xref: /openbmc/linux/fs/jfs/jfs_dmap.c (revision e2eb96ae)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *   Copyright (C) International Business Machines Corp., 2000-2004
4  *   Portions Copyright (C) Tino Reichardt, 2012
5  */
6 
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include "jfs_incore.h"
10 #include "jfs_superblock.h"
11 #include "jfs_dmap.h"
12 #include "jfs_imap.h"
13 #include "jfs_lock.h"
14 #include "jfs_metapage.h"
15 #include "jfs_debug.h"
16 #include "jfs_discard.h"
17 
18 /*
19  *	SERIALIZATION of the Block Allocation Map.
20  *
21  *	the working state of the block allocation map is accessed in
22  *	two directions:
23  *
24  *	1) allocation and free requests that start at the dmap
25  *	   level and move up through the dmap control pages (i.e.
26  *	   the vast majority of requests).
27  *
28  *	2) allocation requests that start at dmap control page
29  *	   level and work down towards the dmaps.
30  *
31  *	the serialization scheme used here is as follows.
32  *
33  *	requests which start at the bottom are serialized against each
34  *	other through buffers and each requests holds onto its buffers
35  *	as it works it way up from a single dmap to the required level
36  *	of dmap control page.
37  *	requests that start at the top are serialized against each other
38  *	and request that start from the bottom by the multiple read/single
39  *	write inode lock of the bmap inode. requests starting at the top
40  *	take this lock in write mode while request starting at the bottom
41  *	take the lock in read mode.  a single top-down request may proceed
42  *	exclusively while multiple bottoms-up requests may proceed
43  *	simultaneously (under the protection of busy buffers).
44  *
45  *	in addition to information found in dmaps and dmap control pages,
46  *	the working state of the block allocation map also includes read/
47  *	write information maintained in the bmap descriptor (i.e. total
48  *	free block count, allocation group level free block counts).
49  *	a single exclusive lock (BMAP_LOCK) is used to guard this information
50  *	in the face of multiple-bottoms up requests.
51  *	(lock ordering: IREAD_LOCK, BMAP_LOCK);
52  *
53  *	accesses to the persistent state of the block allocation map (limited
54  *	to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55  */
56 
57 #define BMAP_LOCK_INIT(bmp)	mutex_init(&bmp->db_bmaplock)
58 #define BMAP_LOCK(bmp)		mutex_lock(&bmp->db_bmaplock)
59 #define BMAP_UNLOCK(bmp)	mutex_unlock(&bmp->db_bmaplock)
60 
61 /*
62  * forward references
63  */
64 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65 			int nblocks);
66 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
67 static int dbBackSplit(dmtree_t * tp, int leafno);
68 static int dbJoin(dmtree_t * tp, int leafno, int newval);
69 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
70 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71 		    int level);
72 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74 		       int nblocks);
75 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76 		       int nblocks,
77 		       int l2nb, s64 * results);
78 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79 		       int nblocks);
80 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81 			  int l2nb,
82 			  s64 * results);
83 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84 		     s64 * results);
85 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86 		      s64 * results);
87 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88 static int dbFindBits(u32 word, int l2nb);
89 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
91 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 		      int nblocks);
93 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94 		      int nblocks);
95 static int dbMaxBud(u8 * cp);
96 static int blkstol2(s64 nb);
97 
98 static int cntlz(u32 value);
99 static int cnttz(u32 word);
100 
101 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 			 int nblocks);
103 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104 static int dbInitDmapTree(struct dmap * dp);
105 static int dbInitTree(struct dmaptree * dtp);
106 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107 static int dbGetL2AGSize(s64 nblocks);
108 
109 /*
110  *	buddy table
111  *
112  * table used for determining buddy sizes within characters of
113  * dmap bitmap words.  the characters themselves serve as indexes
114  * into the table, with the table elements yielding the maximum
115  * binary buddy of free bits within the character.
116  */
117 static const s8 budtab[256] = {
118 	3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134 };
135 
136 /*
137  * NAME:	dbMount()
138  *
139  * FUNCTION:	initializate the block allocation map.
140  *
141  *		memory is allocated for the in-core bmap descriptor and
142  *		the in-core descriptor is initialized from disk.
143  *
144  * PARAMETERS:
145  *	ipbmap	- pointer to in-core inode for the block map.
146  *
147  * RETURN VALUES:
148  *	0	- success
149  *	-ENOMEM	- insufficient memory
150  *	-EIO	- i/o error
151  *	-EINVAL - wrong bmap data
152  */
153 int dbMount(struct inode *ipbmap)
154 {
155 	struct bmap *bmp;
156 	struct dbmap_disk *dbmp_le;
157 	struct metapage *mp;
158 	int i, err;
159 
160 	/*
161 	 * allocate/initialize the in-memory bmap descriptor
162 	 */
163 	/* allocate memory for the in-memory bmap descriptor */
164 	bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165 	if (bmp == NULL)
166 		return -ENOMEM;
167 
168 	/* read the on-disk bmap descriptor. */
169 	mp = read_metapage(ipbmap,
170 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171 			   PSIZE, 0);
172 	if (mp == NULL) {
173 		err = -EIO;
174 		goto err_kfree_bmp;
175 	}
176 
177 	/* copy the on-disk bmap descriptor to its in-memory version. */
178 	dbmp_le = (struct dbmap_disk *) mp->data;
179 	bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180 	bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181 
182 	bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
183 	if (bmp->db_l2nbperpage > L2PSIZE - L2MINBLOCKSIZE) {
184 		err = -EINVAL;
185 		goto err_release_metapage;
186 	}
187 
188 	bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
189 	if (!bmp->db_numag) {
190 		err = -EINVAL;
191 		goto err_release_metapage;
192 	}
193 
194 	bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
195 	bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
196 	bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
197 	bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
198 	bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
199 	bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
200 	bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
201 	bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
202 	if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG ||
203 	    bmp->db_agl2size < 0) {
204 		err = -EINVAL;
205 		goto err_release_metapage;
206 	}
207 
208 	if (((bmp->db_mapsize - 1) >> bmp->db_agl2size) > MAXAG) {
209 		err = -EINVAL;
210 		goto err_release_metapage;
211 	}
212 
213 	for (i = 0; i < MAXAG; i++)
214 		bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
215 	bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
216 	bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
217 
218 	/* release the buffer. */
219 	release_metapage(mp);
220 
221 	/* bind the bmap inode and the bmap descriptor to each other. */
222 	bmp->db_ipbmap = ipbmap;
223 	JFS_SBI(ipbmap->i_sb)->bmap = bmp;
224 
225 	memset(bmp->db_active, 0, sizeof(bmp->db_active));
226 
227 	/*
228 	 * allocate/initialize the bmap lock
229 	 */
230 	BMAP_LOCK_INIT(bmp);
231 
232 	return (0);
233 
234 err_release_metapage:
235 	release_metapage(mp);
236 err_kfree_bmp:
237 	kfree(bmp);
238 	return err;
239 }
240 
241 
242 /*
243  * NAME:	dbUnmount()
244  *
245  * FUNCTION:	terminate the block allocation map in preparation for
246  *		file system unmount.
247  *
248  *		the in-core bmap descriptor is written to disk and
249  *		the memory for this descriptor is freed.
250  *
251  * PARAMETERS:
252  *	ipbmap	- pointer to in-core inode for the block map.
253  *
254  * RETURN VALUES:
255  *	0	- success
256  *	-EIO	- i/o error
257  */
258 int dbUnmount(struct inode *ipbmap, int mounterror)
259 {
260 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
261 
262 	if (!(mounterror || isReadOnly(ipbmap)))
263 		dbSync(ipbmap);
264 
265 	/*
266 	 * Invalidate the page cache buffers
267 	 */
268 	truncate_inode_pages(ipbmap->i_mapping, 0);
269 
270 	/* free the memory for the in-memory bmap. */
271 	kfree(bmp);
272 	JFS_SBI(ipbmap->i_sb)->bmap = NULL;
273 
274 	return (0);
275 }
276 
277 /*
278  *	dbSync()
279  */
280 int dbSync(struct inode *ipbmap)
281 {
282 	struct dbmap_disk *dbmp_le;
283 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
284 	struct metapage *mp;
285 	int i;
286 
287 	/*
288 	 * write bmap global control page
289 	 */
290 	/* get the buffer for the on-disk bmap descriptor. */
291 	mp = read_metapage(ipbmap,
292 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
293 			   PSIZE, 0);
294 	if (mp == NULL) {
295 		jfs_err("dbSync: read_metapage failed!");
296 		return -EIO;
297 	}
298 	/* copy the in-memory version of the bmap to the on-disk version */
299 	dbmp_le = (struct dbmap_disk *) mp->data;
300 	dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
301 	dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
302 	dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
303 	dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
304 	dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
305 	dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
306 	dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
307 	dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
308 	dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
309 	dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
310 	dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
311 	dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
312 	for (i = 0; i < MAXAG; i++)
313 		dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
314 	dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
315 	dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
316 
317 	/* write the buffer */
318 	write_metapage(mp);
319 
320 	/*
321 	 * write out dirty pages of bmap
322 	 */
323 	filemap_write_and_wait(ipbmap->i_mapping);
324 
325 	diWriteSpecial(ipbmap, 0);
326 
327 	return (0);
328 }
329 
330 /*
331  * NAME:	dbFree()
332  *
333  * FUNCTION:	free the specified block range from the working block
334  *		allocation map.
335  *
336  *		the blocks will be free from the working map one dmap
337  *		at a time.
338  *
339  * PARAMETERS:
340  *	ip	- pointer to in-core inode;
341  *	blkno	- starting block number to be freed.
342  *	nblocks	- number of blocks to be freed.
343  *
344  * RETURN VALUES:
345  *	0	- success
346  *	-EIO	- i/o error
347  */
348 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
349 {
350 	struct metapage *mp;
351 	struct dmap *dp;
352 	int nb, rc;
353 	s64 lblkno, rem;
354 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
355 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
356 	struct super_block *sb = ipbmap->i_sb;
357 
358 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
359 
360 	/* block to be freed better be within the mapsize. */
361 	if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
362 		IREAD_UNLOCK(ipbmap);
363 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
364 		       (unsigned long long) blkno,
365 		       (unsigned long long) nblocks);
366 		jfs_error(ip->i_sb, "block to be freed is outside the map\n");
367 		return -EIO;
368 	}
369 
370 	/**
371 	 * TRIM the blocks, when mounted with discard option
372 	 */
373 	if (JFS_SBI(sb)->flag & JFS_DISCARD)
374 		if (JFS_SBI(sb)->minblks_trim <= nblocks)
375 			jfs_issue_discard(ipbmap, blkno, nblocks);
376 
377 	/*
378 	 * free the blocks a dmap at a time.
379 	 */
380 	mp = NULL;
381 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
382 		/* release previous dmap if any */
383 		if (mp) {
384 			write_metapage(mp);
385 		}
386 
387 		/* get the buffer for the current dmap. */
388 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
389 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
390 		if (mp == NULL) {
391 			IREAD_UNLOCK(ipbmap);
392 			return -EIO;
393 		}
394 		dp = (struct dmap *) mp->data;
395 
396 		/* determine the number of blocks to be freed from
397 		 * this dmap.
398 		 */
399 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
400 
401 		/* free the blocks. */
402 		if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
403 			jfs_error(ip->i_sb, "error in block map\n");
404 			release_metapage(mp);
405 			IREAD_UNLOCK(ipbmap);
406 			return (rc);
407 		}
408 	}
409 
410 	/* write the last buffer. */
411 	if (mp)
412 		write_metapage(mp);
413 
414 	IREAD_UNLOCK(ipbmap);
415 
416 	return (0);
417 }
418 
419 
420 /*
421  * NAME:	dbUpdatePMap()
422  *
423  * FUNCTION:	update the allocation state (free or allocate) of the
424  *		specified block range in the persistent block allocation map.
425  *
426  *		the blocks will be updated in the persistent map one
427  *		dmap at a time.
428  *
429  * PARAMETERS:
430  *	ipbmap	- pointer to in-core inode for the block map.
431  *	free	- 'true' if block range is to be freed from the persistent
432  *		  map; 'false' if it is to be allocated.
433  *	blkno	- starting block number of the range.
434  *	nblocks	- number of contiguous blocks in the range.
435  *	tblk	- transaction block;
436  *
437  * RETURN VALUES:
438  *	0	- success
439  *	-EIO	- i/o error
440  */
441 int
442 dbUpdatePMap(struct inode *ipbmap,
443 	     int free, s64 blkno, s64 nblocks, struct tblock * tblk)
444 {
445 	int nblks, dbitno, wbitno, rbits;
446 	int word, nbits, nwords;
447 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
448 	s64 lblkno, rem, lastlblkno;
449 	u32 mask;
450 	struct dmap *dp;
451 	struct metapage *mp;
452 	struct jfs_log *log;
453 	int lsn, difft, diffp;
454 	unsigned long flags;
455 
456 	/* the blocks better be within the mapsize. */
457 	if (blkno + nblocks > bmp->db_mapsize) {
458 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
459 		       (unsigned long long) blkno,
460 		       (unsigned long long) nblocks);
461 		jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
462 		return -EIO;
463 	}
464 
465 	/* compute delta of transaction lsn from log syncpt */
466 	lsn = tblk->lsn;
467 	log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
468 	logdiff(difft, lsn, log);
469 
470 	/*
471 	 * update the block state a dmap at a time.
472 	 */
473 	mp = NULL;
474 	lastlblkno = 0;
475 	for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
476 		/* get the buffer for the current dmap. */
477 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
478 		if (lblkno != lastlblkno) {
479 			if (mp) {
480 				write_metapage(mp);
481 			}
482 
483 			mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
484 					   0);
485 			if (mp == NULL)
486 				return -EIO;
487 			metapage_wait_for_io(mp);
488 		}
489 		dp = (struct dmap *) mp->data;
490 
491 		/* determine the bit number and word within the dmap of
492 		 * the starting block.  also determine how many blocks
493 		 * are to be updated within this dmap.
494 		 */
495 		dbitno = blkno & (BPERDMAP - 1);
496 		word = dbitno >> L2DBWORD;
497 		nblks = min(rem, (s64)BPERDMAP - dbitno);
498 
499 		/* update the bits of the dmap words. the first and last
500 		 * words may only have a subset of their bits updated. if
501 		 * this is the case, we'll work against that word (i.e.
502 		 * partial first and/or last) only in a single pass.  a
503 		 * single pass will also be used to update all words that
504 		 * are to have all their bits updated.
505 		 */
506 		for (rbits = nblks; rbits > 0;
507 		     rbits -= nbits, dbitno += nbits) {
508 			/* determine the bit number within the word and
509 			 * the number of bits within the word.
510 			 */
511 			wbitno = dbitno & (DBWORD - 1);
512 			nbits = min(rbits, DBWORD - wbitno);
513 
514 			/* check if only part of the word is to be updated. */
515 			if (nbits < DBWORD) {
516 				/* update (free or allocate) the bits
517 				 * in this word.
518 				 */
519 				mask =
520 				    (ONES << (DBWORD - nbits) >> wbitno);
521 				if (free)
522 					dp->pmap[word] &=
523 					    cpu_to_le32(~mask);
524 				else
525 					dp->pmap[word] |=
526 					    cpu_to_le32(mask);
527 
528 				word += 1;
529 			} else {
530 				/* one or more words are to have all
531 				 * their bits updated.  determine how
532 				 * many words and how many bits.
533 				 */
534 				nwords = rbits >> L2DBWORD;
535 				nbits = nwords << L2DBWORD;
536 
537 				/* update (free or allocate) the bits
538 				 * in these words.
539 				 */
540 				if (free)
541 					memset(&dp->pmap[word], 0,
542 					       nwords * 4);
543 				else
544 					memset(&dp->pmap[word], (int) ONES,
545 					       nwords * 4);
546 
547 				word += nwords;
548 			}
549 		}
550 
551 		/*
552 		 * update dmap lsn
553 		 */
554 		if (lblkno == lastlblkno)
555 			continue;
556 
557 		lastlblkno = lblkno;
558 
559 		LOGSYNC_LOCK(log, flags);
560 		if (mp->lsn != 0) {
561 			/* inherit older/smaller lsn */
562 			logdiff(diffp, mp->lsn, log);
563 			if (difft < diffp) {
564 				mp->lsn = lsn;
565 
566 				/* move bp after tblock in logsync list */
567 				list_move(&mp->synclist, &tblk->synclist);
568 			}
569 
570 			/* inherit younger/larger clsn */
571 			logdiff(difft, tblk->clsn, log);
572 			logdiff(diffp, mp->clsn, log);
573 			if (difft > diffp)
574 				mp->clsn = tblk->clsn;
575 		} else {
576 			mp->log = log;
577 			mp->lsn = lsn;
578 
579 			/* insert bp after tblock in logsync list */
580 			log->count++;
581 			list_add(&mp->synclist, &tblk->synclist);
582 
583 			mp->clsn = tblk->clsn;
584 		}
585 		LOGSYNC_UNLOCK(log, flags);
586 	}
587 
588 	/* write the last buffer. */
589 	if (mp) {
590 		write_metapage(mp);
591 	}
592 
593 	return (0);
594 }
595 
596 
597 /*
598  * NAME:	dbNextAG()
599  *
600  * FUNCTION:	find the preferred allocation group for new allocations.
601  *
602  *		Within the allocation groups, we maintain a preferred
603  *		allocation group which consists of a group with at least
604  *		average free space.  It is the preferred group that we target
605  *		new inode allocation towards.  The tie-in between inode
606  *		allocation and block allocation occurs as we allocate the
607  *		first (data) block of an inode and specify the inode (block)
608  *		as the allocation hint for this block.
609  *
610  *		We try to avoid having more than one open file growing in
611  *		an allocation group, as this will lead to fragmentation.
612  *		This differs from the old OS/2 method of trying to keep
613  *		empty ags around for large allocations.
614  *
615  * PARAMETERS:
616  *	ipbmap	- pointer to in-core inode for the block map.
617  *
618  * RETURN VALUES:
619  *	the preferred allocation group number.
620  */
621 int dbNextAG(struct inode *ipbmap)
622 {
623 	s64 avgfree;
624 	int agpref;
625 	s64 hwm = 0;
626 	int i;
627 	int next_best = -1;
628 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
629 
630 	BMAP_LOCK(bmp);
631 
632 	/* determine the average number of free blocks within the ags. */
633 	avgfree = (u32)bmp->db_nfree / bmp->db_numag;
634 
635 	/*
636 	 * if the current preferred ag does not have an active allocator
637 	 * and has at least average freespace, return it
638 	 */
639 	agpref = bmp->db_agpref;
640 	if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
641 	    (bmp->db_agfree[agpref] >= avgfree))
642 		goto unlock;
643 
644 	/* From the last preferred ag, find the next one with at least
645 	 * average free space.
646 	 */
647 	for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
648 		if (agpref == bmp->db_numag)
649 			agpref = 0;
650 
651 		if (atomic_read(&bmp->db_active[agpref]))
652 			/* open file is currently growing in this ag */
653 			continue;
654 		if (bmp->db_agfree[agpref] >= avgfree) {
655 			/* Return this one */
656 			bmp->db_agpref = agpref;
657 			goto unlock;
658 		} else if (bmp->db_agfree[agpref] > hwm) {
659 			/* Less than avg. freespace, but best so far */
660 			hwm = bmp->db_agfree[agpref];
661 			next_best = agpref;
662 		}
663 	}
664 
665 	/*
666 	 * If no inactive ag was found with average freespace, use the
667 	 * next best
668 	 */
669 	if (next_best != -1)
670 		bmp->db_agpref = next_best;
671 	/* else leave db_agpref unchanged */
672 unlock:
673 	BMAP_UNLOCK(bmp);
674 
675 	/* return the preferred group.
676 	 */
677 	return (bmp->db_agpref);
678 }
679 
680 /*
681  * NAME:	dbAlloc()
682  *
683  * FUNCTION:	attempt to allocate a specified number of contiguous free
684  *		blocks from the working allocation block map.
685  *
686  *		the block allocation policy uses hints and a multi-step
687  *		approach.
688  *
689  *		for allocation requests smaller than the number of blocks
690  *		per dmap, we first try to allocate the new blocks
691  *		immediately following the hint.  if these blocks are not
692  *		available, we try to allocate blocks near the hint.  if
693  *		no blocks near the hint are available, we next try to
694  *		allocate within the same dmap as contains the hint.
695  *
696  *		if no blocks are available in the dmap or the allocation
697  *		request is larger than the dmap size, we try to allocate
698  *		within the same allocation group as contains the hint. if
699  *		this does not succeed, we finally try to allocate anywhere
700  *		within the aggregate.
701  *
702  *		we also try to allocate anywhere within the aggregate
703  *		for allocation requests larger than the allocation group
704  *		size or requests that specify no hint value.
705  *
706  * PARAMETERS:
707  *	ip	- pointer to in-core inode;
708  *	hint	- allocation hint.
709  *	nblocks	- number of contiguous blocks in the range.
710  *	results	- on successful return, set to the starting block number
711  *		  of the newly allocated contiguous range.
712  *
713  * RETURN VALUES:
714  *	0	- success
715  *	-ENOSPC	- insufficient disk resources
716  *	-EIO	- i/o error
717  */
718 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
719 {
720 	int rc, agno;
721 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
722 	struct bmap *bmp;
723 	struct metapage *mp;
724 	s64 lblkno, blkno;
725 	struct dmap *dp;
726 	int l2nb;
727 	s64 mapSize;
728 	int writers;
729 
730 	/* assert that nblocks is valid */
731 	assert(nblocks > 0);
732 
733 	/* get the log2 number of blocks to be allocated.
734 	 * if the number of blocks is not a log2 multiple,
735 	 * it will be rounded up to the next log2 multiple.
736 	 */
737 	l2nb = BLKSTOL2(nblocks);
738 
739 	bmp = JFS_SBI(ip->i_sb)->bmap;
740 
741 	mapSize = bmp->db_mapsize;
742 
743 	/* the hint should be within the map */
744 	if (hint >= mapSize) {
745 		jfs_error(ip->i_sb, "the hint is outside the map\n");
746 		return -EIO;
747 	}
748 
749 	/* if the number of blocks to be allocated is greater than the
750 	 * allocation group size, try to allocate anywhere.
751 	 */
752 	if (l2nb > bmp->db_agl2size) {
753 		IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
754 
755 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
756 
757 		goto write_unlock;
758 	}
759 
760 	/*
761 	 * If no hint, let dbNextAG recommend an allocation group
762 	 */
763 	if (hint == 0)
764 		goto pref_ag;
765 
766 	/* we would like to allocate close to the hint.  adjust the
767 	 * hint to the block following the hint since the allocators
768 	 * will start looking for free space starting at this point.
769 	 */
770 	blkno = hint + 1;
771 
772 	if (blkno >= bmp->db_mapsize)
773 		goto pref_ag;
774 
775 	agno = blkno >> bmp->db_agl2size;
776 
777 	/* check if blkno crosses over into a new allocation group.
778 	 * if so, check if we should allow allocations within this
779 	 * allocation group.
780 	 */
781 	if ((blkno & (bmp->db_agsize - 1)) == 0)
782 		/* check if the AG is currently being written to.
783 		 * if so, call dbNextAG() to find a non-busy
784 		 * AG with sufficient free space.
785 		 */
786 		if (atomic_read(&bmp->db_active[agno]))
787 			goto pref_ag;
788 
789 	/* check if the allocation request size can be satisfied from a
790 	 * single dmap.  if so, try to allocate from the dmap containing
791 	 * the hint using a tiered strategy.
792 	 */
793 	if (nblocks <= BPERDMAP) {
794 		IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
795 
796 		/* get the buffer for the dmap containing the hint.
797 		 */
798 		rc = -EIO;
799 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
800 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
801 		if (mp == NULL)
802 			goto read_unlock;
803 
804 		dp = (struct dmap *) mp->data;
805 
806 		/* first, try to satisfy the allocation request with the
807 		 * blocks beginning at the hint.
808 		 */
809 		if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
810 		    != -ENOSPC) {
811 			if (rc == 0) {
812 				*results = blkno;
813 				mark_metapage_dirty(mp);
814 			}
815 
816 			release_metapage(mp);
817 			goto read_unlock;
818 		}
819 
820 		writers = atomic_read(&bmp->db_active[agno]);
821 		if ((writers > 1) ||
822 		    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
823 			/*
824 			 * Someone else is writing in this allocation
825 			 * group.  To avoid fragmenting, try another ag
826 			 */
827 			release_metapage(mp);
828 			IREAD_UNLOCK(ipbmap);
829 			goto pref_ag;
830 		}
831 
832 		/* next, try to satisfy the allocation request with blocks
833 		 * near the hint.
834 		 */
835 		if ((rc =
836 		     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
837 		    != -ENOSPC) {
838 			if (rc == 0)
839 				mark_metapage_dirty(mp);
840 
841 			release_metapage(mp);
842 			goto read_unlock;
843 		}
844 
845 		/* try to satisfy the allocation request with blocks within
846 		 * the same dmap as the hint.
847 		 */
848 		if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
849 		    != -ENOSPC) {
850 			if (rc == 0)
851 				mark_metapage_dirty(mp);
852 
853 			release_metapage(mp);
854 			goto read_unlock;
855 		}
856 
857 		release_metapage(mp);
858 		IREAD_UNLOCK(ipbmap);
859 	}
860 
861 	/* try to satisfy the allocation request with blocks within
862 	 * the same allocation group as the hint.
863 	 */
864 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
865 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
866 		goto write_unlock;
867 
868 	IWRITE_UNLOCK(ipbmap);
869 
870 
871       pref_ag:
872 	/*
873 	 * Let dbNextAG recommend a preferred allocation group
874 	 */
875 	agno = dbNextAG(ipbmap);
876 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
877 
878 	/* Try to allocate within this allocation group.  if that fails, try to
879 	 * allocate anywhere in the map.
880 	 */
881 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
882 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
883 
884       write_unlock:
885 	IWRITE_UNLOCK(ipbmap);
886 
887 	return (rc);
888 
889       read_unlock:
890 	IREAD_UNLOCK(ipbmap);
891 
892 	return (rc);
893 }
894 
895 /*
896  * NAME:	dbReAlloc()
897  *
898  * FUNCTION:	attempt to extend a current allocation by a specified
899  *		number of blocks.
900  *
901  *		this routine attempts to satisfy the allocation request
902  *		by first trying to extend the existing allocation in
903  *		place by allocating the additional blocks as the blocks
904  *		immediately following the current allocation.  if these
905  *		blocks are not available, this routine will attempt to
906  *		allocate a new set of contiguous blocks large enough
907  *		to cover the existing allocation plus the additional
908  *		number of blocks required.
909  *
910  * PARAMETERS:
911  *	ip	    -  pointer to in-core inode requiring allocation.
912  *	blkno	    -  starting block of the current allocation.
913  *	nblocks	    -  number of contiguous blocks within the current
914  *		       allocation.
915  *	addnblocks  -  number of blocks to add to the allocation.
916  *	results	-      on successful return, set to the starting block number
917  *		       of the existing allocation if the existing allocation
918  *		       was extended in place or to a newly allocated contiguous
919  *		       range if the existing allocation could not be extended
920  *		       in place.
921  *
922  * RETURN VALUES:
923  *	0	- success
924  *	-ENOSPC	- insufficient disk resources
925  *	-EIO	- i/o error
926  */
927 int
928 dbReAlloc(struct inode *ip,
929 	  s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
930 {
931 	int rc;
932 
933 	/* try to extend the allocation in place.
934 	 */
935 	if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
936 		*results = blkno;
937 		return (0);
938 	} else {
939 		if (rc != -ENOSPC)
940 			return (rc);
941 	}
942 
943 	/* could not extend the allocation in place, so allocate a
944 	 * new set of blocks for the entire request (i.e. try to get
945 	 * a range of contiguous blocks large enough to cover the
946 	 * existing allocation plus the additional blocks.)
947 	 */
948 	return (dbAlloc
949 		(ip, blkno + nblocks - 1, addnblocks + nblocks, results));
950 }
951 
952 
953 /*
954  * NAME:	dbExtend()
955  *
956  * FUNCTION:	attempt to extend a current allocation by a specified
957  *		number of blocks.
958  *
959  *		this routine attempts to satisfy the allocation request
960  *		by first trying to extend the existing allocation in
961  *		place by allocating the additional blocks as the blocks
962  *		immediately following the current allocation.
963  *
964  * PARAMETERS:
965  *	ip	    -  pointer to in-core inode requiring allocation.
966  *	blkno	    -  starting block of the current allocation.
967  *	nblocks	    -  number of contiguous blocks within the current
968  *		       allocation.
969  *	addnblocks  -  number of blocks to add to the allocation.
970  *
971  * RETURN VALUES:
972  *	0	- success
973  *	-ENOSPC	- insufficient disk resources
974  *	-EIO	- i/o error
975  */
976 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
977 {
978 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
979 	s64 lblkno, lastblkno, extblkno;
980 	uint rel_block;
981 	struct metapage *mp;
982 	struct dmap *dp;
983 	int rc;
984 	struct inode *ipbmap = sbi->ipbmap;
985 	struct bmap *bmp;
986 
987 	/*
988 	 * We don't want a non-aligned extent to cross a page boundary
989 	 */
990 	if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
991 	    (rel_block + nblocks + addnblocks > sbi->nbperpage))
992 		return -ENOSPC;
993 
994 	/* get the last block of the current allocation */
995 	lastblkno = blkno + nblocks - 1;
996 
997 	/* determine the block number of the block following
998 	 * the existing allocation.
999 	 */
1000 	extblkno = lastblkno + 1;
1001 
1002 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1003 
1004 	/* better be within the file system */
1005 	bmp = sbi->bmap;
1006 	if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1007 		IREAD_UNLOCK(ipbmap);
1008 		jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1009 		return -EIO;
1010 	}
1011 
1012 	/* we'll attempt to extend the current allocation in place by
1013 	 * allocating the additional blocks as the blocks immediately
1014 	 * following the current allocation.  we only try to extend the
1015 	 * current allocation in place if the number of additional blocks
1016 	 * can fit into a dmap, the last block of the current allocation
1017 	 * is not the last block of the file system, and the start of the
1018 	 * inplace extension is not on an allocation group boundary.
1019 	 */
1020 	if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1021 	    (extblkno & (bmp->db_agsize - 1)) == 0) {
1022 		IREAD_UNLOCK(ipbmap);
1023 		return -ENOSPC;
1024 	}
1025 
1026 	/* get the buffer for the dmap containing the first block
1027 	 * of the extension.
1028 	 */
1029 	lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1030 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1031 	if (mp == NULL) {
1032 		IREAD_UNLOCK(ipbmap);
1033 		return -EIO;
1034 	}
1035 
1036 	dp = (struct dmap *) mp->data;
1037 
1038 	/* try to allocate the blocks immediately following the
1039 	 * current allocation.
1040 	 */
1041 	rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1042 
1043 	IREAD_UNLOCK(ipbmap);
1044 
1045 	/* were we successful ? */
1046 	if (rc == 0)
1047 		write_metapage(mp);
1048 	else
1049 		/* we were not successful */
1050 		release_metapage(mp);
1051 
1052 	return (rc);
1053 }
1054 
1055 
1056 /*
1057  * NAME:	dbAllocNext()
1058  *
1059  * FUNCTION:	attempt to allocate the blocks of the specified block
1060  *		range within a dmap.
1061  *
1062  * PARAMETERS:
1063  *	bmp	-  pointer to bmap descriptor
1064  *	dp	-  pointer to dmap.
1065  *	blkno	-  starting block number of the range.
1066  *	nblocks	-  number of contiguous free blocks of the range.
1067  *
1068  * RETURN VALUES:
1069  *	0	- success
1070  *	-ENOSPC	- insufficient disk resources
1071  *	-EIO	- i/o error
1072  *
1073  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1074  */
1075 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1076 		       int nblocks)
1077 {
1078 	int dbitno, word, rembits, nb, nwords, wbitno, nw;
1079 	int l2size;
1080 	s8 *leaf;
1081 	u32 mask;
1082 
1083 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1084 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1085 		return -EIO;
1086 	}
1087 
1088 	/* pick up a pointer to the leaves of the dmap tree.
1089 	 */
1090 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1091 
1092 	/* determine the bit number and word within the dmap of the
1093 	 * starting block.
1094 	 */
1095 	dbitno = blkno & (BPERDMAP - 1);
1096 	word = dbitno >> L2DBWORD;
1097 
1098 	/* check if the specified block range is contained within
1099 	 * this dmap.
1100 	 */
1101 	if (dbitno + nblocks > BPERDMAP)
1102 		return -ENOSPC;
1103 
1104 	/* check if the starting leaf indicates that anything
1105 	 * is free.
1106 	 */
1107 	if (leaf[word] == NOFREE)
1108 		return -ENOSPC;
1109 
1110 	/* check the dmaps words corresponding to block range to see
1111 	 * if the block range is free.  not all bits of the first and
1112 	 * last words may be contained within the block range.  if this
1113 	 * is the case, we'll work against those words (i.e. partial first
1114 	 * and/or last) on an individual basis (a single pass) and examine
1115 	 * the actual bits to determine if they are free.  a single pass
1116 	 * will be used for all dmap words fully contained within the
1117 	 * specified range.  within this pass, the leaves of the dmap
1118 	 * tree will be examined to determine if the blocks are free. a
1119 	 * single leaf may describe the free space of multiple dmap
1120 	 * words, so we may visit only a subset of the actual leaves
1121 	 * corresponding to the dmap words of the block range.
1122 	 */
1123 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1124 		/* determine the bit number within the word and
1125 		 * the number of bits within the word.
1126 		 */
1127 		wbitno = dbitno & (DBWORD - 1);
1128 		nb = min(rembits, DBWORD - wbitno);
1129 
1130 		/* check if only part of the word is to be examined.
1131 		 */
1132 		if (nb < DBWORD) {
1133 			/* check if the bits are free.
1134 			 */
1135 			mask = (ONES << (DBWORD - nb) >> wbitno);
1136 			if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1137 				return -ENOSPC;
1138 
1139 			word += 1;
1140 		} else {
1141 			/* one or more dmap words are fully contained
1142 			 * within the block range.  determine how many
1143 			 * words and how many bits.
1144 			 */
1145 			nwords = rembits >> L2DBWORD;
1146 			nb = nwords << L2DBWORD;
1147 
1148 			/* now examine the appropriate leaves to determine
1149 			 * if the blocks are free.
1150 			 */
1151 			while (nwords > 0) {
1152 				/* does the leaf describe any free space ?
1153 				 */
1154 				if (leaf[word] < BUDMIN)
1155 					return -ENOSPC;
1156 
1157 				/* determine the l2 number of bits provided
1158 				 * by this leaf.
1159 				 */
1160 				l2size =
1161 				    min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1162 
1163 				/* determine how many words were handled.
1164 				 */
1165 				nw = BUDSIZE(l2size, BUDMIN);
1166 
1167 				nwords -= nw;
1168 				word += nw;
1169 			}
1170 		}
1171 	}
1172 
1173 	/* allocate the blocks.
1174 	 */
1175 	return (dbAllocDmap(bmp, dp, blkno, nblocks));
1176 }
1177 
1178 
1179 /*
1180  * NAME:	dbAllocNear()
1181  *
1182  * FUNCTION:	attempt to allocate a number of contiguous free blocks near
1183  *		a specified block (hint) within a dmap.
1184  *
1185  *		starting with the dmap leaf that covers the hint, we'll
1186  *		check the next four contiguous leaves for sufficient free
1187  *		space.  if sufficient free space is found, we'll allocate
1188  *		the desired free space.
1189  *
1190  * PARAMETERS:
1191  *	bmp	-  pointer to bmap descriptor
1192  *	dp	-  pointer to dmap.
1193  *	blkno	-  block number to allocate near.
1194  *	nblocks	-  actual number of contiguous free blocks desired.
1195  *	l2nb	-  log2 number of contiguous free blocks desired.
1196  *	results	-  on successful return, set to the starting block number
1197  *		   of the newly allocated range.
1198  *
1199  * RETURN VALUES:
1200  *	0	- success
1201  *	-ENOSPC	- insufficient disk resources
1202  *	-EIO	- i/o error
1203  *
1204  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1205  */
1206 static int
1207 dbAllocNear(struct bmap * bmp,
1208 	    struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1209 {
1210 	int word, lword, rc;
1211 	s8 *leaf;
1212 
1213 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1214 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1215 		return -EIO;
1216 	}
1217 
1218 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1219 
1220 	/* determine the word within the dmap that holds the hint
1221 	 * (i.e. blkno).  also, determine the last word in the dmap
1222 	 * that we'll include in our examination.
1223 	 */
1224 	word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1225 	lword = min(word + 4, LPERDMAP);
1226 
1227 	/* examine the leaves for sufficient free space.
1228 	 */
1229 	for (; word < lword; word++) {
1230 		/* does the leaf describe sufficient free space ?
1231 		 */
1232 		if (leaf[word] < l2nb)
1233 			continue;
1234 
1235 		/* determine the block number within the file system
1236 		 * of the first block described by this dmap word.
1237 		 */
1238 		blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1239 
1240 		/* if not all bits of the dmap word are free, get the
1241 		 * starting bit number within the dmap word of the required
1242 		 * string of free bits and adjust the block number with the
1243 		 * value.
1244 		 */
1245 		if (leaf[word] < BUDMIN)
1246 			blkno +=
1247 			    dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1248 
1249 		/* allocate the blocks.
1250 		 */
1251 		if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1252 			*results = blkno;
1253 
1254 		return (rc);
1255 	}
1256 
1257 	return -ENOSPC;
1258 }
1259 
1260 
1261 /*
1262  * NAME:	dbAllocAG()
1263  *
1264  * FUNCTION:	attempt to allocate the specified number of contiguous
1265  *		free blocks within the specified allocation group.
1266  *
1267  *		unless the allocation group size is equal to the number
1268  *		of blocks per dmap, the dmap control pages will be used to
1269  *		find the required free space, if available.  we start the
1270  *		search at the highest dmap control page level which
1271  *		distinctly describes the allocation group's free space
1272  *		(i.e. the highest level at which the allocation group's
1273  *		free space is not mixed in with that of any other group).
1274  *		in addition, we start the search within this level at a
1275  *		height of the dmapctl dmtree at which the nodes distinctly
1276  *		describe the allocation group's free space.  at this height,
1277  *		the allocation group's free space may be represented by 1
1278  *		or two sub-trees, depending on the allocation group size.
1279  *		we search the top nodes of these subtrees left to right for
1280  *		sufficient free space.  if sufficient free space is found,
1281  *		the subtree is searched to find the leftmost leaf that
1282  *		has free space.  once we have made it to the leaf, we
1283  *		move the search to the next lower level dmap control page
1284  *		corresponding to this leaf.  we continue down the dmap control
1285  *		pages until we find the dmap that contains or starts the
1286  *		sufficient free space and we allocate at this dmap.
1287  *
1288  *		if the allocation group size is equal to the dmap size,
1289  *		we'll start at the dmap corresponding to the allocation
1290  *		group and attempt the allocation at this level.
1291  *
1292  *		the dmap control page search is also not performed if the
1293  *		allocation group is completely free and we go to the first
1294  *		dmap of the allocation group to do the allocation.  this is
1295  *		done because the allocation group may be part (not the first
1296  *		part) of a larger binary buddy system, causing the dmap
1297  *		control pages to indicate no free space (NOFREE) within
1298  *		the allocation group.
1299  *
1300  * PARAMETERS:
1301  *	bmp	-  pointer to bmap descriptor
1302  *	agno	- allocation group number.
1303  *	nblocks	-  actual number of contiguous free blocks desired.
1304  *	l2nb	-  log2 number of contiguous free blocks desired.
1305  *	results	-  on successful return, set to the starting block number
1306  *		   of the newly allocated range.
1307  *
1308  * RETURN VALUES:
1309  *	0	- success
1310  *	-ENOSPC	- insufficient disk resources
1311  *	-EIO	- i/o error
1312  *
1313  * note: IWRITE_LOCK(ipmap) held on entry/exit;
1314  */
1315 static int
1316 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1317 {
1318 	struct metapage *mp;
1319 	struct dmapctl *dcp;
1320 	int rc, ti, i, k, m, n, agperlev;
1321 	s64 blkno, lblkno;
1322 	int budmin;
1323 
1324 	/* allocation request should not be for more than the
1325 	 * allocation group size.
1326 	 */
1327 	if (l2nb > bmp->db_agl2size) {
1328 		jfs_error(bmp->db_ipbmap->i_sb,
1329 			  "allocation request is larger than the allocation group size\n");
1330 		return -EIO;
1331 	}
1332 
1333 	/* determine the starting block number of the allocation
1334 	 * group.
1335 	 */
1336 	blkno = (s64) agno << bmp->db_agl2size;
1337 
1338 	/* check if the allocation group size is the minimum allocation
1339 	 * group size or if the allocation group is completely free. if
1340 	 * the allocation group size is the minimum size of BPERDMAP (i.e.
1341 	 * 1 dmap), there is no need to search the dmap control page (below)
1342 	 * that fully describes the allocation group since the allocation
1343 	 * group is already fully described by a dmap.  in this case, we
1344 	 * just call dbAllocCtl() to search the dmap tree and allocate the
1345 	 * required space if available.
1346 	 *
1347 	 * if the allocation group is completely free, dbAllocCtl() is
1348 	 * also called to allocate the required space.  this is done for
1349 	 * two reasons.  first, it makes no sense searching the dmap control
1350 	 * pages for free space when we know that free space exists.  second,
1351 	 * the dmap control pages may indicate that the allocation group
1352 	 * has no free space if the allocation group is part (not the first
1353 	 * part) of a larger binary buddy system.
1354 	 */
1355 	if (bmp->db_agsize == BPERDMAP
1356 	    || bmp->db_agfree[agno] == bmp->db_agsize) {
1357 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1358 		if ((rc == -ENOSPC) &&
1359 		    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1360 			printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1361 			       (unsigned long long) blkno,
1362 			       (unsigned long long) nblocks);
1363 			jfs_error(bmp->db_ipbmap->i_sb,
1364 				  "dbAllocCtl failed in free AG\n");
1365 		}
1366 		return (rc);
1367 	}
1368 
1369 	/* the buffer for the dmap control page that fully describes the
1370 	 * allocation group.
1371 	 */
1372 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1373 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1374 	if (mp == NULL)
1375 		return -EIO;
1376 	dcp = (struct dmapctl *) mp->data;
1377 	budmin = dcp->budmin;
1378 
1379 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1380 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1381 		release_metapage(mp);
1382 		return -EIO;
1383 	}
1384 
1385 	/* search the subtree(s) of the dmap control page that describes
1386 	 * the allocation group, looking for sufficient free space.  to begin,
1387 	 * determine how many allocation groups are represented in a dmap
1388 	 * control page at the control page level (i.e. L0, L1, L2) that
1389 	 * fully describes an allocation group. next, determine the starting
1390 	 * tree index of this allocation group within the control page.
1391 	 */
1392 	agperlev =
1393 	    (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1394 	ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1395 
1396 	/* dmap control page trees fan-out by 4 and a single allocation
1397 	 * group may be described by 1 or 2 subtrees within the ag level
1398 	 * dmap control page, depending upon the ag size. examine the ag's
1399 	 * subtrees for sufficient free space, starting with the leftmost
1400 	 * subtree.
1401 	 */
1402 	for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1403 		/* is there sufficient free space ?
1404 		 */
1405 		if (l2nb > dcp->stree[ti])
1406 			continue;
1407 
1408 		/* sufficient free space found in a subtree. now search down
1409 		 * the subtree to find the leftmost leaf that describes this
1410 		 * free space.
1411 		 */
1412 		for (k = bmp->db_agheight; k > 0; k--) {
1413 			for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1414 				if (l2nb <= dcp->stree[m + n]) {
1415 					ti = m + n;
1416 					break;
1417 				}
1418 			}
1419 			if (n == 4) {
1420 				jfs_error(bmp->db_ipbmap->i_sb,
1421 					  "failed descending stree\n");
1422 				release_metapage(mp);
1423 				return -EIO;
1424 			}
1425 		}
1426 
1427 		/* determine the block number within the file system
1428 		 * that corresponds to this leaf.
1429 		 */
1430 		if (bmp->db_aglevel == 2)
1431 			blkno = 0;
1432 		else if (bmp->db_aglevel == 1)
1433 			blkno &= ~(MAXL1SIZE - 1);
1434 		else		/* bmp->db_aglevel == 0 */
1435 			blkno &= ~(MAXL0SIZE - 1);
1436 
1437 		blkno +=
1438 		    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1439 
1440 		/* release the buffer in preparation for going down
1441 		 * the next level of dmap control pages.
1442 		 */
1443 		release_metapage(mp);
1444 
1445 		/* check if we need to continue to search down the lower
1446 		 * level dmap control pages.  we need to if the number of
1447 		 * blocks required is less than maximum number of blocks
1448 		 * described at the next lower level.
1449 		 */
1450 		if (l2nb < budmin) {
1451 
1452 			/* search the lower level dmap control pages to get
1453 			 * the starting block number of the dmap that
1454 			 * contains or starts off the free space.
1455 			 */
1456 			if ((rc =
1457 			     dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1458 				       &blkno))) {
1459 				if (rc == -ENOSPC) {
1460 					jfs_error(bmp->db_ipbmap->i_sb,
1461 						  "control page inconsistent\n");
1462 					return -EIO;
1463 				}
1464 				return (rc);
1465 			}
1466 		}
1467 
1468 		/* allocate the blocks.
1469 		 */
1470 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1471 		if (rc == -ENOSPC) {
1472 			jfs_error(bmp->db_ipbmap->i_sb,
1473 				  "unable to allocate blocks\n");
1474 			rc = -EIO;
1475 		}
1476 		return (rc);
1477 	}
1478 
1479 	/* no space in the allocation group.  release the buffer and
1480 	 * return -ENOSPC.
1481 	 */
1482 	release_metapage(mp);
1483 
1484 	return -ENOSPC;
1485 }
1486 
1487 
1488 /*
1489  * NAME:	dbAllocAny()
1490  *
1491  * FUNCTION:	attempt to allocate the specified number of contiguous
1492  *		free blocks anywhere in the file system.
1493  *
1494  *		dbAllocAny() attempts to find the sufficient free space by
1495  *		searching down the dmap control pages, starting with the
1496  *		highest level (i.e. L0, L1, L2) control page.  if free space
1497  *		large enough to satisfy the desired free space is found, the
1498  *		desired free space is allocated.
1499  *
1500  * PARAMETERS:
1501  *	bmp	-  pointer to bmap descriptor
1502  *	nblocks	 -  actual number of contiguous free blocks desired.
1503  *	l2nb	 -  log2 number of contiguous free blocks desired.
1504  *	results	-  on successful return, set to the starting block number
1505  *		   of the newly allocated range.
1506  *
1507  * RETURN VALUES:
1508  *	0	- success
1509  *	-ENOSPC	- insufficient disk resources
1510  *	-EIO	- i/o error
1511  *
1512  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1513  */
1514 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1515 {
1516 	int rc;
1517 	s64 blkno = 0;
1518 
1519 	/* starting with the top level dmap control page, search
1520 	 * down the dmap control levels for sufficient free space.
1521 	 * if free space is found, dbFindCtl() returns the starting
1522 	 * block number of the dmap that contains or starts off the
1523 	 * range of free space.
1524 	 */
1525 	if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1526 		return (rc);
1527 
1528 	/* allocate the blocks.
1529 	 */
1530 	rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1531 	if (rc == -ENOSPC) {
1532 		jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1533 		return -EIO;
1534 	}
1535 	return (rc);
1536 }
1537 
1538 
1539 /*
1540  * NAME:	dbDiscardAG()
1541  *
1542  * FUNCTION:	attempt to discard (TRIM) all free blocks of specific AG
1543  *
1544  *		algorithm:
1545  *		1) allocate blocks, as large as possible and save them
1546  *		   while holding IWRITE_LOCK on ipbmap
1547  *		2) trim all these saved block/length values
1548  *		3) mark the blocks free again
1549  *
1550  *		benefit:
1551  *		- we work only on one ag at some time, minimizing how long we
1552  *		  need to lock ipbmap
1553  *		- reading / writing the fs is possible most time, even on
1554  *		  trimming
1555  *
1556  *		downside:
1557  *		- we write two times to the dmapctl and dmap pages
1558  *		- but for me, this seems the best way, better ideas?
1559  *		/TR 2012
1560  *
1561  * PARAMETERS:
1562  *	ip	- pointer to in-core inode
1563  *	agno	- ag to trim
1564  *	minlen	- minimum value of contiguous blocks
1565  *
1566  * RETURN VALUES:
1567  *	s64	- actual number of blocks trimmed
1568  */
1569 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1570 {
1571 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1572 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1573 	s64 nblocks, blkno;
1574 	u64 trimmed = 0;
1575 	int rc, l2nb;
1576 	struct super_block *sb = ipbmap->i_sb;
1577 
1578 	struct range2trim {
1579 		u64 blkno;
1580 		u64 nblocks;
1581 	} *totrim, *tt;
1582 
1583 	/* max blkno / nblocks pairs to trim */
1584 	int count = 0, range_cnt;
1585 	u64 max_ranges;
1586 
1587 	/* prevent others from writing new stuff here, while trimming */
1588 	IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1589 
1590 	nblocks = bmp->db_agfree[agno];
1591 	max_ranges = nblocks;
1592 	do_div(max_ranges, minlen);
1593 	range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1594 	totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1595 	if (totrim == NULL) {
1596 		jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1597 		IWRITE_UNLOCK(ipbmap);
1598 		return 0;
1599 	}
1600 
1601 	tt = totrim;
1602 	while (nblocks >= minlen) {
1603 		l2nb = BLKSTOL2(nblocks);
1604 
1605 		/* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1606 		rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1607 		if (rc == 0) {
1608 			tt->blkno = blkno;
1609 			tt->nblocks = nblocks;
1610 			tt++; count++;
1611 
1612 			/* the whole ag is free, trim now */
1613 			if (bmp->db_agfree[agno] == 0)
1614 				break;
1615 
1616 			/* give a hint for the next while */
1617 			nblocks = bmp->db_agfree[agno];
1618 			continue;
1619 		} else if (rc == -ENOSPC) {
1620 			/* search for next smaller log2 block */
1621 			l2nb = BLKSTOL2(nblocks) - 1;
1622 			nblocks = 1LL << l2nb;
1623 		} else {
1624 			/* Trim any already allocated blocks */
1625 			jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1626 			break;
1627 		}
1628 
1629 		/* check, if our trim array is full */
1630 		if (unlikely(count >= range_cnt - 1))
1631 			break;
1632 	}
1633 	IWRITE_UNLOCK(ipbmap);
1634 
1635 	tt->nblocks = 0; /* mark the current end */
1636 	for (tt = totrim; tt->nblocks != 0; tt++) {
1637 		/* when mounted with online discard, dbFree() will
1638 		 * call jfs_issue_discard() itself */
1639 		if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1640 			jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1641 		dbFree(ip, tt->blkno, tt->nblocks);
1642 		trimmed += tt->nblocks;
1643 	}
1644 	kfree(totrim);
1645 
1646 	return trimmed;
1647 }
1648 
1649 /*
1650  * NAME:	dbFindCtl()
1651  *
1652  * FUNCTION:	starting at a specified dmap control page level and block
1653  *		number, search down the dmap control levels for a range of
1654  *		contiguous free blocks large enough to satisfy an allocation
1655  *		request for the specified number of free blocks.
1656  *
1657  *		if sufficient contiguous free blocks are found, this routine
1658  *		returns the starting block number within a dmap page that
1659  *		contains or starts a range of contiqious free blocks that
1660  *		is sufficient in size.
1661  *
1662  * PARAMETERS:
1663  *	bmp	-  pointer to bmap descriptor
1664  *	level	-  starting dmap control page level.
1665  *	l2nb	-  log2 number of contiguous free blocks desired.
1666  *	*blkno	-  on entry, starting block number for conducting the search.
1667  *		   on successful return, the first block within a dmap page
1668  *		   that contains or starts a range of contiguous free blocks.
1669  *
1670  * RETURN VALUES:
1671  *	0	- success
1672  *	-ENOSPC	- insufficient disk resources
1673  *	-EIO	- i/o error
1674  *
1675  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1676  */
1677 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1678 {
1679 	int rc, leafidx, lev;
1680 	s64 b, lblkno;
1681 	struct dmapctl *dcp;
1682 	int budmin;
1683 	struct metapage *mp;
1684 
1685 	/* starting at the specified dmap control page level and block
1686 	 * number, search down the dmap control levels for the starting
1687 	 * block number of a dmap page that contains or starts off
1688 	 * sufficient free blocks.
1689 	 */
1690 	for (lev = level, b = *blkno; lev >= 0; lev--) {
1691 		/* get the buffer of the dmap control page for the block
1692 		 * number and level (i.e. L0, L1, L2).
1693 		 */
1694 		lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1695 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1696 		if (mp == NULL)
1697 			return -EIO;
1698 		dcp = (struct dmapctl *) mp->data;
1699 		budmin = dcp->budmin;
1700 
1701 		if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1702 			jfs_error(bmp->db_ipbmap->i_sb,
1703 				  "Corrupt dmapctl page\n");
1704 			release_metapage(mp);
1705 			return -EIO;
1706 		}
1707 
1708 		/* search the tree within the dmap control page for
1709 		 * sufficient free space.  if sufficient free space is found,
1710 		 * dbFindLeaf() returns the index of the leaf at which
1711 		 * free space was found.
1712 		 */
1713 		rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1714 
1715 		/* release the buffer.
1716 		 */
1717 		release_metapage(mp);
1718 
1719 		/* space found ?
1720 		 */
1721 		if (rc) {
1722 			if (lev != level) {
1723 				jfs_error(bmp->db_ipbmap->i_sb,
1724 					  "dmap inconsistent\n");
1725 				return -EIO;
1726 			}
1727 			return -ENOSPC;
1728 		}
1729 
1730 		/* adjust the block number to reflect the location within
1731 		 * the dmap control page (i.e. the leaf) at which free
1732 		 * space was found.
1733 		 */
1734 		b += (((s64) leafidx) << budmin);
1735 
1736 		/* we stop the search at this dmap control page level if
1737 		 * the number of blocks required is greater than or equal
1738 		 * to the maximum number of blocks described at the next
1739 		 * (lower) level.
1740 		 */
1741 		if (l2nb >= budmin)
1742 			break;
1743 	}
1744 
1745 	*blkno = b;
1746 	return (0);
1747 }
1748 
1749 
1750 /*
1751  * NAME:	dbAllocCtl()
1752  *
1753  * FUNCTION:	attempt to allocate a specified number of contiguous
1754  *		blocks starting within a specific dmap.
1755  *
1756  *		this routine is called by higher level routines that search
1757  *		the dmap control pages above the actual dmaps for contiguous
1758  *		free space.  the result of successful searches by these
1759  *		routines are the starting block numbers within dmaps, with
1760  *		the dmaps themselves containing the desired contiguous free
1761  *		space or starting a contiguous free space of desired size
1762  *		that is made up of the blocks of one or more dmaps. these
1763  *		calls should not fail due to insufficent resources.
1764  *
1765  *		this routine is called in some cases where it is not known
1766  *		whether it will fail due to insufficient resources.  more
1767  *		specifically, this occurs when allocating from an allocation
1768  *		group whose size is equal to the number of blocks per dmap.
1769  *		in this case, the dmap control pages are not examined prior
1770  *		to calling this routine (to save pathlength) and the call
1771  *		might fail.
1772  *
1773  *		for a request size that fits within a dmap, this routine relies
1774  *		upon the dmap's dmtree to find the requested contiguous free
1775  *		space.  for request sizes that are larger than a dmap, the
1776  *		requested free space will start at the first block of the
1777  *		first dmap (i.e. blkno).
1778  *
1779  * PARAMETERS:
1780  *	bmp	-  pointer to bmap descriptor
1781  *	nblocks	 -  actual number of contiguous free blocks to allocate.
1782  *	l2nb	 -  log2 number of contiguous free blocks to allocate.
1783  *	blkno	 -  starting block number of the dmap to start the allocation
1784  *		    from.
1785  *	results	-  on successful return, set to the starting block number
1786  *		   of the newly allocated range.
1787  *
1788  * RETURN VALUES:
1789  *	0	- success
1790  *	-ENOSPC	- insufficient disk resources
1791  *	-EIO	- i/o error
1792  *
1793  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1794  */
1795 static int
1796 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1797 {
1798 	int rc, nb;
1799 	s64 b, lblkno, n;
1800 	struct metapage *mp;
1801 	struct dmap *dp;
1802 
1803 	/* check if the allocation request is confined to a single dmap.
1804 	 */
1805 	if (l2nb <= L2BPERDMAP) {
1806 		/* get the buffer for the dmap.
1807 		 */
1808 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1809 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1810 		if (mp == NULL)
1811 			return -EIO;
1812 		dp = (struct dmap *) mp->data;
1813 
1814 		/* try to allocate the blocks.
1815 		 */
1816 		rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1817 		if (rc == 0)
1818 			mark_metapage_dirty(mp);
1819 
1820 		release_metapage(mp);
1821 
1822 		return (rc);
1823 	}
1824 
1825 	/* allocation request involving multiple dmaps. it must start on
1826 	 * a dmap boundary.
1827 	 */
1828 	assert((blkno & (BPERDMAP - 1)) == 0);
1829 
1830 	/* allocate the blocks dmap by dmap.
1831 	 */
1832 	for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1833 		/* get the buffer for the dmap.
1834 		 */
1835 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1836 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1837 		if (mp == NULL) {
1838 			rc = -EIO;
1839 			goto backout;
1840 		}
1841 		dp = (struct dmap *) mp->data;
1842 
1843 		/* the dmap better be all free.
1844 		 */
1845 		if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1846 			release_metapage(mp);
1847 			jfs_error(bmp->db_ipbmap->i_sb,
1848 				  "the dmap is not all free\n");
1849 			rc = -EIO;
1850 			goto backout;
1851 		}
1852 
1853 		/* determine how many blocks to allocate from this dmap.
1854 		 */
1855 		nb = min_t(s64, n, BPERDMAP);
1856 
1857 		/* allocate the blocks from the dmap.
1858 		 */
1859 		if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1860 			release_metapage(mp);
1861 			goto backout;
1862 		}
1863 
1864 		/* write the buffer.
1865 		 */
1866 		write_metapage(mp);
1867 	}
1868 
1869 	/* set the results (starting block number) and return.
1870 	 */
1871 	*results = blkno;
1872 	return (0);
1873 
1874 	/* something failed in handling an allocation request involving
1875 	 * multiple dmaps.  we'll try to clean up by backing out any
1876 	 * allocation that has already happened for this request.  if
1877 	 * we fail in backing out the allocation, we'll mark the file
1878 	 * system to indicate that blocks have been leaked.
1879 	 */
1880       backout:
1881 
1882 	/* try to backout the allocations dmap by dmap.
1883 	 */
1884 	for (n = nblocks - n, b = blkno; n > 0;
1885 	     n -= BPERDMAP, b += BPERDMAP) {
1886 		/* get the buffer for this dmap.
1887 		 */
1888 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1889 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1890 		if (mp == NULL) {
1891 			/* could not back out.  mark the file system
1892 			 * to indicate that we have leaked blocks.
1893 			 */
1894 			jfs_error(bmp->db_ipbmap->i_sb,
1895 				  "I/O Error: Block Leakage\n");
1896 			continue;
1897 		}
1898 		dp = (struct dmap *) mp->data;
1899 
1900 		/* free the blocks is this dmap.
1901 		 */
1902 		if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1903 			/* could not back out.  mark the file system
1904 			 * to indicate that we have leaked blocks.
1905 			 */
1906 			release_metapage(mp);
1907 			jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1908 			continue;
1909 		}
1910 
1911 		/* write the buffer.
1912 		 */
1913 		write_metapage(mp);
1914 	}
1915 
1916 	return (rc);
1917 }
1918 
1919 
1920 /*
1921  * NAME:	dbAllocDmapLev()
1922  *
1923  * FUNCTION:	attempt to allocate a specified number of contiguous blocks
1924  *		from a specified dmap.
1925  *
1926  *		this routine checks if the contiguous blocks are available.
1927  *		if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1928  *		returned.
1929  *
1930  * PARAMETERS:
1931  *	mp	-  pointer to bmap descriptor
1932  *	dp	-  pointer to dmap to attempt to allocate blocks from.
1933  *	l2nb	-  log2 number of contiguous block desired.
1934  *	nblocks	-  actual number of contiguous block desired.
1935  *	results	-  on successful return, set to the starting block number
1936  *		   of the newly allocated range.
1937  *
1938  * RETURN VALUES:
1939  *	0	- success
1940  *	-ENOSPC	- insufficient disk resources
1941  *	-EIO	- i/o error
1942  *
1943  * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1944  *	IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1945  */
1946 static int
1947 dbAllocDmapLev(struct bmap * bmp,
1948 	       struct dmap * dp, int nblocks, int l2nb, s64 * results)
1949 {
1950 	s64 blkno;
1951 	int leafidx, rc;
1952 
1953 	/* can't be more than a dmaps worth of blocks */
1954 	assert(l2nb <= L2BPERDMAP);
1955 
1956 	/* search the tree within the dmap page for sufficient
1957 	 * free space.  if sufficient free space is found, dbFindLeaf()
1958 	 * returns the index of the leaf at which free space was found.
1959 	 */
1960 	if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
1961 		return -ENOSPC;
1962 
1963 	if (leafidx < 0)
1964 		return -EIO;
1965 
1966 	/* determine the block number within the file system corresponding
1967 	 * to the leaf at which free space was found.
1968 	 */
1969 	blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1970 
1971 	/* if not all bits of the dmap word are free, get the starting
1972 	 * bit number within the dmap word of the required string of free
1973 	 * bits and adjust the block number with this value.
1974 	 */
1975 	if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1976 		blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1977 
1978 	/* allocate the blocks */
1979 	if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1980 		*results = blkno;
1981 
1982 	return (rc);
1983 }
1984 
1985 
1986 /*
1987  * NAME:	dbAllocDmap()
1988  *
1989  * FUNCTION:	adjust the disk allocation map to reflect the allocation
1990  *		of a specified block range within a dmap.
1991  *
1992  *		this routine allocates the specified blocks from the dmap
1993  *		through a call to dbAllocBits(). if the allocation of the
1994  *		block range causes the maximum string of free blocks within
1995  *		the dmap to change (i.e. the value of the root of the dmap's
1996  *		dmtree), this routine will cause this change to be reflected
1997  *		up through the appropriate levels of the dmap control pages
1998  *		by a call to dbAdjCtl() for the L0 dmap control page that
1999  *		covers this dmap.
2000  *
2001  * PARAMETERS:
2002  *	bmp	-  pointer to bmap descriptor
2003  *	dp	-  pointer to dmap to allocate the block range from.
2004  *	blkno	-  starting block number of the block to be allocated.
2005  *	nblocks	-  number of blocks to be allocated.
2006  *
2007  * RETURN VALUES:
2008  *	0	- success
2009  *	-EIO	- i/o error
2010  *
2011  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2012  */
2013 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2014 		       int nblocks)
2015 {
2016 	s8 oldroot;
2017 	int rc;
2018 
2019 	/* save the current value of the root (i.e. maximum free string)
2020 	 * of the dmap tree.
2021 	 */
2022 	oldroot = dp->tree.stree[ROOT];
2023 
2024 	/* allocate the specified (blocks) bits */
2025 	dbAllocBits(bmp, dp, blkno, nblocks);
2026 
2027 	/* if the root has not changed, done. */
2028 	if (dp->tree.stree[ROOT] == oldroot)
2029 		return (0);
2030 
2031 	/* root changed. bubble the change up to the dmap control pages.
2032 	 * if the adjustment of the upper level control pages fails,
2033 	 * backout the bit allocation (thus making everything consistent).
2034 	 */
2035 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2036 		dbFreeBits(bmp, dp, blkno, nblocks);
2037 
2038 	return (rc);
2039 }
2040 
2041 
2042 /*
2043  * NAME:	dbFreeDmap()
2044  *
2045  * FUNCTION:	adjust the disk allocation map to reflect the allocation
2046  *		of a specified block range within a dmap.
2047  *
2048  *		this routine frees the specified blocks from the dmap through
2049  *		a call to dbFreeBits(). if the deallocation of the block range
2050  *		causes the maximum string of free blocks within the dmap to
2051  *		change (i.e. the value of the root of the dmap's dmtree), this
2052  *		routine will cause this change to be reflected up through the
2053  *		appropriate levels of the dmap control pages by a call to
2054  *		dbAdjCtl() for the L0 dmap control page that covers this dmap.
2055  *
2056  * PARAMETERS:
2057  *	bmp	-  pointer to bmap descriptor
2058  *	dp	-  pointer to dmap to free the block range from.
2059  *	blkno	-  starting block number of the block to be freed.
2060  *	nblocks	-  number of blocks to be freed.
2061  *
2062  * RETURN VALUES:
2063  *	0	- success
2064  *	-EIO	- i/o error
2065  *
2066  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2067  */
2068 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2069 		      int nblocks)
2070 {
2071 	s8 oldroot;
2072 	int rc = 0, word;
2073 
2074 	/* save the current value of the root (i.e. maximum free string)
2075 	 * of the dmap tree.
2076 	 */
2077 	oldroot = dp->tree.stree[ROOT];
2078 
2079 	/* free the specified (blocks) bits */
2080 	rc = dbFreeBits(bmp, dp, blkno, nblocks);
2081 
2082 	/* if error or the root has not changed, done. */
2083 	if (rc || (dp->tree.stree[ROOT] == oldroot))
2084 		return (rc);
2085 
2086 	/* root changed. bubble the change up to the dmap control pages.
2087 	 * if the adjustment of the upper level control pages fails,
2088 	 * backout the deallocation.
2089 	 */
2090 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2091 		word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2092 
2093 		/* as part of backing out the deallocation, we will have
2094 		 * to back split the dmap tree if the deallocation caused
2095 		 * the freed blocks to become part of a larger binary buddy
2096 		 * system.
2097 		 */
2098 		if (dp->tree.stree[word] == NOFREE)
2099 			dbBackSplit((dmtree_t *) & dp->tree, word);
2100 
2101 		dbAllocBits(bmp, dp, blkno, nblocks);
2102 	}
2103 
2104 	return (rc);
2105 }
2106 
2107 
2108 /*
2109  * NAME:	dbAllocBits()
2110  *
2111  * FUNCTION:	allocate a specified block range from a dmap.
2112  *
2113  *		this routine updates the dmap to reflect the working
2114  *		state allocation of the specified block range. it directly
2115  *		updates the bits of the working map and causes the adjustment
2116  *		of the binary buddy system described by the dmap's dmtree
2117  *		leaves to reflect the bits allocated.  it also causes the
2118  *		dmap's dmtree, as a whole, to reflect the allocated range.
2119  *
2120  * PARAMETERS:
2121  *	bmp	-  pointer to bmap descriptor
2122  *	dp	-  pointer to dmap to allocate bits from.
2123  *	blkno	-  starting block number of the bits to be allocated.
2124  *	nblocks	-  number of bits to be allocated.
2125  *
2126  * RETURN VALUES: none
2127  *
2128  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2129  */
2130 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2131 			int nblocks)
2132 {
2133 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2134 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2135 	int size;
2136 	s8 *leaf;
2137 
2138 	/* pick up a pointer to the leaves of the dmap tree */
2139 	leaf = dp->tree.stree + LEAFIND;
2140 
2141 	/* determine the bit number and word within the dmap of the
2142 	 * starting block.
2143 	 */
2144 	dbitno = blkno & (BPERDMAP - 1);
2145 	word = dbitno >> L2DBWORD;
2146 
2147 	/* block range better be within the dmap */
2148 	assert(dbitno + nblocks <= BPERDMAP);
2149 
2150 	/* allocate the bits of the dmap's words corresponding to the block
2151 	 * range. not all bits of the first and last words may be contained
2152 	 * within the block range.  if this is the case, we'll work against
2153 	 * those words (i.e. partial first and/or last) on an individual basis
2154 	 * (a single pass), allocating the bits of interest by hand and
2155 	 * updating the leaf corresponding to the dmap word. a single pass
2156 	 * will be used for all dmap words fully contained within the
2157 	 * specified range.  within this pass, the bits of all fully contained
2158 	 * dmap words will be marked as free in a single shot and the leaves
2159 	 * will be updated. a single leaf may describe the free space of
2160 	 * multiple dmap words, so we may update only a subset of the actual
2161 	 * leaves corresponding to the dmap words of the block range.
2162 	 */
2163 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2164 		/* determine the bit number within the word and
2165 		 * the number of bits within the word.
2166 		 */
2167 		wbitno = dbitno & (DBWORD - 1);
2168 		nb = min(rembits, DBWORD - wbitno);
2169 
2170 		/* check if only part of a word is to be allocated.
2171 		 */
2172 		if (nb < DBWORD) {
2173 			/* allocate (set to 1) the appropriate bits within
2174 			 * this dmap word.
2175 			 */
2176 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2177 						      >> wbitno);
2178 
2179 			/* update the leaf for this dmap word. in addition
2180 			 * to setting the leaf value to the binary buddy max
2181 			 * of the updated dmap word, dbSplit() will split
2182 			 * the binary system of the leaves if need be.
2183 			 */
2184 			dbSplit(tp, word, BUDMIN,
2185 				dbMaxBud((u8 *) & dp->wmap[word]));
2186 
2187 			word += 1;
2188 		} else {
2189 			/* one or more dmap words are fully contained
2190 			 * within the block range.  determine how many
2191 			 * words and allocate (set to 1) the bits of these
2192 			 * words.
2193 			 */
2194 			nwords = rembits >> L2DBWORD;
2195 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
2196 
2197 			/* determine how many bits.
2198 			 */
2199 			nb = nwords << L2DBWORD;
2200 
2201 			/* now update the appropriate leaves to reflect
2202 			 * the allocated words.
2203 			 */
2204 			for (; nwords > 0; nwords -= nw) {
2205 				if (leaf[word] < BUDMIN) {
2206 					jfs_error(bmp->db_ipbmap->i_sb,
2207 						  "leaf page corrupt\n");
2208 					break;
2209 				}
2210 
2211 				/* determine what the leaf value should be
2212 				 * updated to as the minimum of the l2 number
2213 				 * of bits being allocated and the l2 number
2214 				 * of bits currently described by this leaf.
2215 				 */
2216 				size = min_t(int, leaf[word],
2217 					     NLSTOL2BSZ(nwords));
2218 
2219 				/* update the leaf to reflect the allocation.
2220 				 * in addition to setting the leaf value to
2221 				 * NOFREE, dbSplit() will split the binary
2222 				 * system of the leaves to reflect the current
2223 				 * allocation (size).
2224 				 */
2225 				dbSplit(tp, word, size, NOFREE);
2226 
2227 				/* get the number of dmap words handled */
2228 				nw = BUDSIZE(size, BUDMIN);
2229 				word += nw;
2230 			}
2231 		}
2232 	}
2233 
2234 	/* update the free count for this dmap */
2235 	le32_add_cpu(&dp->nfree, -nblocks);
2236 
2237 	BMAP_LOCK(bmp);
2238 
2239 	/* if this allocation group is completely free,
2240 	 * update the maximum allocation group number if this allocation
2241 	 * group is the new max.
2242 	 */
2243 	agno = blkno >> bmp->db_agl2size;
2244 	if (agno > bmp->db_maxag)
2245 		bmp->db_maxag = agno;
2246 
2247 	/* update the free count for the allocation group and map */
2248 	bmp->db_agfree[agno] -= nblocks;
2249 	bmp->db_nfree -= nblocks;
2250 
2251 	BMAP_UNLOCK(bmp);
2252 }
2253 
2254 
2255 /*
2256  * NAME:	dbFreeBits()
2257  *
2258  * FUNCTION:	free a specified block range from a dmap.
2259  *
2260  *		this routine updates the dmap to reflect the working
2261  *		state allocation of the specified block range. it directly
2262  *		updates the bits of the working map and causes the adjustment
2263  *		of the binary buddy system described by the dmap's dmtree
2264  *		leaves to reflect the bits freed.  it also causes the dmap's
2265  *		dmtree, as a whole, to reflect the deallocated range.
2266  *
2267  * PARAMETERS:
2268  *	bmp	-  pointer to bmap descriptor
2269  *	dp	-  pointer to dmap to free bits from.
2270  *	blkno	-  starting block number of the bits to be freed.
2271  *	nblocks	-  number of bits to be freed.
2272  *
2273  * RETURN VALUES: 0 for success
2274  *
2275  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2276  */
2277 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2278 		       int nblocks)
2279 {
2280 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2281 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2282 	int rc = 0;
2283 	int size;
2284 
2285 	/* determine the bit number and word within the dmap of the
2286 	 * starting block.
2287 	 */
2288 	dbitno = blkno & (BPERDMAP - 1);
2289 	word = dbitno >> L2DBWORD;
2290 
2291 	/* block range better be within the dmap.
2292 	 */
2293 	assert(dbitno + nblocks <= BPERDMAP);
2294 
2295 	/* free the bits of the dmaps words corresponding to the block range.
2296 	 * not all bits of the first and last words may be contained within
2297 	 * the block range.  if this is the case, we'll work against those
2298 	 * words (i.e. partial first and/or last) on an individual basis
2299 	 * (a single pass), freeing the bits of interest by hand and updating
2300 	 * the leaf corresponding to the dmap word. a single pass will be used
2301 	 * for all dmap words fully contained within the specified range.
2302 	 * within this pass, the bits of all fully contained dmap words will
2303 	 * be marked as free in a single shot and the leaves will be updated. a
2304 	 * single leaf may describe the free space of multiple dmap words,
2305 	 * so we may update only a subset of the actual leaves corresponding
2306 	 * to the dmap words of the block range.
2307 	 *
2308 	 * dbJoin() is used to update leaf values and will join the binary
2309 	 * buddy system of the leaves if the new leaf values indicate this
2310 	 * should be done.
2311 	 */
2312 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2313 		/* determine the bit number within the word and
2314 		 * the number of bits within the word.
2315 		 */
2316 		wbitno = dbitno & (DBWORD - 1);
2317 		nb = min(rembits, DBWORD - wbitno);
2318 
2319 		/* check if only part of a word is to be freed.
2320 		 */
2321 		if (nb < DBWORD) {
2322 			/* free (zero) the appropriate bits within this
2323 			 * dmap word.
2324 			 */
2325 			dp->wmap[word] &=
2326 			    cpu_to_le32(~(ONES << (DBWORD - nb)
2327 					  >> wbitno));
2328 
2329 			/* update the leaf for this dmap word.
2330 			 */
2331 			rc = dbJoin(tp, word,
2332 				    dbMaxBud((u8 *) & dp->wmap[word]));
2333 			if (rc)
2334 				return rc;
2335 
2336 			word += 1;
2337 		} else {
2338 			/* one or more dmap words are fully contained
2339 			 * within the block range.  determine how many
2340 			 * words and free (zero) the bits of these words.
2341 			 */
2342 			nwords = rembits >> L2DBWORD;
2343 			memset(&dp->wmap[word], 0, nwords * 4);
2344 
2345 			/* determine how many bits.
2346 			 */
2347 			nb = nwords << L2DBWORD;
2348 
2349 			/* now update the appropriate leaves to reflect
2350 			 * the freed words.
2351 			 */
2352 			for (; nwords > 0; nwords -= nw) {
2353 				/* determine what the leaf value should be
2354 				 * updated to as the minimum of the l2 number
2355 				 * of bits being freed and the l2 (max) number
2356 				 * of bits that can be described by this leaf.
2357 				 */
2358 				size =
2359 				    min(LITOL2BSZ
2360 					(word, L2LPERDMAP, BUDMIN),
2361 					NLSTOL2BSZ(nwords));
2362 
2363 				/* update the leaf.
2364 				 */
2365 				rc = dbJoin(tp, word, size);
2366 				if (rc)
2367 					return rc;
2368 
2369 				/* get the number of dmap words handled.
2370 				 */
2371 				nw = BUDSIZE(size, BUDMIN);
2372 				word += nw;
2373 			}
2374 		}
2375 	}
2376 
2377 	/* update the free count for this dmap.
2378 	 */
2379 	le32_add_cpu(&dp->nfree, nblocks);
2380 
2381 	BMAP_LOCK(bmp);
2382 
2383 	/* update the free count for the allocation group and
2384 	 * map.
2385 	 */
2386 	agno = blkno >> bmp->db_agl2size;
2387 	bmp->db_nfree += nblocks;
2388 	bmp->db_agfree[agno] += nblocks;
2389 
2390 	/* check if this allocation group is not completely free and
2391 	 * if it is currently the maximum (rightmost) allocation group.
2392 	 * if so, establish the new maximum allocation group number by
2393 	 * searching left for the first allocation group with allocation.
2394 	 */
2395 	if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2396 	    (agno == bmp->db_numag - 1 &&
2397 	     bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2398 		while (bmp->db_maxag > 0) {
2399 			bmp->db_maxag -= 1;
2400 			if (bmp->db_agfree[bmp->db_maxag] !=
2401 			    bmp->db_agsize)
2402 				break;
2403 		}
2404 
2405 		/* re-establish the allocation group preference if the
2406 		 * current preference is right of the maximum allocation
2407 		 * group.
2408 		 */
2409 		if (bmp->db_agpref > bmp->db_maxag)
2410 			bmp->db_agpref = bmp->db_maxag;
2411 	}
2412 
2413 	BMAP_UNLOCK(bmp);
2414 
2415 	return 0;
2416 }
2417 
2418 
2419 /*
2420  * NAME:	dbAdjCtl()
2421  *
2422  * FUNCTION:	adjust a dmap control page at a specified level to reflect
2423  *		the change in a lower level dmap or dmap control page's
2424  *		maximum string of free blocks (i.e. a change in the root
2425  *		of the lower level object's dmtree) due to the allocation
2426  *		or deallocation of a range of blocks with a single dmap.
2427  *
2428  *		on entry, this routine is provided with the new value of
2429  *		the lower level dmap or dmap control page root and the
2430  *		starting block number of the block range whose allocation
2431  *		or deallocation resulted in the root change.  this range
2432  *		is respresented by a single leaf of the current dmapctl
2433  *		and the leaf will be updated with this value, possibly
2434  *		causing a binary buddy system within the leaves to be
2435  *		split or joined.  the update may also cause the dmapctl's
2436  *		dmtree to be updated.
2437  *
2438  *		if the adjustment of the dmap control page, itself, causes its
2439  *		root to change, this change will be bubbled up to the next dmap
2440  *		control level by a recursive call to this routine, specifying
2441  *		the new root value and the next dmap control page level to
2442  *		be adjusted.
2443  * PARAMETERS:
2444  *	bmp	-  pointer to bmap descriptor
2445  *	blkno	-  the first block of a block range within a dmap.  it is
2446  *		   the allocation or deallocation of this block range that
2447  *		   requires the dmap control page to be adjusted.
2448  *	newval	-  the new value of the lower level dmap or dmap control
2449  *		   page root.
2450  *	alloc	-  'true' if adjustment is due to an allocation.
2451  *	level	-  current level of dmap control page (i.e. L0, L1, L2) to
2452  *		   be adjusted.
2453  *
2454  * RETURN VALUES:
2455  *	0	- success
2456  *	-EIO	- i/o error
2457  *
2458  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2459  */
2460 static int
2461 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2462 {
2463 	struct metapage *mp;
2464 	s8 oldroot;
2465 	int oldval;
2466 	s64 lblkno;
2467 	struct dmapctl *dcp;
2468 	int rc, leafno, ti;
2469 
2470 	/* get the buffer for the dmap control page for the specified
2471 	 * block number and control page level.
2472 	 */
2473 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2474 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2475 	if (mp == NULL)
2476 		return -EIO;
2477 	dcp = (struct dmapctl *) mp->data;
2478 
2479 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2480 		jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2481 		release_metapage(mp);
2482 		return -EIO;
2483 	}
2484 
2485 	/* determine the leaf number corresponding to the block and
2486 	 * the index within the dmap control tree.
2487 	 */
2488 	leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2489 	ti = leafno + le32_to_cpu(dcp->leafidx);
2490 
2491 	/* save the current leaf value and the current root level (i.e.
2492 	 * maximum l2 free string described by this dmapctl).
2493 	 */
2494 	oldval = dcp->stree[ti];
2495 	oldroot = dcp->stree[ROOT];
2496 
2497 	/* check if this is a control page update for an allocation.
2498 	 * if so, update the leaf to reflect the new leaf value using
2499 	 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2500 	 * the leaf with the new value.  in addition to updating the
2501 	 * leaf, dbSplit() will also split the binary buddy system of
2502 	 * the leaves, if required, and bubble new values within the
2503 	 * dmapctl tree, if required.  similarly, dbJoin() will join
2504 	 * the binary buddy system of leaves and bubble new values up
2505 	 * the dmapctl tree as required by the new leaf value.
2506 	 */
2507 	if (alloc) {
2508 		/* check if we are in the middle of a binary buddy
2509 		 * system.  this happens when we are performing the
2510 		 * first allocation out of an allocation group that
2511 		 * is part (not the first part) of a larger binary
2512 		 * buddy system.  if we are in the middle, back split
2513 		 * the system prior to calling dbSplit() which assumes
2514 		 * that it is at the front of a binary buddy system.
2515 		 */
2516 		if (oldval == NOFREE) {
2517 			rc = dbBackSplit((dmtree_t *) dcp, leafno);
2518 			if (rc) {
2519 				release_metapage(mp);
2520 				return rc;
2521 			}
2522 			oldval = dcp->stree[ti];
2523 		}
2524 		dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2525 	} else {
2526 		rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2527 		if (rc) {
2528 			release_metapage(mp);
2529 			return rc;
2530 		}
2531 	}
2532 
2533 	/* check if the root of the current dmap control page changed due
2534 	 * to the update and if the current dmap control page is not at
2535 	 * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2536 	 * root changed and this is not the top level), call this routine
2537 	 * again (recursion) for the next higher level of the mapping to
2538 	 * reflect the change in root for the current dmap control page.
2539 	 */
2540 	if (dcp->stree[ROOT] != oldroot) {
2541 		/* are we below the top level of the map.  if so,
2542 		 * bubble the root up to the next higher level.
2543 		 */
2544 		if (level < bmp->db_maxlevel) {
2545 			/* bubble up the new root of this dmap control page to
2546 			 * the next level.
2547 			 */
2548 			if ((rc =
2549 			     dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2550 				      level + 1))) {
2551 				/* something went wrong in bubbling up the new
2552 				 * root value, so backout the changes to the
2553 				 * current dmap control page.
2554 				 */
2555 				if (alloc) {
2556 					dbJoin((dmtree_t *) dcp, leafno,
2557 					       oldval);
2558 				} else {
2559 					/* the dbJoin() above might have
2560 					 * caused a larger binary buddy system
2561 					 * to form and we may now be in the
2562 					 * middle of it.  if this is the case,
2563 					 * back split the buddies.
2564 					 */
2565 					if (dcp->stree[ti] == NOFREE)
2566 						dbBackSplit((dmtree_t *)
2567 							    dcp, leafno);
2568 					dbSplit((dmtree_t *) dcp, leafno,
2569 						dcp->budmin, oldval);
2570 				}
2571 
2572 				/* release the buffer and return the error.
2573 				 */
2574 				release_metapage(mp);
2575 				return (rc);
2576 			}
2577 		} else {
2578 			/* we're at the top level of the map. update
2579 			 * the bmap control page to reflect the size
2580 			 * of the maximum free buddy system.
2581 			 */
2582 			assert(level == bmp->db_maxlevel);
2583 			if (bmp->db_maxfreebud != oldroot) {
2584 				jfs_error(bmp->db_ipbmap->i_sb,
2585 					  "the maximum free buddy is not the old root\n");
2586 			}
2587 			bmp->db_maxfreebud = dcp->stree[ROOT];
2588 		}
2589 	}
2590 
2591 	/* write the buffer.
2592 	 */
2593 	write_metapage(mp);
2594 
2595 	return (0);
2596 }
2597 
2598 
2599 /*
2600  * NAME:	dbSplit()
2601  *
2602  * FUNCTION:	update the leaf of a dmtree with a new value, splitting
2603  *		the leaf from the binary buddy system of the dmtree's
2604  *		leaves, as required.
2605  *
2606  * PARAMETERS:
2607  *	tp	- pointer to the tree containing the leaf.
2608  *	leafno	- the number of the leaf to be updated.
2609  *	splitsz	- the size the binary buddy system starting at the leaf
2610  *		  must be split to, specified as the log2 number of blocks.
2611  *	newval	- the new value for the leaf.
2612  *
2613  * RETURN VALUES: none
2614  *
2615  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2616  */
2617 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2618 {
2619 	int budsz;
2620 	int cursz;
2621 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2622 
2623 	/* check if the leaf needs to be split.
2624 	 */
2625 	if (leaf[leafno] > tp->dmt_budmin) {
2626 		/* the split occurs by cutting the buddy system in half
2627 		 * at the specified leaf until we reach the specified
2628 		 * size.  pick up the starting split size (current size
2629 		 * - 1 in l2) and the corresponding buddy size.
2630 		 */
2631 		cursz = leaf[leafno] - 1;
2632 		budsz = BUDSIZE(cursz, tp->dmt_budmin);
2633 
2634 		/* split until we reach the specified size.
2635 		 */
2636 		while (cursz >= splitsz) {
2637 			/* update the buddy's leaf with its new value.
2638 			 */
2639 			dbAdjTree(tp, leafno ^ budsz, cursz);
2640 
2641 			/* on to the next size and buddy.
2642 			 */
2643 			cursz -= 1;
2644 			budsz >>= 1;
2645 		}
2646 	}
2647 
2648 	/* adjust the dmap tree to reflect the specified leaf's new
2649 	 * value.
2650 	 */
2651 	dbAdjTree(tp, leafno, newval);
2652 }
2653 
2654 
2655 /*
2656  * NAME:	dbBackSplit()
2657  *
2658  * FUNCTION:	back split the binary buddy system of dmtree leaves
2659  *		that hold a specified leaf until the specified leaf
2660  *		starts its own binary buddy system.
2661  *
2662  *		the allocators typically perform allocations at the start
2663  *		of binary buddy systems and dbSplit() is used to accomplish
2664  *		any required splits.  in some cases, however, allocation
2665  *		may occur in the middle of a binary system and requires a
2666  *		back split, with the split proceeding out from the middle of
2667  *		the system (less efficient) rather than the start of the
2668  *		system (more efficient).  the cases in which a back split
2669  *		is required are rare and are limited to the first allocation
2670  *		within an allocation group which is a part (not first part)
2671  *		of a larger binary buddy system and a few exception cases
2672  *		in which a previous join operation must be backed out.
2673  *
2674  * PARAMETERS:
2675  *	tp	- pointer to the tree containing the leaf.
2676  *	leafno	- the number of the leaf to be updated.
2677  *
2678  * RETURN VALUES: none
2679  *
2680  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2681  */
2682 static int dbBackSplit(dmtree_t * tp, int leafno)
2683 {
2684 	int budsz, bud, w, bsz, size;
2685 	int cursz;
2686 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2687 
2688 	/* leaf should be part (not first part) of a binary
2689 	 * buddy system.
2690 	 */
2691 	assert(leaf[leafno] == NOFREE);
2692 
2693 	/* the back split is accomplished by iteratively finding the leaf
2694 	 * that starts the buddy system that contains the specified leaf and
2695 	 * splitting that system in two.  this iteration continues until
2696 	 * the specified leaf becomes the start of a buddy system.
2697 	 *
2698 	 * determine maximum possible l2 size for the specified leaf.
2699 	 */
2700 	size =
2701 	    LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2702 		      tp->dmt_budmin);
2703 
2704 	/* determine the number of leaves covered by this size.  this
2705 	 * is the buddy size that we will start with as we search for
2706 	 * the buddy system that contains the specified leaf.
2707 	 */
2708 	budsz = BUDSIZE(size, tp->dmt_budmin);
2709 
2710 	/* back split.
2711 	 */
2712 	while (leaf[leafno] == NOFREE) {
2713 		/* find the leftmost buddy leaf.
2714 		 */
2715 		for (w = leafno, bsz = budsz;; bsz <<= 1,
2716 		     w = (w < bud) ? w : bud) {
2717 			if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2718 				jfs_err("JFS: block map error in dbBackSplit");
2719 				return -EIO;
2720 			}
2721 
2722 			/* determine the buddy.
2723 			 */
2724 			bud = w ^ bsz;
2725 
2726 			/* check if this buddy is the start of the system.
2727 			 */
2728 			if (leaf[bud] != NOFREE) {
2729 				/* split the leaf at the start of the
2730 				 * system in two.
2731 				 */
2732 				cursz = leaf[bud] - 1;
2733 				dbSplit(tp, bud, cursz, cursz);
2734 				break;
2735 			}
2736 		}
2737 	}
2738 
2739 	if (leaf[leafno] != size) {
2740 		jfs_err("JFS: wrong leaf value in dbBackSplit");
2741 		return -EIO;
2742 	}
2743 	return 0;
2744 }
2745 
2746 
2747 /*
2748  * NAME:	dbJoin()
2749  *
2750  * FUNCTION:	update the leaf of a dmtree with a new value, joining
2751  *		the leaf with other leaves of the dmtree into a multi-leaf
2752  *		binary buddy system, as required.
2753  *
2754  * PARAMETERS:
2755  *	tp	- pointer to the tree containing the leaf.
2756  *	leafno	- the number of the leaf to be updated.
2757  *	newval	- the new value for the leaf.
2758  *
2759  * RETURN VALUES: none
2760  */
2761 static int dbJoin(dmtree_t * tp, int leafno, int newval)
2762 {
2763 	int budsz, buddy;
2764 	s8 *leaf;
2765 
2766 	/* can the new leaf value require a join with other leaves ?
2767 	 */
2768 	if (newval >= tp->dmt_budmin) {
2769 		/* pickup a pointer to the leaves of the tree.
2770 		 */
2771 		leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2772 
2773 		/* try to join the specified leaf into a large binary
2774 		 * buddy system.  the join proceeds by attempting to join
2775 		 * the specified leafno with its buddy (leaf) at new value.
2776 		 * if the join occurs, we attempt to join the left leaf
2777 		 * of the joined buddies with its buddy at new value + 1.
2778 		 * we continue to join until we find a buddy that cannot be
2779 		 * joined (does not have a value equal to the size of the
2780 		 * last join) or until all leaves have been joined into a
2781 		 * single system.
2782 		 *
2783 		 * get the buddy size (number of words covered) of
2784 		 * the new value.
2785 		 */
2786 		budsz = BUDSIZE(newval, tp->dmt_budmin);
2787 
2788 		/* try to join.
2789 		 */
2790 		while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2791 			/* get the buddy leaf.
2792 			 */
2793 			buddy = leafno ^ budsz;
2794 
2795 			/* if the leaf's new value is greater than its
2796 			 * buddy's value, we join no more.
2797 			 */
2798 			if (newval > leaf[buddy])
2799 				break;
2800 
2801 			/* It shouldn't be less */
2802 			if (newval < leaf[buddy])
2803 				return -EIO;
2804 
2805 			/* check which (leafno or buddy) is the left buddy.
2806 			 * the left buddy gets to claim the blocks resulting
2807 			 * from the join while the right gets to claim none.
2808 			 * the left buddy is also eligible to participate in
2809 			 * a join at the next higher level while the right
2810 			 * is not.
2811 			 *
2812 			 */
2813 			if (leafno < buddy) {
2814 				/* leafno is the left buddy.
2815 				 */
2816 				dbAdjTree(tp, buddy, NOFREE);
2817 			} else {
2818 				/* buddy is the left buddy and becomes
2819 				 * leafno.
2820 				 */
2821 				dbAdjTree(tp, leafno, NOFREE);
2822 				leafno = buddy;
2823 			}
2824 
2825 			/* on to try the next join.
2826 			 */
2827 			newval += 1;
2828 			budsz <<= 1;
2829 		}
2830 	}
2831 
2832 	/* update the leaf value.
2833 	 */
2834 	dbAdjTree(tp, leafno, newval);
2835 
2836 	return 0;
2837 }
2838 
2839 
2840 /*
2841  * NAME:	dbAdjTree()
2842  *
2843  * FUNCTION:	update a leaf of a dmtree with a new value, adjusting
2844  *		the dmtree, as required, to reflect the new leaf value.
2845  *		the combination of any buddies must already be done before
2846  *		this is called.
2847  *
2848  * PARAMETERS:
2849  *	tp	- pointer to the tree to be adjusted.
2850  *	leafno	- the number of the leaf to be updated.
2851  *	newval	- the new value for the leaf.
2852  *
2853  * RETURN VALUES: none
2854  */
2855 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2856 {
2857 	int lp, pp, k;
2858 	int max;
2859 
2860 	/* pick up the index of the leaf for this leafno.
2861 	 */
2862 	lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2863 
2864 	/* is the current value the same as the old value ?  if so,
2865 	 * there is nothing to do.
2866 	 */
2867 	if (tp->dmt_stree[lp] == newval)
2868 		return;
2869 
2870 	/* set the new value.
2871 	 */
2872 	tp->dmt_stree[lp] = newval;
2873 
2874 	/* bubble the new value up the tree as required.
2875 	 */
2876 	for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2877 		/* get the index of the first leaf of the 4 leaf
2878 		 * group containing the specified leaf (leafno).
2879 		 */
2880 		lp = ((lp - 1) & ~0x03) + 1;
2881 
2882 		/* get the index of the parent of this 4 leaf group.
2883 		 */
2884 		pp = (lp - 1) >> 2;
2885 
2886 		/* determine the maximum of the 4 leaves.
2887 		 */
2888 		max = TREEMAX(&tp->dmt_stree[lp]);
2889 
2890 		/* if the maximum of the 4 is the same as the
2891 		 * parent's value, we're done.
2892 		 */
2893 		if (tp->dmt_stree[pp] == max)
2894 			break;
2895 
2896 		/* parent gets new value.
2897 		 */
2898 		tp->dmt_stree[pp] = max;
2899 
2900 		/* parent becomes leaf for next go-round.
2901 		 */
2902 		lp = pp;
2903 	}
2904 }
2905 
2906 
2907 /*
2908  * NAME:	dbFindLeaf()
2909  *
2910  * FUNCTION:	search a dmtree_t for sufficient free blocks, returning
2911  *		the index of a leaf describing the free blocks if
2912  *		sufficient free blocks are found.
2913  *
2914  *		the search starts at the top of the dmtree_t tree and
2915  *		proceeds down the tree to the leftmost leaf with sufficient
2916  *		free space.
2917  *
2918  * PARAMETERS:
2919  *	tp	- pointer to the tree to be searched.
2920  *	l2nb	- log2 number of free blocks to search for.
2921  *	leafidx	- return pointer to be set to the index of the leaf
2922  *		  describing at least l2nb free blocks if sufficient
2923  *		  free blocks are found.
2924  *
2925  * RETURN VALUES:
2926  *	0	- success
2927  *	-ENOSPC	- insufficient free blocks.
2928  */
2929 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2930 {
2931 	int ti, n = 0, k, x = 0;
2932 
2933 	/* first check the root of the tree to see if there is
2934 	 * sufficient free space.
2935 	 */
2936 	if (l2nb > tp->dmt_stree[ROOT])
2937 		return -ENOSPC;
2938 
2939 	/* sufficient free space available. now search down the tree
2940 	 * starting at the next level for the leftmost leaf that
2941 	 * describes sufficient free space.
2942 	 */
2943 	for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2944 	     k > 0; k--, ti = ((ti + n) << 2) + 1) {
2945 		/* search the four nodes at this level, starting from
2946 		 * the left.
2947 		 */
2948 		for (x = ti, n = 0; n < 4; n++) {
2949 			/* sufficient free space found.  move to the next
2950 			 * level (or quit if this is the last level).
2951 			 */
2952 			if (l2nb <= tp->dmt_stree[x + n])
2953 				break;
2954 		}
2955 
2956 		/* better have found something since the higher
2957 		 * levels of the tree said it was here.
2958 		 */
2959 		assert(n < 4);
2960 	}
2961 
2962 	/* set the return to the leftmost leaf describing sufficient
2963 	 * free space.
2964 	 */
2965 	*leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2966 
2967 	return (0);
2968 }
2969 
2970 
2971 /*
2972  * NAME:	dbFindBits()
2973  *
2974  * FUNCTION:	find a specified number of binary buddy free bits within a
2975  *		dmap bitmap word value.
2976  *
2977  *		this routine searches the bitmap value for (1 << l2nb) free
2978  *		bits at (1 << l2nb) alignments within the value.
2979  *
2980  * PARAMETERS:
2981  *	word	-  dmap bitmap word value.
2982  *	l2nb	-  number of free bits specified as a log2 number.
2983  *
2984  * RETURN VALUES:
2985  *	starting bit number of free bits.
2986  */
2987 static int dbFindBits(u32 word, int l2nb)
2988 {
2989 	int bitno, nb;
2990 	u32 mask;
2991 
2992 	/* get the number of bits.
2993 	 */
2994 	nb = 1 << l2nb;
2995 	assert(nb <= DBWORD);
2996 
2997 	/* complement the word so we can use a mask (i.e. 0s represent
2998 	 * free bits) and compute the mask.
2999 	 */
3000 	word = ~word;
3001 	mask = ONES << (DBWORD - nb);
3002 
3003 	/* scan the word for nb free bits at nb alignments.
3004 	 */
3005 	for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
3006 		if ((mask & word) == mask)
3007 			break;
3008 	}
3009 
3010 	ASSERT(bitno < 32);
3011 
3012 	/* return the bit number.
3013 	 */
3014 	return (bitno);
3015 }
3016 
3017 
3018 /*
3019  * NAME:	dbMaxBud(u8 *cp)
3020  *
3021  * FUNCTION:	determine the largest binary buddy string of free
3022  *		bits within 32-bits of the map.
3023  *
3024  * PARAMETERS:
3025  *	cp	-  pointer to the 32-bit value.
3026  *
3027  * RETURN VALUES:
3028  *	largest binary buddy of free bits within a dmap word.
3029  */
3030 static int dbMaxBud(u8 * cp)
3031 {
3032 	signed char tmp1, tmp2;
3033 
3034 	/* check if the wmap word is all free. if so, the
3035 	 * free buddy size is BUDMIN.
3036 	 */
3037 	if (*((uint *) cp) == 0)
3038 		return (BUDMIN);
3039 
3040 	/* check if the wmap word is half free. if so, the
3041 	 * free buddy size is BUDMIN-1.
3042 	 */
3043 	if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3044 		return (BUDMIN - 1);
3045 
3046 	/* not all free or half free. determine the free buddy
3047 	 * size thru table lookup using quarters of the wmap word.
3048 	 */
3049 	tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3050 	tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3051 	return (max(tmp1, tmp2));
3052 }
3053 
3054 
3055 /*
3056  * NAME:	cnttz(uint word)
3057  *
3058  * FUNCTION:	determine the number of trailing zeros within a 32-bit
3059  *		value.
3060  *
3061  * PARAMETERS:
3062  *	value	-  32-bit value to be examined.
3063  *
3064  * RETURN VALUES:
3065  *	count of trailing zeros
3066  */
3067 static int cnttz(u32 word)
3068 {
3069 	int n;
3070 
3071 	for (n = 0; n < 32; n++, word >>= 1) {
3072 		if (word & 0x01)
3073 			break;
3074 	}
3075 
3076 	return (n);
3077 }
3078 
3079 
3080 /*
3081  * NAME:	cntlz(u32 value)
3082  *
3083  * FUNCTION:	determine the number of leading zeros within a 32-bit
3084  *		value.
3085  *
3086  * PARAMETERS:
3087  *	value	-  32-bit value to be examined.
3088  *
3089  * RETURN VALUES:
3090  *	count of leading zeros
3091  */
3092 static int cntlz(u32 value)
3093 {
3094 	int n;
3095 
3096 	for (n = 0; n < 32; n++, value <<= 1) {
3097 		if (value & HIGHORDER)
3098 			break;
3099 	}
3100 	return (n);
3101 }
3102 
3103 
3104 /*
3105  * NAME:	blkstol2(s64 nb)
3106  *
3107  * FUNCTION:	convert a block count to its log2 value. if the block
3108  *		count is not a l2 multiple, it is rounded up to the next
3109  *		larger l2 multiple.
3110  *
3111  * PARAMETERS:
3112  *	nb	-  number of blocks
3113  *
3114  * RETURN VALUES:
3115  *	log2 number of blocks
3116  */
3117 static int blkstol2(s64 nb)
3118 {
3119 	int l2nb;
3120 	s64 mask;		/* meant to be signed */
3121 
3122 	mask = (s64) 1 << (64 - 1);
3123 
3124 	/* count the leading bits.
3125 	 */
3126 	for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3127 		/* leading bit found.
3128 		 */
3129 		if (nb & mask) {
3130 			/* determine the l2 value.
3131 			 */
3132 			l2nb = (64 - 1) - l2nb;
3133 
3134 			/* check if we need to round up.
3135 			 */
3136 			if (~mask & nb)
3137 				l2nb++;
3138 
3139 			return (l2nb);
3140 		}
3141 	}
3142 	assert(0);
3143 	return 0;		/* fix compiler warning */
3144 }
3145 
3146 
3147 /*
3148  * NAME:	dbAllocBottomUp()
3149  *
3150  * FUNCTION:	alloc the specified block range from the working block
3151  *		allocation map.
3152  *
3153  *		the blocks will be alloc from the working map one dmap
3154  *		at a time.
3155  *
3156  * PARAMETERS:
3157  *	ip	-  pointer to in-core inode;
3158  *	blkno	-  starting block number to be freed.
3159  *	nblocks	-  number of blocks to be freed.
3160  *
3161  * RETURN VALUES:
3162  *	0	- success
3163  *	-EIO	- i/o error
3164  */
3165 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3166 {
3167 	struct metapage *mp;
3168 	struct dmap *dp;
3169 	int nb, rc;
3170 	s64 lblkno, rem;
3171 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3172 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3173 
3174 	IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3175 
3176 	/* block to be allocated better be within the mapsize. */
3177 	ASSERT(nblocks <= bmp->db_mapsize - blkno);
3178 
3179 	/*
3180 	 * allocate the blocks a dmap at a time.
3181 	 */
3182 	mp = NULL;
3183 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3184 		/* release previous dmap if any */
3185 		if (mp) {
3186 			write_metapage(mp);
3187 		}
3188 
3189 		/* get the buffer for the current dmap. */
3190 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3191 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3192 		if (mp == NULL) {
3193 			IREAD_UNLOCK(ipbmap);
3194 			return -EIO;
3195 		}
3196 		dp = (struct dmap *) mp->data;
3197 
3198 		/* determine the number of blocks to be allocated from
3199 		 * this dmap.
3200 		 */
3201 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3202 
3203 		/* allocate the blocks. */
3204 		if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3205 			release_metapage(mp);
3206 			IREAD_UNLOCK(ipbmap);
3207 			return (rc);
3208 		}
3209 	}
3210 
3211 	/* write the last buffer. */
3212 	write_metapage(mp);
3213 
3214 	IREAD_UNLOCK(ipbmap);
3215 
3216 	return (0);
3217 }
3218 
3219 
3220 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3221 			 int nblocks)
3222 {
3223 	int rc;
3224 	int dbitno, word, rembits, nb, nwords, wbitno, agno;
3225 	s8 oldroot;
3226 	struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3227 
3228 	/* save the current value of the root (i.e. maximum free string)
3229 	 * of the dmap tree.
3230 	 */
3231 	oldroot = tp->stree[ROOT];
3232 
3233 	/* determine the bit number and word within the dmap of the
3234 	 * starting block.
3235 	 */
3236 	dbitno = blkno & (BPERDMAP - 1);
3237 	word = dbitno >> L2DBWORD;
3238 
3239 	/* block range better be within the dmap */
3240 	assert(dbitno + nblocks <= BPERDMAP);
3241 
3242 	/* allocate the bits of the dmap's words corresponding to the block
3243 	 * range. not all bits of the first and last words may be contained
3244 	 * within the block range.  if this is the case, we'll work against
3245 	 * those words (i.e. partial first and/or last) on an individual basis
3246 	 * (a single pass), allocating the bits of interest by hand and
3247 	 * updating the leaf corresponding to the dmap word. a single pass
3248 	 * will be used for all dmap words fully contained within the
3249 	 * specified range.  within this pass, the bits of all fully contained
3250 	 * dmap words will be marked as free in a single shot and the leaves
3251 	 * will be updated. a single leaf may describe the free space of
3252 	 * multiple dmap words, so we may update only a subset of the actual
3253 	 * leaves corresponding to the dmap words of the block range.
3254 	 */
3255 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3256 		/* determine the bit number within the word and
3257 		 * the number of bits within the word.
3258 		 */
3259 		wbitno = dbitno & (DBWORD - 1);
3260 		nb = min(rembits, DBWORD - wbitno);
3261 
3262 		/* check if only part of a word is to be allocated.
3263 		 */
3264 		if (nb < DBWORD) {
3265 			/* allocate (set to 1) the appropriate bits within
3266 			 * this dmap word.
3267 			 */
3268 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3269 						      >> wbitno);
3270 
3271 			word++;
3272 		} else {
3273 			/* one or more dmap words are fully contained
3274 			 * within the block range.  determine how many
3275 			 * words and allocate (set to 1) the bits of these
3276 			 * words.
3277 			 */
3278 			nwords = rembits >> L2DBWORD;
3279 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
3280 
3281 			/* determine how many bits */
3282 			nb = nwords << L2DBWORD;
3283 			word += nwords;
3284 		}
3285 	}
3286 
3287 	/* update the free count for this dmap */
3288 	le32_add_cpu(&dp->nfree, -nblocks);
3289 
3290 	/* reconstruct summary tree */
3291 	dbInitDmapTree(dp);
3292 
3293 	BMAP_LOCK(bmp);
3294 
3295 	/* if this allocation group is completely free,
3296 	 * update the highest active allocation group number
3297 	 * if this allocation group is the new max.
3298 	 */
3299 	agno = blkno >> bmp->db_agl2size;
3300 	if (agno > bmp->db_maxag)
3301 		bmp->db_maxag = agno;
3302 
3303 	/* update the free count for the allocation group and map */
3304 	bmp->db_agfree[agno] -= nblocks;
3305 	bmp->db_nfree -= nblocks;
3306 
3307 	BMAP_UNLOCK(bmp);
3308 
3309 	/* if the root has not changed, done. */
3310 	if (tp->stree[ROOT] == oldroot)
3311 		return (0);
3312 
3313 	/* root changed. bubble the change up to the dmap control pages.
3314 	 * if the adjustment of the upper level control pages fails,
3315 	 * backout the bit allocation (thus making everything consistent).
3316 	 */
3317 	if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3318 		dbFreeBits(bmp, dp, blkno, nblocks);
3319 
3320 	return (rc);
3321 }
3322 
3323 
3324 /*
3325  * NAME:	dbExtendFS()
3326  *
3327  * FUNCTION:	extend bmap from blkno for nblocks;
3328  *		dbExtendFS() updates bmap ready for dbAllocBottomUp();
3329  *
3330  * L2
3331  *  |
3332  *   L1---------------------------------L1
3333  *    |					 |
3334  *     L0---------L0---------L0		  L0---------L0---------L0
3335  *      |	   |	      |		   |	      |		 |
3336  *	 d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3337  * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3338  *
3339  * <---old---><----------------------------extend----------------------->
3340  */
3341 int dbExtendFS(struct inode *ipbmap, s64 blkno,	s64 nblocks)
3342 {
3343 	struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3344 	int nbperpage = sbi->nbperpage;
3345 	int i, i0 = true, j, j0 = true, k, n;
3346 	s64 newsize;
3347 	s64 p;
3348 	struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3349 	struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3350 	struct dmap *dp;
3351 	s8 *l0leaf, *l1leaf, *l2leaf;
3352 	struct bmap *bmp = sbi->bmap;
3353 	int agno, l2agsize, oldl2agsize;
3354 	s64 ag_rem;
3355 
3356 	newsize = blkno + nblocks;
3357 
3358 	jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3359 		 (long long) blkno, (long long) nblocks, (long long) newsize);
3360 
3361 	/*
3362 	 *	initialize bmap control page.
3363 	 *
3364 	 * all the data in bmap control page should exclude
3365 	 * the mkfs hidden dmap page.
3366 	 */
3367 
3368 	/* update mapsize */
3369 	bmp->db_mapsize = newsize;
3370 	bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3371 
3372 	/* compute new AG size */
3373 	l2agsize = dbGetL2AGSize(newsize);
3374 	oldl2agsize = bmp->db_agl2size;
3375 
3376 	bmp->db_agl2size = l2agsize;
3377 	bmp->db_agsize = 1 << l2agsize;
3378 
3379 	/* compute new number of AG */
3380 	agno = bmp->db_numag;
3381 	bmp->db_numag = newsize >> l2agsize;
3382 	bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3383 
3384 	/*
3385 	 *	reconfigure db_agfree[]
3386 	 * from old AG configuration to new AG configuration;
3387 	 *
3388 	 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3389 	 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3390 	 * note: new AG size = old AG size * (2**x).
3391 	 */
3392 	if (l2agsize == oldl2agsize)
3393 		goto extend;
3394 	k = 1 << (l2agsize - oldl2agsize);
3395 	ag_rem = bmp->db_agfree[0];	/* save agfree[0] */
3396 	for (i = 0, n = 0; i < agno; n++) {
3397 		bmp->db_agfree[n] = 0;	/* init collection point */
3398 
3399 		/* coalesce contiguous k AGs; */
3400 		for (j = 0; j < k && i < agno; j++, i++) {
3401 			/* merge AGi to AGn */
3402 			bmp->db_agfree[n] += bmp->db_agfree[i];
3403 		}
3404 	}
3405 	bmp->db_agfree[0] += ag_rem;	/* restore agfree[0] */
3406 
3407 	for (; n < MAXAG; n++)
3408 		bmp->db_agfree[n] = 0;
3409 
3410 	/*
3411 	 * update highest active ag number
3412 	 */
3413 
3414 	bmp->db_maxag = bmp->db_maxag / k;
3415 
3416 	/*
3417 	 *	extend bmap
3418 	 *
3419 	 * update bit maps and corresponding level control pages;
3420 	 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3421 	 */
3422       extend:
3423 	/* get L2 page */
3424 	p = BMAPBLKNO + nbperpage;	/* L2 page */
3425 	l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3426 	if (!l2mp) {
3427 		jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3428 		return -EIO;
3429 	}
3430 	l2dcp = (struct dmapctl *) l2mp->data;
3431 
3432 	/* compute start L1 */
3433 	k = blkno >> L2MAXL1SIZE;
3434 	l2leaf = l2dcp->stree + CTLLEAFIND + k;
3435 	p = BLKTOL1(blkno, sbi->l2nbperpage);	/* L1 page */
3436 
3437 	/*
3438 	 * extend each L1 in L2
3439 	 */
3440 	for (; k < LPERCTL; k++, p += nbperpage) {
3441 		/* get L1 page */
3442 		if (j0) {
3443 			/* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3444 			l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3445 			if (l1mp == NULL)
3446 				goto errout;
3447 			l1dcp = (struct dmapctl *) l1mp->data;
3448 
3449 			/* compute start L0 */
3450 			j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3451 			l1leaf = l1dcp->stree + CTLLEAFIND + j;
3452 			p = BLKTOL0(blkno, sbi->l2nbperpage);
3453 			j0 = false;
3454 		} else {
3455 			/* assign/init L1 page */
3456 			l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3457 			if (l1mp == NULL)
3458 				goto errout;
3459 
3460 			l1dcp = (struct dmapctl *) l1mp->data;
3461 
3462 			/* compute start L0 */
3463 			j = 0;
3464 			l1leaf = l1dcp->stree + CTLLEAFIND;
3465 			p += nbperpage;	/* 1st L0 of L1.k */
3466 		}
3467 
3468 		/*
3469 		 * extend each L0 in L1
3470 		 */
3471 		for (; j < LPERCTL; j++) {
3472 			/* get L0 page */
3473 			if (i0) {
3474 				/* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3475 
3476 				l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3477 				if (l0mp == NULL)
3478 					goto errout;
3479 				l0dcp = (struct dmapctl *) l0mp->data;
3480 
3481 				/* compute start dmap */
3482 				i = (blkno & (MAXL0SIZE - 1)) >>
3483 				    L2BPERDMAP;
3484 				l0leaf = l0dcp->stree + CTLLEAFIND + i;
3485 				p = BLKTODMAP(blkno,
3486 					      sbi->l2nbperpage);
3487 				i0 = false;
3488 			} else {
3489 				/* assign/init L0 page */
3490 				l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3491 				if (l0mp == NULL)
3492 					goto errout;
3493 
3494 				l0dcp = (struct dmapctl *) l0mp->data;
3495 
3496 				/* compute start dmap */
3497 				i = 0;
3498 				l0leaf = l0dcp->stree + CTLLEAFIND;
3499 				p += nbperpage;	/* 1st dmap of L0.j */
3500 			}
3501 
3502 			/*
3503 			 * extend each dmap in L0
3504 			 */
3505 			for (; i < LPERCTL; i++) {
3506 				/*
3507 				 * reconstruct the dmap page, and
3508 				 * initialize corresponding parent L0 leaf
3509 				 */
3510 				if ((n = blkno & (BPERDMAP - 1))) {
3511 					/* read in dmap page: */
3512 					mp = read_metapage(ipbmap, p,
3513 							   PSIZE, 0);
3514 					if (mp == NULL)
3515 						goto errout;
3516 					n = min(nblocks, (s64)BPERDMAP - n);
3517 				} else {
3518 					/* assign/init dmap page */
3519 					mp = read_metapage(ipbmap, p,
3520 							   PSIZE, 0);
3521 					if (mp == NULL)
3522 						goto errout;
3523 
3524 					n = min_t(s64, nblocks, BPERDMAP);
3525 				}
3526 
3527 				dp = (struct dmap *) mp->data;
3528 				*l0leaf = dbInitDmap(dp, blkno, n);
3529 
3530 				bmp->db_nfree += n;
3531 				agno = le64_to_cpu(dp->start) >> l2agsize;
3532 				bmp->db_agfree[agno] += n;
3533 
3534 				write_metapage(mp);
3535 
3536 				l0leaf++;
3537 				p += nbperpage;
3538 
3539 				blkno += n;
3540 				nblocks -= n;
3541 				if (nblocks == 0)
3542 					break;
3543 			}	/* for each dmap in a L0 */
3544 
3545 			/*
3546 			 * build current L0 page from its leaves, and
3547 			 * initialize corresponding parent L1 leaf
3548 			 */
3549 			*l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3550 			write_metapage(l0mp);
3551 			l0mp = NULL;
3552 
3553 			if (nblocks)
3554 				l1leaf++;	/* continue for next L0 */
3555 			else {
3556 				/* more than 1 L0 ? */
3557 				if (j > 0)
3558 					break;	/* build L1 page */
3559 				else {
3560 					/* summarize in global bmap page */
3561 					bmp->db_maxfreebud = *l1leaf;
3562 					release_metapage(l1mp);
3563 					release_metapage(l2mp);
3564 					goto finalize;
3565 				}
3566 			}
3567 		}		/* for each L0 in a L1 */
3568 
3569 		/*
3570 		 * build current L1 page from its leaves, and
3571 		 * initialize corresponding parent L2 leaf
3572 		 */
3573 		*l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3574 		write_metapage(l1mp);
3575 		l1mp = NULL;
3576 
3577 		if (nblocks)
3578 			l2leaf++;	/* continue for next L1 */
3579 		else {
3580 			/* more than 1 L1 ? */
3581 			if (k > 0)
3582 				break;	/* build L2 page */
3583 			else {
3584 				/* summarize in global bmap page */
3585 				bmp->db_maxfreebud = *l2leaf;
3586 				release_metapage(l2mp);
3587 				goto finalize;
3588 			}
3589 		}
3590 	}			/* for each L1 in a L2 */
3591 
3592 	jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3593 errout:
3594 	if (l0mp)
3595 		release_metapage(l0mp);
3596 	if (l1mp)
3597 		release_metapage(l1mp);
3598 	release_metapage(l2mp);
3599 	return -EIO;
3600 
3601 	/*
3602 	 *	finalize bmap control page
3603 	 */
3604 finalize:
3605 
3606 	return 0;
3607 }
3608 
3609 
3610 /*
3611  *	dbFinalizeBmap()
3612  */
3613 void dbFinalizeBmap(struct inode *ipbmap)
3614 {
3615 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3616 	int actags, inactags, l2nl;
3617 	s64 ag_rem, actfree, inactfree, avgfree;
3618 	int i, n;
3619 
3620 	/*
3621 	 *	finalize bmap control page
3622 	 */
3623 //finalize:
3624 	/*
3625 	 * compute db_agpref: preferred ag to allocate from
3626 	 * (the leftmost ag with average free space in it);
3627 	 */
3628 //agpref:
3629 	/* get the number of active ags and inactive ags */
3630 	actags = bmp->db_maxag + 1;
3631 	inactags = bmp->db_numag - actags;
3632 	ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);	/* ??? */
3633 
3634 	/* determine how many blocks are in the inactive allocation
3635 	 * groups. in doing this, we must account for the fact that
3636 	 * the rightmost group might be a partial group (i.e. file
3637 	 * system size is not a multiple of the group size).
3638 	 */
3639 	inactfree = (inactags && ag_rem) ?
3640 	    ((inactags - 1) << bmp->db_agl2size) + ag_rem
3641 	    : inactags << bmp->db_agl2size;
3642 
3643 	/* determine how many free blocks are in the active
3644 	 * allocation groups plus the average number of free blocks
3645 	 * within the active ags.
3646 	 */
3647 	actfree = bmp->db_nfree - inactfree;
3648 	avgfree = (u32) actfree / (u32) actags;
3649 
3650 	/* if the preferred allocation group has not average free space.
3651 	 * re-establish the preferred group as the leftmost
3652 	 * group with average free space.
3653 	 */
3654 	if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3655 		for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3656 		     bmp->db_agpref++) {
3657 			if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3658 				break;
3659 		}
3660 		if (bmp->db_agpref >= bmp->db_numag) {
3661 			jfs_error(ipbmap->i_sb,
3662 				  "cannot find ag with average freespace\n");
3663 		}
3664 	}
3665 
3666 	/*
3667 	 * compute db_aglevel, db_agheight, db_width, db_agstart:
3668 	 * an ag is covered in aglevel dmapctl summary tree,
3669 	 * at agheight level height (from leaf) with agwidth number of nodes
3670 	 * each, which starts at agstart index node of the smmary tree node
3671 	 * array;
3672 	 */
3673 	bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3674 	l2nl =
3675 	    bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3676 	bmp->db_agheight = l2nl >> 1;
3677 	bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3678 	for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3679 	     i--) {
3680 		bmp->db_agstart += n;
3681 		n <<= 2;
3682 	}
3683 
3684 }
3685 
3686 
3687 /*
3688  * NAME:	dbInitDmap()/ujfs_idmap_page()
3689  *
3690  * FUNCTION:	initialize working/persistent bitmap of the dmap page
3691  *		for the specified number of blocks:
3692  *
3693  *		at entry, the bitmaps had been initialized as free (ZEROS);
3694  *		The number of blocks will only account for the actually
3695  *		existing blocks. Blocks which don't actually exist in
3696  *		the aggregate will be marked as allocated (ONES);
3697  *
3698  * PARAMETERS:
3699  *	dp	- pointer to page of map
3700  *	nblocks	- number of blocks this page
3701  *
3702  * RETURNS: NONE
3703  */
3704 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3705 {
3706 	int blkno, w, b, r, nw, nb, i;
3707 
3708 	/* starting block number within the dmap */
3709 	blkno = Blkno & (BPERDMAP - 1);
3710 
3711 	if (blkno == 0) {
3712 		dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3713 		dp->start = cpu_to_le64(Blkno);
3714 
3715 		if (nblocks == BPERDMAP) {
3716 			memset(&dp->wmap[0], 0, LPERDMAP * 4);
3717 			memset(&dp->pmap[0], 0, LPERDMAP * 4);
3718 			goto initTree;
3719 		}
3720 	} else {
3721 		le32_add_cpu(&dp->nblocks, nblocks);
3722 		le32_add_cpu(&dp->nfree, nblocks);
3723 	}
3724 
3725 	/* word number containing start block number */
3726 	w = blkno >> L2DBWORD;
3727 
3728 	/*
3729 	 * free the bits corresponding to the block range (ZEROS):
3730 	 * note: not all bits of the first and last words may be contained
3731 	 * within the block range.
3732 	 */
3733 	for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3734 		/* number of bits preceding range to be freed in the word */
3735 		b = blkno & (DBWORD - 1);
3736 		/* number of bits to free in the word */
3737 		nb = min(r, DBWORD - b);
3738 
3739 		/* is partial word to be freed ? */
3740 		if (nb < DBWORD) {
3741 			/* free (set to 0) from the bitmap word */
3742 			dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3743 						     >> b));
3744 			dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3745 						     >> b));
3746 
3747 			/* skip the word freed */
3748 			w++;
3749 		} else {
3750 			/* free (set to 0) contiguous bitmap words */
3751 			nw = r >> L2DBWORD;
3752 			memset(&dp->wmap[w], 0, nw * 4);
3753 			memset(&dp->pmap[w], 0, nw * 4);
3754 
3755 			/* skip the words freed */
3756 			nb = nw << L2DBWORD;
3757 			w += nw;
3758 		}
3759 	}
3760 
3761 	/*
3762 	 * mark bits following the range to be freed (non-existing
3763 	 * blocks) as allocated (ONES)
3764 	 */
3765 
3766 	if (blkno == BPERDMAP)
3767 		goto initTree;
3768 
3769 	/* the first word beyond the end of existing blocks */
3770 	w = blkno >> L2DBWORD;
3771 
3772 	/* does nblocks fall on a 32-bit boundary ? */
3773 	b = blkno & (DBWORD - 1);
3774 	if (b) {
3775 		/* mark a partial word allocated */
3776 		dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3777 		w++;
3778 	}
3779 
3780 	/* set the rest of the words in the page to allocated (ONES) */
3781 	for (i = w; i < LPERDMAP; i++)
3782 		dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3783 
3784 	/*
3785 	 * init tree
3786 	 */
3787       initTree:
3788 	return (dbInitDmapTree(dp));
3789 }
3790 
3791 
3792 /*
3793  * NAME:	dbInitDmapTree()/ujfs_complete_dmap()
3794  *
3795  * FUNCTION:	initialize summary tree of the specified dmap:
3796  *
3797  *		at entry, bitmap of the dmap has been initialized;
3798  *
3799  * PARAMETERS:
3800  *	dp	- dmap to complete
3801  *	blkno	- starting block number for this dmap
3802  *	treemax	- will be filled in with max free for this dmap
3803  *
3804  * RETURNS:	max free string at the root of the tree
3805  */
3806 static int dbInitDmapTree(struct dmap * dp)
3807 {
3808 	struct dmaptree *tp;
3809 	s8 *cp;
3810 	int i;
3811 
3812 	/* init fixed info of tree */
3813 	tp = &dp->tree;
3814 	tp->nleafs = cpu_to_le32(LPERDMAP);
3815 	tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3816 	tp->leafidx = cpu_to_le32(LEAFIND);
3817 	tp->height = cpu_to_le32(4);
3818 	tp->budmin = BUDMIN;
3819 
3820 	/* init each leaf from corresponding wmap word:
3821 	 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3822 	 * bitmap word are allocated.
3823 	 */
3824 	cp = tp->stree + le32_to_cpu(tp->leafidx);
3825 	for (i = 0; i < LPERDMAP; i++)
3826 		*cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3827 
3828 	/* build the dmap's binary buddy summary tree */
3829 	return (dbInitTree(tp));
3830 }
3831 
3832 
3833 /*
3834  * NAME:	dbInitTree()/ujfs_adjtree()
3835  *
3836  * FUNCTION:	initialize binary buddy summary tree of a dmap or dmapctl.
3837  *
3838  *		at entry, the leaves of the tree has been initialized
3839  *		from corresponding bitmap word or root of summary tree
3840  *		of the child control page;
3841  *		configure binary buddy system at the leaf level, then
3842  *		bubble up the values of the leaf nodes up the tree.
3843  *
3844  * PARAMETERS:
3845  *	cp	- Pointer to the root of the tree
3846  *	l2leaves- Number of leaf nodes as a power of 2
3847  *	l2min	- Number of blocks that can be covered by a leaf
3848  *		  as a power of 2
3849  *
3850  * RETURNS: max free string at the root of the tree
3851  */
3852 static int dbInitTree(struct dmaptree * dtp)
3853 {
3854 	int l2max, l2free, bsize, nextb, i;
3855 	int child, parent, nparent;
3856 	s8 *tp, *cp, *cp1;
3857 
3858 	tp = dtp->stree;
3859 
3860 	/* Determine the maximum free string possible for the leaves */
3861 	l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3862 
3863 	/*
3864 	 * configure the leaf level into binary buddy system
3865 	 *
3866 	 * Try to combine buddies starting with a buddy size of 1
3867 	 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3868 	 * can be combined if both buddies have a maximum free of l2min;
3869 	 * the combination will result in the left-most buddy leaf having
3870 	 * a maximum free of l2min+1.
3871 	 * After processing all buddies for a given size, process buddies
3872 	 * at the next higher buddy size (i.e. current size * 2) and
3873 	 * the next maximum free (current free + 1).
3874 	 * This continues until the maximum possible buddy combination
3875 	 * yields maximum free.
3876 	 */
3877 	for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3878 	     l2free++, bsize = nextb) {
3879 		/* get next buddy size == current buddy pair size */
3880 		nextb = bsize << 1;
3881 
3882 		/* scan each adjacent buddy pair at current buddy size */
3883 		for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3884 		     i < le32_to_cpu(dtp->nleafs);
3885 		     i += nextb, cp += nextb) {
3886 			/* coalesce if both adjacent buddies are max free */
3887 			if (*cp == l2free && *(cp + bsize) == l2free) {
3888 				*cp = l2free + 1;	/* left take right */
3889 				*(cp + bsize) = -1;	/* right give left */
3890 			}
3891 		}
3892 	}
3893 
3894 	/*
3895 	 * bubble summary information of leaves up the tree.
3896 	 *
3897 	 * Starting at the leaf node level, the four nodes described by
3898 	 * the higher level parent node are compared for a maximum free and
3899 	 * this maximum becomes the value of the parent node.
3900 	 * when all lower level nodes are processed in this fashion then
3901 	 * move up to the next level (parent becomes a lower level node) and
3902 	 * continue the process for that level.
3903 	 */
3904 	for (child = le32_to_cpu(dtp->leafidx),
3905 	     nparent = le32_to_cpu(dtp->nleafs) >> 2;
3906 	     nparent > 0; nparent >>= 2, child = parent) {
3907 		/* get index of 1st node of parent level */
3908 		parent = (child - 1) >> 2;
3909 
3910 		/* set the value of the parent node as the maximum
3911 		 * of the four nodes of the current level.
3912 		 */
3913 		for (i = 0, cp = tp + child, cp1 = tp + parent;
3914 		     i < nparent; i++, cp += 4, cp1++)
3915 			*cp1 = TREEMAX(cp);
3916 	}
3917 
3918 	return (*tp);
3919 }
3920 
3921 
3922 /*
3923  *	dbInitDmapCtl()
3924  *
3925  * function: initialize dmapctl page
3926  */
3927 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3928 {				/* start leaf index not covered by range */
3929 	s8 *cp;
3930 
3931 	dcp->nleafs = cpu_to_le32(LPERCTL);
3932 	dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3933 	dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3934 	dcp->height = cpu_to_le32(5);
3935 	dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3936 
3937 	/*
3938 	 * initialize the leaves of current level that were not covered
3939 	 * by the specified input block range (i.e. the leaves have no
3940 	 * low level dmapctl or dmap).
3941 	 */
3942 	cp = &dcp->stree[CTLLEAFIND + i];
3943 	for (; i < LPERCTL; i++)
3944 		*cp++ = NOFREE;
3945 
3946 	/* build the dmap's binary buddy summary tree */
3947 	return (dbInitTree((struct dmaptree *) dcp));
3948 }
3949 
3950 
3951 /*
3952  * NAME:	dbGetL2AGSize()/ujfs_getagl2size()
3953  *
3954  * FUNCTION:	Determine log2(allocation group size) from aggregate size
3955  *
3956  * PARAMETERS:
3957  *	nblocks	- Number of blocks in aggregate
3958  *
3959  * RETURNS: log2(allocation group size) in aggregate blocks
3960  */
3961 static int dbGetL2AGSize(s64 nblocks)
3962 {
3963 	s64 sz;
3964 	s64 m;
3965 	int l2sz;
3966 
3967 	if (nblocks < BPERDMAP * MAXAG)
3968 		return (L2BPERDMAP);
3969 
3970 	/* round up aggregate size to power of 2 */
3971 	m = ((u64) 1 << (64 - 1));
3972 	for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3973 		if (m & nblocks)
3974 			break;
3975 	}
3976 
3977 	sz = (s64) 1 << l2sz;
3978 	if (sz < nblocks)
3979 		l2sz += 1;
3980 
3981 	/* agsize = roundupSize/max_number_of_ag */
3982 	return (l2sz - L2MAXAG);
3983 }
3984 
3985 
3986 /*
3987  * NAME:	dbMapFileSizeToMapSize()
3988  *
3989  * FUNCTION:	compute number of blocks the block allocation map file
3990  *		can cover from the map file size;
3991  *
3992  * RETURNS:	Number of blocks which can be covered by this block map file;
3993  */
3994 
3995 /*
3996  * maximum number of map pages at each level including control pages
3997  */
3998 #define MAXL0PAGES	(1 + LPERCTL)
3999 #define MAXL1PAGES	(1 + LPERCTL * MAXL0PAGES)
4000 
4001 /*
4002  * convert number of map pages to the zero origin top dmapctl level
4003  */
4004 #define BMAPPGTOLEV(npages)	\
4005 	(((npages) <= 3 + MAXL0PAGES) ? 0 : \
4006 	 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4007 
4008 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4009 {
4010 	struct super_block *sb = ipbmap->i_sb;
4011 	s64 nblocks;
4012 	s64 npages, ndmaps;
4013 	int level, i;
4014 	int complete, factor;
4015 
4016 	nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4017 	npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4018 	level = BMAPPGTOLEV(npages);
4019 
4020 	/* At each level, accumulate the number of dmap pages covered by
4021 	 * the number of full child levels below it;
4022 	 * repeat for the last incomplete child level.
4023 	 */
4024 	ndmaps = 0;
4025 	npages--;		/* skip the first global control page */
4026 	/* skip higher level control pages above top level covered by map */
4027 	npages -= (2 - level);
4028 	npages--;		/* skip top level's control page */
4029 	for (i = level; i >= 0; i--) {
4030 		factor =
4031 		    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4032 		complete = (u32) npages / factor;
4033 		ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4034 				      ((i == 1) ? LPERCTL : 1));
4035 
4036 		/* pages in last/incomplete child */
4037 		npages = (u32) npages % factor;
4038 		/* skip incomplete child's level control page */
4039 		npages--;
4040 	}
4041 
4042 	/* convert the number of dmaps into the number of blocks
4043 	 * which can be covered by the dmaps;
4044 	 */
4045 	nblocks = ndmaps << L2BPERDMAP;
4046 
4047 	return (nblocks);
4048 }
4049