xref: /openbmc/linux/fs/jfs/jfs_dmap.c (revision f77f13e2)
1 /*
2  *   Copyright (C) International Business Machines Corp., 2000-2004
3  *
4  *   This program is free software;  you can redistribute it and/or modify
5  *   it under the terms of the GNU General Public License as published by
6  *   the Free Software Foundation; either version 2 of the License, or
7  *   (at your option) any later version.
8  *
9  *   This program is distributed in the hope that it will be useful,
10  *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
12  *   the GNU General Public License for more details.
13  *
14  *   You should have received a copy of the GNU General Public License
15  *   along with this program;  if not, write to the Free Software
16  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18 
19 #include <linux/fs.h>
20 #include "jfs_incore.h"
21 #include "jfs_superblock.h"
22 #include "jfs_dmap.h"
23 #include "jfs_imap.h"
24 #include "jfs_lock.h"
25 #include "jfs_metapage.h"
26 #include "jfs_debug.h"
27 
28 /*
29  *	SERIALIZATION of the Block Allocation Map.
30  *
31  *	the working state of the block allocation map is accessed in
32  *	two directions:
33  *
34  *	1) allocation and free requests that start at the dmap
35  *	   level and move up through the dmap control pages (i.e.
36  *	   the vast majority of requests).
37  *
38  *	2) allocation requests that start at dmap control page
39  *	   level and work down towards the dmaps.
40  *
41  *	the serialization scheme used here is as follows.
42  *
43  *	requests which start at the bottom are serialized against each
44  *	other through buffers and each requests holds onto its buffers
45  *	as it works it way up from a single dmap to the required level
46  *	of dmap control page.
47  *	requests that start at the top are serialized against each other
48  *	and request that start from the bottom by the multiple read/single
49  *	write inode lock of the bmap inode. requests starting at the top
50  *	take this lock in write mode while request starting at the bottom
51  *	take the lock in read mode.  a single top-down request may proceed
52  *	exclusively while multiple bottoms-up requests may proceed
53  *	simultaneously (under the protection of busy buffers).
54  *
55  *	in addition to information found in dmaps and dmap control pages,
56  *	the working state of the block allocation map also includes read/
57  *	write information maintained in the bmap descriptor (i.e. total
58  *	free block count, allocation group level free block counts).
59  *	a single exclusive lock (BMAP_LOCK) is used to guard this information
60  *	in the face of multiple-bottoms up requests.
61  *	(lock ordering: IREAD_LOCK, BMAP_LOCK);
62  *
63  *	accesses to the persistent state of the block allocation map (limited
64  *	to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
65  */
66 
67 #define BMAP_LOCK_INIT(bmp)	mutex_init(&bmp->db_bmaplock)
68 #define BMAP_LOCK(bmp)		mutex_lock(&bmp->db_bmaplock)
69 #define BMAP_UNLOCK(bmp)	mutex_unlock(&bmp->db_bmaplock)
70 
71 /*
72  * forward references
73  */
74 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
75 			int nblocks);
76 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
77 static int dbBackSplit(dmtree_t * tp, int leafno);
78 static int dbJoin(dmtree_t * tp, int leafno, int newval);
79 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
80 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
81 		    int level);
82 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
83 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
84 		       int nblocks);
85 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
86 		       int nblocks,
87 		       int l2nb, s64 * results);
88 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
89 		       int nblocks);
90 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
91 			  int l2nb,
92 			  s64 * results);
93 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
94 		     s64 * results);
95 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
96 		      s64 * results);
97 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
98 static int dbFindBits(u32 word, int l2nb);
99 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
100 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
101 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 		      int nblocks);
103 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
104 		      int nblocks);
105 static int dbMaxBud(u8 * cp);
106 s64 dbMapFileSizeToMapSize(struct inode *ipbmap);
107 static int blkstol2(s64 nb);
108 
109 static int cntlz(u32 value);
110 static int cnttz(u32 word);
111 
112 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
113 			 int nblocks);
114 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
115 static int dbInitDmapTree(struct dmap * dp);
116 static int dbInitTree(struct dmaptree * dtp);
117 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
118 static int dbGetL2AGSize(s64 nblocks);
119 
120 /*
121  *	buddy table
122  *
123  * table used for determining buddy sizes within characters of
124  * dmap bitmap words.  the characters themselves serve as indexes
125  * into the table, with the table elements yielding the maximum
126  * binary buddy of free bits within the character.
127  */
128 static const s8 budtab[256] = {
129 	3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
130 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
132 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
133 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
134 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
135 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
136 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
137 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
138 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
139 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
140 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
141 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
142 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
143 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
144 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
145 };
146 
147 
148 /*
149  * NAME:	dbMount()
150  *
151  * FUNCTION:	initializate the block allocation map.
152  *
153  *		memory is allocated for the in-core bmap descriptor and
154  *		the in-core descriptor is initialized from disk.
155  *
156  * PARAMETERS:
157  *	ipbmap	- pointer to in-core inode for the block map.
158  *
159  * RETURN VALUES:
160  *	0	- success
161  *	-ENOMEM	- insufficient memory
162  *	-EIO	- i/o error
163  */
164 int dbMount(struct inode *ipbmap)
165 {
166 	struct bmap *bmp;
167 	struct dbmap_disk *dbmp_le;
168 	struct metapage *mp;
169 	int i;
170 
171 	/*
172 	 * allocate/initialize the in-memory bmap descriptor
173 	 */
174 	/* allocate memory for the in-memory bmap descriptor */
175 	bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
176 	if (bmp == NULL)
177 		return -ENOMEM;
178 
179 	/* read the on-disk bmap descriptor. */
180 	mp = read_metapage(ipbmap,
181 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
182 			   PSIZE, 0);
183 	if (mp == NULL) {
184 		kfree(bmp);
185 		return -EIO;
186 	}
187 
188 	/* copy the on-disk bmap descriptor to its in-memory version. */
189 	dbmp_le = (struct dbmap_disk *) mp->data;
190 	bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
191 	bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
192 	bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
193 	bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
194 	bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
195 	bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
196 	bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
197 	bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
198 	bmp->db_agheigth = le32_to_cpu(dbmp_le->dn_agheigth);
199 	bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
200 	bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
201 	bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
202 	for (i = 0; i < MAXAG; i++)
203 		bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
204 	bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
205 	bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
206 
207 	/* release the buffer. */
208 	release_metapage(mp);
209 
210 	/* bind the bmap inode and the bmap descriptor to each other. */
211 	bmp->db_ipbmap = ipbmap;
212 	JFS_SBI(ipbmap->i_sb)->bmap = bmp;
213 
214 	memset(bmp->db_active, 0, sizeof(bmp->db_active));
215 
216 	/*
217 	 * allocate/initialize the bmap lock
218 	 */
219 	BMAP_LOCK_INIT(bmp);
220 
221 	return (0);
222 }
223 
224 
225 /*
226  * NAME:	dbUnmount()
227  *
228  * FUNCTION:	terminate the block allocation map in preparation for
229  *		file system unmount.
230  *
231  *		the in-core bmap descriptor is written to disk and
232  *		the memory for this descriptor is freed.
233  *
234  * PARAMETERS:
235  *	ipbmap	- pointer to in-core inode for the block map.
236  *
237  * RETURN VALUES:
238  *	0	- success
239  *	-EIO	- i/o error
240  */
241 int dbUnmount(struct inode *ipbmap, int mounterror)
242 {
243 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
244 
245 	if (!(mounterror || isReadOnly(ipbmap)))
246 		dbSync(ipbmap);
247 
248 	/*
249 	 * Invalidate the page cache buffers
250 	 */
251 	truncate_inode_pages(ipbmap->i_mapping, 0);
252 
253 	/* free the memory for the in-memory bmap. */
254 	kfree(bmp);
255 
256 	return (0);
257 }
258 
259 /*
260  *	dbSync()
261  */
262 int dbSync(struct inode *ipbmap)
263 {
264 	struct dbmap_disk *dbmp_le;
265 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
266 	struct metapage *mp;
267 	int i;
268 
269 	/*
270 	 * write bmap global control page
271 	 */
272 	/* get the buffer for the on-disk bmap descriptor. */
273 	mp = read_metapage(ipbmap,
274 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
275 			   PSIZE, 0);
276 	if (mp == NULL) {
277 		jfs_err("dbSync: read_metapage failed!");
278 		return -EIO;
279 	}
280 	/* copy the in-memory version of the bmap to the on-disk version */
281 	dbmp_le = (struct dbmap_disk *) mp->data;
282 	dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
283 	dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
284 	dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
285 	dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
286 	dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
287 	dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
288 	dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
289 	dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
290 	dbmp_le->dn_agheigth = cpu_to_le32(bmp->db_agheigth);
291 	dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
292 	dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
293 	dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
294 	for (i = 0; i < MAXAG; i++)
295 		dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
296 	dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
297 	dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
298 
299 	/* write the buffer */
300 	write_metapage(mp);
301 
302 	/*
303 	 * write out dirty pages of bmap
304 	 */
305 	filemap_write_and_wait(ipbmap->i_mapping);
306 
307 	diWriteSpecial(ipbmap, 0);
308 
309 	return (0);
310 }
311 
312 
313 /*
314  * NAME:	dbFree()
315  *
316  * FUNCTION:	free the specified block range from the working block
317  *		allocation map.
318  *
319  *		the blocks will be free from the working map one dmap
320  *		at a time.
321  *
322  * PARAMETERS:
323  *	ip	- pointer to in-core inode;
324  *	blkno	- starting block number to be freed.
325  *	nblocks	- number of blocks to be freed.
326  *
327  * RETURN VALUES:
328  *	0	- success
329  *	-EIO	- i/o error
330  */
331 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
332 {
333 	struct metapage *mp;
334 	struct dmap *dp;
335 	int nb, rc;
336 	s64 lblkno, rem;
337 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
338 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
339 
340 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
341 
342 	/* block to be freed better be within the mapsize. */
343 	if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
344 		IREAD_UNLOCK(ipbmap);
345 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
346 		       (unsigned long long) blkno,
347 		       (unsigned long long) nblocks);
348 		jfs_error(ip->i_sb,
349 			  "dbFree: block to be freed is outside the map");
350 		return -EIO;
351 	}
352 
353 	/*
354 	 * free the blocks a dmap at a time.
355 	 */
356 	mp = NULL;
357 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
358 		/* release previous dmap if any */
359 		if (mp) {
360 			write_metapage(mp);
361 		}
362 
363 		/* get the buffer for the current dmap. */
364 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
365 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
366 		if (mp == NULL) {
367 			IREAD_UNLOCK(ipbmap);
368 			return -EIO;
369 		}
370 		dp = (struct dmap *) mp->data;
371 
372 		/* determine the number of blocks to be freed from
373 		 * this dmap.
374 		 */
375 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
376 
377 		/* free the blocks. */
378 		if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
379 			jfs_error(ip->i_sb, "dbFree: error in block map\n");
380 			release_metapage(mp);
381 			IREAD_UNLOCK(ipbmap);
382 			return (rc);
383 		}
384 	}
385 
386 	/* write the last buffer. */
387 	write_metapage(mp);
388 
389 	IREAD_UNLOCK(ipbmap);
390 
391 	return (0);
392 }
393 
394 
395 /*
396  * NAME:	dbUpdatePMap()
397  *
398  * FUNCTION:	update the allocation state (free or allocate) of the
399  *		specified block range in the persistent block allocation map.
400  *
401  *		the blocks will be updated in the persistent map one
402  *		dmap at a time.
403  *
404  * PARAMETERS:
405  *	ipbmap	- pointer to in-core inode for the block map.
406  *	free	- 'true' if block range is to be freed from the persistent
407  *		  map; 'false' if it is to be allocated.
408  *	blkno	- starting block number of the range.
409  *	nblocks	- number of contiguous blocks in the range.
410  *	tblk	- transaction block;
411  *
412  * RETURN VALUES:
413  *	0	- success
414  *	-EIO	- i/o error
415  */
416 int
417 dbUpdatePMap(struct inode *ipbmap,
418 	     int free, s64 blkno, s64 nblocks, struct tblock * tblk)
419 {
420 	int nblks, dbitno, wbitno, rbits;
421 	int word, nbits, nwords;
422 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
423 	s64 lblkno, rem, lastlblkno;
424 	u32 mask;
425 	struct dmap *dp;
426 	struct metapage *mp;
427 	struct jfs_log *log;
428 	int lsn, difft, diffp;
429 	unsigned long flags;
430 
431 	/* the blocks better be within the mapsize. */
432 	if (blkno + nblocks > bmp->db_mapsize) {
433 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
434 		       (unsigned long long) blkno,
435 		       (unsigned long long) nblocks);
436 		jfs_error(ipbmap->i_sb,
437 			  "dbUpdatePMap: blocks are outside the map");
438 		return -EIO;
439 	}
440 
441 	/* compute delta of transaction lsn from log syncpt */
442 	lsn = tblk->lsn;
443 	log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
444 	logdiff(difft, lsn, log);
445 
446 	/*
447 	 * update the block state a dmap at a time.
448 	 */
449 	mp = NULL;
450 	lastlblkno = 0;
451 	for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
452 		/* get the buffer for the current dmap. */
453 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
454 		if (lblkno != lastlblkno) {
455 			if (mp) {
456 				write_metapage(mp);
457 			}
458 
459 			mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
460 					   0);
461 			if (mp == NULL)
462 				return -EIO;
463 			metapage_wait_for_io(mp);
464 		}
465 		dp = (struct dmap *) mp->data;
466 
467 		/* determine the bit number and word within the dmap of
468 		 * the starting block.  also determine how many blocks
469 		 * are to be updated within this dmap.
470 		 */
471 		dbitno = blkno & (BPERDMAP - 1);
472 		word = dbitno >> L2DBWORD;
473 		nblks = min(rem, (s64)BPERDMAP - dbitno);
474 
475 		/* update the bits of the dmap words. the first and last
476 		 * words may only have a subset of their bits updated. if
477 		 * this is the case, we'll work against that word (i.e.
478 		 * partial first and/or last) only in a single pass.  a
479 		 * single pass will also be used to update all words that
480 		 * are to have all their bits updated.
481 		 */
482 		for (rbits = nblks; rbits > 0;
483 		     rbits -= nbits, dbitno += nbits) {
484 			/* determine the bit number within the word and
485 			 * the number of bits within the word.
486 			 */
487 			wbitno = dbitno & (DBWORD - 1);
488 			nbits = min(rbits, DBWORD - wbitno);
489 
490 			/* check if only part of the word is to be updated. */
491 			if (nbits < DBWORD) {
492 				/* update (free or allocate) the bits
493 				 * in this word.
494 				 */
495 				mask =
496 				    (ONES << (DBWORD - nbits) >> wbitno);
497 				if (free)
498 					dp->pmap[word] &=
499 					    cpu_to_le32(~mask);
500 				else
501 					dp->pmap[word] |=
502 					    cpu_to_le32(mask);
503 
504 				word += 1;
505 			} else {
506 				/* one or more words are to have all
507 				 * their bits updated.  determine how
508 				 * many words and how many bits.
509 				 */
510 				nwords = rbits >> L2DBWORD;
511 				nbits = nwords << L2DBWORD;
512 
513 				/* update (free or allocate) the bits
514 				 * in these words.
515 				 */
516 				if (free)
517 					memset(&dp->pmap[word], 0,
518 					       nwords * 4);
519 				else
520 					memset(&dp->pmap[word], (int) ONES,
521 					       nwords * 4);
522 
523 				word += nwords;
524 			}
525 		}
526 
527 		/*
528 		 * update dmap lsn
529 		 */
530 		if (lblkno == lastlblkno)
531 			continue;
532 
533 		lastlblkno = lblkno;
534 
535 		LOGSYNC_LOCK(log, flags);
536 		if (mp->lsn != 0) {
537 			/* inherit older/smaller lsn */
538 			logdiff(diffp, mp->lsn, log);
539 			if (difft < diffp) {
540 				mp->lsn = lsn;
541 
542 				/* move bp after tblock in logsync list */
543 				list_move(&mp->synclist, &tblk->synclist);
544 			}
545 
546 			/* inherit younger/larger clsn */
547 			logdiff(difft, tblk->clsn, log);
548 			logdiff(diffp, mp->clsn, log);
549 			if (difft > diffp)
550 				mp->clsn = tblk->clsn;
551 		} else {
552 			mp->log = log;
553 			mp->lsn = lsn;
554 
555 			/* insert bp after tblock in logsync list */
556 			log->count++;
557 			list_add(&mp->synclist, &tblk->synclist);
558 
559 			mp->clsn = tblk->clsn;
560 		}
561 		LOGSYNC_UNLOCK(log, flags);
562 	}
563 
564 	/* write the last buffer. */
565 	if (mp) {
566 		write_metapage(mp);
567 	}
568 
569 	return (0);
570 }
571 
572 
573 /*
574  * NAME:	dbNextAG()
575  *
576  * FUNCTION:	find the preferred allocation group for new allocations.
577  *
578  *		Within the allocation groups, we maintain a preferred
579  *		allocation group which consists of a group with at least
580  *		average free space.  It is the preferred group that we target
581  *		new inode allocation towards.  The tie-in between inode
582  *		allocation and block allocation occurs as we allocate the
583  *		first (data) block of an inode and specify the inode (block)
584  *		as the allocation hint for this block.
585  *
586  *		We try to avoid having more than one open file growing in
587  *		an allocation group, as this will lead to fragmentation.
588  *		This differs from the old OS/2 method of trying to keep
589  *		empty ags around for large allocations.
590  *
591  * PARAMETERS:
592  *	ipbmap	- pointer to in-core inode for the block map.
593  *
594  * RETURN VALUES:
595  *	the preferred allocation group number.
596  */
597 int dbNextAG(struct inode *ipbmap)
598 {
599 	s64 avgfree;
600 	int agpref;
601 	s64 hwm = 0;
602 	int i;
603 	int next_best = -1;
604 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
605 
606 	BMAP_LOCK(bmp);
607 
608 	/* determine the average number of free blocks within the ags. */
609 	avgfree = (u32)bmp->db_nfree / bmp->db_numag;
610 
611 	/*
612 	 * if the current preferred ag does not have an active allocator
613 	 * and has at least average freespace, return it
614 	 */
615 	agpref = bmp->db_agpref;
616 	if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
617 	    (bmp->db_agfree[agpref] >= avgfree))
618 		goto unlock;
619 
620 	/* From the last preferred ag, find the next one with at least
621 	 * average free space.
622 	 */
623 	for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
624 		if (agpref == bmp->db_numag)
625 			agpref = 0;
626 
627 		if (atomic_read(&bmp->db_active[agpref]))
628 			/* open file is currently growing in this ag */
629 			continue;
630 		if (bmp->db_agfree[agpref] >= avgfree) {
631 			/* Return this one */
632 			bmp->db_agpref = agpref;
633 			goto unlock;
634 		} else if (bmp->db_agfree[agpref] > hwm) {
635 			/* Less than avg. freespace, but best so far */
636 			hwm = bmp->db_agfree[agpref];
637 			next_best = agpref;
638 		}
639 	}
640 
641 	/*
642 	 * If no inactive ag was found with average freespace, use the
643 	 * next best
644 	 */
645 	if (next_best != -1)
646 		bmp->db_agpref = next_best;
647 	/* else leave db_agpref unchanged */
648 unlock:
649 	BMAP_UNLOCK(bmp);
650 
651 	/* return the preferred group.
652 	 */
653 	return (bmp->db_agpref);
654 }
655 
656 /*
657  * NAME:	dbAlloc()
658  *
659  * FUNCTION:	attempt to allocate a specified number of contiguous free
660  *		blocks from the working allocation block map.
661  *
662  *		the block allocation policy uses hints and a multi-step
663  *		approach.
664  *
665  *		for allocation requests smaller than the number of blocks
666  *		per dmap, we first try to allocate the new blocks
667  *		immediately following the hint.  if these blocks are not
668  *		available, we try to allocate blocks near the hint.  if
669  *		no blocks near the hint are available, we next try to
670  *		allocate within the same dmap as contains the hint.
671  *
672  *		if no blocks are available in the dmap or the allocation
673  *		request is larger than the dmap size, we try to allocate
674  *		within the same allocation group as contains the hint. if
675  *		this does not succeed, we finally try to allocate anywhere
676  *		within the aggregate.
677  *
678  *		we also try to allocate anywhere within the aggregate for
679  *		for allocation requests larger than the allocation group
680  *		size or requests that specify no hint value.
681  *
682  * PARAMETERS:
683  *	ip	- pointer to in-core inode;
684  *	hint	- allocation hint.
685  *	nblocks	- number of contiguous blocks in the range.
686  *	results	- on successful return, set to the starting block number
687  *		  of the newly allocated contiguous range.
688  *
689  * RETURN VALUES:
690  *	0	- success
691  *	-ENOSPC	- insufficient disk resources
692  *	-EIO	- i/o error
693  */
694 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
695 {
696 	int rc, agno;
697 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
698 	struct bmap *bmp;
699 	struct metapage *mp;
700 	s64 lblkno, blkno;
701 	struct dmap *dp;
702 	int l2nb;
703 	s64 mapSize;
704 	int writers;
705 
706 	/* assert that nblocks is valid */
707 	assert(nblocks > 0);
708 
709 	/* get the log2 number of blocks to be allocated.
710 	 * if the number of blocks is not a log2 multiple,
711 	 * it will be rounded up to the next log2 multiple.
712 	 */
713 	l2nb = BLKSTOL2(nblocks);
714 
715 	bmp = JFS_SBI(ip->i_sb)->bmap;
716 
717 	mapSize = bmp->db_mapsize;
718 
719 	/* the hint should be within the map */
720 	if (hint >= mapSize) {
721 		jfs_error(ip->i_sb, "dbAlloc: the hint is outside the map");
722 		return -EIO;
723 	}
724 
725 	/* if the number of blocks to be allocated is greater than the
726 	 * allocation group size, try to allocate anywhere.
727 	 */
728 	if (l2nb > bmp->db_agl2size) {
729 		IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
730 
731 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
732 
733 		goto write_unlock;
734 	}
735 
736 	/*
737 	 * If no hint, let dbNextAG recommend an allocation group
738 	 */
739 	if (hint == 0)
740 		goto pref_ag;
741 
742 	/* we would like to allocate close to the hint.  adjust the
743 	 * hint to the block following the hint since the allocators
744 	 * will start looking for free space starting at this point.
745 	 */
746 	blkno = hint + 1;
747 
748 	if (blkno >= bmp->db_mapsize)
749 		goto pref_ag;
750 
751 	agno = blkno >> bmp->db_agl2size;
752 
753 	/* check if blkno crosses over into a new allocation group.
754 	 * if so, check if we should allow allocations within this
755 	 * allocation group.
756 	 */
757 	if ((blkno & (bmp->db_agsize - 1)) == 0)
758 		/* check if the AG is currently being written to.
759 		 * if so, call dbNextAG() to find a non-busy
760 		 * AG with sufficient free space.
761 		 */
762 		if (atomic_read(&bmp->db_active[agno]))
763 			goto pref_ag;
764 
765 	/* check if the allocation request size can be satisfied from a
766 	 * single dmap.  if so, try to allocate from the dmap containing
767 	 * the hint using a tiered strategy.
768 	 */
769 	if (nblocks <= BPERDMAP) {
770 		IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
771 
772 		/* get the buffer for the dmap containing the hint.
773 		 */
774 		rc = -EIO;
775 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
776 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
777 		if (mp == NULL)
778 			goto read_unlock;
779 
780 		dp = (struct dmap *) mp->data;
781 
782 		/* first, try to satisfy the allocation request with the
783 		 * blocks beginning at the hint.
784 		 */
785 		if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
786 		    != -ENOSPC) {
787 			if (rc == 0) {
788 				*results = blkno;
789 				mark_metapage_dirty(mp);
790 			}
791 
792 			release_metapage(mp);
793 			goto read_unlock;
794 		}
795 
796 		writers = atomic_read(&bmp->db_active[agno]);
797 		if ((writers > 1) ||
798 		    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
799 			/*
800 			 * Someone else is writing in this allocation
801 			 * group.  To avoid fragmenting, try another ag
802 			 */
803 			release_metapage(mp);
804 			IREAD_UNLOCK(ipbmap);
805 			goto pref_ag;
806 		}
807 
808 		/* next, try to satisfy the allocation request with blocks
809 		 * near the hint.
810 		 */
811 		if ((rc =
812 		     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
813 		    != -ENOSPC) {
814 			if (rc == 0)
815 				mark_metapage_dirty(mp);
816 
817 			release_metapage(mp);
818 			goto read_unlock;
819 		}
820 
821 		/* try to satisfy the allocation request with blocks within
822 		 * the same dmap as the hint.
823 		 */
824 		if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
825 		    != -ENOSPC) {
826 			if (rc == 0)
827 				mark_metapage_dirty(mp);
828 
829 			release_metapage(mp);
830 			goto read_unlock;
831 		}
832 
833 		release_metapage(mp);
834 		IREAD_UNLOCK(ipbmap);
835 	}
836 
837 	/* try to satisfy the allocation request with blocks within
838 	 * the same allocation group as the hint.
839 	 */
840 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
841 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
842 		goto write_unlock;
843 
844 	IWRITE_UNLOCK(ipbmap);
845 
846 
847       pref_ag:
848 	/*
849 	 * Let dbNextAG recommend a preferred allocation group
850 	 */
851 	agno = dbNextAG(ipbmap);
852 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
853 
854 	/* Try to allocate within this allocation group.  if that fails, try to
855 	 * allocate anywhere in the map.
856 	 */
857 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
858 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
859 
860       write_unlock:
861 	IWRITE_UNLOCK(ipbmap);
862 
863 	return (rc);
864 
865       read_unlock:
866 	IREAD_UNLOCK(ipbmap);
867 
868 	return (rc);
869 }
870 
871 #ifdef _NOTYET
872 /*
873  * NAME:	dbAllocExact()
874  *
875  * FUNCTION:	try to allocate the requested extent;
876  *
877  * PARAMETERS:
878  *	ip	- pointer to in-core inode;
879  *	blkno	- extent address;
880  *	nblocks	- extent length;
881  *
882  * RETURN VALUES:
883  *	0	- success
884  *	-ENOSPC	- insufficient disk resources
885  *	-EIO	- i/o error
886  */
887 int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
888 {
889 	int rc;
890 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
891 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
892 	struct dmap *dp;
893 	s64 lblkno;
894 	struct metapage *mp;
895 
896 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
897 
898 	/*
899 	 * validate extent request:
900 	 *
901 	 * note: defragfs policy:
902 	 *  max 64 blocks will be moved.
903 	 *  allocation request size must be satisfied from a single dmap.
904 	 */
905 	if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
906 		IREAD_UNLOCK(ipbmap);
907 		return -EINVAL;
908 	}
909 
910 	if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
911 		/* the free space is no longer available */
912 		IREAD_UNLOCK(ipbmap);
913 		return -ENOSPC;
914 	}
915 
916 	/* read in the dmap covering the extent */
917 	lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
918 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
919 	if (mp == NULL) {
920 		IREAD_UNLOCK(ipbmap);
921 		return -EIO;
922 	}
923 	dp = (struct dmap *) mp->data;
924 
925 	/* try to allocate the requested extent */
926 	rc = dbAllocNext(bmp, dp, blkno, nblocks);
927 
928 	IREAD_UNLOCK(ipbmap);
929 
930 	if (rc == 0)
931 		mark_metapage_dirty(mp);
932 
933 	release_metapage(mp);
934 
935 	return (rc);
936 }
937 #endif /* _NOTYET */
938 
939 /*
940  * NAME:	dbReAlloc()
941  *
942  * FUNCTION:	attempt to extend a current allocation by a specified
943  *		number of blocks.
944  *
945  *		this routine attempts to satisfy the allocation request
946  *		by first trying to extend the existing allocation in
947  *		place by allocating the additional blocks as the blocks
948  *		immediately following the current allocation.  if these
949  *		blocks are not available, this routine will attempt to
950  *		allocate a new set of contiguous blocks large enough
951  *		to cover the existing allocation plus the additional
952  *		number of blocks required.
953  *
954  * PARAMETERS:
955  *	ip	    -  pointer to in-core inode requiring allocation.
956  *	blkno	    -  starting block of the current allocation.
957  *	nblocks	    -  number of contiguous blocks within the current
958  *		       allocation.
959  *	addnblocks  -  number of blocks to add to the allocation.
960  *	results	-      on successful return, set to the starting block number
961  *		       of the existing allocation if the existing allocation
962  *		       was extended in place or to a newly allocated contiguous
963  *		       range if the existing allocation could not be extended
964  *		       in place.
965  *
966  * RETURN VALUES:
967  *	0	- success
968  *	-ENOSPC	- insufficient disk resources
969  *	-EIO	- i/o error
970  */
971 int
972 dbReAlloc(struct inode *ip,
973 	  s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
974 {
975 	int rc;
976 
977 	/* try to extend the allocation in place.
978 	 */
979 	if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
980 		*results = blkno;
981 		return (0);
982 	} else {
983 		if (rc != -ENOSPC)
984 			return (rc);
985 	}
986 
987 	/* could not extend the allocation in place, so allocate a
988 	 * new set of blocks for the entire request (i.e. try to get
989 	 * a range of contiguous blocks large enough to cover the
990 	 * existing allocation plus the additional blocks.)
991 	 */
992 	return (dbAlloc
993 		(ip, blkno + nblocks - 1, addnblocks + nblocks, results));
994 }
995 
996 
997 /*
998  * NAME:	dbExtend()
999  *
1000  * FUNCTION:	attempt to extend a current allocation by a specified
1001  *		number of blocks.
1002  *
1003  *		this routine attempts to satisfy the allocation request
1004  *		by first trying to extend the existing allocation in
1005  *		place by allocating the additional blocks as the blocks
1006  *		immediately following the current allocation.
1007  *
1008  * PARAMETERS:
1009  *	ip	    -  pointer to in-core inode requiring allocation.
1010  *	blkno	    -  starting block of the current allocation.
1011  *	nblocks	    -  number of contiguous blocks within the current
1012  *		       allocation.
1013  *	addnblocks  -  number of blocks to add to the allocation.
1014  *
1015  * RETURN VALUES:
1016  *	0	- success
1017  *	-ENOSPC	- insufficient disk resources
1018  *	-EIO	- i/o error
1019  */
1020 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1021 {
1022 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1023 	s64 lblkno, lastblkno, extblkno;
1024 	uint rel_block;
1025 	struct metapage *mp;
1026 	struct dmap *dp;
1027 	int rc;
1028 	struct inode *ipbmap = sbi->ipbmap;
1029 	struct bmap *bmp;
1030 
1031 	/*
1032 	 * We don't want a non-aligned extent to cross a page boundary
1033 	 */
1034 	if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1035 	    (rel_block + nblocks + addnblocks > sbi->nbperpage))
1036 		return -ENOSPC;
1037 
1038 	/* get the last block of the current allocation */
1039 	lastblkno = blkno + nblocks - 1;
1040 
1041 	/* determine the block number of the block following
1042 	 * the existing allocation.
1043 	 */
1044 	extblkno = lastblkno + 1;
1045 
1046 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1047 
1048 	/* better be within the file system */
1049 	bmp = sbi->bmap;
1050 	if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1051 		IREAD_UNLOCK(ipbmap);
1052 		jfs_error(ip->i_sb,
1053 			  "dbExtend: the block is outside the filesystem");
1054 		return -EIO;
1055 	}
1056 
1057 	/* we'll attempt to extend the current allocation in place by
1058 	 * allocating the additional blocks as the blocks immediately
1059 	 * following the current allocation.  we only try to extend the
1060 	 * current allocation in place if the number of additional blocks
1061 	 * can fit into a dmap, the last block of the current allocation
1062 	 * is not the last block of the file system, and the start of the
1063 	 * inplace extension is not on an allocation group boundary.
1064 	 */
1065 	if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1066 	    (extblkno & (bmp->db_agsize - 1)) == 0) {
1067 		IREAD_UNLOCK(ipbmap);
1068 		return -ENOSPC;
1069 	}
1070 
1071 	/* get the buffer for the dmap containing the first block
1072 	 * of the extension.
1073 	 */
1074 	lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1075 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1076 	if (mp == NULL) {
1077 		IREAD_UNLOCK(ipbmap);
1078 		return -EIO;
1079 	}
1080 
1081 	dp = (struct dmap *) mp->data;
1082 
1083 	/* try to allocate the blocks immediately following the
1084 	 * current allocation.
1085 	 */
1086 	rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1087 
1088 	IREAD_UNLOCK(ipbmap);
1089 
1090 	/* were we successful ? */
1091 	if (rc == 0)
1092 		write_metapage(mp);
1093 	else
1094 		/* we were not successful */
1095 		release_metapage(mp);
1096 
1097 
1098 	return (rc);
1099 }
1100 
1101 
1102 /*
1103  * NAME:	dbAllocNext()
1104  *
1105  * FUNCTION:	attempt to allocate the blocks of the specified block
1106  *		range within a dmap.
1107  *
1108  * PARAMETERS:
1109  *	bmp	-  pointer to bmap descriptor
1110  *	dp	-  pointer to dmap.
1111  *	blkno	-  starting block number of the range.
1112  *	nblocks	-  number of contiguous free blocks of the range.
1113  *
1114  * RETURN VALUES:
1115  *	0	- success
1116  *	-ENOSPC	- insufficient disk resources
1117  *	-EIO	- i/o error
1118  *
1119  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1120  */
1121 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1122 		       int nblocks)
1123 {
1124 	int dbitno, word, rembits, nb, nwords, wbitno, nw;
1125 	int l2size;
1126 	s8 *leaf;
1127 	u32 mask;
1128 
1129 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1130 		jfs_error(bmp->db_ipbmap->i_sb,
1131 			  "dbAllocNext: Corrupt dmap page");
1132 		return -EIO;
1133 	}
1134 
1135 	/* pick up a pointer to the leaves of the dmap tree.
1136 	 */
1137 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1138 
1139 	/* determine the bit number and word within the dmap of the
1140 	 * starting block.
1141 	 */
1142 	dbitno = blkno & (BPERDMAP - 1);
1143 	word = dbitno >> L2DBWORD;
1144 
1145 	/* check if the specified block range is contained within
1146 	 * this dmap.
1147 	 */
1148 	if (dbitno + nblocks > BPERDMAP)
1149 		return -ENOSPC;
1150 
1151 	/* check if the starting leaf indicates that anything
1152 	 * is free.
1153 	 */
1154 	if (leaf[word] == NOFREE)
1155 		return -ENOSPC;
1156 
1157 	/* check the dmaps words corresponding to block range to see
1158 	 * if the block range is free.  not all bits of the first and
1159 	 * last words may be contained within the block range.  if this
1160 	 * is the case, we'll work against those words (i.e. partial first
1161 	 * and/or last) on an individual basis (a single pass) and examine
1162 	 * the actual bits to determine if they are free.  a single pass
1163 	 * will be used for all dmap words fully contained within the
1164 	 * specified range.  within this pass, the leaves of the dmap
1165 	 * tree will be examined to determine if the blocks are free. a
1166 	 * single leaf may describe the free space of multiple dmap
1167 	 * words, so we may visit only a subset of the actual leaves
1168 	 * corresponding to the dmap words of the block range.
1169 	 */
1170 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1171 		/* determine the bit number within the word and
1172 		 * the number of bits within the word.
1173 		 */
1174 		wbitno = dbitno & (DBWORD - 1);
1175 		nb = min(rembits, DBWORD - wbitno);
1176 
1177 		/* check if only part of the word is to be examined.
1178 		 */
1179 		if (nb < DBWORD) {
1180 			/* check if the bits are free.
1181 			 */
1182 			mask = (ONES << (DBWORD - nb) >> wbitno);
1183 			if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1184 				return -ENOSPC;
1185 
1186 			word += 1;
1187 		} else {
1188 			/* one or more dmap words are fully contained
1189 			 * within the block range.  determine how many
1190 			 * words and how many bits.
1191 			 */
1192 			nwords = rembits >> L2DBWORD;
1193 			nb = nwords << L2DBWORD;
1194 
1195 			/* now examine the appropriate leaves to determine
1196 			 * if the blocks are free.
1197 			 */
1198 			while (nwords > 0) {
1199 				/* does the leaf describe any free space ?
1200 				 */
1201 				if (leaf[word] < BUDMIN)
1202 					return -ENOSPC;
1203 
1204 				/* determine the l2 number of bits provided
1205 				 * by this leaf.
1206 				 */
1207 				l2size =
1208 				    min((int)leaf[word], NLSTOL2BSZ(nwords));
1209 
1210 				/* determine how many words were handled.
1211 				 */
1212 				nw = BUDSIZE(l2size, BUDMIN);
1213 
1214 				nwords -= nw;
1215 				word += nw;
1216 			}
1217 		}
1218 	}
1219 
1220 	/* allocate the blocks.
1221 	 */
1222 	return (dbAllocDmap(bmp, dp, blkno, nblocks));
1223 }
1224 
1225 
1226 /*
1227  * NAME:	dbAllocNear()
1228  *
1229  * FUNCTION:	attempt to allocate a number of contiguous free blocks near
1230  *		a specified block (hint) within a dmap.
1231  *
1232  *		starting with the dmap leaf that covers the hint, we'll
1233  *		check the next four contiguous leaves for sufficient free
1234  *		space.  if sufficient free space is found, we'll allocate
1235  *		the desired free space.
1236  *
1237  * PARAMETERS:
1238  *	bmp	-  pointer to bmap descriptor
1239  *	dp	-  pointer to dmap.
1240  *	blkno	-  block number to allocate near.
1241  *	nblocks	-  actual number of contiguous free blocks desired.
1242  *	l2nb	-  log2 number of contiguous free blocks desired.
1243  *	results	-  on successful return, set to the starting block number
1244  *		   of the newly allocated range.
1245  *
1246  * RETURN VALUES:
1247  *	0	- success
1248  *	-ENOSPC	- insufficient disk resources
1249  *	-EIO	- i/o error
1250  *
1251  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1252  */
1253 static int
1254 dbAllocNear(struct bmap * bmp,
1255 	    struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1256 {
1257 	int word, lword, rc;
1258 	s8 *leaf;
1259 
1260 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1261 		jfs_error(bmp->db_ipbmap->i_sb,
1262 			  "dbAllocNear: Corrupt dmap page");
1263 		return -EIO;
1264 	}
1265 
1266 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1267 
1268 	/* determine the word within the dmap that holds the hint
1269 	 * (i.e. blkno).  also, determine the last word in the dmap
1270 	 * that we'll include in our examination.
1271 	 */
1272 	word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1273 	lword = min(word + 4, LPERDMAP);
1274 
1275 	/* examine the leaves for sufficient free space.
1276 	 */
1277 	for (; word < lword; word++) {
1278 		/* does the leaf describe sufficient free space ?
1279 		 */
1280 		if (leaf[word] < l2nb)
1281 			continue;
1282 
1283 		/* determine the block number within the file system
1284 		 * of the first block described by this dmap word.
1285 		 */
1286 		blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1287 
1288 		/* if not all bits of the dmap word are free, get the
1289 		 * starting bit number within the dmap word of the required
1290 		 * string of free bits and adjust the block number with the
1291 		 * value.
1292 		 */
1293 		if (leaf[word] < BUDMIN)
1294 			blkno +=
1295 			    dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1296 
1297 		/* allocate the blocks.
1298 		 */
1299 		if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1300 			*results = blkno;
1301 
1302 		return (rc);
1303 	}
1304 
1305 	return -ENOSPC;
1306 }
1307 
1308 
1309 /*
1310  * NAME:	dbAllocAG()
1311  *
1312  * FUNCTION:	attempt to allocate the specified number of contiguous
1313  *		free blocks within the specified allocation group.
1314  *
1315  *		unless the allocation group size is equal to the number
1316  *		of blocks per dmap, the dmap control pages will be used to
1317  *		find the required free space, if available.  we start the
1318  *		search at the highest dmap control page level which
1319  *		distinctly describes the allocation group's free space
1320  *		(i.e. the highest level at which the allocation group's
1321  *		free space is not mixed in with that of any other group).
1322  *		in addition, we start the search within this level at a
1323  *		height of the dmapctl dmtree at which the nodes distinctly
1324  *		describe the allocation group's free space.  at this height,
1325  *		the allocation group's free space may be represented by 1
1326  *		or two sub-trees, depending on the allocation group size.
1327  *		we search the top nodes of these subtrees left to right for
1328  *		sufficient free space.  if sufficient free space is found,
1329  *		the subtree is searched to find the leftmost leaf that
1330  *		has free space.  once we have made it to the leaf, we
1331  *		move the search to the next lower level dmap control page
1332  *		corresponding to this leaf.  we continue down the dmap control
1333  *		pages until we find the dmap that contains or starts the
1334  *		sufficient free space and we allocate at this dmap.
1335  *
1336  *		if the allocation group size is equal to the dmap size,
1337  *		we'll start at the dmap corresponding to the allocation
1338  *		group and attempt the allocation at this level.
1339  *
1340  *		the dmap control page search is also not performed if the
1341  *		allocation group is completely free and we go to the first
1342  *		dmap of the allocation group to do the allocation.  this is
1343  *		done because the allocation group may be part (not the first
1344  *		part) of a larger binary buddy system, causing the dmap
1345  *		control pages to indicate no free space (NOFREE) within
1346  *		the allocation group.
1347  *
1348  * PARAMETERS:
1349  *	bmp	-  pointer to bmap descriptor
1350  *	agno	- allocation group number.
1351  *	nblocks	-  actual number of contiguous free blocks desired.
1352  *	l2nb	-  log2 number of contiguous free blocks desired.
1353  *	results	-  on successful return, set to the starting block number
1354  *		   of the newly allocated range.
1355  *
1356  * RETURN VALUES:
1357  *	0	- success
1358  *	-ENOSPC	- insufficient disk resources
1359  *	-EIO	- i/o error
1360  *
1361  * note: IWRITE_LOCK(ipmap) held on entry/exit;
1362  */
1363 static int
1364 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1365 {
1366 	struct metapage *mp;
1367 	struct dmapctl *dcp;
1368 	int rc, ti, i, k, m, n, agperlev;
1369 	s64 blkno, lblkno;
1370 	int budmin;
1371 
1372 	/* allocation request should not be for more than the
1373 	 * allocation group size.
1374 	 */
1375 	if (l2nb > bmp->db_agl2size) {
1376 		jfs_error(bmp->db_ipbmap->i_sb,
1377 			  "dbAllocAG: allocation request is larger than the "
1378 			  "allocation group size");
1379 		return -EIO;
1380 	}
1381 
1382 	/* determine the starting block number of the allocation
1383 	 * group.
1384 	 */
1385 	blkno = (s64) agno << bmp->db_agl2size;
1386 
1387 	/* check if the allocation group size is the minimum allocation
1388 	 * group size or if the allocation group is completely free. if
1389 	 * the allocation group size is the minimum size of BPERDMAP (i.e.
1390 	 * 1 dmap), there is no need to search the dmap control page (below)
1391 	 * that fully describes the allocation group since the allocation
1392 	 * group is already fully described by a dmap.  in this case, we
1393 	 * just call dbAllocCtl() to search the dmap tree and allocate the
1394 	 * required space if available.
1395 	 *
1396 	 * if the allocation group is completely free, dbAllocCtl() is
1397 	 * also called to allocate the required space.  this is done for
1398 	 * two reasons.  first, it makes no sense searching the dmap control
1399 	 * pages for free space when we know that free space exists.  second,
1400 	 * the dmap control pages may indicate that the allocation group
1401 	 * has no free space if the allocation group is part (not the first
1402 	 * part) of a larger binary buddy system.
1403 	 */
1404 	if (bmp->db_agsize == BPERDMAP
1405 	    || bmp->db_agfree[agno] == bmp->db_agsize) {
1406 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1407 		if ((rc == -ENOSPC) &&
1408 		    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1409 			printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1410 			       (unsigned long long) blkno,
1411 			       (unsigned long long) nblocks);
1412 			jfs_error(bmp->db_ipbmap->i_sb,
1413 				  "dbAllocAG: dbAllocCtl failed in free AG");
1414 		}
1415 		return (rc);
1416 	}
1417 
1418 	/* the buffer for the dmap control page that fully describes the
1419 	 * allocation group.
1420 	 */
1421 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1422 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1423 	if (mp == NULL)
1424 		return -EIO;
1425 	dcp = (struct dmapctl *) mp->data;
1426 	budmin = dcp->budmin;
1427 
1428 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1429 		jfs_error(bmp->db_ipbmap->i_sb,
1430 			  "dbAllocAG: Corrupt dmapctl page");
1431 		release_metapage(mp);
1432 		return -EIO;
1433 	}
1434 
1435 	/* search the subtree(s) of the dmap control page that describes
1436 	 * the allocation group, looking for sufficient free space.  to begin,
1437 	 * determine how many allocation groups are represented in a dmap
1438 	 * control page at the control page level (i.e. L0, L1, L2) that
1439 	 * fully describes an allocation group. next, determine the starting
1440 	 * tree index of this allocation group within the control page.
1441 	 */
1442 	agperlev =
1443 	    (1 << (L2LPERCTL - (bmp->db_agheigth << 1))) / bmp->db_agwidth;
1444 	ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1445 
1446 	/* dmap control page trees fan-out by 4 and a single allocation
1447 	 * group may be described by 1 or 2 subtrees within the ag level
1448 	 * dmap control page, depending upon the ag size. examine the ag's
1449 	 * subtrees for sufficient free space, starting with the leftmost
1450 	 * subtree.
1451 	 */
1452 	for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1453 		/* is there sufficient free space ?
1454 		 */
1455 		if (l2nb > dcp->stree[ti])
1456 			continue;
1457 
1458 		/* sufficient free space found in a subtree. now search down
1459 		 * the subtree to find the leftmost leaf that describes this
1460 		 * free space.
1461 		 */
1462 		for (k = bmp->db_agheigth; k > 0; k--) {
1463 			for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1464 				if (l2nb <= dcp->stree[m + n]) {
1465 					ti = m + n;
1466 					break;
1467 				}
1468 			}
1469 			if (n == 4) {
1470 				jfs_error(bmp->db_ipbmap->i_sb,
1471 					  "dbAllocAG: failed descending stree");
1472 				release_metapage(mp);
1473 				return -EIO;
1474 			}
1475 		}
1476 
1477 		/* determine the block number within the file system
1478 		 * that corresponds to this leaf.
1479 		 */
1480 		if (bmp->db_aglevel == 2)
1481 			blkno = 0;
1482 		else if (bmp->db_aglevel == 1)
1483 			blkno &= ~(MAXL1SIZE - 1);
1484 		else		/* bmp->db_aglevel == 0 */
1485 			blkno &= ~(MAXL0SIZE - 1);
1486 
1487 		blkno +=
1488 		    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1489 
1490 		/* release the buffer in preparation for going down
1491 		 * the next level of dmap control pages.
1492 		 */
1493 		release_metapage(mp);
1494 
1495 		/* check if we need to continue to search down the lower
1496 		 * level dmap control pages.  we need to if the number of
1497 		 * blocks required is less than maximum number of blocks
1498 		 * described at the next lower level.
1499 		 */
1500 		if (l2nb < budmin) {
1501 
1502 			/* search the lower level dmap control pages to get
1503 			 * the starting block number of the dmap that
1504 			 * contains or starts off the free space.
1505 			 */
1506 			if ((rc =
1507 			     dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1508 				       &blkno))) {
1509 				if (rc == -ENOSPC) {
1510 					jfs_error(bmp->db_ipbmap->i_sb,
1511 						  "dbAllocAG: control page "
1512 						  "inconsistent");
1513 					return -EIO;
1514 				}
1515 				return (rc);
1516 			}
1517 		}
1518 
1519 		/* allocate the blocks.
1520 		 */
1521 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1522 		if (rc == -ENOSPC) {
1523 			jfs_error(bmp->db_ipbmap->i_sb,
1524 				  "dbAllocAG: unable to allocate blocks");
1525 			rc = -EIO;
1526 		}
1527 		return (rc);
1528 	}
1529 
1530 	/* no space in the allocation group.  release the buffer and
1531 	 * return -ENOSPC.
1532 	 */
1533 	release_metapage(mp);
1534 
1535 	return -ENOSPC;
1536 }
1537 
1538 
1539 /*
1540  * NAME:	dbAllocAny()
1541  *
1542  * FUNCTION:	attempt to allocate the specified number of contiguous
1543  *		free blocks anywhere in the file system.
1544  *
1545  *		dbAllocAny() attempts to find the sufficient free space by
1546  *		searching down the dmap control pages, starting with the
1547  *		highest level (i.e. L0, L1, L2) control page.  if free space
1548  *		large enough to satisfy the desired free space is found, the
1549  *		desired free space is allocated.
1550  *
1551  * PARAMETERS:
1552  *	bmp	-  pointer to bmap descriptor
1553  *	nblocks	 -  actual number of contiguous free blocks desired.
1554  *	l2nb	 -  log2 number of contiguous free blocks desired.
1555  *	results	-  on successful return, set to the starting block number
1556  *		   of the newly allocated range.
1557  *
1558  * RETURN VALUES:
1559  *	0	- success
1560  *	-ENOSPC	- insufficient disk resources
1561  *	-EIO	- i/o error
1562  *
1563  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1564  */
1565 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1566 {
1567 	int rc;
1568 	s64 blkno = 0;
1569 
1570 	/* starting with the top level dmap control page, search
1571 	 * down the dmap control levels for sufficient free space.
1572 	 * if free space is found, dbFindCtl() returns the starting
1573 	 * block number of the dmap that contains or starts off the
1574 	 * range of free space.
1575 	 */
1576 	if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1577 		return (rc);
1578 
1579 	/* allocate the blocks.
1580 	 */
1581 	rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1582 	if (rc == -ENOSPC) {
1583 		jfs_error(bmp->db_ipbmap->i_sb,
1584 			  "dbAllocAny: unable to allocate blocks");
1585 		return -EIO;
1586 	}
1587 	return (rc);
1588 }
1589 
1590 
1591 /*
1592  * NAME:	dbFindCtl()
1593  *
1594  * FUNCTION:	starting at a specified dmap control page level and block
1595  *		number, search down the dmap control levels for a range of
1596  *		contiguous free blocks large enough to satisfy an allocation
1597  *		request for the specified number of free blocks.
1598  *
1599  *		if sufficient contiguous free blocks are found, this routine
1600  *		returns the starting block number within a dmap page that
1601  *		contains or starts a range of contiqious free blocks that
1602  *		is sufficient in size.
1603  *
1604  * PARAMETERS:
1605  *	bmp	-  pointer to bmap descriptor
1606  *	level	-  starting dmap control page level.
1607  *	l2nb	-  log2 number of contiguous free blocks desired.
1608  *	*blkno	-  on entry, starting block number for conducting the search.
1609  *		   on successful return, the first block within a dmap page
1610  *		   that contains or starts a range of contiguous free blocks.
1611  *
1612  * RETURN VALUES:
1613  *	0	- success
1614  *	-ENOSPC	- insufficient disk resources
1615  *	-EIO	- i/o error
1616  *
1617  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1618  */
1619 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1620 {
1621 	int rc, leafidx, lev;
1622 	s64 b, lblkno;
1623 	struct dmapctl *dcp;
1624 	int budmin;
1625 	struct metapage *mp;
1626 
1627 	/* starting at the specified dmap control page level and block
1628 	 * number, search down the dmap control levels for the starting
1629 	 * block number of a dmap page that contains or starts off
1630 	 * sufficient free blocks.
1631 	 */
1632 	for (lev = level, b = *blkno; lev >= 0; lev--) {
1633 		/* get the buffer of the dmap control page for the block
1634 		 * number and level (i.e. L0, L1, L2).
1635 		 */
1636 		lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1637 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1638 		if (mp == NULL)
1639 			return -EIO;
1640 		dcp = (struct dmapctl *) mp->data;
1641 		budmin = dcp->budmin;
1642 
1643 		if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1644 			jfs_error(bmp->db_ipbmap->i_sb,
1645 				  "dbFindCtl: Corrupt dmapctl page");
1646 			release_metapage(mp);
1647 			return -EIO;
1648 		}
1649 
1650 		/* search the tree within the dmap control page for
1651 		 * sufficent free space.  if sufficient free space is found,
1652 		 * dbFindLeaf() returns the index of the leaf at which
1653 		 * free space was found.
1654 		 */
1655 		rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1656 
1657 		/* release the buffer.
1658 		 */
1659 		release_metapage(mp);
1660 
1661 		/* space found ?
1662 		 */
1663 		if (rc) {
1664 			if (lev != level) {
1665 				jfs_error(bmp->db_ipbmap->i_sb,
1666 					  "dbFindCtl: dmap inconsistent");
1667 				return -EIO;
1668 			}
1669 			return -ENOSPC;
1670 		}
1671 
1672 		/* adjust the block number to reflect the location within
1673 		 * the dmap control page (i.e. the leaf) at which free
1674 		 * space was found.
1675 		 */
1676 		b += (((s64) leafidx) << budmin);
1677 
1678 		/* we stop the search at this dmap control page level if
1679 		 * the number of blocks required is greater than or equal
1680 		 * to the maximum number of blocks described at the next
1681 		 * (lower) level.
1682 		 */
1683 		if (l2nb >= budmin)
1684 			break;
1685 	}
1686 
1687 	*blkno = b;
1688 	return (0);
1689 }
1690 
1691 
1692 /*
1693  * NAME:	dbAllocCtl()
1694  *
1695  * FUNCTION:	attempt to allocate a specified number of contiguous
1696  *		blocks starting within a specific dmap.
1697  *
1698  *		this routine is called by higher level routines that search
1699  *		the dmap control pages above the actual dmaps for contiguous
1700  *		free space.  the result of successful searches by these
1701  *		routines are the starting block numbers within dmaps, with
1702  *		the dmaps themselves containing the desired contiguous free
1703  *		space or starting a contiguous free space of desired size
1704  *		that is made up of the blocks of one or more dmaps. these
1705  *		calls should not fail due to insufficent resources.
1706  *
1707  *		this routine is called in some cases where it is not known
1708  *		whether it will fail due to insufficient resources.  more
1709  *		specifically, this occurs when allocating from an allocation
1710  *		group whose size is equal to the number of blocks per dmap.
1711  *		in this case, the dmap control pages are not examined prior
1712  *		to calling this routine (to save pathlength) and the call
1713  *		might fail.
1714  *
1715  *		for a request size that fits within a dmap, this routine relies
1716  *		upon the dmap's dmtree to find the requested contiguous free
1717  *		space.  for request sizes that are larger than a dmap, the
1718  *		requested free space will start at the first block of the
1719  *		first dmap (i.e. blkno).
1720  *
1721  * PARAMETERS:
1722  *	bmp	-  pointer to bmap descriptor
1723  *	nblocks	 -  actual number of contiguous free blocks to allocate.
1724  *	l2nb	 -  log2 number of contiguous free blocks to allocate.
1725  *	blkno	 -  starting block number of the dmap to start the allocation
1726  *		    from.
1727  *	results	-  on successful return, set to the starting block number
1728  *		   of the newly allocated range.
1729  *
1730  * RETURN VALUES:
1731  *	0	- success
1732  *	-ENOSPC	- insufficient disk resources
1733  *	-EIO	- i/o error
1734  *
1735  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1736  */
1737 static int
1738 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1739 {
1740 	int rc, nb;
1741 	s64 b, lblkno, n;
1742 	struct metapage *mp;
1743 	struct dmap *dp;
1744 
1745 	/* check if the allocation request is confined to a single dmap.
1746 	 */
1747 	if (l2nb <= L2BPERDMAP) {
1748 		/* get the buffer for the dmap.
1749 		 */
1750 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1751 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1752 		if (mp == NULL)
1753 			return -EIO;
1754 		dp = (struct dmap *) mp->data;
1755 
1756 		/* try to allocate the blocks.
1757 		 */
1758 		rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1759 		if (rc == 0)
1760 			mark_metapage_dirty(mp);
1761 
1762 		release_metapage(mp);
1763 
1764 		return (rc);
1765 	}
1766 
1767 	/* allocation request involving multiple dmaps. it must start on
1768 	 * a dmap boundary.
1769 	 */
1770 	assert((blkno & (BPERDMAP - 1)) == 0);
1771 
1772 	/* allocate the blocks dmap by dmap.
1773 	 */
1774 	for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1775 		/* get the buffer for the dmap.
1776 		 */
1777 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1778 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1779 		if (mp == NULL) {
1780 			rc = -EIO;
1781 			goto backout;
1782 		}
1783 		dp = (struct dmap *) mp->data;
1784 
1785 		/* the dmap better be all free.
1786 		 */
1787 		if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1788 			release_metapage(mp);
1789 			jfs_error(bmp->db_ipbmap->i_sb,
1790 				  "dbAllocCtl: the dmap is not all free");
1791 			rc = -EIO;
1792 			goto backout;
1793 		}
1794 
1795 		/* determine how many blocks to allocate from this dmap.
1796 		 */
1797 		nb = min(n, (s64)BPERDMAP);
1798 
1799 		/* allocate the blocks from the dmap.
1800 		 */
1801 		if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1802 			release_metapage(mp);
1803 			goto backout;
1804 		}
1805 
1806 		/* write the buffer.
1807 		 */
1808 		write_metapage(mp);
1809 	}
1810 
1811 	/* set the results (starting block number) and return.
1812 	 */
1813 	*results = blkno;
1814 	return (0);
1815 
1816 	/* something failed in handling an allocation request involving
1817 	 * multiple dmaps.  we'll try to clean up by backing out any
1818 	 * allocation that has already happened for this request.  if
1819 	 * we fail in backing out the allocation, we'll mark the file
1820 	 * system to indicate that blocks have been leaked.
1821 	 */
1822       backout:
1823 
1824 	/* try to backout the allocations dmap by dmap.
1825 	 */
1826 	for (n = nblocks - n, b = blkno; n > 0;
1827 	     n -= BPERDMAP, b += BPERDMAP) {
1828 		/* get the buffer for this dmap.
1829 		 */
1830 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1831 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1832 		if (mp == NULL) {
1833 			/* could not back out.  mark the file system
1834 			 * to indicate that we have leaked blocks.
1835 			 */
1836 			jfs_error(bmp->db_ipbmap->i_sb,
1837 				  "dbAllocCtl: I/O Error: Block Leakage.");
1838 			continue;
1839 		}
1840 		dp = (struct dmap *) mp->data;
1841 
1842 		/* free the blocks is this dmap.
1843 		 */
1844 		if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1845 			/* could not back out.  mark the file system
1846 			 * to indicate that we have leaked blocks.
1847 			 */
1848 			release_metapage(mp);
1849 			jfs_error(bmp->db_ipbmap->i_sb,
1850 				  "dbAllocCtl: Block Leakage.");
1851 			continue;
1852 		}
1853 
1854 		/* write the buffer.
1855 		 */
1856 		write_metapage(mp);
1857 	}
1858 
1859 	return (rc);
1860 }
1861 
1862 
1863 /*
1864  * NAME:	dbAllocDmapLev()
1865  *
1866  * FUNCTION:	attempt to allocate a specified number of contiguous blocks
1867  *		from a specified dmap.
1868  *
1869  *		this routine checks if the contiguous blocks are available.
1870  *		if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1871  *		returned.
1872  *
1873  * PARAMETERS:
1874  *	mp	-  pointer to bmap descriptor
1875  *	dp	-  pointer to dmap to attempt to allocate blocks from.
1876  *	l2nb	-  log2 number of contiguous block desired.
1877  *	nblocks	-  actual number of contiguous block desired.
1878  *	results	-  on successful return, set to the starting block number
1879  *		   of the newly allocated range.
1880  *
1881  * RETURN VALUES:
1882  *	0	- success
1883  *	-ENOSPC	- insufficient disk resources
1884  *	-EIO	- i/o error
1885  *
1886  * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1887  *	IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1888  */
1889 static int
1890 dbAllocDmapLev(struct bmap * bmp,
1891 	       struct dmap * dp, int nblocks, int l2nb, s64 * results)
1892 {
1893 	s64 blkno;
1894 	int leafidx, rc;
1895 
1896 	/* can't be more than a dmaps worth of blocks */
1897 	assert(l2nb <= L2BPERDMAP);
1898 
1899 	/* search the tree within the dmap page for sufficient
1900 	 * free space.  if sufficient free space is found, dbFindLeaf()
1901 	 * returns the index of the leaf at which free space was found.
1902 	 */
1903 	if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
1904 		return -ENOSPC;
1905 
1906 	/* determine the block number within the file system corresponding
1907 	 * to the leaf at which free space was found.
1908 	 */
1909 	blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1910 
1911 	/* if not all bits of the dmap word are free, get the starting
1912 	 * bit number within the dmap word of the required string of free
1913 	 * bits and adjust the block number with this value.
1914 	 */
1915 	if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1916 		blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1917 
1918 	/* allocate the blocks */
1919 	if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1920 		*results = blkno;
1921 
1922 	return (rc);
1923 }
1924 
1925 
1926 /*
1927  * NAME:	dbAllocDmap()
1928  *
1929  * FUNCTION:	adjust the disk allocation map to reflect the allocation
1930  *		of a specified block range within a dmap.
1931  *
1932  *		this routine allocates the specified blocks from the dmap
1933  *		through a call to dbAllocBits(). if the allocation of the
1934  *		block range causes the maximum string of free blocks within
1935  *		the dmap to change (i.e. the value of the root of the dmap's
1936  *		dmtree), this routine will cause this change to be reflected
1937  *		up through the appropriate levels of the dmap control pages
1938  *		by a call to dbAdjCtl() for the L0 dmap control page that
1939  *		covers this dmap.
1940  *
1941  * PARAMETERS:
1942  *	bmp	-  pointer to bmap descriptor
1943  *	dp	-  pointer to dmap to allocate the block range from.
1944  *	blkno	-  starting block number of the block to be allocated.
1945  *	nblocks	-  number of blocks to be allocated.
1946  *
1947  * RETURN VALUES:
1948  *	0	- success
1949  *	-EIO	- i/o error
1950  *
1951  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
1952  */
1953 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
1954 		       int nblocks)
1955 {
1956 	s8 oldroot;
1957 	int rc;
1958 
1959 	/* save the current value of the root (i.e. maximum free string)
1960 	 * of the dmap tree.
1961 	 */
1962 	oldroot = dp->tree.stree[ROOT];
1963 
1964 	/* allocate the specified (blocks) bits */
1965 	dbAllocBits(bmp, dp, blkno, nblocks);
1966 
1967 	/* if the root has not changed, done. */
1968 	if (dp->tree.stree[ROOT] == oldroot)
1969 		return (0);
1970 
1971 	/* root changed. bubble the change up to the dmap control pages.
1972 	 * if the adjustment of the upper level control pages fails,
1973 	 * backout the bit allocation (thus making everything consistent).
1974 	 */
1975 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
1976 		dbFreeBits(bmp, dp, blkno, nblocks);
1977 
1978 	return (rc);
1979 }
1980 
1981 
1982 /*
1983  * NAME:	dbFreeDmap()
1984  *
1985  * FUNCTION:	adjust the disk allocation map to reflect the allocation
1986  *		of a specified block range within a dmap.
1987  *
1988  *		this routine frees the specified blocks from the dmap through
1989  *		a call to dbFreeBits(). if the deallocation of the block range
1990  *		causes the maximum string of free blocks within the dmap to
1991  *		change (i.e. the value of the root of the dmap's dmtree), this
1992  *		routine will cause this change to be reflected up through the
1993  *		appropriate levels of the dmap control pages by a call to
1994  *		dbAdjCtl() for the L0 dmap control page that covers this dmap.
1995  *
1996  * PARAMETERS:
1997  *	bmp	-  pointer to bmap descriptor
1998  *	dp	-  pointer to dmap to free the block range from.
1999  *	blkno	-  starting block number of the block to be freed.
2000  *	nblocks	-  number of blocks to be freed.
2001  *
2002  * RETURN VALUES:
2003  *	0	- success
2004  *	-EIO	- i/o error
2005  *
2006  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2007  */
2008 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2009 		      int nblocks)
2010 {
2011 	s8 oldroot;
2012 	int rc = 0, word;
2013 
2014 	/* save the current value of the root (i.e. maximum free string)
2015 	 * of the dmap tree.
2016 	 */
2017 	oldroot = dp->tree.stree[ROOT];
2018 
2019 	/* free the specified (blocks) bits */
2020 	rc = dbFreeBits(bmp, dp, blkno, nblocks);
2021 
2022 	/* if error or the root has not changed, done. */
2023 	if (rc || (dp->tree.stree[ROOT] == oldroot))
2024 		return (rc);
2025 
2026 	/* root changed. bubble the change up to the dmap control pages.
2027 	 * if the adjustment of the upper level control pages fails,
2028 	 * backout the deallocation.
2029 	 */
2030 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2031 		word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2032 
2033 		/* as part of backing out the deallocation, we will have
2034 		 * to back split the dmap tree if the deallocation caused
2035 		 * the freed blocks to become part of a larger binary buddy
2036 		 * system.
2037 		 */
2038 		if (dp->tree.stree[word] == NOFREE)
2039 			dbBackSplit((dmtree_t *) & dp->tree, word);
2040 
2041 		dbAllocBits(bmp, dp, blkno, nblocks);
2042 	}
2043 
2044 	return (rc);
2045 }
2046 
2047 
2048 /*
2049  * NAME:	dbAllocBits()
2050  *
2051  * FUNCTION:	allocate a specified block range from a dmap.
2052  *
2053  *		this routine updates the dmap to reflect the working
2054  *		state allocation of the specified block range. it directly
2055  *		updates the bits of the working map and causes the adjustment
2056  *		of the binary buddy system described by the dmap's dmtree
2057  *		leaves to reflect the bits allocated.  it also causes the
2058  *		dmap's dmtree, as a whole, to reflect the allocated range.
2059  *
2060  * PARAMETERS:
2061  *	bmp	-  pointer to bmap descriptor
2062  *	dp	-  pointer to dmap to allocate bits from.
2063  *	blkno	-  starting block number of the bits to be allocated.
2064  *	nblocks	-  number of bits to be allocated.
2065  *
2066  * RETURN VALUES: none
2067  *
2068  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2069  */
2070 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2071 			int nblocks)
2072 {
2073 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2074 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2075 	int size;
2076 	s8 *leaf;
2077 
2078 	/* pick up a pointer to the leaves of the dmap tree */
2079 	leaf = dp->tree.stree + LEAFIND;
2080 
2081 	/* determine the bit number and word within the dmap of the
2082 	 * starting block.
2083 	 */
2084 	dbitno = blkno & (BPERDMAP - 1);
2085 	word = dbitno >> L2DBWORD;
2086 
2087 	/* block range better be within the dmap */
2088 	assert(dbitno + nblocks <= BPERDMAP);
2089 
2090 	/* allocate the bits of the dmap's words corresponding to the block
2091 	 * range. not all bits of the first and last words may be contained
2092 	 * within the block range.  if this is the case, we'll work against
2093 	 * those words (i.e. partial first and/or last) on an individual basis
2094 	 * (a single pass), allocating the bits of interest by hand and
2095 	 * updating the leaf corresponding to the dmap word. a single pass
2096 	 * will be used for all dmap words fully contained within the
2097 	 * specified range.  within this pass, the bits of all fully contained
2098 	 * dmap words will be marked as free in a single shot and the leaves
2099 	 * will be updated. a single leaf may describe the free space of
2100 	 * multiple dmap words, so we may update only a subset of the actual
2101 	 * leaves corresponding to the dmap words of the block range.
2102 	 */
2103 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2104 		/* determine the bit number within the word and
2105 		 * the number of bits within the word.
2106 		 */
2107 		wbitno = dbitno & (DBWORD - 1);
2108 		nb = min(rembits, DBWORD - wbitno);
2109 
2110 		/* check if only part of a word is to be allocated.
2111 		 */
2112 		if (nb < DBWORD) {
2113 			/* allocate (set to 1) the appropriate bits within
2114 			 * this dmap word.
2115 			 */
2116 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2117 						      >> wbitno);
2118 
2119 			/* update the leaf for this dmap word. in addition
2120 			 * to setting the leaf value to the binary buddy max
2121 			 * of the updated dmap word, dbSplit() will split
2122 			 * the binary system of the leaves if need be.
2123 			 */
2124 			dbSplit(tp, word, BUDMIN,
2125 				dbMaxBud((u8 *) & dp->wmap[word]));
2126 
2127 			word += 1;
2128 		} else {
2129 			/* one or more dmap words are fully contained
2130 			 * within the block range.  determine how many
2131 			 * words and allocate (set to 1) the bits of these
2132 			 * words.
2133 			 */
2134 			nwords = rembits >> L2DBWORD;
2135 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
2136 
2137 			/* determine how many bits.
2138 			 */
2139 			nb = nwords << L2DBWORD;
2140 
2141 			/* now update the appropriate leaves to reflect
2142 			 * the allocated words.
2143 			 */
2144 			for (; nwords > 0; nwords -= nw) {
2145 				if (leaf[word] < BUDMIN) {
2146 					jfs_error(bmp->db_ipbmap->i_sb,
2147 						  "dbAllocBits: leaf page "
2148 						  "corrupt");
2149 					break;
2150 				}
2151 
2152 				/* determine what the leaf value should be
2153 				 * updated to as the minimum of the l2 number
2154 				 * of bits being allocated and the l2 number
2155 				 * of bits currently described by this leaf.
2156 				 */
2157 				size = min((int)leaf[word], NLSTOL2BSZ(nwords));
2158 
2159 				/* update the leaf to reflect the allocation.
2160 				 * in addition to setting the leaf value to
2161 				 * NOFREE, dbSplit() will split the binary
2162 				 * system of the leaves to reflect the current
2163 				 * allocation (size).
2164 				 */
2165 				dbSplit(tp, word, size, NOFREE);
2166 
2167 				/* get the number of dmap words handled */
2168 				nw = BUDSIZE(size, BUDMIN);
2169 				word += nw;
2170 			}
2171 		}
2172 	}
2173 
2174 	/* update the free count for this dmap */
2175 	le32_add_cpu(&dp->nfree, -nblocks);
2176 
2177 	BMAP_LOCK(bmp);
2178 
2179 	/* if this allocation group is completely free,
2180 	 * update the maximum allocation group number if this allocation
2181 	 * group is the new max.
2182 	 */
2183 	agno = blkno >> bmp->db_agl2size;
2184 	if (agno > bmp->db_maxag)
2185 		bmp->db_maxag = agno;
2186 
2187 	/* update the free count for the allocation group and map */
2188 	bmp->db_agfree[agno] -= nblocks;
2189 	bmp->db_nfree -= nblocks;
2190 
2191 	BMAP_UNLOCK(bmp);
2192 }
2193 
2194 
2195 /*
2196  * NAME:	dbFreeBits()
2197  *
2198  * FUNCTION:	free a specified block range from a dmap.
2199  *
2200  *		this routine updates the dmap to reflect the working
2201  *		state allocation of the specified block range. it directly
2202  *		updates the bits of the working map and causes the adjustment
2203  *		of the binary buddy system described by the dmap's dmtree
2204  *		leaves to reflect the bits freed.  it also causes the dmap's
2205  *		dmtree, as a whole, to reflect the deallocated range.
2206  *
2207  * PARAMETERS:
2208  *	bmp	-  pointer to bmap descriptor
2209  *	dp	-  pointer to dmap to free bits from.
2210  *	blkno	-  starting block number of the bits to be freed.
2211  *	nblocks	-  number of bits to be freed.
2212  *
2213  * RETURN VALUES: 0 for success
2214  *
2215  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2216  */
2217 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2218 		       int nblocks)
2219 {
2220 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2221 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2222 	int rc = 0;
2223 	int size;
2224 
2225 	/* determine the bit number and word within the dmap of the
2226 	 * starting block.
2227 	 */
2228 	dbitno = blkno & (BPERDMAP - 1);
2229 	word = dbitno >> L2DBWORD;
2230 
2231 	/* block range better be within the dmap.
2232 	 */
2233 	assert(dbitno + nblocks <= BPERDMAP);
2234 
2235 	/* free the bits of the dmaps words corresponding to the block range.
2236 	 * not all bits of the first and last words may be contained within
2237 	 * the block range.  if this is the case, we'll work against those
2238 	 * words (i.e. partial first and/or last) on an individual basis
2239 	 * (a single pass), freeing the bits of interest by hand and updating
2240 	 * the leaf corresponding to the dmap word. a single pass will be used
2241 	 * for all dmap words fully contained within the specified range.
2242 	 * within this pass, the bits of all fully contained dmap words will
2243 	 * be marked as free in a single shot and the leaves will be updated. a
2244 	 * single leaf may describe the free space of multiple dmap words,
2245 	 * so we may update only a subset of the actual leaves corresponding
2246 	 * to the dmap words of the block range.
2247 	 *
2248 	 * dbJoin() is used to update leaf values and will join the binary
2249 	 * buddy system of the leaves if the new leaf values indicate this
2250 	 * should be done.
2251 	 */
2252 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2253 		/* determine the bit number within the word and
2254 		 * the number of bits within the word.
2255 		 */
2256 		wbitno = dbitno & (DBWORD - 1);
2257 		nb = min(rembits, DBWORD - wbitno);
2258 
2259 		/* check if only part of a word is to be freed.
2260 		 */
2261 		if (nb < DBWORD) {
2262 			/* free (zero) the appropriate bits within this
2263 			 * dmap word.
2264 			 */
2265 			dp->wmap[word] &=
2266 			    cpu_to_le32(~(ONES << (DBWORD - nb)
2267 					  >> wbitno));
2268 
2269 			/* update the leaf for this dmap word.
2270 			 */
2271 			rc = dbJoin(tp, word,
2272 				    dbMaxBud((u8 *) & dp->wmap[word]));
2273 			if (rc)
2274 				return rc;
2275 
2276 			word += 1;
2277 		} else {
2278 			/* one or more dmap words are fully contained
2279 			 * within the block range.  determine how many
2280 			 * words and free (zero) the bits of these words.
2281 			 */
2282 			nwords = rembits >> L2DBWORD;
2283 			memset(&dp->wmap[word], 0, nwords * 4);
2284 
2285 			/* determine how many bits.
2286 			 */
2287 			nb = nwords << L2DBWORD;
2288 
2289 			/* now update the appropriate leaves to reflect
2290 			 * the freed words.
2291 			 */
2292 			for (; nwords > 0; nwords -= nw) {
2293 				/* determine what the leaf value should be
2294 				 * updated to as the minimum of the l2 number
2295 				 * of bits being freed and the l2 (max) number
2296 				 * of bits that can be described by this leaf.
2297 				 */
2298 				size =
2299 				    min(LITOL2BSZ
2300 					(word, L2LPERDMAP, BUDMIN),
2301 					NLSTOL2BSZ(nwords));
2302 
2303 				/* update the leaf.
2304 				 */
2305 				rc = dbJoin(tp, word, size);
2306 				if (rc)
2307 					return rc;
2308 
2309 				/* get the number of dmap words handled.
2310 				 */
2311 				nw = BUDSIZE(size, BUDMIN);
2312 				word += nw;
2313 			}
2314 		}
2315 	}
2316 
2317 	/* update the free count for this dmap.
2318 	 */
2319 	le32_add_cpu(&dp->nfree, nblocks);
2320 
2321 	BMAP_LOCK(bmp);
2322 
2323 	/* update the free count for the allocation group and
2324 	 * map.
2325 	 */
2326 	agno = blkno >> bmp->db_agl2size;
2327 	bmp->db_nfree += nblocks;
2328 	bmp->db_agfree[agno] += nblocks;
2329 
2330 	/* check if this allocation group is not completely free and
2331 	 * if it is currently the maximum (rightmost) allocation group.
2332 	 * if so, establish the new maximum allocation group number by
2333 	 * searching left for the first allocation group with allocation.
2334 	 */
2335 	if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2336 	    (agno == bmp->db_numag - 1 &&
2337 	     bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2338 		while (bmp->db_maxag > 0) {
2339 			bmp->db_maxag -= 1;
2340 			if (bmp->db_agfree[bmp->db_maxag] !=
2341 			    bmp->db_agsize)
2342 				break;
2343 		}
2344 
2345 		/* re-establish the allocation group preference if the
2346 		 * current preference is right of the maximum allocation
2347 		 * group.
2348 		 */
2349 		if (bmp->db_agpref > bmp->db_maxag)
2350 			bmp->db_agpref = bmp->db_maxag;
2351 	}
2352 
2353 	BMAP_UNLOCK(bmp);
2354 
2355 	return 0;
2356 }
2357 
2358 
2359 /*
2360  * NAME:	dbAdjCtl()
2361  *
2362  * FUNCTION:	adjust a dmap control page at a specified level to reflect
2363  *		the change in a lower level dmap or dmap control page's
2364  *		maximum string of free blocks (i.e. a change in the root
2365  *		of the lower level object's dmtree) due to the allocation
2366  *		or deallocation of a range of blocks with a single dmap.
2367  *
2368  *		on entry, this routine is provided with the new value of
2369  *		the lower level dmap or dmap control page root and the
2370  *		starting block number of the block range whose allocation
2371  *		or deallocation resulted in the root change.  this range
2372  *		is respresented by a single leaf of the current dmapctl
2373  *		and the leaf will be updated with this value, possibly
2374  *		causing a binary buddy system within the leaves to be
2375  *		split or joined.  the update may also cause the dmapctl's
2376  *		dmtree to be updated.
2377  *
2378  *		if the adjustment of the dmap control page, itself, causes its
2379  *		root to change, this change will be bubbled up to the next dmap
2380  *		control level by a recursive call to this routine, specifying
2381  *		the new root value and the next dmap control page level to
2382  *		be adjusted.
2383  * PARAMETERS:
2384  *	bmp	-  pointer to bmap descriptor
2385  *	blkno	-  the first block of a block range within a dmap.  it is
2386  *		   the allocation or deallocation of this block range that
2387  *		   requires the dmap control page to be adjusted.
2388  *	newval	-  the new value of the lower level dmap or dmap control
2389  *		   page root.
2390  *	alloc	-  'true' if adjustment is due to an allocation.
2391  *	level	-  current level of dmap control page (i.e. L0, L1, L2) to
2392  *		   be adjusted.
2393  *
2394  * RETURN VALUES:
2395  *	0	- success
2396  *	-EIO	- i/o error
2397  *
2398  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2399  */
2400 static int
2401 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2402 {
2403 	struct metapage *mp;
2404 	s8 oldroot;
2405 	int oldval;
2406 	s64 lblkno;
2407 	struct dmapctl *dcp;
2408 	int rc, leafno, ti;
2409 
2410 	/* get the buffer for the dmap control page for the specified
2411 	 * block number and control page level.
2412 	 */
2413 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2414 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2415 	if (mp == NULL)
2416 		return -EIO;
2417 	dcp = (struct dmapctl *) mp->data;
2418 
2419 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2420 		jfs_error(bmp->db_ipbmap->i_sb,
2421 			  "dbAdjCtl: Corrupt dmapctl page");
2422 		release_metapage(mp);
2423 		return -EIO;
2424 	}
2425 
2426 	/* determine the leaf number corresponding to the block and
2427 	 * the index within the dmap control tree.
2428 	 */
2429 	leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2430 	ti = leafno + le32_to_cpu(dcp->leafidx);
2431 
2432 	/* save the current leaf value and the current root level (i.e.
2433 	 * maximum l2 free string described by this dmapctl).
2434 	 */
2435 	oldval = dcp->stree[ti];
2436 	oldroot = dcp->stree[ROOT];
2437 
2438 	/* check if this is a control page update for an allocation.
2439 	 * if so, update the leaf to reflect the new leaf value using
2440 	 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2441 	 * the leaf with the new value.  in addition to updating the
2442 	 * leaf, dbSplit() will also split the binary buddy system of
2443 	 * the leaves, if required, and bubble new values within the
2444 	 * dmapctl tree, if required.  similarly, dbJoin() will join
2445 	 * the binary buddy system of leaves and bubble new values up
2446 	 * the dmapctl tree as required by the new leaf value.
2447 	 */
2448 	if (alloc) {
2449 		/* check if we are in the middle of a binary buddy
2450 		 * system.  this happens when we are performing the
2451 		 * first allocation out of an allocation group that
2452 		 * is part (not the first part) of a larger binary
2453 		 * buddy system.  if we are in the middle, back split
2454 		 * the system prior to calling dbSplit() which assumes
2455 		 * that it is at the front of a binary buddy system.
2456 		 */
2457 		if (oldval == NOFREE) {
2458 			rc = dbBackSplit((dmtree_t *) dcp, leafno);
2459 			if (rc)
2460 				return rc;
2461 			oldval = dcp->stree[ti];
2462 		}
2463 		dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2464 	} else {
2465 		rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2466 		if (rc)
2467 			return rc;
2468 	}
2469 
2470 	/* check if the root of the current dmap control page changed due
2471 	 * to the update and if the current dmap control page is not at
2472 	 * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2473 	 * root changed and this is not the top level), call this routine
2474 	 * again (recursion) for the next higher level of the mapping to
2475 	 * reflect the change in root for the current dmap control page.
2476 	 */
2477 	if (dcp->stree[ROOT] != oldroot) {
2478 		/* are we below the top level of the map.  if so,
2479 		 * bubble the root up to the next higher level.
2480 		 */
2481 		if (level < bmp->db_maxlevel) {
2482 			/* bubble up the new root of this dmap control page to
2483 			 * the next level.
2484 			 */
2485 			if ((rc =
2486 			     dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2487 				      level + 1))) {
2488 				/* something went wrong in bubbling up the new
2489 				 * root value, so backout the changes to the
2490 				 * current dmap control page.
2491 				 */
2492 				if (alloc) {
2493 					dbJoin((dmtree_t *) dcp, leafno,
2494 					       oldval);
2495 				} else {
2496 					/* the dbJoin() above might have
2497 					 * caused a larger binary buddy system
2498 					 * to form and we may now be in the
2499 					 * middle of it.  if this is the case,
2500 					 * back split the buddies.
2501 					 */
2502 					if (dcp->stree[ti] == NOFREE)
2503 						dbBackSplit((dmtree_t *)
2504 							    dcp, leafno);
2505 					dbSplit((dmtree_t *) dcp, leafno,
2506 						dcp->budmin, oldval);
2507 				}
2508 
2509 				/* release the buffer and return the error.
2510 				 */
2511 				release_metapage(mp);
2512 				return (rc);
2513 			}
2514 		} else {
2515 			/* we're at the top level of the map. update
2516 			 * the bmap control page to reflect the size
2517 			 * of the maximum free buddy system.
2518 			 */
2519 			assert(level == bmp->db_maxlevel);
2520 			if (bmp->db_maxfreebud != oldroot) {
2521 				jfs_error(bmp->db_ipbmap->i_sb,
2522 					  "dbAdjCtl: the maximum free buddy is "
2523 					  "not the old root");
2524 			}
2525 			bmp->db_maxfreebud = dcp->stree[ROOT];
2526 		}
2527 	}
2528 
2529 	/* write the buffer.
2530 	 */
2531 	write_metapage(mp);
2532 
2533 	return (0);
2534 }
2535 
2536 
2537 /*
2538  * NAME:	dbSplit()
2539  *
2540  * FUNCTION:	update the leaf of a dmtree with a new value, splitting
2541  *		the leaf from the binary buddy system of the dmtree's
2542  *		leaves, as required.
2543  *
2544  * PARAMETERS:
2545  *	tp	- pointer to the tree containing the leaf.
2546  *	leafno	- the number of the leaf to be updated.
2547  *	splitsz	- the size the binary buddy system starting at the leaf
2548  *		  must be split to, specified as the log2 number of blocks.
2549  *	newval	- the new value for the leaf.
2550  *
2551  * RETURN VALUES: none
2552  *
2553  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2554  */
2555 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2556 {
2557 	int budsz;
2558 	int cursz;
2559 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2560 
2561 	/* check if the leaf needs to be split.
2562 	 */
2563 	if (leaf[leafno] > tp->dmt_budmin) {
2564 		/* the split occurs by cutting the buddy system in half
2565 		 * at the specified leaf until we reach the specified
2566 		 * size.  pick up the starting split size (current size
2567 		 * - 1 in l2) and the corresponding buddy size.
2568 		 */
2569 		cursz = leaf[leafno] - 1;
2570 		budsz = BUDSIZE(cursz, tp->dmt_budmin);
2571 
2572 		/* split until we reach the specified size.
2573 		 */
2574 		while (cursz >= splitsz) {
2575 			/* update the buddy's leaf with its new value.
2576 			 */
2577 			dbAdjTree(tp, leafno ^ budsz, cursz);
2578 
2579 			/* on to the next size and buddy.
2580 			 */
2581 			cursz -= 1;
2582 			budsz >>= 1;
2583 		}
2584 	}
2585 
2586 	/* adjust the dmap tree to reflect the specified leaf's new
2587 	 * value.
2588 	 */
2589 	dbAdjTree(tp, leafno, newval);
2590 }
2591 
2592 
2593 /*
2594  * NAME:	dbBackSplit()
2595  *
2596  * FUNCTION:	back split the binary buddy system of dmtree leaves
2597  *		that hold a specified leaf until the specified leaf
2598  *		starts its own binary buddy system.
2599  *
2600  *		the allocators typically perform allocations at the start
2601  *		of binary buddy systems and dbSplit() is used to accomplish
2602  *		any required splits.  in some cases, however, allocation
2603  *		may occur in the middle of a binary system and requires a
2604  *		back split, with the split proceeding out from the middle of
2605  *		the system (less efficient) rather than the start of the
2606  *		system (more efficient).  the cases in which a back split
2607  *		is required are rare and are limited to the first allocation
2608  *		within an allocation group which is a part (not first part)
2609  *		of a larger binary buddy system and a few exception cases
2610  *		in which a previous join operation must be backed out.
2611  *
2612  * PARAMETERS:
2613  *	tp	- pointer to the tree containing the leaf.
2614  *	leafno	- the number of the leaf to be updated.
2615  *
2616  * RETURN VALUES: none
2617  *
2618  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2619  */
2620 static int dbBackSplit(dmtree_t * tp, int leafno)
2621 {
2622 	int budsz, bud, w, bsz, size;
2623 	int cursz;
2624 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2625 
2626 	/* leaf should be part (not first part) of a binary
2627 	 * buddy system.
2628 	 */
2629 	assert(leaf[leafno] == NOFREE);
2630 
2631 	/* the back split is accomplished by iteratively finding the leaf
2632 	 * that starts the buddy system that contains the specified leaf and
2633 	 * splitting that system in two.  this iteration continues until
2634 	 * the specified leaf becomes the start of a buddy system.
2635 	 *
2636 	 * determine maximum possible l2 size for the specified leaf.
2637 	 */
2638 	size =
2639 	    LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2640 		      tp->dmt_budmin);
2641 
2642 	/* determine the number of leaves covered by this size.  this
2643 	 * is the buddy size that we will start with as we search for
2644 	 * the buddy system that contains the specified leaf.
2645 	 */
2646 	budsz = BUDSIZE(size, tp->dmt_budmin);
2647 
2648 	/* back split.
2649 	 */
2650 	while (leaf[leafno] == NOFREE) {
2651 		/* find the leftmost buddy leaf.
2652 		 */
2653 		for (w = leafno, bsz = budsz;; bsz <<= 1,
2654 		     w = (w < bud) ? w : bud) {
2655 			if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2656 				jfs_err("JFS: block map error in dbBackSplit");
2657 				return -EIO;
2658 			}
2659 
2660 			/* determine the buddy.
2661 			 */
2662 			bud = w ^ bsz;
2663 
2664 			/* check if this buddy is the start of the system.
2665 			 */
2666 			if (leaf[bud] != NOFREE) {
2667 				/* split the leaf at the start of the
2668 				 * system in two.
2669 				 */
2670 				cursz = leaf[bud] - 1;
2671 				dbSplit(tp, bud, cursz, cursz);
2672 				break;
2673 			}
2674 		}
2675 	}
2676 
2677 	if (leaf[leafno] != size) {
2678 		jfs_err("JFS: wrong leaf value in dbBackSplit");
2679 		return -EIO;
2680 	}
2681 	return 0;
2682 }
2683 
2684 
2685 /*
2686  * NAME:	dbJoin()
2687  *
2688  * FUNCTION:	update the leaf of a dmtree with a new value, joining
2689  *		the leaf with other leaves of the dmtree into a multi-leaf
2690  *		binary buddy system, as required.
2691  *
2692  * PARAMETERS:
2693  *	tp	- pointer to the tree containing the leaf.
2694  *	leafno	- the number of the leaf to be updated.
2695  *	newval	- the new value for the leaf.
2696  *
2697  * RETURN VALUES: none
2698  */
2699 static int dbJoin(dmtree_t * tp, int leafno, int newval)
2700 {
2701 	int budsz, buddy;
2702 	s8 *leaf;
2703 
2704 	/* can the new leaf value require a join with other leaves ?
2705 	 */
2706 	if (newval >= tp->dmt_budmin) {
2707 		/* pickup a pointer to the leaves of the tree.
2708 		 */
2709 		leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2710 
2711 		/* try to join the specified leaf into a large binary
2712 		 * buddy system.  the join proceeds by attempting to join
2713 		 * the specified leafno with its buddy (leaf) at new value.
2714 		 * if the join occurs, we attempt to join the left leaf
2715 		 * of the joined buddies with its buddy at new value + 1.
2716 		 * we continue to join until we find a buddy that cannot be
2717 		 * joined (does not have a value equal to the size of the
2718 		 * last join) or until all leaves have been joined into a
2719 		 * single system.
2720 		 *
2721 		 * get the buddy size (number of words covered) of
2722 		 * the new value.
2723 		 */
2724 		budsz = BUDSIZE(newval, tp->dmt_budmin);
2725 
2726 		/* try to join.
2727 		 */
2728 		while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2729 			/* get the buddy leaf.
2730 			 */
2731 			buddy = leafno ^ budsz;
2732 
2733 			/* if the leaf's new value is greater than its
2734 			 * buddy's value, we join no more.
2735 			 */
2736 			if (newval > leaf[buddy])
2737 				break;
2738 
2739 			/* It shouldn't be less */
2740 			if (newval < leaf[buddy])
2741 				return -EIO;
2742 
2743 			/* check which (leafno or buddy) is the left buddy.
2744 			 * the left buddy gets to claim the blocks resulting
2745 			 * from the join while the right gets to claim none.
2746 			 * the left buddy is also eligable to participate in
2747 			 * a join at the next higher level while the right
2748 			 * is not.
2749 			 *
2750 			 */
2751 			if (leafno < buddy) {
2752 				/* leafno is the left buddy.
2753 				 */
2754 				dbAdjTree(tp, buddy, NOFREE);
2755 			} else {
2756 				/* buddy is the left buddy and becomes
2757 				 * leafno.
2758 				 */
2759 				dbAdjTree(tp, leafno, NOFREE);
2760 				leafno = buddy;
2761 			}
2762 
2763 			/* on to try the next join.
2764 			 */
2765 			newval += 1;
2766 			budsz <<= 1;
2767 		}
2768 	}
2769 
2770 	/* update the leaf value.
2771 	 */
2772 	dbAdjTree(tp, leafno, newval);
2773 
2774 	return 0;
2775 }
2776 
2777 
2778 /*
2779  * NAME:	dbAdjTree()
2780  *
2781  * FUNCTION:	update a leaf of a dmtree with a new value, adjusting
2782  *		the dmtree, as required, to reflect the new leaf value.
2783  *		the combination of any buddies must already be done before
2784  *		this is called.
2785  *
2786  * PARAMETERS:
2787  *	tp	- pointer to the tree to be adjusted.
2788  *	leafno	- the number of the leaf to be updated.
2789  *	newval	- the new value for the leaf.
2790  *
2791  * RETURN VALUES: none
2792  */
2793 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2794 {
2795 	int lp, pp, k;
2796 	int max;
2797 
2798 	/* pick up the index of the leaf for this leafno.
2799 	 */
2800 	lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2801 
2802 	/* is the current value the same as the old value ?  if so,
2803 	 * there is nothing to do.
2804 	 */
2805 	if (tp->dmt_stree[lp] == newval)
2806 		return;
2807 
2808 	/* set the new value.
2809 	 */
2810 	tp->dmt_stree[lp] = newval;
2811 
2812 	/* bubble the new value up the tree as required.
2813 	 */
2814 	for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2815 		/* get the index of the first leaf of the 4 leaf
2816 		 * group containing the specified leaf (leafno).
2817 		 */
2818 		lp = ((lp - 1) & ~0x03) + 1;
2819 
2820 		/* get the index of the parent of this 4 leaf group.
2821 		 */
2822 		pp = (lp - 1) >> 2;
2823 
2824 		/* determine the maximum of the 4 leaves.
2825 		 */
2826 		max = TREEMAX(&tp->dmt_stree[lp]);
2827 
2828 		/* if the maximum of the 4 is the same as the
2829 		 * parent's value, we're done.
2830 		 */
2831 		if (tp->dmt_stree[pp] == max)
2832 			break;
2833 
2834 		/* parent gets new value.
2835 		 */
2836 		tp->dmt_stree[pp] = max;
2837 
2838 		/* parent becomes leaf for next go-round.
2839 		 */
2840 		lp = pp;
2841 	}
2842 }
2843 
2844 
2845 /*
2846  * NAME:	dbFindLeaf()
2847  *
2848  * FUNCTION:	search a dmtree_t for sufficient free blocks, returning
2849  *		the index of a leaf describing the free blocks if
2850  *		sufficient free blocks are found.
2851  *
2852  *		the search starts at the top of the dmtree_t tree and
2853  *		proceeds down the tree to the leftmost leaf with sufficient
2854  *		free space.
2855  *
2856  * PARAMETERS:
2857  *	tp	- pointer to the tree to be searched.
2858  *	l2nb	- log2 number of free blocks to search for.
2859  *	leafidx	- return pointer to be set to the index of the leaf
2860  *		  describing at least l2nb free blocks if sufficient
2861  *		  free blocks are found.
2862  *
2863  * RETURN VALUES:
2864  *	0	- success
2865  *	-ENOSPC	- insufficient free blocks.
2866  */
2867 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2868 {
2869 	int ti, n = 0, k, x = 0;
2870 
2871 	/* first check the root of the tree to see if there is
2872 	 * sufficient free space.
2873 	 */
2874 	if (l2nb > tp->dmt_stree[ROOT])
2875 		return -ENOSPC;
2876 
2877 	/* sufficient free space available. now search down the tree
2878 	 * starting at the next level for the leftmost leaf that
2879 	 * describes sufficient free space.
2880 	 */
2881 	for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2882 	     k > 0; k--, ti = ((ti + n) << 2) + 1) {
2883 		/* search the four nodes at this level, starting from
2884 		 * the left.
2885 		 */
2886 		for (x = ti, n = 0; n < 4; n++) {
2887 			/* sufficient free space found.  move to the next
2888 			 * level (or quit if this is the last level).
2889 			 */
2890 			if (l2nb <= tp->dmt_stree[x + n])
2891 				break;
2892 		}
2893 
2894 		/* better have found something since the higher
2895 		 * levels of the tree said it was here.
2896 		 */
2897 		assert(n < 4);
2898 	}
2899 
2900 	/* set the return to the leftmost leaf describing sufficient
2901 	 * free space.
2902 	 */
2903 	*leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2904 
2905 	return (0);
2906 }
2907 
2908 
2909 /*
2910  * NAME:	dbFindBits()
2911  *
2912  * FUNCTION:	find a specified number of binary buddy free bits within a
2913  *		dmap bitmap word value.
2914  *
2915  *		this routine searches the bitmap value for (1 << l2nb) free
2916  *		bits at (1 << l2nb) alignments within the value.
2917  *
2918  * PARAMETERS:
2919  *	word	-  dmap bitmap word value.
2920  *	l2nb	-  number of free bits specified as a log2 number.
2921  *
2922  * RETURN VALUES:
2923  *	starting bit number of free bits.
2924  */
2925 static int dbFindBits(u32 word, int l2nb)
2926 {
2927 	int bitno, nb;
2928 	u32 mask;
2929 
2930 	/* get the number of bits.
2931 	 */
2932 	nb = 1 << l2nb;
2933 	assert(nb <= DBWORD);
2934 
2935 	/* complement the word so we can use a mask (i.e. 0s represent
2936 	 * free bits) and compute the mask.
2937 	 */
2938 	word = ~word;
2939 	mask = ONES << (DBWORD - nb);
2940 
2941 	/* scan the word for nb free bits at nb alignments.
2942 	 */
2943 	for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
2944 		if ((mask & word) == mask)
2945 			break;
2946 	}
2947 
2948 	ASSERT(bitno < 32);
2949 
2950 	/* return the bit number.
2951 	 */
2952 	return (bitno);
2953 }
2954 
2955 
2956 /*
2957  * NAME:	dbMaxBud(u8 *cp)
2958  *
2959  * FUNCTION:	determine the largest binary buddy string of free
2960  *		bits within 32-bits of the map.
2961  *
2962  * PARAMETERS:
2963  *	cp	-  pointer to the 32-bit value.
2964  *
2965  * RETURN VALUES:
2966  *	largest binary buddy of free bits within a dmap word.
2967  */
2968 static int dbMaxBud(u8 * cp)
2969 {
2970 	signed char tmp1, tmp2;
2971 
2972 	/* check if the wmap word is all free. if so, the
2973 	 * free buddy size is BUDMIN.
2974 	 */
2975 	if (*((uint *) cp) == 0)
2976 		return (BUDMIN);
2977 
2978 	/* check if the wmap word is half free. if so, the
2979 	 * free buddy size is BUDMIN-1.
2980 	 */
2981 	if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
2982 		return (BUDMIN - 1);
2983 
2984 	/* not all free or half free. determine the free buddy
2985 	 * size thru table lookup using quarters of the wmap word.
2986 	 */
2987 	tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
2988 	tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
2989 	return (max(tmp1, tmp2));
2990 }
2991 
2992 
2993 /*
2994  * NAME:	cnttz(uint word)
2995  *
2996  * FUNCTION:	determine the number of trailing zeros within a 32-bit
2997  *		value.
2998  *
2999  * PARAMETERS:
3000  *	value	-  32-bit value to be examined.
3001  *
3002  * RETURN VALUES:
3003  *	count of trailing zeros
3004  */
3005 static int cnttz(u32 word)
3006 {
3007 	int n;
3008 
3009 	for (n = 0; n < 32; n++, word >>= 1) {
3010 		if (word & 0x01)
3011 			break;
3012 	}
3013 
3014 	return (n);
3015 }
3016 
3017 
3018 /*
3019  * NAME:	cntlz(u32 value)
3020  *
3021  * FUNCTION:	determine the number of leading zeros within a 32-bit
3022  *		value.
3023  *
3024  * PARAMETERS:
3025  *	value	-  32-bit value to be examined.
3026  *
3027  * RETURN VALUES:
3028  *	count of leading zeros
3029  */
3030 static int cntlz(u32 value)
3031 {
3032 	int n;
3033 
3034 	for (n = 0; n < 32; n++, value <<= 1) {
3035 		if (value & HIGHORDER)
3036 			break;
3037 	}
3038 	return (n);
3039 }
3040 
3041 
3042 /*
3043  * NAME:	blkstol2(s64 nb)
3044  *
3045  * FUNCTION:	convert a block count to its log2 value. if the block
3046  *		count is not a l2 multiple, it is rounded up to the next
3047  *		larger l2 multiple.
3048  *
3049  * PARAMETERS:
3050  *	nb	-  number of blocks
3051  *
3052  * RETURN VALUES:
3053  *	log2 number of blocks
3054  */
3055 static int blkstol2(s64 nb)
3056 {
3057 	int l2nb;
3058 	s64 mask;		/* meant to be signed */
3059 
3060 	mask = (s64) 1 << (64 - 1);
3061 
3062 	/* count the leading bits.
3063 	 */
3064 	for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3065 		/* leading bit found.
3066 		 */
3067 		if (nb & mask) {
3068 			/* determine the l2 value.
3069 			 */
3070 			l2nb = (64 - 1) - l2nb;
3071 
3072 			/* check if we need to round up.
3073 			 */
3074 			if (~mask & nb)
3075 				l2nb++;
3076 
3077 			return (l2nb);
3078 		}
3079 	}
3080 	assert(0);
3081 	return 0;		/* fix compiler warning */
3082 }
3083 
3084 
3085 /*
3086  * NAME:	dbAllocBottomUp()
3087  *
3088  * FUNCTION:	alloc the specified block range from the working block
3089  *		allocation map.
3090  *
3091  *		the blocks will be alloc from the working map one dmap
3092  *		at a time.
3093  *
3094  * PARAMETERS:
3095  *	ip	-  pointer to in-core inode;
3096  *	blkno	-  starting block number to be freed.
3097  *	nblocks	-  number of blocks to be freed.
3098  *
3099  * RETURN VALUES:
3100  *	0	- success
3101  *	-EIO	- i/o error
3102  */
3103 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3104 {
3105 	struct metapage *mp;
3106 	struct dmap *dp;
3107 	int nb, rc;
3108 	s64 lblkno, rem;
3109 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3110 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3111 
3112 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3113 
3114 	/* block to be allocated better be within the mapsize. */
3115 	ASSERT(nblocks <= bmp->db_mapsize - blkno);
3116 
3117 	/*
3118 	 * allocate the blocks a dmap at a time.
3119 	 */
3120 	mp = NULL;
3121 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3122 		/* release previous dmap if any */
3123 		if (mp) {
3124 			write_metapage(mp);
3125 		}
3126 
3127 		/* get the buffer for the current dmap. */
3128 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3129 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3130 		if (mp == NULL) {
3131 			IREAD_UNLOCK(ipbmap);
3132 			return -EIO;
3133 		}
3134 		dp = (struct dmap *) mp->data;
3135 
3136 		/* determine the number of blocks to be allocated from
3137 		 * this dmap.
3138 		 */
3139 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3140 
3141 		/* allocate the blocks. */
3142 		if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3143 			release_metapage(mp);
3144 			IREAD_UNLOCK(ipbmap);
3145 			return (rc);
3146 		}
3147 	}
3148 
3149 	/* write the last buffer. */
3150 	write_metapage(mp);
3151 
3152 	IREAD_UNLOCK(ipbmap);
3153 
3154 	return (0);
3155 }
3156 
3157 
3158 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3159 			 int nblocks)
3160 {
3161 	int rc;
3162 	int dbitno, word, rembits, nb, nwords, wbitno, agno;
3163 	s8 oldroot, *leaf;
3164 	struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3165 
3166 	/* save the current value of the root (i.e. maximum free string)
3167 	 * of the dmap tree.
3168 	 */
3169 	oldroot = tp->stree[ROOT];
3170 
3171 	/* pick up a pointer to the leaves of the dmap tree */
3172 	leaf = tp->stree + LEAFIND;
3173 
3174 	/* determine the bit number and word within the dmap of the
3175 	 * starting block.
3176 	 */
3177 	dbitno = blkno & (BPERDMAP - 1);
3178 	word = dbitno >> L2DBWORD;
3179 
3180 	/* block range better be within the dmap */
3181 	assert(dbitno + nblocks <= BPERDMAP);
3182 
3183 	/* allocate the bits of the dmap's words corresponding to the block
3184 	 * range. not all bits of the first and last words may be contained
3185 	 * within the block range.  if this is the case, we'll work against
3186 	 * those words (i.e. partial first and/or last) on an individual basis
3187 	 * (a single pass), allocating the bits of interest by hand and
3188 	 * updating the leaf corresponding to the dmap word. a single pass
3189 	 * will be used for all dmap words fully contained within the
3190 	 * specified range.  within this pass, the bits of all fully contained
3191 	 * dmap words will be marked as free in a single shot and the leaves
3192 	 * will be updated. a single leaf may describe the free space of
3193 	 * multiple dmap words, so we may update only a subset of the actual
3194 	 * leaves corresponding to the dmap words of the block range.
3195 	 */
3196 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3197 		/* determine the bit number within the word and
3198 		 * the number of bits within the word.
3199 		 */
3200 		wbitno = dbitno & (DBWORD - 1);
3201 		nb = min(rembits, DBWORD - wbitno);
3202 
3203 		/* check if only part of a word is to be allocated.
3204 		 */
3205 		if (nb < DBWORD) {
3206 			/* allocate (set to 1) the appropriate bits within
3207 			 * this dmap word.
3208 			 */
3209 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3210 						      >> wbitno);
3211 
3212 			word++;
3213 		} else {
3214 			/* one or more dmap words are fully contained
3215 			 * within the block range.  determine how many
3216 			 * words and allocate (set to 1) the bits of these
3217 			 * words.
3218 			 */
3219 			nwords = rembits >> L2DBWORD;
3220 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
3221 
3222 			/* determine how many bits */
3223 			nb = nwords << L2DBWORD;
3224 			word += nwords;
3225 		}
3226 	}
3227 
3228 	/* update the free count for this dmap */
3229 	le32_add_cpu(&dp->nfree, -nblocks);
3230 
3231 	/* reconstruct summary tree */
3232 	dbInitDmapTree(dp);
3233 
3234 	BMAP_LOCK(bmp);
3235 
3236 	/* if this allocation group is completely free,
3237 	 * update the highest active allocation group number
3238 	 * if this allocation group is the new max.
3239 	 */
3240 	agno = blkno >> bmp->db_agl2size;
3241 	if (agno > bmp->db_maxag)
3242 		bmp->db_maxag = agno;
3243 
3244 	/* update the free count for the allocation group and map */
3245 	bmp->db_agfree[agno] -= nblocks;
3246 	bmp->db_nfree -= nblocks;
3247 
3248 	BMAP_UNLOCK(bmp);
3249 
3250 	/* if the root has not changed, done. */
3251 	if (tp->stree[ROOT] == oldroot)
3252 		return (0);
3253 
3254 	/* root changed. bubble the change up to the dmap control pages.
3255 	 * if the adjustment of the upper level control pages fails,
3256 	 * backout the bit allocation (thus making everything consistent).
3257 	 */
3258 	if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3259 		dbFreeBits(bmp, dp, blkno, nblocks);
3260 
3261 	return (rc);
3262 }
3263 
3264 
3265 /*
3266  * NAME:	dbExtendFS()
3267  *
3268  * FUNCTION:	extend bmap from blkno for nblocks;
3269  *		dbExtendFS() updates bmap ready for dbAllocBottomUp();
3270  *
3271  * L2
3272  *  |
3273  *   L1---------------------------------L1
3274  *    |					 |
3275  *     L0---------L0---------L0		  L0---------L0---------L0
3276  *      |	   |	      |		   |	      |		 |
3277  *	 d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3278  * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3279  *
3280  * <---old---><----------------------------extend----------------------->
3281  */
3282 int dbExtendFS(struct inode *ipbmap, s64 blkno,	s64 nblocks)
3283 {
3284 	struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3285 	int nbperpage = sbi->nbperpage;
3286 	int i, i0 = true, j, j0 = true, k, n;
3287 	s64 newsize;
3288 	s64 p;
3289 	struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3290 	struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3291 	struct dmap *dp;
3292 	s8 *l0leaf, *l1leaf, *l2leaf;
3293 	struct bmap *bmp = sbi->bmap;
3294 	int agno, l2agsize, oldl2agsize;
3295 	s64 ag_rem;
3296 
3297 	newsize = blkno + nblocks;
3298 
3299 	jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3300 		 (long long) blkno, (long long) nblocks, (long long) newsize);
3301 
3302 	/*
3303 	 *	initialize bmap control page.
3304 	 *
3305 	 * all the data in bmap control page should exclude
3306 	 * the mkfs hidden dmap page.
3307 	 */
3308 
3309 	/* update mapsize */
3310 	bmp->db_mapsize = newsize;
3311 	bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3312 
3313 	/* compute new AG size */
3314 	l2agsize = dbGetL2AGSize(newsize);
3315 	oldl2agsize = bmp->db_agl2size;
3316 
3317 	bmp->db_agl2size = l2agsize;
3318 	bmp->db_agsize = 1 << l2agsize;
3319 
3320 	/* compute new number of AG */
3321 	agno = bmp->db_numag;
3322 	bmp->db_numag = newsize >> l2agsize;
3323 	bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3324 
3325 	/*
3326 	 *	reconfigure db_agfree[]
3327 	 * from old AG configuration to new AG configuration;
3328 	 *
3329 	 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3330 	 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3331 	 * note: new AG size = old AG size * (2**x).
3332 	 */
3333 	if (l2agsize == oldl2agsize)
3334 		goto extend;
3335 	k = 1 << (l2agsize - oldl2agsize);
3336 	ag_rem = bmp->db_agfree[0];	/* save agfree[0] */
3337 	for (i = 0, n = 0; i < agno; n++) {
3338 		bmp->db_agfree[n] = 0;	/* init collection point */
3339 
3340 		/* coalesce contiguous k AGs; */
3341 		for (j = 0; j < k && i < agno; j++, i++) {
3342 			/* merge AGi to AGn */
3343 			bmp->db_agfree[n] += bmp->db_agfree[i];
3344 		}
3345 	}
3346 	bmp->db_agfree[0] += ag_rem;	/* restore agfree[0] */
3347 
3348 	for (; n < MAXAG; n++)
3349 		bmp->db_agfree[n] = 0;
3350 
3351 	/*
3352 	 * update highest active ag number
3353 	 */
3354 
3355 	bmp->db_maxag = bmp->db_maxag / k;
3356 
3357 	/*
3358 	 *	extend bmap
3359 	 *
3360 	 * update bit maps and corresponding level control pages;
3361 	 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3362 	 */
3363       extend:
3364 	/* get L2 page */
3365 	p = BMAPBLKNO + nbperpage;	/* L2 page */
3366 	l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3367 	if (!l2mp) {
3368 		jfs_error(ipbmap->i_sb, "dbExtendFS: L2 page could not be read");
3369 		return -EIO;
3370 	}
3371 	l2dcp = (struct dmapctl *) l2mp->data;
3372 
3373 	/* compute start L1 */
3374 	k = blkno >> L2MAXL1SIZE;
3375 	l2leaf = l2dcp->stree + CTLLEAFIND + k;
3376 	p = BLKTOL1(blkno, sbi->l2nbperpage);	/* L1 page */
3377 
3378 	/*
3379 	 * extend each L1 in L2
3380 	 */
3381 	for (; k < LPERCTL; k++, p += nbperpage) {
3382 		/* get L1 page */
3383 		if (j0) {
3384 			/* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3385 			l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3386 			if (l1mp == NULL)
3387 				goto errout;
3388 			l1dcp = (struct dmapctl *) l1mp->data;
3389 
3390 			/* compute start L0 */
3391 			j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3392 			l1leaf = l1dcp->stree + CTLLEAFIND + j;
3393 			p = BLKTOL0(blkno, sbi->l2nbperpage);
3394 			j0 = false;
3395 		} else {
3396 			/* assign/init L1 page */
3397 			l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3398 			if (l1mp == NULL)
3399 				goto errout;
3400 
3401 			l1dcp = (struct dmapctl *) l1mp->data;
3402 
3403 			/* compute start L0 */
3404 			j = 0;
3405 			l1leaf = l1dcp->stree + CTLLEAFIND;
3406 			p += nbperpage;	/* 1st L0 of L1.k */
3407 		}
3408 
3409 		/*
3410 		 * extend each L0 in L1
3411 		 */
3412 		for (; j < LPERCTL; j++) {
3413 			/* get L0 page */
3414 			if (i0) {
3415 				/* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3416 
3417 				l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3418 				if (l0mp == NULL)
3419 					goto errout;
3420 				l0dcp = (struct dmapctl *) l0mp->data;
3421 
3422 				/* compute start dmap */
3423 				i = (blkno & (MAXL0SIZE - 1)) >>
3424 				    L2BPERDMAP;
3425 				l0leaf = l0dcp->stree + CTLLEAFIND + i;
3426 				p = BLKTODMAP(blkno,
3427 					      sbi->l2nbperpage);
3428 				i0 = false;
3429 			} else {
3430 				/* assign/init L0 page */
3431 				l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3432 				if (l0mp == NULL)
3433 					goto errout;
3434 
3435 				l0dcp = (struct dmapctl *) l0mp->data;
3436 
3437 				/* compute start dmap */
3438 				i = 0;
3439 				l0leaf = l0dcp->stree + CTLLEAFIND;
3440 				p += nbperpage;	/* 1st dmap of L0.j */
3441 			}
3442 
3443 			/*
3444 			 * extend each dmap in L0
3445 			 */
3446 			for (; i < LPERCTL; i++) {
3447 				/*
3448 				 * reconstruct the dmap page, and
3449 				 * initialize corresponding parent L0 leaf
3450 				 */
3451 				if ((n = blkno & (BPERDMAP - 1))) {
3452 					/* read in dmap page: */
3453 					mp = read_metapage(ipbmap, p,
3454 							   PSIZE, 0);
3455 					if (mp == NULL)
3456 						goto errout;
3457 					n = min(nblocks, (s64)BPERDMAP - n);
3458 				} else {
3459 					/* assign/init dmap page */
3460 					mp = read_metapage(ipbmap, p,
3461 							   PSIZE, 0);
3462 					if (mp == NULL)
3463 						goto errout;
3464 
3465 					n = min(nblocks, (s64)BPERDMAP);
3466 				}
3467 
3468 				dp = (struct dmap *) mp->data;
3469 				*l0leaf = dbInitDmap(dp, blkno, n);
3470 
3471 				bmp->db_nfree += n;
3472 				agno = le64_to_cpu(dp->start) >> l2agsize;
3473 				bmp->db_agfree[agno] += n;
3474 
3475 				write_metapage(mp);
3476 
3477 				l0leaf++;
3478 				p += nbperpage;
3479 
3480 				blkno += n;
3481 				nblocks -= n;
3482 				if (nblocks == 0)
3483 					break;
3484 			}	/* for each dmap in a L0 */
3485 
3486 			/*
3487 			 * build current L0 page from its leaves, and
3488 			 * initialize corresponding parent L1 leaf
3489 			 */
3490 			*l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3491 			write_metapage(l0mp);
3492 			l0mp = NULL;
3493 
3494 			if (nblocks)
3495 				l1leaf++;	/* continue for next L0 */
3496 			else {
3497 				/* more than 1 L0 ? */
3498 				if (j > 0)
3499 					break;	/* build L1 page */
3500 				else {
3501 					/* summarize in global bmap page */
3502 					bmp->db_maxfreebud = *l1leaf;
3503 					release_metapage(l1mp);
3504 					release_metapage(l2mp);
3505 					goto finalize;
3506 				}
3507 			}
3508 		}		/* for each L0 in a L1 */
3509 
3510 		/*
3511 		 * build current L1 page from its leaves, and
3512 		 * initialize corresponding parent L2 leaf
3513 		 */
3514 		*l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3515 		write_metapage(l1mp);
3516 		l1mp = NULL;
3517 
3518 		if (nblocks)
3519 			l2leaf++;	/* continue for next L1 */
3520 		else {
3521 			/* more than 1 L1 ? */
3522 			if (k > 0)
3523 				break;	/* build L2 page */
3524 			else {
3525 				/* summarize in global bmap page */
3526 				bmp->db_maxfreebud = *l2leaf;
3527 				release_metapage(l2mp);
3528 				goto finalize;
3529 			}
3530 		}
3531 	}			/* for each L1 in a L2 */
3532 
3533 	jfs_error(ipbmap->i_sb,
3534 		  "dbExtendFS: function has not returned as expected");
3535 errout:
3536 	if (l0mp)
3537 		release_metapage(l0mp);
3538 	if (l1mp)
3539 		release_metapage(l1mp);
3540 	release_metapage(l2mp);
3541 	return -EIO;
3542 
3543 	/*
3544 	 *	finalize bmap control page
3545 	 */
3546 finalize:
3547 
3548 	return 0;
3549 }
3550 
3551 
3552 /*
3553  *	dbFinalizeBmap()
3554  */
3555 void dbFinalizeBmap(struct inode *ipbmap)
3556 {
3557 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3558 	int actags, inactags, l2nl;
3559 	s64 ag_rem, actfree, inactfree, avgfree;
3560 	int i, n;
3561 
3562 	/*
3563 	 *	finalize bmap control page
3564 	 */
3565 //finalize:
3566 	/*
3567 	 * compute db_agpref: preferred ag to allocate from
3568 	 * (the leftmost ag with average free space in it);
3569 	 */
3570 //agpref:
3571 	/* get the number of active ags and inacitve ags */
3572 	actags = bmp->db_maxag + 1;
3573 	inactags = bmp->db_numag - actags;
3574 	ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);	/* ??? */
3575 
3576 	/* determine how many blocks are in the inactive allocation
3577 	 * groups. in doing this, we must account for the fact that
3578 	 * the rightmost group might be a partial group (i.e. file
3579 	 * system size is not a multiple of the group size).
3580 	 */
3581 	inactfree = (inactags && ag_rem) ?
3582 	    ((inactags - 1) << bmp->db_agl2size) + ag_rem
3583 	    : inactags << bmp->db_agl2size;
3584 
3585 	/* determine how many free blocks are in the active
3586 	 * allocation groups plus the average number of free blocks
3587 	 * within the active ags.
3588 	 */
3589 	actfree = bmp->db_nfree - inactfree;
3590 	avgfree = (u32) actfree / (u32) actags;
3591 
3592 	/* if the preferred allocation group has not average free space.
3593 	 * re-establish the preferred group as the leftmost
3594 	 * group with average free space.
3595 	 */
3596 	if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3597 		for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3598 		     bmp->db_agpref++) {
3599 			if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3600 				break;
3601 		}
3602 		if (bmp->db_agpref >= bmp->db_numag) {
3603 			jfs_error(ipbmap->i_sb,
3604 				  "cannot find ag with average freespace");
3605 		}
3606 	}
3607 
3608 	/*
3609 	 * compute db_aglevel, db_agheigth, db_width, db_agstart:
3610 	 * an ag is covered in aglevel dmapctl summary tree,
3611 	 * at agheight level height (from leaf) with agwidth number of nodes
3612 	 * each, which starts at agstart index node of the smmary tree node
3613 	 * array;
3614 	 */
3615 	bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3616 	l2nl =
3617 	    bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3618 	bmp->db_agheigth = l2nl >> 1;
3619 	bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheigth << 1));
3620 	for (i = 5 - bmp->db_agheigth, bmp->db_agstart = 0, n = 1; i > 0;
3621 	     i--) {
3622 		bmp->db_agstart += n;
3623 		n <<= 2;
3624 	}
3625 
3626 }
3627 
3628 
3629 /*
3630  * NAME:	dbInitDmap()/ujfs_idmap_page()
3631  *
3632  * FUNCTION:	initialize working/persistent bitmap of the dmap page
3633  *		for the specified number of blocks:
3634  *
3635  *		at entry, the bitmaps had been initialized as free (ZEROS);
3636  *		The number of blocks will only account for the actually
3637  *		existing blocks. Blocks which don't actually exist in
3638  *		the aggregate will be marked as allocated (ONES);
3639  *
3640  * PARAMETERS:
3641  *	dp	- pointer to page of map
3642  *	nblocks	- number of blocks this page
3643  *
3644  * RETURNS: NONE
3645  */
3646 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3647 {
3648 	int blkno, w, b, r, nw, nb, i;
3649 
3650 	/* starting block number within the dmap */
3651 	blkno = Blkno & (BPERDMAP - 1);
3652 
3653 	if (blkno == 0) {
3654 		dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3655 		dp->start = cpu_to_le64(Blkno);
3656 
3657 		if (nblocks == BPERDMAP) {
3658 			memset(&dp->wmap[0], 0, LPERDMAP * 4);
3659 			memset(&dp->pmap[0], 0, LPERDMAP * 4);
3660 			goto initTree;
3661 		}
3662 	} else {
3663 		le32_add_cpu(&dp->nblocks, nblocks);
3664 		le32_add_cpu(&dp->nfree, nblocks);
3665 	}
3666 
3667 	/* word number containing start block number */
3668 	w = blkno >> L2DBWORD;
3669 
3670 	/*
3671 	 * free the bits corresponding to the block range (ZEROS):
3672 	 * note: not all bits of the first and last words may be contained
3673 	 * within the block range.
3674 	 */
3675 	for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3676 		/* number of bits preceding range to be freed in the word */
3677 		b = blkno & (DBWORD - 1);
3678 		/* number of bits to free in the word */
3679 		nb = min(r, DBWORD - b);
3680 
3681 		/* is partial word to be freed ? */
3682 		if (nb < DBWORD) {
3683 			/* free (set to 0) from the bitmap word */
3684 			dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3685 						     >> b));
3686 			dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3687 						     >> b));
3688 
3689 			/* skip the word freed */
3690 			w++;
3691 		} else {
3692 			/* free (set to 0) contiguous bitmap words */
3693 			nw = r >> L2DBWORD;
3694 			memset(&dp->wmap[w], 0, nw * 4);
3695 			memset(&dp->pmap[w], 0, nw * 4);
3696 
3697 			/* skip the words freed */
3698 			nb = nw << L2DBWORD;
3699 			w += nw;
3700 		}
3701 	}
3702 
3703 	/*
3704 	 * mark bits following the range to be freed (non-existing
3705 	 * blocks) as allocated (ONES)
3706 	 */
3707 
3708 	if (blkno == BPERDMAP)
3709 		goto initTree;
3710 
3711 	/* the first word beyond the end of existing blocks */
3712 	w = blkno >> L2DBWORD;
3713 
3714 	/* does nblocks fall on a 32-bit boundary ? */
3715 	b = blkno & (DBWORD - 1);
3716 	if (b) {
3717 		/* mark a partial word allocated */
3718 		dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3719 		w++;
3720 	}
3721 
3722 	/* set the rest of the words in the page to allocated (ONES) */
3723 	for (i = w; i < LPERDMAP; i++)
3724 		dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3725 
3726 	/*
3727 	 * init tree
3728 	 */
3729       initTree:
3730 	return (dbInitDmapTree(dp));
3731 }
3732 
3733 
3734 /*
3735  * NAME:	dbInitDmapTree()/ujfs_complete_dmap()
3736  *
3737  * FUNCTION:	initialize summary tree of the specified dmap:
3738  *
3739  *		at entry, bitmap of the dmap has been initialized;
3740  *
3741  * PARAMETERS:
3742  *	dp	- dmap to complete
3743  *	blkno	- starting block number for this dmap
3744  *	treemax	- will be filled in with max free for this dmap
3745  *
3746  * RETURNS:	max free string at the root of the tree
3747  */
3748 static int dbInitDmapTree(struct dmap * dp)
3749 {
3750 	struct dmaptree *tp;
3751 	s8 *cp;
3752 	int i;
3753 
3754 	/* init fixed info of tree */
3755 	tp = &dp->tree;
3756 	tp->nleafs = cpu_to_le32(LPERDMAP);
3757 	tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3758 	tp->leafidx = cpu_to_le32(LEAFIND);
3759 	tp->height = cpu_to_le32(4);
3760 	tp->budmin = BUDMIN;
3761 
3762 	/* init each leaf from corresponding wmap word:
3763 	 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3764 	 * bitmap word are allocated.
3765 	 */
3766 	cp = tp->stree + le32_to_cpu(tp->leafidx);
3767 	for (i = 0; i < LPERDMAP; i++)
3768 		*cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3769 
3770 	/* build the dmap's binary buddy summary tree */
3771 	return (dbInitTree(tp));
3772 }
3773 
3774 
3775 /*
3776  * NAME:	dbInitTree()/ujfs_adjtree()
3777  *
3778  * FUNCTION:	initialize binary buddy summary tree of a dmap or dmapctl.
3779  *
3780  *		at entry, the leaves of the tree has been initialized
3781  *		from corresponding bitmap word or root of summary tree
3782  *		of the child control page;
3783  *		configure binary buddy system at the leaf level, then
3784  *		bubble up the values of the leaf nodes up the tree.
3785  *
3786  * PARAMETERS:
3787  *	cp	- Pointer to the root of the tree
3788  *	l2leaves- Number of leaf nodes as a power of 2
3789  *	l2min	- Number of blocks that can be covered by a leaf
3790  *		  as a power of 2
3791  *
3792  * RETURNS: max free string at the root of the tree
3793  */
3794 static int dbInitTree(struct dmaptree * dtp)
3795 {
3796 	int l2max, l2free, bsize, nextb, i;
3797 	int child, parent, nparent;
3798 	s8 *tp, *cp, *cp1;
3799 
3800 	tp = dtp->stree;
3801 
3802 	/* Determine the maximum free string possible for the leaves */
3803 	l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3804 
3805 	/*
3806 	 * configure the leaf levevl into binary buddy system
3807 	 *
3808 	 * Try to combine buddies starting with a buddy size of 1
3809 	 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3810 	 * can be combined if both buddies have a maximum free of l2min;
3811 	 * the combination will result in the left-most buddy leaf having
3812 	 * a maximum free of l2min+1.
3813 	 * After processing all buddies for a given size, process buddies
3814 	 * at the next higher buddy size (i.e. current size * 2) and
3815 	 * the next maximum free (current free + 1).
3816 	 * This continues until the maximum possible buddy combination
3817 	 * yields maximum free.
3818 	 */
3819 	for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3820 	     l2free++, bsize = nextb) {
3821 		/* get next buddy size == current buddy pair size */
3822 		nextb = bsize << 1;
3823 
3824 		/* scan each adjacent buddy pair at current buddy size */
3825 		for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3826 		     i < le32_to_cpu(dtp->nleafs);
3827 		     i += nextb, cp += nextb) {
3828 			/* coalesce if both adjacent buddies are max free */
3829 			if (*cp == l2free && *(cp + bsize) == l2free) {
3830 				*cp = l2free + 1;	/* left take right */
3831 				*(cp + bsize) = -1;	/* right give left */
3832 			}
3833 		}
3834 	}
3835 
3836 	/*
3837 	 * bubble summary information of leaves up the tree.
3838 	 *
3839 	 * Starting at the leaf node level, the four nodes described by
3840 	 * the higher level parent node are compared for a maximum free and
3841 	 * this maximum becomes the value of the parent node.
3842 	 * when all lower level nodes are processed in this fashion then
3843 	 * move up to the next level (parent becomes a lower level node) and
3844 	 * continue the process for that level.
3845 	 */
3846 	for (child = le32_to_cpu(dtp->leafidx),
3847 	     nparent = le32_to_cpu(dtp->nleafs) >> 2;
3848 	     nparent > 0; nparent >>= 2, child = parent) {
3849 		/* get index of 1st node of parent level */
3850 		parent = (child - 1) >> 2;
3851 
3852 		/* set the value of the parent node as the maximum
3853 		 * of the four nodes of the current level.
3854 		 */
3855 		for (i = 0, cp = tp + child, cp1 = tp + parent;
3856 		     i < nparent; i++, cp += 4, cp1++)
3857 			*cp1 = TREEMAX(cp);
3858 	}
3859 
3860 	return (*tp);
3861 }
3862 
3863 
3864 /*
3865  *	dbInitDmapCtl()
3866  *
3867  * function: initialize dmapctl page
3868  */
3869 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3870 {				/* start leaf index not covered by range */
3871 	s8 *cp;
3872 
3873 	dcp->nleafs = cpu_to_le32(LPERCTL);
3874 	dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3875 	dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3876 	dcp->height = cpu_to_le32(5);
3877 	dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3878 
3879 	/*
3880 	 * initialize the leaves of current level that were not covered
3881 	 * by the specified input block range (i.e. the leaves have no
3882 	 * low level dmapctl or dmap).
3883 	 */
3884 	cp = &dcp->stree[CTLLEAFIND + i];
3885 	for (; i < LPERCTL; i++)
3886 		*cp++ = NOFREE;
3887 
3888 	/* build the dmap's binary buddy summary tree */
3889 	return (dbInitTree((struct dmaptree *) dcp));
3890 }
3891 
3892 
3893 /*
3894  * NAME:	dbGetL2AGSize()/ujfs_getagl2size()
3895  *
3896  * FUNCTION:	Determine log2(allocation group size) from aggregate size
3897  *
3898  * PARAMETERS:
3899  *	nblocks	- Number of blocks in aggregate
3900  *
3901  * RETURNS: log2(allocation group size) in aggregate blocks
3902  */
3903 static int dbGetL2AGSize(s64 nblocks)
3904 {
3905 	s64 sz;
3906 	s64 m;
3907 	int l2sz;
3908 
3909 	if (nblocks < BPERDMAP * MAXAG)
3910 		return (L2BPERDMAP);
3911 
3912 	/* round up aggregate size to power of 2 */
3913 	m = ((u64) 1 << (64 - 1));
3914 	for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3915 		if (m & nblocks)
3916 			break;
3917 	}
3918 
3919 	sz = (s64) 1 << l2sz;
3920 	if (sz < nblocks)
3921 		l2sz += 1;
3922 
3923 	/* agsize = roundupSize/max_number_of_ag */
3924 	return (l2sz - L2MAXAG);
3925 }
3926 
3927 
3928 /*
3929  * NAME:	dbMapFileSizeToMapSize()
3930  *
3931  * FUNCTION:	compute number of blocks the block allocation map file
3932  *		can cover from the map file size;
3933  *
3934  * RETURNS:	Number of blocks which can be covered by this block map file;
3935  */
3936 
3937 /*
3938  * maximum number of map pages at each level including control pages
3939  */
3940 #define MAXL0PAGES	(1 + LPERCTL)
3941 #define MAXL1PAGES	(1 + LPERCTL * MAXL0PAGES)
3942 #define MAXL2PAGES	(1 + LPERCTL * MAXL1PAGES)
3943 
3944 /*
3945  * convert number of map pages to the zero origin top dmapctl level
3946  */
3947 #define BMAPPGTOLEV(npages)	\
3948 	(((npages) <= 3 + MAXL0PAGES) ? 0 : \
3949 	 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
3950 
3951 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
3952 {
3953 	struct super_block *sb = ipbmap->i_sb;
3954 	s64 nblocks;
3955 	s64 npages, ndmaps;
3956 	int level, i;
3957 	int complete, factor;
3958 
3959 	nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
3960 	npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
3961 	level = BMAPPGTOLEV(npages);
3962 
3963 	/* At each level, accumulate the number of dmap pages covered by
3964 	 * the number of full child levels below it;
3965 	 * repeat for the last incomplete child level.
3966 	 */
3967 	ndmaps = 0;
3968 	npages--;		/* skip the first global control page */
3969 	/* skip higher level control pages above top level covered by map */
3970 	npages -= (2 - level);
3971 	npages--;		/* skip top level's control page */
3972 	for (i = level; i >= 0; i--) {
3973 		factor =
3974 		    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
3975 		complete = (u32) npages / factor;
3976 		ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
3977 				      ((i == 1) ? LPERCTL : 1));
3978 
3979 		/* pages in last/incomplete child */
3980 		npages = (u32) npages % factor;
3981 		/* skip incomplete child's level control page */
3982 		npages--;
3983 	}
3984 
3985 	/* convert the number of dmaps into the number of blocks
3986 	 * which can be covered by the dmaps;
3987 	 */
3988 	nblocks = ndmaps << L2BPERDMAP;
3989 
3990 	return (nblocks);
3991 }
3992