)(xx).
1162 * if split occurs between these two entries, and
1163 * if compression is applied, the router key of parent entry
1164 * of right page (x) will divert search for x into right
1165 * subtree and miss x in the left subtree.)
1166 *
1167 * the entire key must be retained for the next-to-leftmost
1168 * internal key at any level of the tree, or search may fail
1169 * (e.g., ?)
1170 */
1171 switch (rp->header.flag & BT_TYPE) {
1172 case BT_LEAF:
1173 /*
1174 * compute the length of prefix for suffix compression
1175 * between last entry of left page and first entry
1176 * of right page
1177 */
1178 if ((sp->header.flag & BT_ROOT && skip > 1) ||
1179 sp->header.prev != 0 || skip > 1) {
1180 /* compute uppercase router prefix key */
1181 rc = ciGetLeafPrefixKey(lp,
1182 lp->header.nextindex-1,
1183 rp, 0, &key,
1184 sbi->mntflag);
1185 if (rc) {
1186 DT_PUTPAGE(lmp);
1187 DT_PUTPAGE(rmp);
1188 DT_PUTPAGE(smp);
1189 goto splitOut;
1190 }
1191 } else {
1192 /* next to leftmost entry of
1193 lowest internal level */
1194
1195 /* compute uppercase router key */
1196 dtGetKey(rp, 0, &key, sbi->mntflag);
1197 key.name[key.namlen] = 0;
1198
1199 if ((sbi->mntflag & JFS_OS2) == JFS_OS2)
1200 ciToUpper(&key);
1201 }
1202
1203 n = NDTINTERNAL(key.namlen);
1204 break;
1205
1206 case BT_INTERNAL:
1207 dtGetKey(rp, 0, &key, sbi->mntflag);
1208 n = NDTINTERNAL(key.namlen);
1209 break;
1210
1211 default:
1212 jfs_err("dtSplitUp(): UFO!");
1213 break;
1214 }
1215
1216 /* unpin left child page */
1217 DT_PUTPAGE(lmp);
1218
1219 /*
1220 * compute the data for the router entry
1221 */
1222 data->xd = rpxd; /* child page xd */
1223
1224 /*
1225 * parent page is full - split the parent page
1226 */
1227 if (n > sp->header.freecnt) {
1228 /* init for parent page split */
1229 split->mp = smp;
1230 split->index = skip; /* index at insert */
1231 split->nslot = n;
1232 split->key = &key;
1233 /* split->data = data; */
1234
1235 /* unpin right child page */
1236 DT_PUTPAGE(rmp);
1237
1238 /* The split routines insert the new entry,
1239 * acquire txLock as appropriate.
1240 * return <rp> pinned and its block number <rbn>.
1241 */
1242 rc = (sp->header.flag & BT_ROOT) ?
1243 dtSplitRoot(tid, ip, split, &rmp) :
1244 dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd);
1245 if (rc) {
1246 DT_PUTPAGE(smp);
1247 goto splitOut;
1248 }
1249
1250 /* smp and rmp are pinned */
1251 }
1252 /*
1253 * parent page is not full - insert router entry in parent page
1254 */
1255 else {
1256 BT_MARK_DIRTY(smp, ip);
1257 /*
1258 * acquire a transaction lock on the parent page
1259 */
1260 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1261 dtlck = (struct dt_lock *) & tlck->lock;
1262 ASSERT(dtlck->index == 0);
1263 lv = & dtlck->lv[0];
1264
1265 /* linelock header */
1266 lv->offset = 0;
1267 lv->length = 1;
1268 dtlck->index++;
1269
1270 /* linelock stbl of non-root parent page */
1271 if (!(sp->header.flag & BT_ROOT)) {
1272 lv++;
1273 n = skip >> L2DTSLOTSIZE;
1274 lv->offset = sp->header.stblindex + n;
1275 lv->length =
1276 ((sp->header.nextindex -
1277 1) >> L2DTSLOTSIZE) - n + 1;
1278 dtlck->index++;
1279 }
1280
1281 dtInsertEntry(sp, skip, &key, data, &dtlck);
1282
1283 /* exit propagate up */
1284 break;
1285 }
1286 }
1287
1288 /* unpin current split and its right page */
1289 DT_PUTPAGE(smp);
1290 DT_PUTPAGE(rmp);
1291
1292 /*
1293 * free remaining extents allocated for split
1294 */
1295 splitOut:
1296 n = pxdlist.npxd;
1297 pxd = &pxdlist.pxd[n];
1298 for (; n < pxdlist.maxnpxd; n++, pxd++)
1299 dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd));
1300
1301 freeKeyName:
1302 kfree(key.name);
1303
1304 /* Rollback quota allocation */
1305 if (rc && quota_allocation)
1306 dquot_free_block(ip, quota_allocation);
1307
1308 dtSplitUp_Exit:
1309
1310 return rc;
1311 }
1312
1313
1314 /*
1315 * dtSplitPage()
1316 *
1317 * function: Split a non-root page of a btree.
1318 *
1319 * parameter:
1320 *
1321 * return: 0 - success;
1322 * errno - failure;
1323 * return split and new page pinned;
1324 */
dtSplitPage(tid_t tid,struct inode * ip,struct dtsplit * split,struct metapage ** rmpp,dtpage_t ** rpp,pxd_t * rpxdp)1325 static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split,
1326 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp)
1327 {
1328 int rc = 0;
1329 struct metapage *smp;
1330 dtpage_t *sp;
1331 struct metapage *rmp;
1332 dtpage_t *rp; /* new right page allocated */
1333 s64 rbn; /* new right page block number */
1334 struct metapage *mp;
1335 dtpage_t *p;
1336 s64 nextbn;
1337 struct pxdlist *pxdlist;
1338 pxd_t *pxd;
1339 int skip, nextindex, half, left, nxt, off, si;
1340 struct ldtentry *ldtentry;
1341 struct idtentry *idtentry;
1342 u8 *stbl;
1343 struct dtslot *f;
1344 int fsi, stblsize;
1345 int n;
1346 struct dt_lock *sdtlck, *rdtlck;
1347 struct tlock *tlck;
1348 struct dt_lock *dtlck;
1349 struct lv *slv, *rlv, *lv;
1350
1351 /* get split page */
1352 smp = split->mp;
1353 sp = DT_PAGE(ip, smp);
1354
1355 /*
1356 * allocate the new right page for the split
1357 */
1358 pxdlist = split->pxdlist;
1359 pxd = &pxdlist->pxd[pxdlist->npxd];
1360 pxdlist->npxd++;
1361 rbn = addressPXD(pxd);
1362 rmp = get_metapage(ip, rbn, PSIZE, 1);
1363 if (rmp == NULL)
1364 return -EIO;
1365
1366 /* Allocate blocks to quota. */
1367 rc = dquot_alloc_block(ip, lengthPXD(pxd));
1368 if (rc) {
1369 release_metapage(rmp);
1370 return rc;
1371 }
1372
1373 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp);
1374
1375 BT_MARK_DIRTY(rmp, ip);
1376 /*
1377 * acquire a transaction lock on the new right page
1378 */
1379 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1380 rdtlck = (struct dt_lock *) & tlck->lock;
1381
1382 rp = (dtpage_t *) rmp->data;
1383 *rpp = rp;
1384 rp->header.self = *pxd;
1385
1386 BT_MARK_DIRTY(smp, ip);
1387 /*
1388 * acquire a transaction lock on the split page
1389 *
1390 * action:
1391 */
1392 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY);
1393 sdtlck = (struct dt_lock *) & tlck->lock;
1394
1395 /* linelock header of split page */
1396 ASSERT(sdtlck->index == 0);
1397 slv = & sdtlck->lv[0];
1398 slv->offset = 0;
1399 slv->length = 1;
1400 sdtlck->index++;
1401
1402 /*
1403 * initialize/update sibling pointers between sp and rp
1404 */
1405 nextbn = le64_to_cpu(sp->header.next);
1406 rp->header.next = cpu_to_le64(nextbn);
1407 rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self));
1408 sp->header.next = cpu_to_le64(rbn);
1409
1410 /*
1411 * initialize new right page
1412 */
1413 rp->header.flag = sp->header.flag;
1414
1415 /* compute sorted entry table at start of extent data area */
1416 rp->header.nextindex = 0;
1417 rp->header.stblindex = 1;
1418
1419 n = PSIZE >> L2DTSLOTSIZE;
1420 rp->header.maxslot = n;
1421 stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */
1422
1423 /* init freelist */
1424 fsi = rp->header.stblindex + stblsize;
1425 rp->header.freelist = fsi;
1426 rp->header.freecnt = rp->header.maxslot - fsi;
1427
1428 /*
1429 * sequential append at tail: append without split
1430 *
1431 * If splitting the last page on a level because of appending
1432 * a entry to it (skip is maxentry), it's likely that the access is
1433 * sequential. Adding an empty page on the side of the level is less
1434 * work and can push the fill factor much higher than normal.
1435 * If we're wrong it's no big deal, we'll just do the split the right
1436 * way next time.
1437 * (It may look like it's equally easy to do a similar hack for
1438 * reverse sorted data, that is, split the tree left,
1439 * but it's not. Be my guest.)
1440 */
1441 if (nextbn == 0 && split->index == sp->header.nextindex) {
1442 /* linelock header + stbl (first slot) of new page */
1443 rlv = & rdtlck->lv[rdtlck->index];
1444 rlv->offset = 0;
1445 rlv->length = 2;
1446 rdtlck->index++;
1447
1448 /*
1449 * initialize freelist of new right page
1450 */
1451 f = &rp->slot[fsi];
1452 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1453 f->next = fsi;
1454 f->next = -1;
1455
1456 /* insert entry at the first entry of the new right page */
1457 dtInsertEntry(rp, 0, split->key, split->data, &rdtlck);
1458
1459 goto out;
1460 }
1461
1462 /*
1463 * non-sequential insert (at possibly middle page)
1464 */
1465
1466 /*
1467 * update prev pointer of previous right sibling page;
1468 */
1469 if (nextbn != 0) {
1470 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
1471 if (rc) {
1472 discard_metapage(rmp);
1473 return rc;
1474 }
1475
1476 BT_MARK_DIRTY(mp, ip);
1477 /*
1478 * acquire a transaction lock on the next page
1479 */
1480 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
1481 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p",
1482 tlck, ip, mp);
1483 dtlck = (struct dt_lock *) & tlck->lock;
1484
1485 /* linelock header of previous right sibling page */
1486 lv = & dtlck->lv[dtlck->index];
1487 lv->offset = 0;
1488 lv->length = 1;
1489 dtlck->index++;
1490
1491 p->header.prev = cpu_to_le64(rbn);
1492
1493 DT_PUTPAGE(mp);
1494 }
1495
1496 /*
1497 * split the data between the split and right pages.
1498 */
1499 skip = split->index;
1500 half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */
1501 left = 0;
1502
1503 /*
1504 * compute fill factor for split pages
1505 *
1506 * <nxt> traces the next entry to move to rp
1507 * <off> traces the next entry to stay in sp
1508 */
1509 stbl = (u8 *) & sp->slot[sp->header.stblindex];
1510 nextindex = sp->header.nextindex;
1511 for (nxt = off = 0; nxt < nextindex; ++off) {
1512 if (off == skip)
1513 /* check for fill factor with new entry size */
1514 n = split->nslot;
1515 else {
1516 si = stbl[nxt];
1517 switch (sp->header.flag & BT_TYPE) {
1518 case BT_LEAF:
1519 ldtentry = (struct ldtentry *) & sp->slot[si];
1520 if (DO_INDEX(ip))
1521 n = NDTLEAF(ldtentry->namlen);
1522 else
1523 n = NDTLEAF_LEGACY(ldtentry->
1524 namlen);
1525 break;
1526
1527 case BT_INTERNAL:
1528 idtentry = (struct idtentry *) & sp->slot[si];
1529 n = NDTINTERNAL(idtentry->namlen);
1530 break;
1531
1532 default:
1533 break;
1534 }
1535
1536 ++nxt; /* advance to next entry to move in sp */
1537 }
1538
1539 left += n;
1540 if (left >= half)
1541 break;
1542 }
1543
1544 /* <nxt> poins to the 1st entry to move */
1545
1546 /*
1547 * move entries to right page
1548 *
1549 * dtMoveEntry() initializes rp and reserves entry for insertion
1550 *
1551 * split page moved out entries are linelocked;
1552 * new/right page moved in entries are linelocked;
1553 */
1554 /* linelock header + stbl of new right page */
1555 rlv = & rdtlck->lv[rdtlck->index];
1556 rlv->offset = 0;
1557 rlv->length = 5;
1558 rdtlck->index++;
1559
1560 dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip));
1561
1562 sp->header.nextindex = nxt;
1563
1564 /*
1565 * finalize freelist of new right page
1566 */
1567 fsi = rp->header.freelist;
1568 f = &rp->slot[fsi];
1569 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1570 f->next = fsi;
1571 f->next = -1;
1572
1573 /*
1574 * Update directory index table for entries now in right page
1575 */
1576 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1577 s64 lblock;
1578
1579 mp = NULL;
1580 stbl = DT_GETSTBL(rp);
1581 for (n = 0; n < rp->header.nextindex; n++) {
1582 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1583 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1584 rbn, n, &mp, &lblock);
1585 }
1586 if (mp)
1587 release_metapage(mp);
1588 }
1589
1590 /*
1591 * the skipped index was on the left page,
1592 */
1593 if (skip <= off) {
1594 /* insert the new entry in the split page */
1595 dtInsertEntry(sp, skip, split->key, split->data, &sdtlck);
1596
1597 /* linelock stbl of split page */
1598 if (sdtlck->index >= sdtlck->maxcnt)
1599 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
1600 slv = & sdtlck->lv[sdtlck->index];
1601 n = skip >> L2DTSLOTSIZE;
1602 slv->offset = sp->header.stblindex + n;
1603 slv->length =
1604 ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1;
1605 sdtlck->index++;
1606 }
1607 /*
1608 * the skipped index was on the right page,
1609 */
1610 else {
1611 /* adjust the skip index to reflect the new position */
1612 skip -= nxt;
1613
1614 /* insert the new entry in the right page */
1615 dtInsertEntry(rp, skip, split->key, split->data, &rdtlck);
1616 }
1617
1618 out:
1619 *rmpp = rmp;
1620 *rpxdp = *pxd;
1621
1622 return rc;
1623 }
1624
1625
1626 /*
1627 * dtExtendPage()
1628 *
1629 * function: extend 1st/only directory leaf page
1630 *
1631 * parameter:
1632 *
1633 * return: 0 - success;
1634 * errno - failure;
1635 * return extended page pinned;
1636 */
dtExtendPage(tid_t tid,struct inode * ip,struct dtsplit * split,struct btstack * btstack)1637 static int dtExtendPage(tid_t tid,
1638 struct inode *ip, struct dtsplit * split, struct btstack * btstack)
1639 {
1640 struct super_block *sb = ip->i_sb;
1641 int rc;
1642 struct metapage *smp, *pmp, *mp;
1643 dtpage_t *sp, *pp;
1644 struct pxdlist *pxdlist;
1645 pxd_t *pxd, *tpxd;
1646 int xlen, xsize;
1647 int newstblindex, newstblsize;
1648 int oldstblindex, oldstblsize;
1649 int fsi, last;
1650 struct dtslot *f;
1651 struct btframe *parent;
1652 int n;
1653 struct dt_lock *dtlck;
1654 s64 xaddr, txaddr;
1655 struct tlock *tlck;
1656 struct pxd_lock *pxdlock;
1657 struct lv *lv;
1658 uint type;
1659 struct ldtentry *ldtentry;
1660 u8 *stbl;
1661
1662 /* get page to extend */
1663 smp = split->mp;
1664 sp = DT_PAGE(ip, smp);
1665
1666 /* get parent/root page */
1667 parent = BT_POP(btstack);
1668 DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc);
1669 if (rc)
1670 return (rc);
1671
1672 /*
1673 * extend the extent
1674 */
1675 pxdlist = split->pxdlist;
1676 pxd = &pxdlist->pxd[pxdlist->npxd];
1677 pxdlist->npxd++;
1678
1679 xaddr = addressPXD(pxd);
1680 tpxd = &sp->header.self;
1681 txaddr = addressPXD(tpxd);
1682 /* in-place extension */
1683 if (xaddr == txaddr) {
1684 type = tlckEXTEND;
1685 }
1686 /* relocation */
1687 else {
1688 type = tlckNEW;
1689
1690 /* save moved extent descriptor for later free */
1691 tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE);
1692 pxdlock = (struct pxd_lock *) & tlck->lock;
1693 pxdlock->flag = mlckFREEPXD;
1694 pxdlock->pxd = sp->header.self;
1695 pxdlock->index = 1;
1696
1697 /*
1698 * Update directory index table to reflect new page address
1699 */
1700 if (DO_INDEX(ip)) {
1701 s64 lblock;
1702
1703 mp = NULL;
1704 stbl = DT_GETSTBL(sp);
1705 for (n = 0; n < sp->header.nextindex; n++) {
1706 ldtentry =
1707 (struct ldtentry *) & sp->slot[stbl[n]];
1708 modify_index(tid, ip,
1709 le32_to_cpu(ldtentry->index),
1710 xaddr, n, &mp, &lblock);
1711 }
1712 if (mp)
1713 release_metapage(mp);
1714 }
1715 }
1716
1717 /*
1718 * extend the page
1719 */
1720 sp->header.self = *pxd;
1721
1722 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp);
1723
1724 BT_MARK_DIRTY(smp, ip);
1725 /*
1726 * acquire a transaction lock on the extended/leaf page
1727 */
1728 tlck = txLock(tid, ip, smp, tlckDTREE | type);
1729 dtlck = (struct dt_lock *) & tlck->lock;
1730 lv = & dtlck->lv[0];
1731
1732 /* update buffer extent descriptor of extended page */
1733 xlen = lengthPXD(pxd);
1734 xsize = xlen << JFS_SBI(sb)->l2bsize;
1735
1736 /*
1737 * copy old stbl to new stbl at start of extended area
1738 */
1739 oldstblindex = sp->header.stblindex;
1740 oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE;
1741 newstblindex = sp->header.maxslot;
1742 n = xsize >> L2DTSLOTSIZE;
1743 newstblsize = (n + 31) >> L2DTSLOTSIZE;
1744 memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex],
1745 sp->header.nextindex);
1746
1747 /*
1748 * in-line extension: linelock old area of extended page
1749 */
1750 if (type == tlckEXTEND) {
1751 /* linelock header */
1752 lv->offset = 0;
1753 lv->length = 1;
1754 dtlck->index++;
1755 lv++;
1756
1757 /* linelock new stbl of extended page */
1758 lv->offset = newstblindex;
1759 lv->length = newstblsize;
1760 }
1761 /*
1762 * relocation: linelock whole relocated area
1763 */
1764 else {
1765 lv->offset = 0;
1766 lv->length = sp->header.maxslot + newstblsize;
1767 }
1768
1769 dtlck->index++;
1770
1771 sp->header.maxslot = n;
1772 sp->header.stblindex = newstblindex;
1773 /* sp->header.nextindex remains the same */
1774
1775 /*
1776 * add old stbl region at head of freelist
1777 */
1778 fsi = oldstblindex;
1779 f = &sp->slot[fsi];
1780 last = sp->header.freelist;
1781 for (n = 0; n < oldstblsize; n++, fsi++, f++) {
1782 f->next = last;
1783 last = fsi;
1784 }
1785 sp->header.freelist = last;
1786 sp->header.freecnt += oldstblsize;
1787
1788 /*
1789 * append free region of newly extended area at tail of freelist
1790 */
1791 /* init free region of newly extended area */
1792 fsi = n = newstblindex + newstblsize;
1793 f = &sp->slot[fsi];
1794 for (fsi++; fsi < sp->header.maxslot; f++, fsi++)
1795 f->next = fsi;
1796 f->next = -1;
1797
1798 /* append new free region at tail of old freelist */
1799 fsi = sp->header.freelist;
1800 if (fsi == -1)
1801 sp->header.freelist = n;
1802 else {
1803 do {
1804 f = &sp->slot[fsi];
1805 fsi = f->next;
1806 } while (fsi != -1);
1807
1808 f->next = n;
1809 }
1810
1811 sp->header.freecnt += sp->header.maxslot - n;
1812
1813 /*
1814 * insert the new entry
1815 */
1816 dtInsertEntry(sp, split->index, split->key, split->data, &dtlck);
1817
1818 BT_MARK_DIRTY(pmp, ip);
1819 /*
1820 * linelock any freeslots residing in old extent
1821 */
1822 if (type == tlckEXTEND) {
1823 n = sp->header.maxslot >> 2;
1824 if (sp->header.freelist < n)
1825 dtLinelockFreelist(sp, n, &dtlck);
1826 }
1827
1828 /*
1829 * update parent entry on the parent/root page
1830 */
1831 /*
1832 * acquire a transaction lock on the parent/root page
1833 */
1834 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY);
1835 dtlck = (struct dt_lock *) & tlck->lock;
1836 lv = & dtlck->lv[dtlck->index];
1837
1838 /* linelock parent entry - 1st slot */
1839 lv->offset = 1;
1840 lv->length = 1;
1841 dtlck->index++;
1842
1843 /* update the parent pxd for page extension */
1844 tpxd = (pxd_t *) & pp->slot[1];
1845 *tpxd = *pxd;
1846
1847 DT_PUTPAGE(pmp);
1848 return 0;
1849 }
1850
1851
1852 /*
1853 * dtSplitRoot()
1854 *
1855 * function:
1856 * split the full root page into
1857 * original/root/split page and new right page
1858 * i.e., root remains fixed in tree anchor (inode) and
1859 * the root is copied to a single new right child page
1860 * since root page << non-root page, and
1861 * the split root page contains a single entry for the
1862 * new right child page.
1863 *
1864 * parameter:
1865 *
1866 * return: 0 - success;
1867 * errno - failure;
1868 * return new page pinned;
1869 */
dtSplitRoot(tid_t tid,struct inode * ip,struct dtsplit * split,struct metapage ** rmpp)1870 static int dtSplitRoot(tid_t tid,
1871 struct inode *ip, struct dtsplit * split, struct metapage ** rmpp)
1872 {
1873 struct super_block *sb = ip->i_sb;
1874 struct metapage *smp;
1875 dtroot_t *sp;
1876 struct metapage *rmp;
1877 dtpage_t *rp;
1878 s64 rbn;
1879 int xlen;
1880 int xsize;
1881 struct dtslot *f;
1882 s8 *stbl;
1883 int fsi, stblsize, n;
1884 struct idtentry *s;
1885 pxd_t *ppxd;
1886 struct pxdlist *pxdlist;
1887 pxd_t *pxd;
1888 struct dt_lock *dtlck;
1889 struct tlock *tlck;
1890 struct lv *lv;
1891 int rc;
1892
1893 /* get split root page */
1894 smp = split->mp;
1895 sp = &JFS_IP(ip)->i_dtroot;
1896
1897 /*
1898 * allocate/initialize a single (right) child page
1899 *
1900 * N.B. at first split, a one (or two) block to fit new entry
1901 * is allocated; at subsequent split, a full page is allocated;
1902 */
1903 pxdlist = split->pxdlist;
1904 pxd = &pxdlist->pxd[pxdlist->npxd];
1905 pxdlist->npxd++;
1906 rbn = addressPXD(pxd);
1907 xlen = lengthPXD(pxd);
1908 xsize = xlen << JFS_SBI(sb)->l2bsize;
1909 rmp = get_metapage(ip, rbn, xsize, 1);
1910 if (!rmp)
1911 return -EIO;
1912
1913 rp = rmp->data;
1914
1915 /* Allocate blocks to quota. */
1916 rc = dquot_alloc_block(ip, lengthPXD(pxd));
1917 if (rc) {
1918 release_metapage(rmp);
1919 return rc;
1920 }
1921
1922 BT_MARK_DIRTY(rmp, ip);
1923 /*
1924 * acquire a transaction lock on the new right page
1925 */
1926 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW);
1927 dtlck = (struct dt_lock *) & tlck->lock;
1928
1929 rp->header.flag =
1930 (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL;
1931 rp->header.self = *pxd;
1932
1933 /* initialize sibling pointers */
1934 rp->header.next = 0;
1935 rp->header.prev = 0;
1936
1937 /*
1938 * move in-line root page into new right page extent
1939 */
1940 /* linelock header + copied entries + new stbl (1st slot) in new page */
1941 ASSERT(dtlck->index == 0);
1942 lv = & dtlck->lv[0];
1943 lv->offset = 0;
1944 lv->length = 10; /* 1 + 8 + 1 */
1945 dtlck->index++;
1946
1947 n = xsize >> L2DTSLOTSIZE;
1948 rp->header.maxslot = n;
1949 stblsize = (n + 31) >> L2DTSLOTSIZE;
1950
1951 /* copy old stbl to new stbl at start of extended area */
1952 rp->header.stblindex = DTROOTMAXSLOT;
1953 stbl = (s8 *) & rp->slot[DTROOTMAXSLOT];
1954 memcpy(stbl, sp->header.stbl, sp->header.nextindex);
1955 rp->header.nextindex = sp->header.nextindex;
1956
1957 /* copy old data area to start of new data area */
1958 memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE);
1959
1960 /*
1961 * append free region of newly extended area at tail of freelist
1962 */
1963 /* init free region of newly extended area */
1964 fsi = n = DTROOTMAXSLOT + stblsize;
1965 f = &rp->slot[fsi];
1966 for (fsi++; fsi < rp->header.maxslot; f++, fsi++)
1967 f->next = fsi;
1968 f->next = -1;
1969
1970 /* append new free region at tail of old freelist */
1971 fsi = sp->header.freelist;
1972 if (fsi == -1)
1973 rp->header.freelist = n;
1974 else {
1975 rp->header.freelist = fsi;
1976
1977 do {
1978 f = &rp->slot[fsi];
1979 fsi = f->next;
1980 } while (fsi >= 0);
1981
1982 f->next = n;
1983 }
1984
1985 rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n;
1986
1987 /*
1988 * Update directory index table for entries now in right page
1989 */
1990 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) {
1991 s64 lblock;
1992 struct metapage *mp = NULL;
1993 struct ldtentry *ldtentry;
1994
1995 stbl = DT_GETSTBL(rp);
1996 for (n = 0; n < rp->header.nextindex; n++) {
1997 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]];
1998 modify_index(tid, ip, le32_to_cpu(ldtentry->index),
1999 rbn, n, &mp, &lblock);
2000 }
2001 if (mp)
2002 release_metapage(mp);
2003 }
2004 /*
2005 * insert the new entry into the new right/child page
2006 * (skip index in the new right page will not change)
2007 */
2008 dtInsertEntry(rp, split->index, split->key, split->data, &dtlck);
2009
2010 /*
2011 * reset parent/root page
2012 *
2013 * set the 1st entry offset to 0, which force the left-most key
2014 * at any level of the tree to be less than any search key.
2015 *
2016 * The btree comparison code guarantees that the left-most key on any
2017 * level of the tree is never used, so it doesn't need to be filled in.
2018 */
2019 BT_MARK_DIRTY(smp, ip);
2020 /*
2021 * acquire a transaction lock on the root page (in-memory inode)
2022 */
2023 tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT);
2024 dtlck = (struct dt_lock *) & tlck->lock;
2025
2026 /* linelock root */
2027 ASSERT(dtlck->index == 0);
2028 lv = & dtlck->lv[0];
2029 lv->offset = 0;
2030 lv->length = DTROOTMAXSLOT;
2031 dtlck->index++;
2032
2033 /* update page header of root */
2034 if (sp->header.flag & BT_LEAF) {
2035 sp->header.flag &= ~BT_LEAF;
2036 sp->header.flag |= BT_INTERNAL;
2037 }
2038
2039 /* init the first entry */
2040 s = (struct idtentry *) & sp->slot[DTENTRYSTART];
2041 ppxd = (pxd_t *) s;
2042 *ppxd = *pxd;
2043 s->next = -1;
2044 s->namlen = 0;
2045
2046 stbl = sp->header.stbl;
2047 stbl[0] = DTENTRYSTART;
2048 sp->header.nextindex = 1;
2049
2050 /* init freelist */
2051 fsi = DTENTRYSTART + 1;
2052 f = &sp->slot[fsi];
2053
2054 /* init free region of remaining area */
2055 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2056 f->next = fsi;
2057 f->next = -1;
2058
2059 sp->header.freelist = DTENTRYSTART + 1;
2060 sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1);
2061
2062 *rmpp = rmp;
2063
2064 return 0;
2065 }
2066
2067
2068 /*
2069 * dtDelete()
2070 *
2071 * function: delete the entry(s) referenced by a key.
2072 *
2073 * parameter:
2074 *
2075 * return:
2076 */
dtDelete(tid_t tid,struct inode * ip,struct component_name * key,ino_t * ino,int flag)2077 int dtDelete(tid_t tid,
2078 struct inode *ip, struct component_name * key, ino_t * ino, int flag)
2079 {
2080 int rc = 0;
2081 s64 bn;
2082 struct metapage *mp, *imp;
2083 dtpage_t *p;
2084 int index;
2085 struct btstack btstack;
2086 struct dt_lock *dtlck;
2087 struct tlock *tlck;
2088 struct lv *lv;
2089 int i;
2090 struct ldtentry *ldtentry;
2091 u8 *stbl;
2092 u32 table_index, next_index;
2093 struct metapage *nmp;
2094 dtpage_t *np;
2095
2096 /*
2097 * search for the entry to delete:
2098 *
2099 * dtSearch() returns (leaf page pinned, index at which to delete).
2100 */
2101 if ((rc = dtSearch(ip, key, ino, &btstack, flag)))
2102 return rc;
2103
2104 /* retrieve search result */
2105 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2106
2107 /*
2108 * We need to find put the index of the next entry into the
2109 * directory index table in order to resume a readdir from this
2110 * entry.
2111 */
2112 if (DO_INDEX(ip)) {
2113 stbl = DT_GETSTBL(p);
2114 ldtentry = (struct ldtentry *) & p->slot[stbl[index]];
2115 table_index = le32_to_cpu(ldtentry->index);
2116 if (index == (p->header.nextindex - 1)) {
2117 /*
2118 * Last entry in this leaf page
2119 */
2120 if ((p->header.flag & BT_ROOT)
2121 || (p->header.next == 0))
2122 next_index = -1;
2123 else {
2124 /* Read next leaf page */
2125 DT_GETPAGE(ip, le64_to_cpu(p->header.next),
2126 nmp, PSIZE, np, rc);
2127 if (rc)
2128 next_index = -1;
2129 else {
2130 stbl = DT_GETSTBL(np);
2131 ldtentry =
2132 (struct ldtentry *) & np->
2133 slot[stbl[0]];
2134 next_index =
2135 le32_to_cpu(ldtentry->index);
2136 DT_PUTPAGE(nmp);
2137 }
2138 }
2139 } else {
2140 ldtentry =
2141 (struct ldtentry *) & p->slot[stbl[index + 1]];
2142 next_index = le32_to_cpu(ldtentry->index);
2143 }
2144 free_index(tid, ip, table_index, next_index);
2145 }
2146 /*
2147 * the leaf page becomes empty, delete the page
2148 */
2149 if (p->header.nextindex == 1) {
2150 /* delete empty page */
2151 rc = dtDeleteUp(tid, ip, mp, p, &btstack);
2152 }
2153 /*
2154 * the leaf page has other entries remaining:
2155 *
2156 * delete the entry from the leaf page.
2157 */
2158 else {
2159 BT_MARK_DIRTY(mp, ip);
2160 /*
2161 * acquire a transaction lock on the leaf page
2162 */
2163 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2164 dtlck = (struct dt_lock *) & tlck->lock;
2165
2166 /*
2167 * Do not assume that dtlck->index will be zero. During a
2168 * rename within a directory, this transaction may have
2169 * modified this page already when adding the new entry.
2170 */
2171
2172 /* linelock header */
2173 if (dtlck->index >= dtlck->maxcnt)
2174 dtlck = (struct dt_lock *) txLinelock(dtlck);
2175 lv = & dtlck->lv[dtlck->index];
2176 lv->offset = 0;
2177 lv->length = 1;
2178 dtlck->index++;
2179
2180 /* linelock stbl of non-root leaf page */
2181 if (!(p->header.flag & BT_ROOT)) {
2182 if (dtlck->index >= dtlck->maxcnt)
2183 dtlck = (struct dt_lock *) txLinelock(dtlck);
2184 lv = & dtlck->lv[dtlck->index];
2185 i = index >> L2DTSLOTSIZE;
2186 lv->offset = p->header.stblindex + i;
2187 lv->length =
2188 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2189 i + 1;
2190 dtlck->index++;
2191 }
2192
2193 /* free the leaf entry */
2194 dtDeleteEntry(p, index, &dtlck);
2195
2196 /*
2197 * Update directory index table for entries moved in stbl
2198 */
2199 if (DO_INDEX(ip) && index < p->header.nextindex) {
2200 s64 lblock;
2201
2202 imp = NULL;
2203 stbl = DT_GETSTBL(p);
2204 for (i = index; i < p->header.nextindex; i++) {
2205 ldtentry =
2206 (struct ldtentry *) & p->slot[stbl[i]];
2207 modify_index(tid, ip,
2208 le32_to_cpu(ldtentry->index),
2209 bn, i, &imp, &lblock);
2210 }
2211 if (imp)
2212 release_metapage(imp);
2213 }
2214
2215 DT_PUTPAGE(mp);
2216 }
2217
2218 return rc;
2219 }
2220
2221
2222 /*
2223 * dtDeleteUp()
2224 *
2225 * function:
2226 * free empty pages as propagating deletion up the tree
2227 *
2228 * parameter:
2229 *
2230 * return:
2231 */
dtDeleteUp(tid_t tid,struct inode * ip,struct metapage * fmp,dtpage_t * fp,struct btstack * btstack)2232 static int dtDeleteUp(tid_t tid, struct inode *ip,
2233 struct metapage * fmp, dtpage_t * fp, struct btstack * btstack)
2234 {
2235 int rc = 0;
2236 struct metapage *mp;
2237 dtpage_t *p;
2238 int index, nextindex;
2239 int xlen;
2240 struct btframe *parent;
2241 struct dt_lock *dtlck;
2242 struct tlock *tlck;
2243 struct lv *lv;
2244 struct pxd_lock *pxdlock;
2245 int i;
2246
2247 /*
2248 * keep the root leaf page which has become empty
2249 */
2250 if (BT_IS_ROOT(fmp)) {
2251 /*
2252 * reset the root
2253 *
2254 * dtInitRoot() acquires txlock on the root
2255 */
2256 dtInitRoot(tid, ip, PARENT(ip));
2257
2258 DT_PUTPAGE(fmp);
2259
2260 return 0;
2261 }
2262
2263 /*
2264 * free the non-root leaf page
2265 */
2266 /*
2267 * acquire a transaction lock on the page
2268 *
2269 * write FREEXTENT|NOREDOPAGE log record
2270 * N.B. linelock is overlaid as freed extent descriptor, and
2271 * the buffer page is freed;
2272 */
2273 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE);
2274 pxdlock = (struct pxd_lock *) & tlck->lock;
2275 pxdlock->flag = mlckFREEPXD;
2276 pxdlock->pxd = fp->header.self;
2277 pxdlock->index = 1;
2278
2279 /* update sibling pointers */
2280 if ((rc = dtRelink(tid, ip, fp))) {
2281 BT_PUTPAGE(fmp);
2282 return rc;
2283 }
2284
2285 xlen = lengthPXD(&fp->header.self);
2286
2287 /* Free quota allocation. */
2288 dquot_free_block(ip, xlen);
2289
2290 /* free/invalidate its buffer page */
2291 discard_metapage(fmp);
2292
2293 /*
2294 * propagate page deletion up the directory tree
2295 *
2296 * If the delete from the parent page makes it empty,
2297 * continue all the way up the tree.
2298 * stop if the root page is reached (which is never deleted) or
2299 * if the entry deletion does not empty the page.
2300 */
2301 while ((parent = BT_POP(btstack)) != NULL) {
2302 /* pin the parent page <sp> */
2303 DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc);
2304 if (rc)
2305 return rc;
2306
2307 /*
2308 * free the extent of the child page deleted
2309 */
2310 index = parent->index;
2311
2312 /*
2313 * delete the entry for the child page from parent
2314 */
2315 nextindex = p->header.nextindex;
2316
2317 /*
2318 * the parent has the single entry being deleted:
2319 *
2320 * free the parent page which has become empty.
2321 */
2322 if (nextindex == 1) {
2323 /*
2324 * keep the root internal page which has become empty
2325 */
2326 if (p->header.flag & BT_ROOT) {
2327 /*
2328 * reset the root
2329 *
2330 * dtInitRoot() acquires txlock on the root
2331 */
2332 dtInitRoot(tid, ip, PARENT(ip));
2333
2334 DT_PUTPAGE(mp);
2335
2336 return 0;
2337 }
2338 /*
2339 * free the parent page
2340 */
2341 else {
2342 /*
2343 * acquire a transaction lock on the page
2344 *
2345 * write FREEXTENT|NOREDOPAGE log record
2346 */
2347 tlck =
2348 txMaplock(tid, ip,
2349 tlckDTREE | tlckFREE);
2350 pxdlock = (struct pxd_lock *) & tlck->lock;
2351 pxdlock->flag = mlckFREEPXD;
2352 pxdlock->pxd = p->header.self;
2353 pxdlock->index = 1;
2354
2355 /* update sibling pointers */
2356 if ((rc = dtRelink(tid, ip, p))) {
2357 DT_PUTPAGE(mp);
2358 return rc;
2359 }
2360
2361 xlen = lengthPXD(&p->header.self);
2362
2363 /* Free quota allocation */
2364 dquot_free_block(ip, xlen);
2365
2366 /* free/invalidate its buffer page */
2367 discard_metapage(mp);
2368
2369 /* propagate up */
2370 continue;
2371 }
2372 }
2373
2374 /*
2375 * the parent has other entries remaining:
2376 *
2377 * delete the router entry from the parent page.
2378 */
2379 BT_MARK_DIRTY(mp, ip);
2380 /*
2381 * acquire a transaction lock on the page
2382 *
2383 * action: router entry deletion
2384 */
2385 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
2386 dtlck = (struct dt_lock *) & tlck->lock;
2387
2388 /* linelock header */
2389 if (dtlck->index >= dtlck->maxcnt)
2390 dtlck = (struct dt_lock *) txLinelock(dtlck);
2391 lv = & dtlck->lv[dtlck->index];
2392 lv->offset = 0;
2393 lv->length = 1;
2394 dtlck->index++;
2395
2396 /* linelock stbl of non-root leaf page */
2397 if (!(p->header.flag & BT_ROOT)) {
2398 if (dtlck->index < dtlck->maxcnt)
2399 lv++;
2400 else {
2401 dtlck = (struct dt_lock *) txLinelock(dtlck);
2402 lv = & dtlck->lv[0];
2403 }
2404 i = index >> L2DTSLOTSIZE;
2405 lv->offset = p->header.stblindex + i;
2406 lv->length =
2407 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) -
2408 i + 1;
2409 dtlck->index++;
2410 }
2411
2412 /* free the router entry */
2413 dtDeleteEntry(p, index, &dtlck);
2414
2415 /* reset key of new leftmost entry of level (for consistency) */
2416 if (index == 0 &&
2417 ((p->header.flag & BT_ROOT) || p->header.prev == 0))
2418 dtTruncateEntry(p, 0, &dtlck);
2419
2420 /* unpin the parent page */
2421 DT_PUTPAGE(mp);
2422
2423 /* exit propagation up */
2424 break;
2425 }
2426
2427 if (!DO_INDEX(ip))
2428 ip->i_size -= PSIZE;
2429
2430 return 0;
2431 }
2432
2433 /*
2434 * dtRelink()
2435 *
2436 * function:
2437 * link around a freed page.
2438 *
2439 * parameter:
2440 * fp: page to be freed
2441 *
2442 * return:
2443 */
dtRelink(tid_t tid,struct inode * ip,dtpage_t * p)2444 static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p)
2445 {
2446 int rc;
2447 struct metapage *mp;
2448 s64 nextbn, prevbn;
2449 struct tlock *tlck;
2450 struct dt_lock *dtlck;
2451 struct lv *lv;
2452
2453 nextbn = le64_to_cpu(p->header.next);
2454 prevbn = le64_to_cpu(p->header.prev);
2455
2456 /* update prev pointer of the next page */
2457 if (nextbn != 0) {
2458 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc);
2459 if (rc)
2460 return rc;
2461
2462 BT_MARK_DIRTY(mp, ip);
2463 /*
2464 * acquire a transaction lock on the next page
2465 *
2466 * action: update prev pointer;
2467 */
2468 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2469 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2470 tlck, ip, mp);
2471 dtlck = (struct dt_lock *) & tlck->lock;
2472
2473 /* linelock header */
2474 if (dtlck->index >= dtlck->maxcnt)
2475 dtlck = (struct dt_lock *) txLinelock(dtlck);
2476 lv = & dtlck->lv[dtlck->index];
2477 lv->offset = 0;
2478 lv->length = 1;
2479 dtlck->index++;
2480
2481 p->header.prev = cpu_to_le64(prevbn);
2482 DT_PUTPAGE(mp);
2483 }
2484
2485 /* update next pointer of the previous page */
2486 if (prevbn != 0) {
2487 DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc);
2488 if (rc)
2489 return rc;
2490
2491 BT_MARK_DIRTY(mp, ip);
2492 /*
2493 * acquire a transaction lock on the prev page
2494 *
2495 * action: update next pointer;
2496 */
2497 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK);
2498 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p",
2499 tlck, ip, mp);
2500 dtlck = (struct dt_lock *) & tlck->lock;
2501
2502 /* linelock header */
2503 if (dtlck->index >= dtlck->maxcnt)
2504 dtlck = (struct dt_lock *) txLinelock(dtlck);
2505 lv = & dtlck->lv[dtlck->index];
2506 lv->offset = 0;
2507 lv->length = 1;
2508 dtlck->index++;
2509
2510 p->header.next = cpu_to_le64(nextbn);
2511 DT_PUTPAGE(mp);
2512 }
2513
2514 return 0;
2515 }
2516
2517
2518 /*
2519 * dtInitRoot()
2520 *
2521 * initialize directory root (inline in inode)
2522 */
dtInitRoot(tid_t tid,struct inode * ip,u32 idotdot)2523 void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot)
2524 {
2525 struct jfs_inode_info *jfs_ip = JFS_IP(ip);
2526 dtroot_t *p;
2527 int fsi;
2528 struct dtslot *f;
2529 struct tlock *tlck;
2530 struct dt_lock *dtlck;
2531 struct lv *lv;
2532 u16 xflag_save;
2533
2534 /*
2535 * If this was previously an non-empty directory, we need to remove
2536 * the old directory table.
2537 */
2538 if (DO_INDEX(ip)) {
2539 if (!jfs_dirtable_inline(ip)) {
2540 struct tblock *tblk = tid_to_tblock(tid);
2541 /*
2542 * We're playing games with the tid's xflag. If
2543 * we're removing a regular file, the file's xtree
2544 * is committed with COMMIT_PMAP, but we always
2545 * commit the directories xtree with COMMIT_PWMAP.
2546 */
2547 xflag_save = tblk->xflag;
2548 tblk->xflag = 0;
2549 /*
2550 * xtTruncate isn't guaranteed to fully truncate
2551 * the xtree. The caller needs to check i_size
2552 * after committing the transaction to see if
2553 * additional truncation is needed. The
2554 * COMMIT_Stale flag tells caller that we
2555 * initiated the truncation.
2556 */
2557 xtTruncate(tid, ip, 0, COMMIT_PWMAP);
2558 set_cflag(COMMIT_Stale, ip);
2559
2560 tblk->xflag = xflag_save;
2561 } else
2562 ip->i_size = 1;
2563
2564 jfs_ip->next_index = 2;
2565 } else
2566 ip->i_size = IDATASIZE;
2567
2568 /*
2569 * acquire a transaction lock on the root
2570 *
2571 * action: directory initialization;
2572 */
2573 tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag,
2574 tlckDTREE | tlckENTRY | tlckBTROOT);
2575 dtlck = (struct dt_lock *) & tlck->lock;
2576
2577 /* linelock root */
2578 ASSERT(dtlck->index == 0);
2579 lv = & dtlck->lv[0];
2580 lv->offset = 0;
2581 lv->length = DTROOTMAXSLOT;
2582 dtlck->index++;
2583
2584 p = &jfs_ip->i_dtroot;
2585
2586 p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF;
2587
2588 p->header.nextindex = 0;
2589
2590 /* init freelist */
2591 fsi = 1;
2592 f = &p->slot[fsi];
2593
2594 /* init data area of root */
2595 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++)
2596 f->next = fsi;
2597 f->next = -1;
2598
2599 p->header.freelist = 1;
2600 p->header.freecnt = 8;
2601
2602 /* init '..' entry */
2603 p->header.idotdot = cpu_to_le32(idotdot);
2604
2605 return;
2606 }
2607
2608 /*
2609 * add_missing_indices()
2610 *
2611 * function: Fix dtree page in which one or more entries has an invalid index.
2612 * fsck.jfs should really fix this, but it currently does not.
2613 * Called from jfs_readdir when bad index is detected.
2614 */
add_missing_indices(struct inode * inode,s64 bn)2615 static void add_missing_indices(struct inode *inode, s64 bn)
2616 {
2617 struct ldtentry *d;
2618 struct dt_lock *dtlck;
2619 int i;
2620 uint index;
2621 struct lv *lv;
2622 struct metapage *mp;
2623 dtpage_t *p;
2624 int rc;
2625 s8 *stbl;
2626 tid_t tid;
2627 struct tlock *tlck;
2628
2629 tid = txBegin(inode->i_sb, 0);
2630
2631 DT_GETPAGE(inode, bn, mp, PSIZE, p, rc);
2632
2633 if (rc) {
2634 printk(KERN_ERR "DT_GETPAGE failed!\n");
2635 goto end;
2636 }
2637 BT_MARK_DIRTY(mp, inode);
2638
2639 ASSERT(p->header.flag & BT_LEAF);
2640
2641 tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY);
2642 if (BT_IS_ROOT(mp))
2643 tlck->type |= tlckBTROOT;
2644
2645 dtlck = (struct dt_lock *) &tlck->lock;
2646
2647 stbl = DT_GETSTBL(p);
2648 for (i = 0; i < p->header.nextindex; i++) {
2649 d = (struct ldtentry *) &p->slot[stbl[i]];
2650 index = le32_to_cpu(d->index);
2651 if ((index < 2) || (index >= JFS_IP(inode)->next_index)) {
2652 d->index = cpu_to_le32(add_index(tid, inode, bn, i));
2653 if (dtlck->index >= dtlck->maxcnt)
2654 dtlck = (struct dt_lock *) txLinelock(dtlck);
2655 lv = &dtlck->lv[dtlck->index];
2656 lv->offset = stbl[i];
2657 lv->length = 1;
2658 dtlck->index++;
2659 }
2660 }
2661
2662 DT_PUTPAGE(mp);
2663 (void) txCommit(tid, 1, &inode, 0);
2664 end:
2665 txEnd(tid);
2666 }
2667
2668 /*
2669 * Buffer to hold directory entry info while traversing a dtree page
2670 * before being fed to the filldir function
2671 */
2672 struct jfs_dirent {
2673 loff_t position;
2674 int ino;
2675 u16 name_len;
2676 char name[];
2677 };
2678
2679 /*
2680 * function to determine next variable-sized jfs_dirent in buffer
2681 */
next_jfs_dirent(struct jfs_dirent * dirent)2682 static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent)
2683 {
2684 return (struct jfs_dirent *)
2685 ((char *)dirent +
2686 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 +
2687 sizeof (loff_t) - 1) &
2688 ~(sizeof (loff_t) - 1)));
2689 }
2690
2691 /*
2692 * jfs_readdir()
2693 *
2694 * function: read directory entries sequentially
2695 * from the specified entry offset
2696 *
2697 * parameter:
2698 *
2699 * return: offset = (pn, index) of start entry
2700 * of next jfs_readdir()/dtRead()
2701 */
jfs_readdir(struct file * file,struct dir_context * ctx)2702 int jfs_readdir(struct file *file, struct dir_context *ctx)
2703 {
2704 struct inode *ip = file_inode(file);
2705 struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab;
2706 int rc = 0;
2707 loff_t dtpos; /* legacy OS/2 style position */
2708 struct dtoffset {
2709 s16 pn;
2710 s16 index;
2711 s32 unused;
2712 } *dtoffset = (struct dtoffset *) &dtpos;
2713 s64 bn;
2714 struct metapage *mp;
2715 dtpage_t *p;
2716 int index;
2717 s8 *stbl;
2718 struct btstack btstack;
2719 int i, next;
2720 struct ldtentry *d;
2721 struct dtslot *t;
2722 int d_namleft, len, outlen;
2723 unsigned long dirent_buf;
2724 char *name_ptr;
2725 u32 dir_index;
2726 int do_index = 0;
2727 uint loop_count = 0;
2728 struct jfs_dirent *jfs_dirent;
2729 int jfs_dirents;
2730 int overflow, fix_page, page_fixed = 0;
2731 static int unique_pos = 2; /* If we can't fix broken index */
2732
2733 if (ctx->pos == DIREND)
2734 return 0;
2735
2736 if (DO_INDEX(ip)) {
2737 /*
2738 * persistent index is stored in directory entries.
2739 * Special cases: 0 = .
2740 * 1 = ..
2741 * -1 = End of directory
2742 */
2743 do_index = 1;
2744
2745 dir_index = (u32) ctx->pos;
2746
2747 /*
2748 * NFSv4 reserves cookies 1 and 2 for . and .. so the value
2749 * we return to the vfs is one greater than the one we use
2750 * internally.
2751 */
2752 if (dir_index)
2753 dir_index--;
2754
2755 if (dir_index > 1) {
2756 struct dir_table_slot dirtab_slot;
2757
2758 if (dtEmpty(ip) ||
2759 (dir_index >= JFS_IP(ip)->next_index)) {
2760 /* Stale position. Directory has shrunk */
2761 ctx->pos = DIREND;
2762 return 0;
2763 }
2764 repeat:
2765 rc = read_index(ip, dir_index, &dirtab_slot);
2766 if (rc) {
2767 ctx->pos = DIREND;
2768 return rc;
2769 }
2770 if (dirtab_slot.flag == DIR_INDEX_FREE) {
2771 if (loop_count++ > JFS_IP(ip)->next_index) {
2772 jfs_err("jfs_readdir detected infinite loop!");
2773 ctx->pos = DIREND;
2774 return 0;
2775 }
2776 dir_index = le32_to_cpu(dirtab_slot.addr2);
2777 if (dir_index == -1) {
2778 ctx->pos = DIREND;
2779 return 0;
2780 }
2781 goto repeat;
2782 }
2783 bn = addressDTS(&dirtab_slot);
2784 index = dirtab_slot.slot;
2785 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
2786 if (rc) {
2787 ctx->pos = DIREND;
2788 return 0;
2789 }
2790 if (p->header.flag & BT_INTERNAL) {
2791 jfs_err("jfs_readdir: bad index table");
2792 DT_PUTPAGE(mp);
2793 ctx->pos = DIREND;
2794 return 0;
2795 }
2796 } else {
2797 if (dir_index == 0) {
2798 /*
2799 * self "."
2800 */
2801 ctx->pos = 1;
2802 if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
2803 return 0;
2804 }
2805 /*
2806 * parent ".."
2807 */
2808 ctx->pos = 2;
2809 if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
2810 return 0;
2811
2812 /*
2813 * Find first entry of left-most leaf
2814 */
2815 if (dtEmpty(ip)) {
2816 ctx->pos = DIREND;
2817 return 0;
2818 }
2819
2820 if ((rc = dtReadFirst(ip, &btstack)))
2821 return rc;
2822
2823 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2824 }
2825 } else {
2826 /*
2827 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6
2828 *
2829 * pn = 0; index = 1: First entry "."
2830 * pn = 0; index = 2: Second entry ".."
2831 * pn > 0: Real entries, pn=1 -> leftmost page
2832 * pn = index = -1: No more entries
2833 */
2834 dtpos = ctx->pos;
2835 if (dtpos < 2) {
2836 /* build "." entry */
2837 ctx->pos = 1;
2838 if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR))
2839 return 0;
2840 dtoffset->index = 2;
2841 ctx->pos = dtpos;
2842 }
2843
2844 if (dtoffset->pn == 0) {
2845 if (dtoffset->index == 2) {
2846 /* build ".." entry */
2847 if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR))
2848 return 0;
2849 } else {
2850 jfs_err("jfs_readdir called with invalid offset!");
2851 }
2852 dtoffset->pn = 1;
2853 dtoffset->index = 0;
2854 ctx->pos = dtpos;
2855 }
2856
2857 if (dtEmpty(ip)) {
2858 ctx->pos = DIREND;
2859 return 0;
2860 }
2861
2862 if ((rc = dtReadNext(ip, &ctx->pos, &btstack))) {
2863 jfs_err("jfs_readdir: unexpected rc = %d from dtReadNext",
2864 rc);
2865 ctx->pos = DIREND;
2866 return 0;
2867 }
2868 /* get start leaf page and index */
2869 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
2870
2871 /* offset beyond directory eof ? */
2872 if (bn < 0) {
2873 ctx->pos = DIREND;
2874 return 0;
2875 }
2876 }
2877
2878 dirent_buf = __get_free_page(GFP_KERNEL);
2879 if (dirent_buf == 0) {
2880 DT_PUTPAGE(mp);
2881 jfs_warn("jfs_readdir: __get_free_page failed!");
2882 ctx->pos = DIREND;
2883 return -ENOMEM;
2884 }
2885
2886 while (1) {
2887 jfs_dirent = (struct jfs_dirent *) dirent_buf;
2888 jfs_dirents = 0;
2889 overflow = fix_page = 0;
2890
2891 stbl = DT_GETSTBL(p);
2892
2893 for (i = index; i < p->header.nextindex; i++) {
2894 d = (struct ldtentry *) & p->slot[stbl[i]];
2895
2896 if (((long) jfs_dirent + d->namlen + 1) >
2897 (dirent_buf + PAGE_SIZE)) {
2898 /* DBCS codepages could overrun dirent_buf */
2899 index = i;
2900 overflow = 1;
2901 break;
2902 }
2903
2904 d_namleft = d->namlen;
2905 name_ptr = jfs_dirent->name;
2906 jfs_dirent->ino = le32_to_cpu(d->inumber);
2907
2908 if (do_index) {
2909 len = min(d_namleft, DTLHDRDATALEN);
2910 jfs_dirent->position = le32_to_cpu(d->index);
2911 /*
2912 * d->index should always be valid, but it
2913 * isn't. fsck.jfs doesn't create the
2914 * directory index for the lost+found
2915 * directory. Rather than let it go,
2916 * we can try to fix it.
2917 */
2918 if ((jfs_dirent->position < 2) ||
2919 (jfs_dirent->position >=
2920 JFS_IP(ip)->next_index)) {
2921 if (!page_fixed && !isReadOnly(ip)) {
2922 fix_page = 1;
2923 /*
2924 * setting overflow and setting
2925 * index to i will cause the
2926 * same page to be processed
2927 * again starting here
2928 */
2929 overflow = 1;
2930 index = i;
2931 break;
2932 }
2933 jfs_dirent->position = unique_pos++;
2934 }
2935 /*
2936 * We add 1 to the index because we may
2937 * use a value of 2 internally, and NFSv4
2938 * doesn't like that.
2939 */
2940 jfs_dirent->position++;
2941 } else {
2942 jfs_dirent->position = dtpos;
2943 len = min(d_namleft, DTLHDRDATALEN_LEGACY);
2944 }
2945
2946 /* copy the name of head/only segment */
2947 outlen = jfs_strfromUCS_le(name_ptr, d->name, len,
2948 codepage);
2949 jfs_dirent->name_len = outlen;
2950
2951 /* copy name in the additional segment(s) */
2952 next = d->next;
2953 while (next >= 0) {
2954 t = (struct dtslot *) & p->slot[next];
2955 name_ptr += outlen;
2956 d_namleft -= len;
2957 /* Sanity Check */
2958 if (d_namleft == 0) {
2959 jfs_error(ip->i_sb,
2960 "JFS:Dtree error: ino = %ld, bn=%lld, index = %d\n",
2961 (long)ip->i_ino,
2962 (long long)bn,
2963 i);
2964 goto skip_one;
2965 }
2966 len = min(d_namleft, DTSLOTDATALEN);
2967 outlen = jfs_strfromUCS_le(name_ptr, t->name,
2968 len, codepage);
2969 jfs_dirent->name_len += outlen;
2970
2971 next = t->next;
2972 }
2973
2974 jfs_dirents++;
2975 jfs_dirent = next_jfs_dirent(jfs_dirent);
2976 skip_one:
2977 if (!do_index)
2978 dtoffset->index++;
2979 }
2980
2981 if (!overflow) {
2982 /* Point to next leaf page */
2983 if (p->header.flag & BT_ROOT)
2984 bn = 0;
2985 else {
2986 bn = le64_to_cpu(p->header.next);
2987 index = 0;
2988 /* update offset (pn:index) for new page */
2989 if (!do_index) {
2990 dtoffset->pn++;
2991 dtoffset->index = 0;
2992 }
2993 }
2994 page_fixed = 0;
2995 }
2996
2997 /* unpin previous leaf page */
2998 DT_PUTPAGE(mp);
2999
3000 jfs_dirent = (struct jfs_dirent *) dirent_buf;
3001 while (jfs_dirents--) {
3002 ctx->pos = jfs_dirent->position;
3003 if (!dir_emit(ctx, jfs_dirent->name,
3004 jfs_dirent->name_len,
3005 jfs_dirent->ino, DT_UNKNOWN))
3006 goto out;
3007 jfs_dirent = next_jfs_dirent(jfs_dirent);
3008 }
3009
3010 if (fix_page) {
3011 add_missing_indices(ip, bn);
3012 page_fixed = 1;
3013 }
3014
3015 if (!overflow && (bn == 0)) {
3016 ctx->pos = DIREND;
3017 break;
3018 }
3019
3020 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3021 if (rc) {
3022 free_page(dirent_buf);
3023 return rc;
3024 }
3025 }
3026
3027 out:
3028 free_page(dirent_buf);
3029
3030 return rc;
3031 }
3032
3033
3034 /*
3035 * dtReadFirst()
3036 *
3037 * function: get the leftmost page of the directory
3038 */
dtReadFirst(struct inode * ip,struct btstack * btstack)3039 static int dtReadFirst(struct inode *ip, struct btstack * btstack)
3040 {
3041 int rc = 0;
3042 s64 bn;
3043 int psize = 288; /* initial in-line directory */
3044 struct metapage *mp;
3045 dtpage_t *p;
3046 s8 *stbl;
3047 struct btframe *btsp;
3048 pxd_t *xd;
3049
3050 BT_CLR(btstack); /* reset stack */
3051
3052 /*
3053 * descend leftmost path of the tree
3054 *
3055 * by convention, root bn = 0.
3056 */
3057 for (bn = 0;;) {
3058 DT_GETPAGE(ip, bn, mp, psize, p, rc);
3059 if (rc)
3060 return rc;
3061
3062 /*
3063 * leftmost leaf page
3064 */
3065 if (p->header.flag & BT_LEAF) {
3066 /* return leftmost entry */
3067 btsp = btstack->top;
3068 btsp->bn = bn;
3069 btsp->index = 0;
3070 btsp->mp = mp;
3071
3072 return 0;
3073 }
3074
3075 /*
3076 * descend down to leftmost child page
3077 */
3078 if (BT_STACK_FULL(btstack)) {
3079 DT_PUTPAGE(mp);
3080 jfs_error(ip->i_sb, "btstack overrun\n");
3081 BT_STACK_DUMP(btstack);
3082 return -EIO;
3083 }
3084 /* push (bn, index) of the parent page/entry */
3085 BT_PUSH(btstack, bn, 0);
3086
3087 /* get the leftmost entry */
3088 stbl = DT_GETSTBL(p);
3089 xd = (pxd_t *) & p->slot[stbl[0]];
3090
3091 /* get the child page block address */
3092 bn = addressPXD(xd);
3093 psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize;
3094
3095 /* unpin the parent page */
3096 DT_PUTPAGE(mp);
3097 }
3098 }
3099
3100
3101 /*
3102 * dtReadNext()
3103 *
3104 * function: get the page of the specified offset (pn:index)
3105 *
3106 * return: if (offset > eof), bn = -1;
3107 *
3108 * note: if index > nextindex of the target leaf page,
3109 * start with 1st entry of next leaf page;
3110 */
dtReadNext(struct inode * ip,loff_t * offset,struct btstack * btstack)3111 static int dtReadNext(struct inode *ip, loff_t * offset,
3112 struct btstack * btstack)
3113 {
3114 int rc = 0;
3115 struct dtoffset {
3116 s16 pn;
3117 s16 index;
3118 s32 unused;
3119 } *dtoffset = (struct dtoffset *) offset;
3120 s64 bn;
3121 struct metapage *mp;
3122 dtpage_t *p;
3123 int index;
3124 int pn;
3125 s8 *stbl;
3126 struct btframe *btsp, *parent;
3127 pxd_t *xd;
3128
3129 /*
3130 * get leftmost leaf page pinned
3131 */
3132 if ((rc = dtReadFirst(ip, btstack)))
3133 return rc;
3134
3135 /* get leaf page */
3136 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index);
3137
3138 /* get the start offset (pn:index) */
3139 pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */
3140 index = dtoffset->index;
3141
3142 /* start at leftmost page ? */
3143 if (pn == 0) {
3144 /* offset beyond eof ? */
3145 if (index < p->header.nextindex)
3146 goto out;
3147
3148 if (p->header.flag & BT_ROOT) {
3149 bn = -1;
3150 goto out;
3151 }
3152
3153 /* start with 1st entry of next leaf page */
3154 dtoffset->pn++;
3155 dtoffset->index = index = 0;
3156 goto a;
3157 }
3158
3159 /* start at non-leftmost page: scan parent pages for large pn */
3160 if (p->header.flag & BT_ROOT) {
3161 bn = -1;
3162 goto out;
3163 }
3164
3165 /* start after next leaf page ? */
3166 if (pn > 1)
3167 goto b;
3168
3169 /* get leaf page pn = 1 */
3170 a:
3171 bn = le64_to_cpu(p->header.next);
3172
3173 /* unpin leaf page */
3174 DT_PUTPAGE(mp);
3175
3176 /* offset beyond eof ? */
3177 if (bn == 0) {
3178 bn = -1;
3179 goto out;
3180 }
3181
3182 goto c;
3183
3184 /*
3185 * scan last internal page level to get target leaf page
3186 */
3187 b:
3188 /* unpin leftmost leaf page */
3189 DT_PUTPAGE(mp);
3190
3191 /* get left most parent page */
3192 btsp = btstack->top;
3193 parent = btsp - 1;
3194 bn = parent->bn;
3195 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3196 if (rc)
3197 return rc;
3198
3199 /* scan parent pages at last internal page level */
3200 while (pn >= p->header.nextindex) {
3201 pn -= p->header.nextindex;
3202
3203 /* get next parent page address */
3204 bn = le64_to_cpu(p->header.next);
3205
3206 /* unpin current parent page */
3207 DT_PUTPAGE(mp);
3208
3209 /* offset beyond eof ? */
3210 if (bn == 0) {
3211 bn = -1;
3212 goto out;
3213 }
3214
3215 /* get next parent page */
3216 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3217 if (rc)
3218 return rc;
3219
3220 /* update parent page stack frame */
3221 parent->bn = bn;
3222 }
3223
3224 /* get leaf page address */
3225 stbl = DT_GETSTBL(p);
3226 xd = (pxd_t *) & p->slot[stbl[pn]];
3227 bn = addressPXD(xd);
3228
3229 /* unpin parent page */
3230 DT_PUTPAGE(mp);
3231
3232 /*
3233 * get target leaf page
3234 */
3235 c:
3236 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3237 if (rc)
3238 return rc;
3239
3240 /*
3241 * leaf page has been completed:
3242 * start with 1st entry of next leaf page
3243 */
3244 if (index >= p->header.nextindex) {
3245 bn = le64_to_cpu(p->header.next);
3246
3247 /* unpin leaf page */
3248 DT_PUTPAGE(mp);
3249
3250 /* offset beyond eof ? */
3251 if (bn == 0) {
3252 bn = -1;
3253 goto out;
3254 }
3255
3256 /* get next leaf page */
3257 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc);
3258 if (rc)
3259 return rc;
3260
3261 /* start with 1st entry of next leaf page */
3262 dtoffset->pn++;
3263 dtoffset->index = 0;
3264 }
3265
3266 out:
3267 /* return target leaf page pinned */
3268 btsp = btstack->top;
3269 btsp->bn = bn;
3270 btsp->index = dtoffset->index;
3271 btsp->mp = mp;
3272
3273 return 0;
3274 }
3275
3276
3277 /*
3278 * dtCompare()
3279 *
3280 * function: compare search key with an internal entry
3281 *
3282 * return:
3283 * < 0 if k is < record
3284 * = 0 if k is = record
3285 * > 0 if k is > record
3286 */
dtCompare(struct component_name * key,dtpage_t * p,int si)3287 static int dtCompare(struct component_name * key, /* search key */
3288 dtpage_t * p, /* directory page */
3289 int si)
3290 { /* entry slot index */
3291 wchar_t *kname;
3292 __le16 *name;
3293 int klen, namlen, len, rc;
3294 struct idtentry *ih;
3295 struct dtslot *t;
3296
3297 /*
3298 * force the left-most key on internal pages, at any level of
3299 * the tree, to be less than any search key.
3300 * this obviates having to update the leftmost key on an internal
3301 * page when the user inserts a new key in the tree smaller than
3302 * anything that has been stored.
3303 *
3304 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3305 * at any internal page at any level of the tree,
3306 * it descends to child of the entry anyway -
3307 * ? make the entry as min size dummy entry)
3308 *
3309 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3310 * return (1);
3311 */
3312
3313 kname = key->name;
3314 klen = key->namlen;
3315
3316 ih = (struct idtentry *) & p->slot[si];
3317 si = ih->next;
3318 name = ih->name;
3319 namlen = ih->namlen;
3320 len = min(namlen, DTIHDRDATALEN);
3321
3322 /* compare with head/only segment */
3323 len = min(klen, len);
3324 if ((rc = UniStrncmp_le(kname, name, len)))
3325 return rc;
3326
3327 klen -= len;
3328 namlen -= len;
3329
3330 /* compare with additional segment(s) */
3331 kname += len;
3332 while (klen > 0 && namlen > 0) {
3333 /* compare with next name segment */
3334 t = (struct dtslot *) & p->slot[si];
3335 len = min(namlen, DTSLOTDATALEN);
3336 len = min(klen, len);
3337 name = t->name;
3338 if ((rc = UniStrncmp_le(kname, name, len)))
3339 return rc;
3340
3341 klen -= len;
3342 namlen -= len;
3343 kname += len;
3344 si = t->next;
3345 }
3346
3347 return (klen - namlen);
3348 }
3349
3350
3351
3352
3353 /*
3354 * ciCompare()
3355 *
3356 * function: compare search key with an (leaf/internal) entry
3357 *
3358 * return:
3359 * < 0 if k is < record
3360 * = 0 if k is = record
3361 * > 0 if k is > record
3362 */
ciCompare(struct component_name * key,dtpage_t * p,int si,int flag)3363 static int ciCompare(struct component_name * key, /* search key */
3364 dtpage_t * p, /* directory page */
3365 int si, /* entry slot index */
3366 int flag)
3367 {
3368 wchar_t *kname, x;
3369 __le16 *name;
3370 int klen, namlen, len, rc;
3371 struct ldtentry *lh;
3372 struct idtentry *ih;
3373 struct dtslot *t;
3374 int i;
3375
3376 /*
3377 * force the left-most key on internal pages, at any level of
3378 * the tree, to be less than any search key.
3379 * this obviates having to update the leftmost key on an internal
3380 * page when the user inserts a new key in the tree smaller than
3381 * anything that has been stored.
3382 *
3383 * (? if/when dtSearch() narrows down to 1st entry (index = 0),
3384 * at any internal page at any level of the tree,
3385 * it descends to child of the entry anyway -
3386 * ? make the entry as min size dummy entry)
3387 *
3388 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF))
3389 * return (1);
3390 */
3391
3392 kname = key->name;
3393 klen = key->namlen;
3394
3395 /*
3396 * leaf page entry
3397 */
3398 if (p->header.flag & BT_LEAF) {
3399 lh = (struct ldtentry *) & p->slot[si];
3400 si = lh->next;
3401 name = lh->name;
3402 namlen = lh->namlen;
3403 if (flag & JFS_DIR_INDEX)
3404 len = min(namlen, DTLHDRDATALEN);
3405 else
3406 len = min(namlen, DTLHDRDATALEN_LEGACY);
3407 }
3408 /*
3409 * internal page entry
3410 */
3411 else {
3412 ih = (struct idtentry *) & p->slot[si];
3413 si = ih->next;
3414 name = ih->name;
3415 namlen = ih->namlen;
3416 len = min(namlen, DTIHDRDATALEN);
3417 }
3418
3419 /* compare with head/only segment */
3420 len = min(klen, len);
3421 for (i = 0; i < len; i++, kname++, name++) {
3422 /* only uppercase if case-insensitive support is on */
3423 if ((flag & JFS_OS2) == JFS_OS2)
3424 x = UniToupper(le16_to_cpu(*name));
3425 else
3426 x = le16_to_cpu(*name);
3427 if ((rc = *kname - x))
3428 return rc;
3429 }
3430
3431 klen -= len;
3432 namlen -= len;
3433
3434 /* compare with additional segment(s) */
3435 while (klen > 0 && namlen > 0) {
3436 /* compare with next name segment */
3437 t = (struct dtslot *) & p->slot[si];
3438 len = min(namlen, DTSLOTDATALEN);
3439 len = min(klen, len);
3440 name = t->name;
3441 for (i = 0; i < len; i++, kname++, name++) {
3442 /* only uppercase if case-insensitive support is on */
3443 if ((flag & JFS_OS2) == JFS_OS2)
3444 x = UniToupper(le16_to_cpu(*name));
3445 else
3446 x = le16_to_cpu(*name);
3447
3448 if ((rc = *kname - x))
3449 return rc;
3450 }
3451
3452 klen -= len;
3453 namlen -= len;
3454 si = t->next;
3455 }
3456
3457 return (klen - namlen);
3458 }
3459
3460
3461 /*
3462 * ciGetLeafPrefixKey()
3463 *
3464 * function: compute prefix of suffix compression
3465 * from two adjacent leaf entries
3466 * across page boundary
3467 *
3468 * return: non-zero on error
3469 *
3470 */
ciGetLeafPrefixKey(dtpage_t * lp,int li,dtpage_t * rp,int ri,struct component_name * key,int flag)3471 static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp,
3472 int ri, struct component_name * key, int flag)
3473 {
3474 int klen, namlen;
3475 wchar_t *pl, *pr, *kname;
3476 struct component_name lkey;
3477 struct component_name rkey;
3478
3479 lkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3480 GFP_KERNEL);
3481 if (lkey.name == NULL)
3482 return -ENOMEM;
3483
3484 rkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t),
3485 GFP_KERNEL);
3486 if (rkey.name == NULL) {
3487 kfree(lkey.name);
3488 return -ENOMEM;
3489 }
3490
3491 /* get left and right key */
3492 dtGetKey(lp, li, &lkey, flag);
3493 lkey.name[lkey.namlen] = 0;
3494
3495 if ((flag & JFS_OS2) == JFS_OS2)
3496 ciToUpper(&lkey);
3497
3498 dtGetKey(rp, ri, &rkey, flag);
3499 rkey.name[rkey.namlen] = 0;
3500
3501
3502 if ((flag & JFS_OS2) == JFS_OS2)
3503 ciToUpper(&rkey);
3504
3505 /* compute prefix */
3506 klen = 0;
3507 kname = key->name;
3508 namlen = min(lkey.namlen, rkey.namlen);
3509 for (pl = lkey.name, pr = rkey.name;
3510 namlen; pl++, pr++, namlen--, klen++, kname++) {
3511 *kname = *pr;
3512 if (*pl != *pr) {
3513 key->namlen = klen + 1;
3514 goto free_names;
3515 }
3516 }
3517
3518 /* l->namlen <= r->namlen since l <= r */
3519 if (lkey.namlen < rkey.namlen) {
3520 *kname = *pr;
3521 key->namlen = klen + 1;
3522 } else /* l->namelen == r->namelen */
3523 key->namlen = klen;
3524
3525 free_names:
3526 kfree(lkey.name);
3527 kfree(rkey.name);
3528 return 0;
3529 }
3530
3531
3532
3533 /*
3534 * dtGetKey()
3535 *
3536 * function: get key of the entry
3537 */
dtGetKey(dtpage_t * p,int i,struct component_name * key,int flag)3538 static void dtGetKey(dtpage_t * p, int i, /* entry index */
3539 struct component_name * key, int flag)
3540 {
3541 int si;
3542 s8 *stbl;
3543 struct ldtentry *lh;
3544 struct idtentry *ih;
3545 struct dtslot *t;
3546 int namlen, len;
3547 wchar_t *kname;
3548 __le16 *name;
3549
3550 /* get entry */
3551 stbl = DT_GETSTBL(p);
3552 si = stbl[i];
3553 if (p->header.flag & BT_LEAF) {
3554 lh = (struct ldtentry *) & p->slot[si];
3555 si = lh->next;
3556 namlen = lh->namlen;
3557 name = lh->name;
3558 if (flag & JFS_DIR_INDEX)
3559 len = min(namlen, DTLHDRDATALEN);
3560 else
3561 len = min(namlen, DTLHDRDATALEN_LEGACY);
3562 } else {
3563 ih = (struct idtentry *) & p->slot[si];
3564 si = ih->next;
3565 namlen = ih->namlen;
3566 name = ih->name;
3567 len = min(namlen, DTIHDRDATALEN);
3568 }
3569
3570 key->namlen = namlen;
3571 kname = key->name;
3572
3573 /*
3574 * move head/only segment
3575 */
3576 UniStrncpy_from_le(kname, name, len);
3577
3578 /*
3579 * move additional segment(s)
3580 */
3581 while (si >= 0) {
3582 /* get next segment */
3583 t = &p->slot[si];
3584 kname += len;
3585 namlen -= len;
3586 len = min(namlen, DTSLOTDATALEN);
3587 UniStrncpy_from_le(kname, t->name, len);
3588
3589 si = t->next;
3590 }
3591 }
3592
3593
3594 /*
3595 * dtInsertEntry()
3596 *
3597 * function: allocate free slot(s) and
3598 * write a leaf/internal entry
3599 *
3600 * return: entry slot index
3601 */
dtInsertEntry(dtpage_t * p,int index,struct component_name * key,ddata_t * data,struct dt_lock ** dtlock)3602 static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key,
3603 ddata_t * data, struct dt_lock ** dtlock)
3604 {
3605 struct dtslot *h, *t;
3606 struct ldtentry *lh = NULL;
3607 struct idtentry *ih = NULL;
3608 int hsi, fsi, klen, len, nextindex;
3609 wchar_t *kname;
3610 __le16 *name;
3611 s8 *stbl;
3612 pxd_t *xd;
3613 struct dt_lock *dtlck = *dtlock;
3614 struct lv *lv;
3615 int xsi, n;
3616 s64 bn = 0;
3617 struct metapage *mp = NULL;
3618
3619 klen = key->namlen;
3620 kname = key->name;
3621
3622 /* allocate a free slot */
3623 hsi = fsi = p->header.freelist;
3624 h = &p->slot[fsi];
3625 p->header.freelist = h->next;
3626 --p->header.freecnt;
3627
3628 /* open new linelock */
3629 if (dtlck->index >= dtlck->maxcnt)
3630 dtlck = (struct dt_lock *) txLinelock(dtlck);
3631
3632 lv = & dtlck->lv[dtlck->index];
3633 lv->offset = hsi;
3634
3635 /* write head/only segment */
3636 if (p->header.flag & BT_LEAF) {
3637 lh = (struct ldtentry *) h;
3638 lh->next = h->next;
3639 lh->inumber = cpu_to_le32(data->leaf.ino);
3640 lh->namlen = klen;
3641 name = lh->name;
3642 if (data->leaf.ip) {
3643 len = min(klen, DTLHDRDATALEN);
3644 if (!(p->header.flag & BT_ROOT))
3645 bn = addressPXD(&p->header.self);
3646 lh->index = cpu_to_le32(add_index(data->leaf.tid,
3647 data->leaf.ip,
3648 bn, index));
3649 } else
3650 len = min(klen, DTLHDRDATALEN_LEGACY);
3651 } else {
3652 ih = (struct idtentry *) h;
3653 ih->next = h->next;
3654 xd = (pxd_t *) ih;
3655 *xd = data->xd;
3656 ih->namlen = klen;
3657 name = ih->name;
3658 len = min(klen, DTIHDRDATALEN);
3659 }
3660
3661 UniStrncpy_to_le(name, kname, len);
3662
3663 n = 1;
3664 xsi = hsi;
3665
3666 /* write additional segment(s) */
3667 t = h;
3668 klen -= len;
3669 while (klen) {
3670 /* get free slot */
3671 fsi = p->header.freelist;
3672 t = &p->slot[fsi];
3673 p->header.freelist = t->next;
3674 --p->header.freecnt;
3675
3676 /* is next slot contiguous ? */
3677 if (fsi != xsi + 1) {
3678 /* close current linelock */
3679 lv->length = n;
3680 dtlck->index++;
3681
3682 /* open new linelock */
3683 if (dtlck->index < dtlck->maxcnt)
3684 lv++;
3685 else {
3686 dtlck = (struct dt_lock *) txLinelock(dtlck);
3687 lv = & dtlck->lv[0];
3688 }
3689
3690 lv->offset = fsi;
3691 n = 0;
3692 }
3693
3694 kname += len;
3695 len = min(klen, DTSLOTDATALEN);
3696 UniStrncpy_to_le(t->name, kname, len);
3697
3698 n++;
3699 xsi = fsi;
3700 klen -= len;
3701 }
3702
3703 /* close current linelock */
3704 lv->length = n;
3705 dtlck->index++;
3706
3707 *dtlock = dtlck;
3708
3709 /* terminate last/only segment */
3710 if (h == t) {
3711 /* single segment entry */
3712 if (p->header.flag & BT_LEAF)
3713 lh->next = -1;
3714 else
3715 ih->next = -1;
3716 } else
3717 /* multi-segment entry */
3718 t->next = -1;
3719
3720 /* if insert into middle, shift right succeeding entries in stbl */
3721 stbl = DT_GETSTBL(p);
3722 nextindex = p->header.nextindex;
3723 if (index < nextindex) {
3724 memmove(stbl + index + 1, stbl + index, nextindex - index);
3725
3726 if ((p->header.flag & BT_LEAF) && data->leaf.ip) {
3727 s64 lblock;
3728
3729 /*
3730 * Need to update slot number for entries that moved
3731 * in the stbl
3732 */
3733 mp = NULL;
3734 for (n = index + 1; n <= nextindex; n++) {
3735 lh = (struct ldtentry *) & (p->slot[stbl[n]]);
3736 modify_index(data->leaf.tid, data->leaf.ip,
3737 le32_to_cpu(lh->index), bn, n,
3738 &mp, &lblock);
3739 }
3740 if (mp)
3741 release_metapage(mp);
3742 }
3743 }
3744
3745 stbl[index] = hsi;
3746
3747 /* advance next available entry index of stbl */
3748 ++p->header.nextindex;
3749 }
3750
3751
3752 /*
3753 * dtMoveEntry()
3754 *
3755 * function: move entries from split/left page to new/right page
3756 *
3757 * nextindex of dst page and freelist/freecnt of both pages
3758 * are updated.
3759 */
dtMoveEntry(dtpage_t * sp,int si,dtpage_t * dp,struct dt_lock ** sdtlock,struct dt_lock ** ddtlock,int do_index)3760 static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp,
3761 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock,
3762 int do_index)
3763 {
3764 int ssi, next; /* src slot index */
3765 int di; /* dst entry index */
3766 int dsi; /* dst slot index */
3767 s8 *sstbl, *dstbl; /* sorted entry table */
3768 int snamlen, len;
3769 struct ldtentry *slh, *dlh = NULL;
3770 struct idtentry *sih, *dih = NULL;
3771 struct dtslot *h, *s, *d;
3772 struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock;
3773 struct lv *slv, *dlv;
3774 int xssi, ns, nd;
3775 int sfsi;
3776
3777 sstbl = (s8 *) & sp->slot[sp->header.stblindex];
3778 dstbl = (s8 *) & dp->slot[dp->header.stblindex];
3779
3780 dsi = dp->header.freelist; /* first (whole page) free slot */
3781 sfsi = sp->header.freelist;
3782
3783 /* linelock destination entry slot */
3784 dlv = & ddtlck->lv[ddtlck->index];
3785 dlv->offset = dsi;
3786
3787 /* linelock source entry slot */
3788 slv = & sdtlck->lv[sdtlck->index];
3789 slv->offset = sstbl[si];
3790 xssi = slv->offset - 1;
3791
3792 /*
3793 * move entries
3794 */
3795 ns = nd = 0;
3796 for (di = 0; si < sp->header.nextindex; si++, di++) {
3797 ssi = sstbl[si];
3798 dstbl[di] = dsi;
3799
3800 /* is next slot contiguous ? */
3801 if (ssi != xssi + 1) {
3802 /* close current linelock */
3803 slv->length = ns;
3804 sdtlck->index++;
3805
3806 /* open new linelock */
3807 if (sdtlck->index < sdtlck->maxcnt)
3808 slv++;
3809 else {
3810 sdtlck = (struct dt_lock *) txLinelock(sdtlck);
3811 slv = & sdtlck->lv[0];
3812 }
3813
3814 slv->offset = ssi;
3815 ns = 0;
3816 }
3817
3818 /*
3819 * move head/only segment of an entry
3820 */
3821 /* get dst slot */
3822 h = d = &dp->slot[dsi];
3823
3824 /* get src slot and move */
3825 s = &sp->slot[ssi];
3826 if (sp->header.flag & BT_LEAF) {
3827 /* get source entry */
3828 slh = (struct ldtentry *) s;
3829 dlh = (struct ldtentry *) h;
3830 snamlen = slh->namlen;
3831
3832 if (do_index) {
3833 len = min(snamlen, DTLHDRDATALEN);
3834 dlh->index = slh->index; /* little-endian */
3835 } else
3836 len = min(snamlen, DTLHDRDATALEN_LEGACY);
3837
3838 memcpy(dlh, slh, 6 + len * 2);
3839
3840 next = slh->next;
3841
3842 /* update dst head/only segment next field */
3843 dsi++;
3844 dlh->next = dsi;
3845 } else {
3846 sih = (struct idtentry *) s;
3847 snamlen = sih->namlen;
3848
3849 len = min(snamlen, DTIHDRDATALEN);
3850 dih = (struct idtentry *) h;
3851 memcpy(dih, sih, 10 + len * 2);
3852 next = sih->next;
3853
3854 dsi++;
3855 dih->next = dsi;
3856 }
3857
3858 /* free src head/only segment */
3859 s->next = sfsi;
3860 s->cnt = 1;
3861 sfsi = ssi;
3862
3863 ns++;
3864 nd++;
3865 xssi = ssi;
3866
3867 /*
3868 * move additional segment(s) of the entry
3869 */
3870 snamlen -= len;
3871 while ((ssi = next) >= 0) {
3872 /* is next slot contiguous ? */
3873 if (ssi != xssi + 1) {
3874 /* close current linelock */
3875 slv->length = ns;
3876 sdtlck->index++;
3877
3878 /* open new linelock */
3879 if (sdtlck->index < sdtlck->maxcnt)
3880 slv++;
3881 else {
3882 sdtlck =
3883 (struct dt_lock *)
3884 txLinelock(sdtlck);
3885 slv = & sdtlck->lv[0];
3886 }
3887
3888 slv->offset = ssi;
3889 ns = 0;
3890 }
3891
3892 /* get next source segment */
3893 s = &sp->slot[ssi];
3894
3895 /* get next destination free slot */
3896 d++;
3897
3898 len = min(snamlen, DTSLOTDATALEN);
3899 UniStrncpy_le(d->name, s->name, len);
3900
3901 ns++;
3902 nd++;
3903 xssi = ssi;
3904
3905 dsi++;
3906 d->next = dsi;
3907
3908 /* free source segment */
3909 next = s->next;
3910 s->next = sfsi;
3911 s->cnt = 1;
3912 sfsi = ssi;
3913
3914 snamlen -= len;
3915 } /* end while */
3916
3917 /* terminate dst last/only segment */
3918 if (h == d) {
3919 /* single segment entry */
3920 if (dp->header.flag & BT_LEAF)
3921 dlh->next = -1;
3922 else
3923 dih->next = -1;
3924 } else
3925 /* multi-segment entry */
3926 d->next = -1;
3927 } /* end for */
3928
3929 /* close current linelock */
3930 slv->length = ns;
3931 sdtlck->index++;
3932 *sdtlock = sdtlck;
3933
3934 dlv->length = nd;
3935 ddtlck->index++;
3936 *ddtlock = ddtlck;
3937
3938 /* update source header */
3939 sp->header.freelist = sfsi;
3940 sp->header.freecnt += nd;
3941
3942 /* update destination header */
3943 dp->header.nextindex = di;
3944
3945 dp->header.freelist = dsi;
3946 dp->header.freecnt -= nd;
3947 }
3948
3949
3950 /*
3951 * dtDeleteEntry()
3952 *
3953 * function: free a (leaf/internal) entry
3954 *
3955 * log freelist header, stbl, and each segment slot of entry
3956 * (even though last/only segment next field is modified,
3957 * physical image logging requires all segment slots of
3958 * the entry logged to avoid applying previous updates
3959 * to the same slots)
3960 */
dtDeleteEntry(dtpage_t * p,int fi,struct dt_lock ** dtlock)3961 static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock)
3962 {
3963 int fsi; /* free entry slot index */
3964 s8 *stbl;
3965 struct dtslot *t;
3966 int si, freecnt;
3967 struct dt_lock *dtlck = *dtlock;
3968 struct lv *lv;
3969 int xsi, n;
3970
3971 /* get free entry slot index */
3972 stbl = DT_GETSTBL(p);
3973 fsi = stbl[fi];
3974
3975 /* open new linelock */
3976 if (dtlck->index >= dtlck->maxcnt)
3977 dtlck = (struct dt_lock *) txLinelock(dtlck);
3978 lv = & dtlck->lv[dtlck->index];
3979
3980 lv->offset = fsi;
3981
3982 /* get the head/only segment */
3983 t = &p->slot[fsi];
3984 if (p->header.flag & BT_LEAF)
3985 si = ((struct ldtentry *) t)->next;
3986 else
3987 si = ((struct idtentry *) t)->next;
3988 t->next = si;
3989 t->cnt = 1;
3990
3991 n = freecnt = 1;
3992 xsi = fsi;
3993
3994 /* find the last/only segment */
3995 while (si >= 0) {
3996 /* is next slot contiguous ? */
3997 if (si != xsi + 1) {
3998 /* close current linelock */
3999 lv->length = n;
4000 dtlck->index++;
4001
4002 /* open new linelock */
4003 if (dtlck->index < dtlck->maxcnt)
4004 lv++;
4005 else {
4006 dtlck = (struct dt_lock *) txLinelock(dtlck);
4007 lv = & dtlck->lv[0];
4008 }
4009
4010 lv->offset = si;
4011 n = 0;
4012 }
4013
4014 n++;
4015 xsi = si;
4016 freecnt++;
4017
4018 t = &p->slot[si];
4019 t->cnt = 1;
4020 si = t->next;
4021 }
4022
4023 /* close current linelock */
4024 lv->length = n;
4025 dtlck->index++;
4026
4027 *dtlock = dtlck;
4028
4029 /* update freelist */
4030 t->next = p->header.freelist;
4031 p->header.freelist = fsi;
4032 p->header.freecnt += freecnt;
4033
4034 /* if delete from middle,
4035 * shift left the succedding entries in the stbl
4036 */
4037 si = p->header.nextindex;
4038 if (fi < si - 1)
4039 memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1);
4040
4041 p->header.nextindex--;
4042 }
4043
4044
4045 /*
4046 * dtTruncateEntry()
4047 *
4048 * function: truncate a (leaf/internal) entry
4049 *
4050 * log freelist header, stbl, and each segment slot of entry
4051 * (even though last/only segment next field is modified,
4052 * physical image logging requires all segment slots of
4053 * the entry logged to avoid applying previous updates
4054 * to the same slots)
4055 */
dtTruncateEntry(dtpage_t * p,int ti,struct dt_lock ** dtlock)4056 static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock)
4057 {
4058 int tsi; /* truncate entry slot index */
4059 s8 *stbl;
4060 struct dtslot *t;
4061 int si, freecnt;
4062 struct dt_lock *dtlck = *dtlock;
4063 struct lv *lv;
4064 int fsi, xsi, n;
4065
4066 /* get free entry slot index */
4067 stbl = DT_GETSTBL(p);
4068 tsi = stbl[ti];
4069
4070 /* open new linelock */
4071 if (dtlck->index >= dtlck->maxcnt)
4072 dtlck = (struct dt_lock *) txLinelock(dtlck);
4073 lv = & dtlck->lv[dtlck->index];
4074
4075 lv->offset = tsi;
4076
4077 /* get the head/only segment */
4078 t = &p->slot[tsi];
4079 ASSERT(p->header.flag & BT_INTERNAL);
4080 ((struct idtentry *) t)->namlen = 0;
4081 si = ((struct idtentry *) t)->next;
4082 ((struct idtentry *) t)->next = -1;
4083
4084 n = 1;
4085 freecnt = 0;
4086 fsi = si;
4087 xsi = tsi;
4088
4089 /* find the last/only segment */
4090 while (si >= 0) {
4091 /* is next slot contiguous ? */
4092 if (si != xsi + 1) {
4093 /* close current linelock */
4094 lv->length = n;
4095 dtlck->index++;
4096
4097 /* open new linelock */
4098 if (dtlck->index < dtlck->maxcnt)
4099 lv++;
4100 else {
4101 dtlck = (struct dt_lock *) txLinelock(dtlck);
4102 lv = & dtlck->lv[0];
4103 }
4104
4105 lv->offset = si;
4106 n = 0;
4107 }
4108
4109 n++;
4110 xsi = si;
4111 freecnt++;
4112
4113 t = &p->slot[si];
4114 t->cnt = 1;
4115 si = t->next;
4116 }
4117
4118 /* close current linelock */
4119 lv->length = n;
4120 dtlck->index++;
4121
4122 *dtlock = dtlck;
4123
4124 /* update freelist */
4125 if (freecnt == 0)
4126 return;
4127 t->next = p->header.freelist;
4128 p->header.freelist = fsi;
4129 p->header.freecnt += freecnt;
4130 }
4131
4132
4133 /*
4134 * dtLinelockFreelist()
4135 */
dtLinelockFreelist(dtpage_t * p,int m,struct dt_lock ** dtlock)4136 static void dtLinelockFreelist(dtpage_t * p, /* directory page */
4137 int m, /* max slot index */
4138 struct dt_lock ** dtlock)
4139 {
4140 int fsi; /* free entry slot index */
4141 struct dtslot *t;
4142 int si;
4143 struct dt_lock *dtlck = *dtlock;
4144 struct lv *lv;
4145 int xsi, n;
4146
4147 /* get free entry slot index */
4148 fsi = p->header.freelist;
4149
4150 /* open new linelock */
4151 if (dtlck->index >= dtlck->maxcnt)
4152 dtlck = (struct dt_lock *) txLinelock(dtlck);
4153 lv = & dtlck->lv[dtlck->index];
4154
4155 lv->offset = fsi;
4156
4157 n = 1;
4158 xsi = fsi;
4159
4160 t = &p->slot[fsi];
4161 si = t->next;
4162
4163 /* find the last/only segment */
4164 while (si < m && si >= 0) {
4165 /* is next slot contiguous ? */
4166 if (si != xsi + 1) {
4167 /* close current linelock */
4168 lv->length = n;
4169 dtlck->index++;
4170
4171 /* open new linelock */
4172 if (dtlck->index < dtlck->maxcnt)
4173 lv++;
4174 else {
4175 dtlck = (struct dt_lock *) txLinelock(dtlck);
4176 lv = & dtlck->lv[0];
4177 }
4178
4179 lv->offset = si;
4180 n = 0;
4181 }
4182
4183 n++;
4184 xsi = si;
4185
4186 t = &p->slot[si];
4187 si = t->next;
4188 }
4189
4190 /* close current linelock */
4191 lv->length = n;
4192 dtlck->index++;
4193
4194 *dtlock = dtlck;
4195 }
4196
4197
4198 /*
4199 * NAME: dtModify
4200 *
4201 * FUNCTION: Modify the inode number part of a directory entry
4202 *
4203 * PARAMETERS:
4204 * tid - Transaction id
4205 * ip - Inode of parent directory
4206 * key - Name of entry to be modified
4207 * orig_ino - Original inode number expected in entry
4208 * new_ino - New inode number to put into entry
4209 * flag - JFS_RENAME
4210 *
4211 * RETURNS:
4212 * -ESTALE - If entry found does not match orig_ino passed in
4213 * -ENOENT - If no entry can be found to match key
4214 * 0 - If successfully modified entry
4215 */
dtModify(tid_t tid,struct inode * ip,struct component_name * key,ino_t * orig_ino,ino_t new_ino,int flag)4216 int dtModify(tid_t tid, struct inode *ip,
4217 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag)
4218 {
4219 int rc;
4220 s64 bn;
4221 struct metapage *mp;
4222 dtpage_t *p;
4223 int index;
4224 struct btstack btstack;
4225 struct tlock *tlck;
4226 struct dt_lock *dtlck;
4227 struct lv *lv;
4228 s8 *stbl;
4229 int entry_si; /* entry slot index */
4230 struct ldtentry *entry;
4231
4232 /*
4233 * search for the entry to modify:
4234 *
4235 * dtSearch() returns (leaf page pinned, index at which to modify).
4236 */
4237 if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag)))
4238 return rc;
4239
4240 /* retrieve search result */
4241 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index);
4242
4243 BT_MARK_DIRTY(mp, ip);
4244 /*
4245 * acquire a transaction lock on the leaf page of named entry
4246 */
4247 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY);
4248 dtlck = (struct dt_lock *) & tlck->lock;
4249
4250 /* get slot index of the entry */
4251 stbl = DT_GETSTBL(p);
4252 entry_si = stbl[index];
4253
4254 /* linelock entry */
4255 ASSERT(dtlck->index == 0);
4256 lv = & dtlck->lv[0];
4257 lv->offset = entry_si;
4258 lv->length = 1;
4259 dtlck->index++;
4260
4261 /* get the head/only segment */
4262 entry = (struct ldtentry *) & p->slot[entry_si];
4263
4264 /* substitute the inode number of the entry */
4265 entry->inumber = cpu_to_le32(new_ino);
4266
4267 /* unpin the leaf page */
4268 DT_PUTPAGE(mp);
4269
4270 return 0;
4271 }
4272