xref: /openbmc/linux/fs/jfs/jfs_dmap.c (revision 87c2ce3b)
1 /*
2  *   Copyright (C) International Business Machines Corp., 2000-2004
3  *
4  *   This program is free software;  you can redistribute it and/or modify
5  *   it under the terms of the GNU General Public License as published by
6  *   the Free Software Foundation; either version 2 of the License, or
7  *   (at your option) any later version.
8  *
9  *   This program is distributed in the hope that it will be useful,
10  *   but WITHOUT ANY WARRANTY;  without even the implied warranty of
11  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See
12  *   the GNU General Public License for more details.
13  *
14  *   You should have received a copy of the GNU General Public License
15  *   along with this program;  if not, write to the Free Software
16  *   Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  */
18 
19 #include <linux/fs.h>
20 #include "jfs_incore.h"
21 #include "jfs_superblock.h"
22 #include "jfs_dmap.h"
23 #include "jfs_imap.h"
24 #include "jfs_lock.h"
25 #include "jfs_metapage.h"
26 #include "jfs_debug.h"
27 
28 /*
29  *	SERIALIZATION of the Block Allocation Map.
30  *
31  *	the working state of the block allocation map is accessed in
32  *	two directions:
33  *
34  *	1) allocation and free requests that start at the dmap
35  *	   level and move up through the dmap control pages (i.e.
36  *	   the vast majority of requests).
37  *
38  * 	2) allocation requests that start at dmap control page
39  *	   level and work down towards the dmaps.
40  *
41  *	the serialization scheme used here is as follows.
42  *
43  *	requests which start at the bottom are serialized against each
44  *	other through buffers and each requests holds onto its buffers
45  *	as it works it way up from a single dmap to the required level
46  *	of dmap control page.
47  *	requests that start at the top are serialized against each other
48  *	and request that start from the bottom by the multiple read/single
49  *	write inode lock of the bmap inode. requests starting at the top
50  *	take this lock in write mode while request starting at the bottom
51  *	take the lock in read mode.  a single top-down request may proceed
52  *	exclusively while multiple bottoms-up requests may proceed
53  * 	simultaneously (under the protection of busy buffers).
54  *
55  *	in addition to information found in dmaps and dmap control pages,
56  *	the working state of the block allocation map also includes read/
57  *	write information maintained in the bmap descriptor (i.e. total
58  *	free block count, allocation group level free block counts).
59  *	a single exclusive lock (BMAP_LOCK) is used to guard this information
60  *	in the face of multiple-bottoms up requests.
61  *	(lock ordering: IREAD_LOCK, BMAP_LOCK);
62  *
63  *	accesses to the persistent state of the block allocation map (limited
64  *	to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
65  */
66 
67 #define BMAP_LOCK_INIT(bmp)	init_MUTEX(&bmp->db_bmaplock)
68 #define BMAP_LOCK(bmp)		down(&bmp->db_bmaplock)
69 #define BMAP_UNLOCK(bmp)	up(&bmp->db_bmaplock)
70 
71 /*
72  * forward references
73  */
74 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
75 			int nblocks);
76 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
77 static int dbBackSplit(dmtree_t * tp, int leafno);
78 static int dbJoin(dmtree_t * tp, int leafno, int newval);
79 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
80 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
81 		    int level);
82 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
83 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
84 		       int nblocks);
85 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
86 		       int nblocks,
87 		       int l2nb, s64 * results);
88 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
89 		       int nblocks);
90 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
91 			  int l2nb,
92 			  s64 * results);
93 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
94 		     s64 * results);
95 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
96 		      s64 * results);
97 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
98 static int dbFindBits(u32 word, int l2nb);
99 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
100 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
101 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 		      int nblocks);
103 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
104 		      int nblocks);
105 static int dbMaxBud(u8 * cp);
106 s64 dbMapFileSizeToMapSize(struct inode *ipbmap);
107 static int blkstol2(s64 nb);
108 
109 static int cntlz(u32 value);
110 static int cnttz(u32 word);
111 
112 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
113 			 int nblocks);
114 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
115 static int dbInitDmapTree(struct dmap * dp);
116 static int dbInitTree(struct dmaptree * dtp);
117 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
118 static int dbGetL2AGSize(s64 nblocks);
119 
120 /*
121  *	buddy table
122  *
123  * table used for determining buddy sizes within characters of
124  * dmap bitmap words.  the characters themselves serve as indexes
125  * into the table, with the table elements yielding the maximum
126  * binary buddy of free bits within the character.
127  */
128 static s8 budtab[256] = {
129 	3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
130 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
132 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
133 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
134 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
135 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
136 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
137 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
138 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
139 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
140 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
141 	2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
142 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
143 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
144 	2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
145 };
146 
147 
148 /*
149  * NAME:    	dbMount()
150  *
151  * FUNCTION:	initializate the block allocation map.
152  *
153  *		memory is allocated for the in-core bmap descriptor and
154  *		the in-core descriptor is initialized from disk.
155  *
156  * PARAMETERS:
157  *      ipbmap	-  pointer to in-core inode for the block map.
158  *
159  * RETURN VALUES:
160  *      0	- success
161  *      -ENOMEM	- insufficient memory
162  *      -EIO	- i/o error
163  */
164 int dbMount(struct inode *ipbmap)
165 {
166 	struct bmap *bmp;
167 	struct dbmap_disk *dbmp_le;
168 	struct metapage *mp;
169 	int i;
170 
171 	/*
172 	 * allocate/initialize the in-memory bmap descriptor
173 	 */
174 	/* allocate memory for the in-memory bmap descriptor */
175 	bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
176 	if (bmp == NULL)
177 		return -ENOMEM;
178 
179 	/* read the on-disk bmap descriptor. */
180 	mp = read_metapage(ipbmap,
181 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
182 			   PSIZE, 0);
183 	if (mp == NULL) {
184 		kfree(bmp);
185 		return -EIO;
186 	}
187 
188 	/* copy the on-disk bmap descriptor to its in-memory version. */
189 	dbmp_le = (struct dbmap_disk *) mp->data;
190 	bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
191 	bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
192 	bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
193 	bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
194 	bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
195 	bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
196 	bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
197 	bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
198 	bmp->db_agheigth = le32_to_cpu(dbmp_le->dn_agheigth);
199 	bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
200 	bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
201 	bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
202 	for (i = 0; i < MAXAG; i++)
203 		bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
204 	bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
205 	bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
206 
207 	/* release the buffer. */
208 	release_metapage(mp);
209 
210 	/* bind the bmap inode and the bmap descriptor to each other. */
211 	bmp->db_ipbmap = ipbmap;
212 	JFS_SBI(ipbmap->i_sb)->bmap = bmp;
213 
214 	memset(bmp->db_active, 0, sizeof(bmp->db_active));
215 
216 	/*
217 	 * allocate/initialize the bmap lock
218 	 */
219 	BMAP_LOCK_INIT(bmp);
220 
221 	return (0);
222 }
223 
224 
225 /*
226  * NAME:    	dbUnmount()
227  *
228  * FUNCTION:	terminate the block allocation map in preparation for
229  *		file system unmount.
230  *
231  * 		the in-core bmap descriptor is written to disk and
232  *		the memory for this descriptor is freed.
233  *
234  * PARAMETERS:
235  *      ipbmap	-  pointer to in-core inode for the block map.
236  *
237  * RETURN VALUES:
238  *      0	- success
239  *      -EIO	- i/o error
240  */
241 int dbUnmount(struct inode *ipbmap, int mounterror)
242 {
243 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
244 
245 	if (!(mounterror || isReadOnly(ipbmap)))
246 		dbSync(ipbmap);
247 
248 	/*
249 	 * Invalidate the page cache buffers
250 	 */
251 	truncate_inode_pages(ipbmap->i_mapping, 0);
252 
253 	/* free the memory for the in-memory bmap. */
254 	kfree(bmp);
255 
256 	return (0);
257 }
258 
259 /*
260  *	dbSync()
261  */
262 int dbSync(struct inode *ipbmap)
263 {
264 	struct dbmap_disk *dbmp_le;
265 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
266 	struct metapage *mp;
267 	int i;
268 
269 	/*
270 	 * write bmap global control page
271 	 */
272 	/* get the buffer for the on-disk bmap descriptor. */
273 	mp = read_metapage(ipbmap,
274 			   BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
275 			   PSIZE, 0);
276 	if (mp == NULL) {
277 		jfs_err("dbSync: read_metapage failed!");
278 		return -EIO;
279 	}
280 	/* copy the in-memory version of the bmap to the on-disk version */
281 	dbmp_le = (struct dbmap_disk *) mp->data;
282 	dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
283 	dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
284 	dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
285 	dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
286 	dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
287 	dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
288 	dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
289 	dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
290 	dbmp_le->dn_agheigth = cpu_to_le32(bmp->db_agheigth);
291 	dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
292 	dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
293 	dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
294 	for (i = 0; i < MAXAG; i++)
295 		dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
296 	dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
297 	dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
298 
299 	/* write the buffer */
300 	write_metapage(mp);
301 
302 	/*
303 	 * write out dirty pages of bmap
304 	 */
305 	filemap_write_and_wait(ipbmap->i_mapping);
306 
307 	diWriteSpecial(ipbmap, 0);
308 
309 	return (0);
310 }
311 
312 
313 /*
314  * NAME:    	dbFree()
315  *
316  * FUNCTION:	free the specified block range from the working block
317  *		allocation map.
318  *
319  *		the blocks will be free from the working map one dmap
320  *		at a time.
321  *
322  * PARAMETERS:
323  *      ip	-  pointer to in-core inode;
324  *      blkno	-  starting block number to be freed.
325  *      nblocks	-  number of blocks to be freed.
326  *
327  * RETURN VALUES:
328  *      0	- success
329  *      -EIO	- i/o error
330  */
331 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
332 {
333 	struct metapage *mp;
334 	struct dmap *dp;
335 	int nb, rc;
336 	s64 lblkno, rem;
337 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
338 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
339 
340 	IREAD_LOCK(ipbmap);
341 
342 	/* block to be freed better be within the mapsize. */
343 	if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
344 		IREAD_UNLOCK(ipbmap);
345 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
346 		       (unsigned long long) blkno,
347 		       (unsigned long long) nblocks);
348 		jfs_error(ip->i_sb,
349 			  "dbFree: block to be freed is outside the map");
350 		return -EIO;
351 	}
352 
353 	/*
354 	 * free the blocks a dmap at a time.
355 	 */
356 	mp = NULL;
357 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
358 		/* release previous dmap if any */
359 		if (mp) {
360 			write_metapage(mp);
361 		}
362 
363 		/* get the buffer for the current dmap. */
364 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
365 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
366 		if (mp == NULL) {
367 			IREAD_UNLOCK(ipbmap);
368 			return -EIO;
369 		}
370 		dp = (struct dmap *) mp->data;
371 
372 		/* determine the number of blocks to be freed from
373 		 * this dmap.
374 		 */
375 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
376 
377 		/* free the blocks. */
378 		if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
379 			jfs_error(ip->i_sb, "dbFree: error in block map\n");
380 			release_metapage(mp);
381 			IREAD_UNLOCK(ipbmap);
382 			return (rc);
383 		}
384 	}
385 
386 	/* write the last buffer. */
387 	write_metapage(mp);
388 
389 	IREAD_UNLOCK(ipbmap);
390 
391 	return (0);
392 }
393 
394 
395 /*
396  * NAME:	dbUpdatePMap()
397  *
398  * FUNCTION:    update the allocation state (free or allocate) of the
399  *		specified block range in the persistent block allocation map.
400  *
401  *		the blocks will be updated in the persistent map one
402  *		dmap at a time.
403  *
404  * PARAMETERS:
405  *      ipbmap	-  pointer to in-core inode for the block map.
406  *      free	- TRUE if block range is to be freed from the persistent
407  *		  map; FALSE if it is to   be allocated.
408  *      blkno	-  starting block number of the range.
409  *      nblocks	-  number of contiguous blocks in the range.
410  *      tblk	-  transaction block;
411  *
412  * RETURN VALUES:
413  *      0	- success
414  *      -EIO	- i/o error
415  */
416 int
417 dbUpdatePMap(struct inode *ipbmap,
418 	     int free, s64 blkno, s64 nblocks, struct tblock * tblk)
419 {
420 	int nblks, dbitno, wbitno, rbits;
421 	int word, nbits, nwords;
422 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
423 	s64 lblkno, rem, lastlblkno;
424 	u32 mask;
425 	struct dmap *dp;
426 	struct metapage *mp;
427 	struct jfs_log *log;
428 	int lsn, difft, diffp;
429 	unsigned long flags;
430 
431 	/* the blocks better be within the mapsize. */
432 	if (blkno + nblocks > bmp->db_mapsize) {
433 		printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
434 		       (unsigned long long) blkno,
435 		       (unsigned long long) nblocks);
436 		jfs_error(ipbmap->i_sb,
437 			  "dbUpdatePMap: blocks are outside the map");
438 		return -EIO;
439 	}
440 
441 	/* compute delta of transaction lsn from log syncpt */
442 	lsn = tblk->lsn;
443 	log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
444 	logdiff(difft, lsn, log);
445 
446 	/*
447 	 * update the block state a dmap at a time.
448 	 */
449 	mp = NULL;
450 	lastlblkno = 0;
451 	for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
452 		/* get the buffer for the current dmap. */
453 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
454 		if (lblkno != lastlblkno) {
455 			if (mp) {
456 				write_metapage(mp);
457 			}
458 
459 			mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
460 					   0);
461 			if (mp == NULL)
462 				return -EIO;
463 			metapage_wait_for_io(mp);
464 		}
465 		dp = (struct dmap *) mp->data;
466 
467 		/* determine the bit number and word within the dmap of
468 		 * the starting block.  also determine how many blocks
469 		 * are to be updated within this dmap.
470 		 */
471 		dbitno = blkno & (BPERDMAP - 1);
472 		word = dbitno >> L2DBWORD;
473 		nblks = min(rem, (s64)BPERDMAP - dbitno);
474 
475 		/* update the bits of the dmap words. the first and last
476 		 * words may only have a subset of their bits updated. if
477 		 * this is the case, we'll work against that word (i.e.
478 		 * partial first and/or last) only in a single pass.  a
479 		 * single pass will also be used to update all words that
480 		 * are to have all their bits updated.
481 		 */
482 		for (rbits = nblks; rbits > 0;
483 		     rbits -= nbits, dbitno += nbits) {
484 			/* determine the bit number within the word and
485 			 * the number of bits within the word.
486 			 */
487 			wbitno = dbitno & (DBWORD - 1);
488 			nbits = min(rbits, DBWORD - wbitno);
489 
490 			/* check if only part of the word is to be updated. */
491 			if (nbits < DBWORD) {
492 				/* update (free or allocate) the bits
493 				 * in this word.
494 				 */
495 				mask =
496 				    (ONES << (DBWORD - nbits) >> wbitno);
497 				if (free)
498 					dp->pmap[word] &=
499 					    cpu_to_le32(~mask);
500 				else
501 					dp->pmap[word] |=
502 					    cpu_to_le32(mask);
503 
504 				word += 1;
505 			} else {
506 				/* one or more words are to have all
507 				 * their bits updated.  determine how
508 				 * many words and how many bits.
509 				 */
510 				nwords = rbits >> L2DBWORD;
511 				nbits = nwords << L2DBWORD;
512 
513 				/* update (free or allocate) the bits
514 				 * in these words.
515 				 */
516 				if (free)
517 					memset(&dp->pmap[word], 0,
518 					       nwords * 4);
519 				else
520 					memset(&dp->pmap[word], (int) ONES,
521 					       nwords * 4);
522 
523 				word += nwords;
524 			}
525 		}
526 
527 		/*
528 		 * update dmap lsn
529 		 */
530 		if (lblkno == lastlblkno)
531 			continue;
532 
533 		lastlblkno = lblkno;
534 
535 		if (mp->lsn != 0) {
536 			/* inherit older/smaller lsn */
537 			logdiff(diffp, mp->lsn, log);
538 			LOGSYNC_LOCK(log, flags);
539 			if (difft < diffp) {
540 				mp->lsn = lsn;
541 
542 				/* move bp after tblock in logsync list */
543 				list_move(&mp->synclist, &tblk->synclist);
544 			}
545 
546 			/* inherit younger/larger clsn */
547 			logdiff(difft, tblk->clsn, log);
548 			logdiff(diffp, mp->clsn, log);
549 			if (difft > diffp)
550 				mp->clsn = tblk->clsn;
551 			LOGSYNC_UNLOCK(log, flags);
552 		} else {
553 			mp->log = log;
554 			mp->lsn = lsn;
555 
556 			/* insert bp after tblock in logsync list */
557 			LOGSYNC_LOCK(log, flags);
558 
559 			log->count++;
560 			list_add(&mp->synclist, &tblk->synclist);
561 
562 			mp->clsn = tblk->clsn;
563 			LOGSYNC_UNLOCK(log, flags);
564 		}
565 	}
566 
567 	/* write the last buffer. */
568 	if (mp) {
569 		write_metapage(mp);
570 	}
571 
572 	return (0);
573 }
574 
575 
576 /*
577  * NAME:	dbNextAG()
578  *
579  * FUNCTION:    find the preferred allocation group for new allocations.
580  *
581  *		Within the allocation groups, we maintain a preferred
582  *		allocation group which consists of a group with at least
583  *		average free space.  It is the preferred group that we target
584  *		new inode allocation towards.  The tie-in between inode
585  *		allocation and block allocation occurs as we allocate the
586  *		first (data) block of an inode and specify the inode (block)
587  *		as the allocation hint for this block.
588  *
589  *		We try to avoid having more than one open file growing in
590  *		an allocation group, as this will lead to fragmentation.
591  *		This differs from the old OS/2 method of trying to keep
592  *		empty ags around for large allocations.
593  *
594  * PARAMETERS:
595  *      ipbmap	-  pointer to in-core inode for the block map.
596  *
597  * RETURN VALUES:
598  *      the preferred allocation group number.
599  */
600 int dbNextAG(struct inode *ipbmap)
601 {
602 	s64 avgfree;
603 	int agpref;
604 	s64 hwm = 0;
605 	int i;
606 	int next_best = -1;
607 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
608 
609 	BMAP_LOCK(bmp);
610 
611 	/* determine the average number of free blocks within the ags. */
612 	avgfree = (u32)bmp->db_nfree / bmp->db_numag;
613 
614 	/*
615 	 * if the current preferred ag does not have an active allocator
616 	 * and has at least average freespace, return it
617 	 */
618 	agpref = bmp->db_agpref;
619 	if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
620 	    (bmp->db_agfree[agpref] >= avgfree))
621 		goto unlock;
622 
623 	/* From the last preferred ag, find the next one with at least
624 	 * average free space.
625 	 */
626 	for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
627 		if (agpref == bmp->db_numag)
628 			agpref = 0;
629 
630 		if (atomic_read(&bmp->db_active[agpref]))
631 			/* open file is currently growing in this ag */
632 			continue;
633 		if (bmp->db_agfree[agpref] >= avgfree) {
634 			/* Return this one */
635 			bmp->db_agpref = agpref;
636 			goto unlock;
637 		} else if (bmp->db_agfree[agpref] > hwm) {
638 			/* Less than avg. freespace, but best so far */
639 			hwm = bmp->db_agfree[agpref];
640 			next_best = agpref;
641 		}
642 	}
643 
644 	/*
645 	 * If no inactive ag was found with average freespace, use the
646 	 * next best
647 	 */
648 	if (next_best != -1)
649 		bmp->db_agpref = next_best;
650 	/* else leave db_agpref unchanged */
651 unlock:
652 	BMAP_UNLOCK(bmp);
653 
654 	/* return the preferred group.
655 	 */
656 	return (bmp->db_agpref);
657 }
658 
659 /*
660  * NAME:	dbAlloc()
661  *
662  * FUNCTION:    attempt to allocate a specified number of contiguous free
663  *		blocks from the working allocation block map.
664  *
665  *		the block allocation policy uses hints and a multi-step
666  *		approach.
667  *
668  *	  	for allocation requests smaller than the number of blocks
669  *		per dmap, we first try to allocate the new blocks
670  *		immediately following the hint.  if these blocks are not
671  *		available, we try to allocate blocks near the hint.  if
672  *		no blocks near the hint are available, we next try to
673  *		allocate within the same dmap as contains the hint.
674  *
675  *		if no blocks are available in the dmap or the allocation
676  *		request is larger than the dmap size, we try to allocate
677  *		within the same allocation group as contains the hint. if
678  *		this does not succeed, we finally try to allocate anywhere
679  *		within the aggregate.
680  *
681  *		we also try to allocate anywhere within the aggregate for
682  *		for allocation requests larger than the allocation group
683  *		size or requests that specify no hint value.
684  *
685  * PARAMETERS:
686  *      ip	-  pointer to in-core inode;
687  *      hint	- allocation hint.
688  *      nblocks	- number of contiguous blocks in the range.
689  *      results	- on successful return, set to the starting block number
690  *		  of the newly allocated contiguous range.
691  *
692  * RETURN VALUES:
693  *      0	- success
694  *      -ENOSPC	- insufficient disk resources
695  *      -EIO	- i/o error
696  */
697 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
698 {
699 	int rc, agno;
700 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
701 	struct bmap *bmp;
702 	struct metapage *mp;
703 	s64 lblkno, blkno;
704 	struct dmap *dp;
705 	int l2nb;
706 	s64 mapSize;
707 	int writers;
708 
709 	/* assert that nblocks is valid */
710 	assert(nblocks > 0);
711 
712 #ifdef _STILL_TO_PORT
713 	/* DASD limit check                                     F226941 */
714 	if (OVER_LIMIT(ip, nblocks))
715 		return -ENOSPC;
716 #endif				/* _STILL_TO_PORT */
717 
718 	/* get the log2 number of blocks to be allocated.
719 	 * if the number of blocks is not a log2 multiple,
720 	 * it will be rounded up to the next log2 multiple.
721 	 */
722 	l2nb = BLKSTOL2(nblocks);
723 
724 	bmp = JFS_SBI(ip->i_sb)->bmap;
725 
726 //retry:        /* serialize w.r.t.extendfs() */
727 	mapSize = bmp->db_mapsize;
728 
729 	/* the hint should be within the map */
730 	if (hint >= mapSize) {
731 		jfs_error(ip->i_sb, "dbAlloc: the hint is outside the map");
732 		return -EIO;
733 	}
734 
735 	/* if the number of blocks to be allocated is greater than the
736 	 * allocation group size, try to allocate anywhere.
737 	 */
738 	if (l2nb > bmp->db_agl2size) {
739 		IWRITE_LOCK(ipbmap);
740 
741 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
742 
743 		goto write_unlock;
744 	}
745 
746 	/*
747 	 * If no hint, let dbNextAG recommend an allocation group
748 	 */
749 	if (hint == 0)
750 		goto pref_ag;
751 
752 	/* we would like to allocate close to the hint.  adjust the
753 	 * hint to the block following the hint since the allocators
754 	 * will start looking for free space starting at this point.
755 	 */
756 	blkno = hint + 1;
757 
758 	if (blkno >= bmp->db_mapsize)
759 		goto pref_ag;
760 
761 	agno = blkno >> bmp->db_agl2size;
762 
763 	/* check if blkno crosses over into a new allocation group.
764 	 * if so, check if we should allow allocations within this
765 	 * allocation group.
766 	 */
767 	if ((blkno & (bmp->db_agsize - 1)) == 0)
768 		/* check if the AG is currenly being written to.
769 		 * if so, call dbNextAG() to find a non-busy
770 		 * AG with sufficient free space.
771 		 */
772 		if (atomic_read(&bmp->db_active[agno]))
773 			goto pref_ag;
774 
775 	/* check if the allocation request size can be satisfied from a
776 	 * single dmap.  if so, try to allocate from the dmap containing
777 	 * the hint using a tiered strategy.
778 	 */
779 	if (nblocks <= BPERDMAP) {
780 		IREAD_LOCK(ipbmap);
781 
782 		/* get the buffer for the dmap containing the hint.
783 		 */
784 		rc = -EIO;
785 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
786 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
787 		if (mp == NULL)
788 			goto read_unlock;
789 
790 		dp = (struct dmap *) mp->data;
791 
792 		/* first, try to satisfy the allocation request with the
793 		 * blocks beginning at the hint.
794 		 */
795 		if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
796 		    != -ENOSPC) {
797 			if (rc == 0) {
798 				*results = blkno;
799 				mark_metapage_dirty(mp);
800 			}
801 
802 			release_metapage(mp);
803 			goto read_unlock;
804 		}
805 
806 		writers = atomic_read(&bmp->db_active[agno]);
807 		if ((writers > 1) ||
808 		    ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
809 			/*
810 			 * Someone else is writing in this allocation
811 			 * group.  To avoid fragmenting, try another ag
812 			 */
813 			release_metapage(mp);
814 			IREAD_UNLOCK(ipbmap);
815 			goto pref_ag;
816 		}
817 
818 		/* next, try to satisfy the allocation request with blocks
819 		 * near the hint.
820 		 */
821 		if ((rc =
822 		     dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
823 		    != -ENOSPC) {
824 			if (rc == 0)
825 				mark_metapage_dirty(mp);
826 
827 			release_metapage(mp);
828 			goto read_unlock;
829 		}
830 
831 		/* try to satisfy the allocation request with blocks within
832 		 * the same dmap as the hint.
833 		 */
834 		if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
835 		    != -ENOSPC) {
836 			if (rc == 0)
837 				mark_metapage_dirty(mp);
838 
839 			release_metapage(mp);
840 			goto read_unlock;
841 		}
842 
843 		release_metapage(mp);
844 		IREAD_UNLOCK(ipbmap);
845 	}
846 
847 	/* try to satisfy the allocation request with blocks within
848 	 * the same allocation group as the hint.
849 	 */
850 	IWRITE_LOCK(ipbmap);
851 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
852 		goto write_unlock;
853 
854 	IWRITE_UNLOCK(ipbmap);
855 
856 
857       pref_ag:
858 	/*
859 	 * Let dbNextAG recommend a preferred allocation group
860 	 */
861 	agno = dbNextAG(ipbmap);
862 	IWRITE_LOCK(ipbmap);
863 
864 	/* Try to allocate within this allocation group.  if that fails, try to
865 	 * allocate anywhere in the map.
866 	 */
867 	if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
868 		rc = dbAllocAny(bmp, nblocks, l2nb, results);
869 
870       write_unlock:
871 	IWRITE_UNLOCK(ipbmap);
872 
873 	return (rc);
874 
875       read_unlock:
876 	IREAD_UNLOCK(ipbmap);
877 
878 	return (rc);
879 }
880 
881 #ifdef _NOTYET
882 /*
883  * NAME:	dbAllocExact()
884  *
885  * FUNCTION:    try to allocate the requested extent;
886  *
887  * PARAMETERS:
888  *      ip	- pointer to in-core inode;
889  *      blkno	- extent address;
890  *      nblocks	- extent length;
891  *
892  * RETURN VALUES:
893  *      0	- success
894  *      -ENOSPC	- insufficient disk resources
895  *      -EIO	- i/o error
896  */
897 int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
898 {
899 	int rc;
900 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
901 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
902 	struct dmap *dp;
903 	s64 lblkno;
904 	struct metapage *mp;
905 
906 	IREAD_LOCK(ipbmap);
907 
908 	/*
909 	 * validate extent request:
910 	 *
911 	 * note: defragfs policy:
912 	 *  max 64 blocks will be moved.
913 	 *  allocation request size must be satisfied from a single dmap.
914 	 */
915 	if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
916 		IREAD_UNLOCK(ipbmap);
917 		return -EINVAL;
918 	}
919 
920 	if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
921 		/* the free space is no longer available */
922 		IREAD_UNLOCK(ipbmap);
923 		return -ENOSPC;
924 	}
925 
926 	/* read in the dmap covering the extent */
927 	lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
928 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
929 	if (mp == NULL) {
930 		IREAD_UNLOCK(ipbmap);
931 		return -EIO;
932 	}
933 	dp = (struct dmap *) mp->data;
934 
935 	/* try to allocate the requested extent */
936 	rc = dbAllocNext(bmp, dp, blkno, nblocks);
937 
938 	IREAD_UNLOCK(ipbmap);
939 
940 	if (rc == 0)
941 		mark_metapage_dirty(mp);
942 
943 	release_metapage(mp);
944 
945 	return (rc);
946 }
947 #endif /* _NOTYET */
948 
949 /*
950  * NAME:	dbReAlloc()
951  *
952  * FUNCTION:    attempt to extend a current allocation by a specified
953  *		number of blocks.
954  *
955  *		this routine attempts to satisfy the allocation request
956  *		by first trying to extend the existing allocation in
957  *		place by allocating the additional blocks as the blocks
958  *		immediately following the current allocation.  if these
959  *		blocks are not available, this routine will attempt to
960  *		allocate a new set of contiguous blocks large enough
961  *		to cover the existing allocation plus the additional
962  *		number of blocks required.
963  *
964  * PARAMETERS:
965  *      ip	    -  pointer to in-core inode requiring allocation.
966  *      blkno	    -  starting block of the current allocation.
967  *      nblocks	    -  number of contiguous blocks within the current
968  *		       allocation.
969  *      addnblocks  -  number of blocks to add to the allocation.
970  *      results	-      on successful return, set to the starting block number
971  *		       of the existing allocation if the existing allocation
972  *		       was extended in place or to a newly allocated contiguous
973  *		       range if the existing allocation could not be extended
974  *		       in place.
975  *
976  * RETURN VALUES:
977  *      0	- success
978  *      -ENOSPC	- insufficient disk resources
979  *      -EIO	- i/o error
980  */
981 int
982 dbReAlloc(struct inode *ip,
983 	  s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
984 {
985 	int rc;
986 
987 	/* try to extend the allocation in place.
988 	 */
989 	if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
990 		*results = blkno;
991 		return (0);
992 	} else {
993 		if (rc != -ENOSPC)
994 			return (rc);
995 	}
996 
997 	/* could not extend the allocation in place, so allocate a
998 	 * new set of blocks for the entire request (i.e. try to get
999 	 * a range of contiguous blocks large enough to cover the
1000 	 * existing allocation plus the additional blocks.)
1001 	 */
1002 	return (dbAlloc
1003 		(ip, blkno + nblocks - 1, addnblocks + nblocks, results));
1004 }
1005 
1006 
1007 /*
1008  * NAME:	dbExtend()
1009  *
1010  * FUNCTION:    attempt to extend a current allocation by a specified
1011  *		number of blocks.
1012  *
1013  *		this routine attempts to satisfy the allocation request
1014  *		by first trying to extend the existing allocation in
1015  *		place by allocating the additional blocks as the blocks
1016  *		immediately following the current allocation.
1017  *
1018  * PARAMETERS:
1019  *      ip	    -  pointer to in-core inode requiring allocation.
1020  *      blkno	    -  starting block of the current allocation.
1021  *      nblocks	    -  number of contiguous blocks within the current
1022  *		       allocation.
1023  *      addnblocks  -  number of blocks to add to the allocation.
1024  *
1025  * RETURN VALUES:
1026  *      0	- success
1027  *      -ENOSPC	- insufficient disk resources
1028  *      -EIO	- i/o error
1029  */
1030 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1031 {
1032 	struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1033 	s64 lblkno, lastblkno, extblkno;
1034 	uint rel_block;
1035 	struct metapage *mp;
1036 	struct dmap *dp;
1037 	int rc;
1038 	struct inode *ipbmap = sbi->ipbmap;
1039 	struct bmap *bmp;
1040 
1041 	/*
1042 	 * We don't want a non-aligned extent to cross a page boundary
1043 	 */
1044 	if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1045 	    (rel_block + nblocks + addnblocks > sbi->nbperpage))
1046 		return -ENOSPC;
1047 
1048 	/* get the last block of the current allocation */
1049 	lastblkno = blkno + nblocks - 1;
1050 
1051 	/* determine the block number of the block following
1052 	 * the existing allocation.
1053 	 */
1054 	extblkno = lastblkno + 1;
1055 
1056 	IREAD_LOCK(ipbmap);
1057 
1058 	/* better be within the file system */
1059 	bmp = sbi->bmap;
1060 	if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1061 		IREAD_UNLOCK(ipbmap);
1062 		jfs_error(ip->i_sb,
1063 			  "dbExtend: the block is outside the filesystem");
1064 		return -EIO;
1065 	}
1066 
1067 	/* we'll attempt to extend the current allocation in place by
1068 	 * allocating the additional blocks as the blocks immediately
1069 	 * following the current allocation.  we only try to extend the
1070 	 * current allocation in place if the number of additional blocks
1071 	 * can fit into a dmap, the last block of the current allocation
1072 	 * is not the last block of the file system, and the start of the
1073 	 * inplace extension is not on an allocation group boundary.
1074 	 */
1075 	if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1076 	    (extblkno & (bmp->db_agsize - 1)) == 0) {
1077 		IREAD_UNLOCK(ipbmap);
1078 		return -ENOSPC;
1079 	}
1080 
1081 	/* get the buffer for the dmap containing the first block
1082 	 * of the extension.
1083 	 */
1084 	lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1085 	mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1086 	if (mp == NULL) {
1087 		IREAD_UNLOCK(ipbmap);
1088 		return -EIO;
1089 	}
1090 
1091 	dp = (struct dmap *) mp->data;
1092 
1093 	/* try to allocate the blocks immediately following the
1094 	 * current allocation.
1095 	 */
1096 	rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1097 
1098 	IREAD_UNLOCK(ipbmap);
1099 
1100 	/* were we successful ? */
1101 	if (rc == 0)
1102 		write_metapage(mp);
1103 	else
1104 		/* we were not successful */
1105 		release_metapage(mp);
1106 
1107 
1108 	return (rc);
1109 }
1110 
1111 
1112 /*
1113  * NAME:	dbAllocNext()
1114  *
1115  * FUNCTION:    attempt to allocate the blocks of the specified block
1116  *		range within a dmap.
1117  *
1118  * PARAMETERS:
1119  *      bmp	-  pointer to bmap descriptor
1120  *      dp	-  pointer to dmap.
1121  *      blkno	-  starting block number of the range.
1122  *      nblocks	-  number of contiguous free blocks of the range.
1123  *
1124  * RETURN VALUES:
1125  *      0	- success
1126  *      -ENOSPC	- insufficient disk resources
1127  *      -EIO	- i/o error
1128  *
1129  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1130  */
1131 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1132 		       int nblocks)
1133 {
1134 	int dbitno, word, rembits, nb, nwords, wbitno, nw;
1135 	int l2size;
1136 	s8 *leaf;
1137 	u32 mask;
1138 
1139 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1140 		jfs_error(bmp->db_ipbmap->i_sb,
1141 			  "dbAllocNext: Corrupt dmap page");
1142 		return -EIO;
1143 	}
1144 
1145 	/* pick up a pointer to the leaves of the dmap tree.
1146 	 */
1147 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1148 
1149 	/* determine the bit number and word within the dmap of the
1150 	 * starting block.
1151 	 */
1152 	dbitno = blkno & (BPERDMAP - 1);
1153 	word = dbitno >> L2DBWORD;
1154 
1155 	/* check if the specified block range is contained within
1156 	 * this dmap.
1157 	 */
1158 	if (dbitno + nblocks > BPERDMAP)
1159 		return -ENOSPC;
1160 
1161 	/* check if the starting leaf indicates that anything
1162 	 * is free.
1163 	 */
1164 	if (leaf[word] == NOFREE)
1165 		return -ENOSPC;
1166 
1167 	/* check the dmaps words corresponding to block range to see
1168 	 * if the block range is free.  not all bits of the first and
1169 	 * last words may be contained within the block range.  if this
1170 	 * is the case, we'll work against those words (i.e. partial first
1171 	 * and/or last) on an individual basis (a single pass) and examine
1172 	 * the actual bits to determine if they are free.  a single pass
1173 	 * will be used for all dmap words fully contained within the
1174 	 * specified range.  within this pass, the leaves of the dmap
1175 	 * tree will be examined to determine if the blocks are free. a
1176 	 * single leaf may describe the free space of multiple dmap
1177 	 * words, so we may visit only a subset of the actual leaves
1178 	 * corresponding to the dmap words of the block range.
1179 	 */
1180 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1181 		/* determine the bit number within the word and
1182 		 * the number of bits within the word.
1183 		 */
1184 		wbitno = dbitno & (DBWORD - 1);
1185 		nb = min(rembits, DBWORD - wbitno);
1186 
1187 		/* check if only part of the word is to be examined.
1188 		 */
1189 		if (nb < DBWORD) {
1190 			/* check if the bits are free.
1191 			 */
1192 			mask = (ONES << (DBWORD - nb) >> wbitno);
1193 			if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1194 				return -ENOSPC;
1195 
1196 			word += 1;
1197 		} else {
1198 			/* one or more dmap words are fully contained
1199 			 * within the block range.  determine how many
1200 			 * words and how many bits.
1201 			 */
1202 			nwords = rembits >> L2DBWORD;
1203 			nb = nwords << L2DBWORD;
1204 
1205 			/* now examine the appropriate leaves to determine
1206 			 * if the blocks are free.
1207 			 */
1208 			while (nwords > 0) {
1209 				/* does the leaf describe any free space ?
1210 				 */
1211 				if (leaf[word] < BUDMIN)
1212 					return -ENOSPC;
1213 
1214 				/* determine the l2 number of bits provided
1215 				 * by this leaf.
1216 				 */
1217 				l2size =
1218 				    min((int)leaf[word], NLSTOL2BSZ(nwords));
1219 
1220 				/* determine how many words were handled.
1221 				 */
1222 				nw = BUDSIZE(l2size, BUDMIN);
1223 
1224 				nwords -= nw;
1225 				word += nw;
1226 			}
1227 		}
1228 	}
1229 
1230 	/* allocate the blocks.
1231 	 */
1232 	return (dbAllocDmap(bmp, dp, blkno, nblocks));
1233 }
1234 
1235 
1236 /*
1237  * NAME:	dbAllocNear()
1238  *
1239  * FUNCTION:    attempt to allocate a number of contiguous free blocks near
1240  *		a specified block (hint) within a dmap.
1241  *
1242  *		starting with the dmap leaf that covers the hint, we'll
1243  *		check the next four contiguous leaves for sufficient free
1244  *		space.  if sufficient free space is found, we'll allocate
1245  *		the desired free space.
1246  *
1247  * PARAMETERS:
1248  *      bmp	-  pointer to bmap descriptor
1249  *      dp	-  pointer to dmap.
1250  *      blkno	-  block number to allocate near.
1251  *      nblocks	-  actual number of contiguous free blocks desired.
1252  *      l2nb	-  log2 number of contiguous free blocks desired.
1253  *      results	-  on successful return, set to the starting block number
1254  *		   of the newly allocated range.
1255  *
1256  * RETURN VALUES:
1257  *      0	- success
1258  *      -ENOSPC	- insufficient disk resources
1259  *      -EIO	- i/o error
1260  *
1261  * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1262  */
1263 static int
1264 dbAllocNear(struct bmap * bmp,
1265 	    struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1266 {
1267 	int word, lword, rc;
1268 	s8 *leaf;
1269 
1270 	if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1271 		jfs_error(bmp->db_ipbmap->i_sb,
1272 			  "dbAllocNear: Corrupt dmap page");
1273 		return -EIO;
1274 	}
1275 
1276 	leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1277 
1278 	/* determine the word within the dmap that holds the hint
1279 	 * (i.e. blkno).  also, determine the last word in the dmap
1280 	 * that we'll include in our examination.
1281 	 */
1282 	word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1283 	lword = min(word + 4, LPERDMAP);
1284 
1285 	/* examine the leaves for sufficient free space.
1286 	 */
1287 	for (; word < lword; word++) {
1288 		/* does the leaf describe sufficient free space ?
1289 		 */
1290 		if (leaf[word] < l2nb)
1291 			continue;
1292 
1293 		/* determine the block number within the file system
1294 		 * of the first block described by this dmap word.
1295 		 */
1296 		blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1297 
1298 		/* if not all bits of the dmap word are free, get the
1299 		 * starting bit number within the dmap word of the required
1300 		 * string of free bits and adjust the block number with the
1301 		 * value.
1302 		 */
1303 		if (leaf[word] < BUDMIN)
1304 			blkno +=
1305 			    dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1306 
1307 		/* allocate the blocks.
1308 		 */
1309 		if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1310 			*results = blkno;
1311 
1312 		return (rc);
1313 	}
1314 
1315 	return -ENOSPC;
1316 }
1317 
1318 
1319 /*
1320  * NAME:	dbAllocAG()
1321  *
1322  * FUNCTION:    attempt to allocate the specified number of contiguous
1323  *		free blocks within the specified allocation group.
1324  *
1325  *		unless the allocation group size is equal to the number
1326  *		of blocks per dmap, the dmap control pages will be used to
1327  *		find the required free space, if available.  we start the
1328  *		search at the highest dmap control page level which
1329  *		distinctly describes the allocation group's free space
1330  *		(i.e. the highest level at which the allocation group's
1331  *		free space is not mixed in with that of any other group).
1332  *		in addition, we start the search within this level at a
1333  *		height of the dmapctl dmtree at which the nodes distinctly
1334  *		describe the allocation group's free space.  at this height,
1335  *		the allocation group's free space may be represented by 1
1336  *		or two sub-trees, depending on the allocation group size.
1337  *		we search the top nodes of these subtrees left to right for
1338  *		sufficient free space.  if sufficient free space is found,
1339  *		the subtree is searched to find the leftmost leaf that
1340  *		has free space.  once we have made it to the leaf, we
1341  *		move the search to the next lower level dmap control page
1342  *		corresponding to this leaf.  we continue down the dmap control
1343  *		pages until we find the dmap that contains or starts the
1344  *		sufficient free space and we allocate at this dmap.
1345  *
1346  *		if the allocation group size is equal to the dmap size,
1347  *		we'll start at the dmap corresponding to the allocation
1348  *		group and attempt the allocation at this level.
1349  *
1350  *		the dmap control page search is also not performed if the
1351  *		allocation group is completely free and we go to the first
1352  *		dmap of the allocation group to do the allocation.  this is
1353  *		done because the allocation group may be part (not the first
1354  *		part) of a larger binary buddy system, causing the dmap
1355  *		control pages to indicate no free space (NOFREE) within
1356  *		the allocation group.
1357  *
1358  * PARAMETERS:
1359  *      bmp	-  pointer to bmap descriptor
1360  *	agno	- allocation group number.
1361  *      nblocks	-  actual number of contiguous free blocks desired.
1362  *      l2nb	-  log2 number of contiguous free blocks desired.
1363  *      results	-  on successful return, set to the starting block number
1364  *		   of the newly allocated range.
1365  *
1366  * RETURN VALUES:
1367  *      0	- success
1368  *      -ENOSPC	- insufficient disk resources
1369  *      -EIO	- i/o error
1370  *
1371  * note: IWRITE_LOCK(ipmap) held on entry/exit;
1372  */
1373 static int
1374 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1375 {
1376 	struct metapage *mp;
1377 	struct dmapctl *dcp;
1378 	int rc, ti, i, k, m, n, agperlev;
1379 	s64 blkno, lblkno;
1380 	int budmin;
1381 
1382 	/* allocation request should not be for more than the
1383 	 * allocation group size.
1384 	 */
1385 	if (l2nb > bmp->db_agl2size) {
1386 		jfs_error(bmp->db_ipbmap->i_sb,
1387 			  "dbAllocAG: allocation request is larger than the "
1388 			  "allocation group size");
1389 		return -EIO;
1390 	}
1391 
1392 	/* determine the starting block number of the allocation
1393 	 * group.
1394 	 */
1395 	blkno = (s64) agno << bmp->db_agl2size;
1396 
1397 	/* check if the allocation group size is the minimum allocation
1398 	 * group size or if the allocation group is completely free. if
1399 	 * the allocation group size is the minimum size of BPERDMAP (i.e.
1400 	 * 1 dmap), there is no need to search the dmap control page (below)
1401 	 * that fully describes the allocation group since the allocation
1402 	 * group is already fully described by a dmap.  in this case, we
1403 	 * just call dbAllocCtl() to search the dmap tree and allocate the
1404 	 * required space if available.
1405 	 *
1406 	 * if the allocation group is completely free, dbAllocCtl() is
1407 	 * also called to allocate the required space.  this is done for
1408 	 * two reasons.  first, it makes no sense searching the dmap control
1409 	 * pages for free space when we know that free space exists.  second,
1410 	 * the dmap control pages may indicate that the allocation group
1411 	 * has no free space if the allocation group is part (not the first
1412 	 * part) of a larger binary buddy system.
1413 	 */
1414 	if (bmp->db_agsize == BPERDMAP
1415 	    || bmp->db_agfree[agno] == bmp->db_agsize) {
1416 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1417 		if ((rc == -ENOSPC) &&
1418 		    (bmp->db_agfree[agno] == bmp->db_agsize)) {
1419 			printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1420 			       (unsigned long long) blkno,
1421 			       (unsigned long long) nblocks);
1422 			jfs_error(bmp->db_ipbmap->i_sb,
1423 				  "dbAllocAG: dbAllocCtl failed in free AG");
1424 		}
1425 		return (rc);
1426 	}
1427 
1428 	/* the buffer for the dmap control page that fully describes the
1429 	 * allocation group.
1430 	 */
1431 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1432 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1433 	if (mp == NULL)
1434 		return -EIO;
1435 	dcp = (struct dmapctl *) mp->data;
1436 	budmin = dcp->budmin;
1437 
1438 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1439 		jfs_error(bmp->db_ipbmap->i_sb,
1440 			  "dbAllocAG: Corrupt dmapctl page");
1441 		release_metapage(mp);
1442 		return -EIO;
1443 	}
1444 
1445 	/* search the subtree(s) of the dmap control page that describes
1446 	 * the allocation group, looking for sufficient free space.  to begin,
1447 	 * determine how many allocation groups are represented in a dmap
1448 	 * control page at the control page level (i.e. L0, L1, L2) that
1449 	 * fully describes an allocation group. next, determine the starting
1450 	 * tree index of this allocation group within the control page.
1451 	 */
1452 	agperlev =
1453 	    (1 << (L2LPERCTL - (bmp->db_agheigth << 1))) / bmp->db_agwidth;
1454 	ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1455 
1456 	/* dmap control page trees fan-out by 4 and a single allocation
1457 	 * group may be described by 1 or 2 subtrees within the ag level
1458 	 * dmap control page, depending upon the ag size. examine the ag's
1459 	 * subtrees for sufficient free space, starting with the leftmost
1460 	 * subtree.
1461 	 */
1462 	for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1463 		/* is there sufficient free space ?
1464 		 */
1465 		if (l2nb > dcp->stree[ti])
1466 			continue;
1467 
1468 		/* sufficient free space found in a subtree. now search down
1469 		 * the subtree to find the leftmost leaf that describes this
1470 		 * free space.
1471 		 */
1472 		for (k = bmp->db_agheigth; k > 0; k--) {
1473 			for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1474 				if (l2nb <= dcp->stree[m + n]) {
1475 					ti = m + n;
1476 					break;
1477 				}
1478 			}
1479 			if (n == 4) {
1480 				jfs_error(bmp->db_ipbmap->i_sb,
1481 					  "dbAllocAG: failed descending stree");
1482 				release_metapage(mp);
1483 				return -EIO;
1484 			}
1485 		}
1486 
1487 		/* determine the block number within the file system
1488 		 * that corresponds to this leaf.
1489 		 */
1490 		if (bmp->db_aglevel == 2)
1491 			blkno = 0;
1492 		else if (bmp->db_aglevel == 1)
1493 			blkno &= ~(MAXL1SIZE - 1);
1494 		else		/* bmp->db_aglevel == 0 */
1495 			blkno &= ~(MAXL0SIZE - 1);
1496 
1497 		blkno +=
1498 		    ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1499 
1500 		/* release the buffer in preparation for going down
1501 		 * the next level of dmap control pages.
1502 		 */
1503 		release_metapage(mp);
1504 
1505 		/* check if we need to continue to search down the lower
1506 		 * level dmap control pages.  we need to if the number of
1507 		 * blocks required is less than maximum number of blocks
1508 		 * described at the next lower level.
1509 		 */
1510 		if (l2nb < budmin) {
1511 
1512 			/* search the lower level dmap control pages to get
1513 			 * the starting block number of the the dmap that
1514 			 * contains or starts off the free space.
1515 			 */
1516 			if ((rc =
1517 			     dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1518 				       &blkno))) {
1519 				if (rc == -ENOSPC) {
1520 					jfs_error(bmp->db_ipbmap->i_sb,
1521 						  "dbAllocAG: control page "
1522 						  "inconsistent");
1523 					return -EIO;
1524 				}
1525 				return (rc);
1526 			}
1527 		}
1528 
1529 		/* allocate the blocks.
1530 		 */
1531 		rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1532 		if (rc == -ENOSPC) {
1533 			jfs_error(bmp->db_ipbmap->i_sb,
1534 				  "dbAllocAG: unable to allocate blocks");
1535 			rc = -EIO;
1536 		}
1537 		return (rc);
1538 	}
1539 
1540 	/* no space in the allocation group.  release the buffer and
1541 	 * return -ENOSPC.
1542 	 */
1543 	release_metapage(mp);
1544 
1545 	return -ENOSPC;
1546 }
1547 
1548 
1549 /*
1550  * NAME:	dbAllocAny()
1551  *
1552  * FUNCTION:    attempt to allocate the specified number of contiguous
1553  *		free blocks anywhere in the file system.
1554  *
1555  *		dbAllocAny() attempts to find the sufficient free space by
1556  *		searching down the dmap control pages, starting with the
1557  *		highest level (i.e. L0, L1, L2) control page.  if free space
1558  *		large enough to satisfy the desired free space is found, the
1559  *		desired free space is allocated.
1560  *
1561  * PARAMETERS:
1562  *      bmp	-  pointer to bmap descriptor
1563  *      nblocks	 -  actual number of contiguous free blocks desired.
1564  *      l2nb	 -  log2 number of contiguous free blocks desired.
1565  *      results	-  on successful return, set to the starting block number
1566  *		   of the newly allocated range.
1567  *
1568  * RETURN VALUES:
1569  *      0	- success
1570  *      -ENOSPC	- insufficient disk resources
1571  *      -EIO	- i/o error
1572  *
1573  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1574  */
1575 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1576 {
1577 	int rc;
1578 	s64 blkno = 0;
1579 
1580 	/* starting with the top level dmap control page, search
1581 	 * down the dmap control levels for sufficient free space.
1582 	 * if free space is found, dbFindCtl() returns the starting
1583 	 * block number of the dmap that contains or starts off the
1584 	 * range of free space.
1585 	 */
1586 	if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1587 		return (rc);
1588 
1589 	/* allocate the blocks.
1590 	 */
1591 	rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1592 	if (rc == -ENOSPC) {
1593 		jfs_error(bmp->db_ipbmap->i_sb,
1594 			  "dbAllocAny: unable to allocate blocks");
1595 		return -EIO;
1596 	}
1597 	return (rc);
1598 }
1599 
1600 
1601 /*
1602  * NAME:	dbFindCtl()
1603  *
1604  * FUNCTION:    starting at a specified dmap control page level and block
1605  *		number, search down the dmap control levels for a range of
1606  *	        contiguous free blocks large enough to satisfy an allocation
1607  *		request for the specified number of free blocks.
1608  *
1609  *		if sufficient contiguous free blocks are found, this routine
1610  *		returns the starting block number within a dmap page that
1611  *		contains or starts a range of contiqious free blocks that
1612  *		is sufficient in size.
1613  *
1614  * PARAMETERS:
1615  *      bmp	-  pointer to bmap descriptor
1616  *      level	-  starting dmap control page level.
1617  *      l2nb	-  log2 number of contiguous free blocks desired.
1618  *      *blkno	-  on entry, starting block number for conducting the search.
1619  *		   on successful return, the first block within a dmap page
1620  *		   that contains or starts a range of contiguous free blocks.
1621  *
1622  * RETURN VALUES:
1623  *      0	- success
1624  *      -ENOSPC	- insufficient disk resources
1625  *      -EIO	- i/o error
1626  *
1627  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1628  */
1629 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1630 {
1631 	int rc, leafidx, lev;
1632 	s64 b, lblkno;
1633 	struct dmapctl *dcp;
1634 	int budmin;
1635 	struct metapage *mp;
1636 
1637 	/* starting at the specified dmap control page level and block
1638 	 * number, search down the dmap control levels for the starting
1639 	 * block number of a dmap page that contains or starts off
1640 	 * sufficient free blocks.
1641 	 */
1642 	for (lev = level, b = *blkno; lev >= 0; lev--) {
1643 		/* get the buffer of the dmap control page for the block
1644 		 * number and level (i.e. L0, L1, L2).
1645 		 */
1646 		lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1647 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1648 		if (mp == NULL)
1649 			return -EIO;
1650 		dcp = (struct dmapctl *) mp->data;
1651 		budmin = dcp->budmin;
1652 
1653 		if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1654 			jfs_error(bmp->db_ipbmap->i_sb,
1655 				  "dbFindCtl: Corrupt dmapctl page");
1656 			release_metapage(mp);
1657 			return -EIO;
1658 		}
1659 
1660 		/* search the tree within the dmap control page for
1661 		 * sufficent free space.  if sufficient free space is found,
1662 		 * dbFindLeaf() returns the index of the leaf at which
1663 		 * free space was found.
1664 		 */
1665 		rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1666 
1667 		/* release the buffer.
1668 		 */
1669 		release_metapage(mp);
1670 
1671 		/* space found ?
1672 		 */
1673 		if (rc) {
1674 			if (lev != level) {
1675 				jfs_error(bmp->db_ipbmap->i_sb,
1676 					  "dbFindCtl: dmap inconsistent");
1677 				return -EIO;
1678 			}
1679 			return -ENOSPC;
1680 		}
1681 
1682 		/* adjust the block number to reflect the location within
1683 		 * the dmap control page (i.e. the leaf) at which free
1684 		 * space was found.
1685 		 */
1686 		b += (((s64) leafidx) << budmin);
1687 
1688 		/* we stop the search at this dmap control page level if
1689 		 * the number of blocks required is greater than or equal
1690 		 * to the maximum number of blocks described at the next
1691 		 * (lower) level.
1692 		 */
1693 		if (l2nb >= budmin)
1694 			break;
1695 	}
1696 
1697 	*blkno = b;
1698 	return (0);
1699 }
1700 
1701 
1702 /*
1703  * NAME:	dbAllocCtl()
1704  *
1705  * FUNCTION:    attempt to allocate a specified number of contiguous
1706  *		blocks starting within a specific dmap.
1707  *
1708  *		this routine is called by higher level routines that search
1709  *		the dmap control pages above the actual dmaps for contiguous
1710  *		free space.  the result of successful searches by these
1711  * 		routines are the starting block numbers within dmaps, with
1712  *		the dmaps themselves containing the desired contiguous free
1713  *		space or starting a contiguous free space of desired size
1714  *		that is made up of the blocks of one or more dmaps. these
1715  *		calls should not fail due to insufficent resources.
1716  *
1717  *		this routine is called in some cases where it is not known
1718  *		whether it will fail due to insufficient resources.  more
1719  *		specifically, this occurs when allocating from an allocation
1720  *		group whose size is equal to the number of blocks per dmap.
1721  *		in this case, the dmap control pages are not examined prior
1722  *		to calling this routine (to save pathlength) and the call
1723  *		might fail.
1724  *
1725  *		for a request size that fits within a dmap, this routine relies
1726  *		upon the dmap's dmtree to find the requested contiguous free
1727  *		space.  for request sizes that are larger than a dmap, the
1728  *		requested free space will start at the first block of the
1729  *		first dmap (i.e. blkno).
1730  *
1731  * PARAMETERS:
1732  *      bmp	-  pointer to bmap descriptor
1733  *      nblocks	 -  actual number of contiguous free blocks to allocate.
1734  *      l2nb	 -  log2 number of contiguous free blocks to allocate.
1735  *      blkno	 -  starting block number of the dmap to start the allocation
1736  *		    from.
1737  *      results	-  on successful return, set to the starting block number
1738  *		   of the newly allocated range.
1739  *
1740  * RETURN VALUES:
1741  *      0	- success
1742  *      -ENOSPC	- insufficient disk resources
1743  *      -EIO	- i/o error
1744  *
1745  * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1746  */
1747 static int
1748 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1749 {
1750 	int rc, nb;
1751 	s64 b, lblkno, n;
1752 	struct metapage *mp;
1753 	struct dmap *dp;
1754 
1755 	/* check if the allocation request is confined to a single dmap.
1756 	 */
1757 	if (l2nb <= L2BPERDMAP) {
1758 		/* get the buffer for the dmap.
1759 		 */
1760 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1761 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1762 		if (mp == NULL)
1763 			return -EIO;
1764 		dp = (struct dmap *) mp->data;
1765 
1766 		/* try to allocate the blocks.
1767 		 */
1768 		rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1769 		if (rc == 0)
1770 			mark_metapage_dirty(mp);
1771 
1772 		release_metapage(mp);
1773 
1774 		return (rc);
1775 	}
1776 
1777 	/* allocation request involving multiple dmaps. it must start on
1778 	 * a dmap boundary.
1779 	 */
1780 	assert((blkno & (BPERDMAP - 1)) == 0);
1781 
1782 	/* allocate the blocks dmap by dmap.
1783 	 */
1784 	for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1785 		/* get the buffer for the dmap.
1786 		 */
1787 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1788 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1789 		if (mp == NULL) {
1790 			rc = -EIO;
1791 			goto backout;
1792 		}
1793 		dp = (struct dmap *) mp->data;
1794 
1795 		/* the dmap better be all free.
1796 		 */
1797 		if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1798 			release_metapage(mp);
1799 			jfs_error(bmp->db_ipbmap->i_sb,
1800 				  "dbAllocCtl: the dmap is not all free");
1801 			rc = -EIO;
1802 			goto backout;
1803 		}
1804 
1805 		/* determine how many blocks to allocate from this dmap.
1806 		 */
1807 		nb = min(n, (s64)BPERDMAP);
1808 
1809 		/* allocate the blocks from the dmap.
1810 		 */
1811 		if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1812 			release_metapage(mp);
1813 			goto backout;
1814 		}
1815 
1816 		/* write the buffer.
1817 		 */
1818 		write_metapage(mp);
1819 	}
1820 
1821 	/* set the results (starting block number) and return.
1822 	 */
1823 	*results = blkno;
1824 	return (0);
1825 
1826 	/* something failed in handling an allocation request involving
1827 	 * multiple dmaps.  we'll try to clean up by backing out any
1828 	 * allocation that has already happened for this request.  if
1829 	 * we fail in backing out the allocation, we'll mark the file
1830 	 * system to indicate that blocks have been leaked.
1831 	 */
1832       backout:
1833 
1834 	/* try to backout the allocations dmap by dmap.
1835 	 */
1836 	for (n = nblocks - n, b = blkno; n > 0;
1837 	     n -= BPERDMAP, b += BPERDMAP) {
1838 		/* get the buffer for this dmap.
1839 		 */
1840 		lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1841 		mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1842 		if (mp == NULL) {
1843 			/* could not back out.  mark the file system
1844 			 * to indicate that we have leaked blocks.
1845 			 */
1846 			jfs_error(bmp->db_ipbmap->i_sb,
1847 				  "dbAllocCtl: I/O Error: Block Leakage.");
1848 			continue;
1849 		}
1850 		dp = (struct dmap *) mp->data;
1851 
1852 		/* free the blocks is this dmap.
1853 		 */
1854 		if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1855 			/* could not back out.  mark the file system
1856 			 * to indicate that we have leaked blocks.
1857 			 */
1858 			release_metapage(mp);
1859 			jfs_error(bmp->db_ipbmap->i_sb,
1860 				  "dbAllocCtl: Block Leakage.");
1861 			continue;
1862 		}
1863 
1864 		/* write the buffer.
1865 		 */
1866 		write_metapage(mp);
1867 	}
1868 
1869 	return (rc);
1870 }
1871 
1872 
1873 /*
1874  * NAME:	dbAllocDmapLev()
1875  *
1876  * FUNCTION:    attempt to allocate a specified number of contiguous blocks
1877  *		from a specified dmap.
1878  *
1879  *		this routine checks if the contiguous blocks are available.
1880  *		if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1881  *		returned.
1882  *
1883  * PARAMETERS:
1884  *      mp	-  pointer to bmap descriptor
1885  *      dp	-  pointer to dmap to attempt to allocate blocks from.
1886  *      l2nb	-  log2 number of contiguous block desired.
1887  *      nblocks	-  actual number of contiguous block desired.
1888  *      results	-  on successful return, set to the starting block number
1889  *		   of the newly allocated range.
1890  *
1891  * RETURN VALUES:
1892  *      0	- success
1893  *      -ENOSPC	- insufficient disk resources
1894  *      -EIO	- i/o error
1895  *
1896  * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
1897  *	IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
1898  */
1899 static int
1900 dbAllocDmapLev(struct bmap * bmp,
1901 	       struct dmap * dp, int nblocks, int l2nb, s64 * results)
1902 {
1903 	s64 blkno;
1904 	int leafidx, rc;
1905 
1906 	/* can't be more than a dmaps worth of blocks */
1907 	assert(l2nb <= L2BPERDMAP);
1908 
1909 	/* search the tree within the dmap page for sufficient
1910 	 * free space.  if sufficient free space is found, dbFindLeaf()
1911 	 * returns the index of the leaf at which free space was found.
1912 	 */
1913 	if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
1914 		return -ENOSPC;
1915 
1916 	/* determine the block number within the file system corresponding
1917 	 * to the leaf at which free space was found.
1918 	 */
1919 	blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
1920 
1921 	/* if not all bits of the dmap word are free, get the starting
1922 	 * bit number within the dmap word of the required string of free
1923 	 * bits and adjust the block number with this value.
1924 	 */
1925 	if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
1926 		blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
1927 
1928 	/* allocate the blocks */
1929 	if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1930 		*results = blkno;
1931 
1932 	return (rc);
1933 }
1934 
1935 
1936 /*
1937  * NAME:	dbAllocDmap()
1938  *
1939  * FUNCTION:    adjust the disk allocation map to reflect the allocation
1940  *		of a specified block range within a dmap.
1941  *
1942  *		this routine allocates the specified blocks from the dmap
1943  *		through a call to dbAllocBits(). if the allocation of the
1944  *		block range causes the maximum string of free blocks within
1945  *		the dmap to change (i.e. the value of the root of the dmap's
1946  *		dmtree), this routine will cause this change to be reflected
1947  *		up through the appropriate levels of the dmap control pages
1948  *		by a call to dbAdjCtl() for the L0 dmap control page that
1949  *		covers this dmap.
1950  *
1951  * PARAMETERS:
1952  *      bmp	-  pointer to bmap descriptor
1953  *      dp	-  pointer to dmap to allocate the block range from.
1954  *      blkno	-  starting block number of the block to be allocated.
1955  *      nblocks	-  number of blocks to be allocated.
1956  *
1957  * RETURN VALUES:
1958  *      0	- success
1959  *      -EIO	- i/o error
1960  *
1961  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
1962  */
1963 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
1964 		       int nblocks)
1965 {
1966 	s8 oldroot;
1967 	int rc;
1968 
1969 	/* save the current value of the root (i.e. maximum free string)
1970 	 * of the dmap tree.
1971 	 */
1972 	oldroot = dp->tree.stree[ROOT];
1973 
1974 	/* allocate the specified (blocks) bits */
1975 	dbAllocBits(bmp, dp, blkno, nblocks);
1976 
1977 	/* if the root has not changed, done. */
1978 	if (dp->tree.stree[ROOT] == oldroot)
1979 		return (0);
1980 
1981 	/* root changed. bubble the change up to the dmap control pages.
1982 	 * if the adjustment of the upper level control pages fails,
1983 	 * backout the bit allocation (thus making everything consistent).
1984 	 */
1985 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
1986 		dbFreeBits(bmp, dp, blkno, nblocks);
1987 
1988 	return (rc);
1989 }
1990 
1991 
1992 /*
1993  * NAME:	dbFreeDmap()
1994  *
1995  * FUNCTION:    adjust the disk allocation map to reflect the allocation
1996  *		of a specified block range within a dmap.
1997  *
1998  *		this routine frees the specified blocks from the dmap through
1999  *		a call to dbFreeBits(). if the deallocation of the block range
2000  *		causes the maximum string of free blocks within the dmap to
2001  *		change (i.e. the value of the root of the dmap's dmtree), this
2002  *		routine will cause this change to be reflected up through the
2003  *	        appropriate levels of the dmap control pages by a call to
2004  *		dbAdjCtl() for the L0 dmap control page that covers this dmap.
2005  *
2006  * PARAMETERS:
2007  *      bmp	-  pointer to bmap descriptor
2008  *      dp	-  pointer to dmap to free the block range from.
2009  *      blkno	-  starting block number of the block to be freed.
2010  *      nblocks	-  number of blocks to be freed.
2011  *
2012  * RETURN VALUES:
2013  *      0	- success
2014  *      -EIO	- i/o error
2015  *
2016  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2017  */
2018 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2019 		      int nblocks)
2020 {
2021 	s8 oldroot;
2022 	int rc = 0, word;
2023 
2024 	/* save the current value of the root (i.e. maximum free string)
2025 	 * of the dmap tree.
2026 	 */
2027 	oldroot = dp->tree.stree[ROOT];
2028 
2029 	/* free the specified (blocks) bits */
2030 	rc = dbFreeBits(bmp, dp, blkno, nblocks);
2031 
2032 	/* if error or the root has not changed, done. */
2033 	if (rc || (dp->tree.stree[ROOT] == oldroot))
2034 		return (rc);
2035 
2036 	/* root changed. bubble the change up to the dmap control pages.
2037 	 * if the adjustment of the upper level control pages fails,
2038 	 * backout the deallocation.
2039 	 */
2040 	if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2041 		word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2042 
2043 		/* as part of backing out the deallocation, we will have
2044 		 * to back split the dmap tree if the deallocation caused
2045 		 * the freed blocks to become part of a larger binary buddy
2046 		 * system.
2047 		 */
2048 		if (dp->tree.stree[word] == NOFREE)
2049 			dbBackSplit((dmtree_t *) & dp->tree, word);
2050 
2051 		dbAllocBits(bmp, dp, blkno, nblocks);
2052 	}
2053 
2054 	return (rc);
2055 }
2056 
2057 
2058 /*
2059  * NAME:	dbAllocBits()
2060  *
2061  * FUNCTION:    allocate a specified block range from a dmap.
2062  *
2063  *		this routine updates the dmap to reflect the working
2064  *		state allocation of the specified block range. it directly
2065  *		updates the bits of the working map and causes the adjustment
2066  *		of the binary buddy system described by the dmap's dmtree
2067  *		leaves to reflect the bits allocated.  it also causes the
2068  *		dmap's dmtree, as a whole, to reflect the allocated range.
2069  *
2070  * PARAMETERS:
2071  *      bmp	-  pointer to bmap descriptor
2072  *      dp	-  pointer to dmap to allocate bits from.
2073  *      blkno	-  starting block number of the bits to be allocated.
2074  *      nblocks	-  number of bits to be allocated.
2075  *
2076  * RETURN VALUES: none
2077  *
2078  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2079  */
2080 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2081 			int nblocks)
2082 {
2083 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2084 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2085 	int size;
2086 	s8 *leaf;
2087 
2088 	/* pick up a pointer to the leaves of the dmap tree */
2089 	leaf = dp->tree.stree + LEAFIND;
2090 
2091 	/* determine the bit number and word within the dmap of the
2092 	 * starting block.
2093 	 */
2094 	dbitno = blkno & (BPERDMAP - 1);
2095 	word = dbitno >> L2DBWORD;
2096 
2097 	/* block range better be within the dmap */
2098 	assert(dbitno + nblocks <= BPERDMAP);
2099 
2100 	/* allocate the bits of the dmap's words corresponding to the block
2101 	 * range. not all bits of the first and last words may be contained
2102 	 * within the block range.  if this is the case, we'll work against
2103 	 * those words (i.e. partial first and/or last) on an individual basis
2104 	 * (a single pass), allocating the bits of interest by hand and
2105 	 * updating the leaf corresponding to the dmap word. a single pass
2106 	 * will be used for all dmap words fully contained within the
2107 	 * specified range.  within this pass, the bits of all fully contained
2108 	 * dmap words will be marked as free in a single shot and the leaves
2109 	 * will be updated. a single leaf may describe the free space of
2110 	 * multiple dmap words, so we may update only a subset of the actual
2111 	 * leaves corresponding to the dmap words of the block range.
2112 	 */
2113 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2114 		/* determine the bit number within the word and
2115 		 * the number of bits within the word.
2116 		 */
2117 		wbitno = dbitno & (DBWORD - 1);
2118 		nb = min(rembits, DBWORD - wbitno);
2119 
2120 		/* check if only part of a word is to be allocated.
2121 		 */
2122 		if (nb < DBWORD) {
2123 			/* allocate (set to 1) the appropriate bits within
2124 			 * this dmap word.
2125 			 */
2126 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2127 						      >> wbitno);
2128 
2129 			/* update the leaf for this dmap word. in addition
2130 			 * to setting the leaf value to the binary buddy max
2131 			 * of the updated dmap word, dbSplit() will split
2132 			 * the binary system of the leaves if need be.
2133 			 */
2134 			dbSplit(tp, word, BUDMIN,
2135 				dbMaxBud((u8 *) & dp->wmap[word]));
2136 
2137 			word += 1;
2138 		} else {
2139 			/* one or more dmap words are fully contained
2140 			 * within the block range.  determine how many
2141 			 * words and allocate (set to 1) the bits of these
2142 			 * words.
2143 			 */
2144 			nwords = rembits >> L2DBWORD;
2145 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
2146 
2147 			/* determine how many bits.
2148 			 */
2149 			nb = nwords << L2DBWORD;
2150 
2151 			/* now update the appropriate leaves to reflect
2152 			 * the allocated words.
2153 			 */
2154 			for (; nwords > 0; nwords -= nw) {
2155 			        if (leaf[word] < BUDMIN) {
2156 					jfs_error(bmp->db_ipbmap->i_sb,
2157 						  "dbAllocBits: leaf page "
2158 						  "corrupt");
2159 					break;
2160 				}
2161 
2162 				/* determine what the leaf value should be
2163 				 * updated to as the minimum of the l2 number
2164 				 * of bits being allocated and the l2 number
2165 				 * of bits currently described by this leaf.
2166 				 */
2167 				size = min((int)leaf[word], NLSTOL2BSZ(nwords));
2168 
2169 				/* update the leaf to reflect the allocation.
2170 				 * in addition to setting the leaf value to
2171 				 * NOFREE, dbSplit() will split the binary
2172 				 * system of the leaves to reflect the current
2173 				 * allocation (size).
2174 				 */
2175 				dbSplit(tp, word, size, NOFREE);
2176 
2177 				/* get the number of dmap words handled */
2178 				nw = BUDSIZE(size, BUDMIN);
2179 				word += nw;
2180 			}
2181 		}
2182 	}
2183 
2184 	/* update the free count for this dmap */
2185 	dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) - nblocks);
2186 
2187 	BMAP_LOCK(bmp);
2188 
2189 	/* if this allocation group is completely free,
2190 	 * update the maximum allocation group number if this allocation
2191 	 * group is the new max.
2192 	 */
2193 	agno = blkno >> bmp->db_agl2size;
2194 	if (agno > bmp->db_maxag)
2195 		bmp->db_maxag = agno;
2196 
2197 	/* update the free count for the allocation group and map */
2198 	bmp->db_agfree[agno] -= nblocks;
2199 	bmp->db_nfree -= nblocks;
2200 
2201 	BMAP_UNLOCK(bmp);
2202 }
2203 
2204 
2205 /*
2206  * NAME:	dbFreeBits()
2207  *
2208  * FUNCTION:    free a specified block range from a dmap.
2209  *
2210  *		this routine updates the dmap to reflect the working
2211  *		state allocation of the specified block range. it directly
2212  *		updates the bits of the working map and causes the adjustment
2213  *		of the binary buddy system described by the dmap's dmtree
2214  *		leaves to reflect the bits freed.  it also causes the dmap's
2215  *		dmtree, as a whole, to reflect the deallocated range.
2216  *
2217  * PARAMETERS:
2218  *      bmp	-  pointer to bmap descriptor
2219  *      dp	-  pointer to dmap to free bits from.
2220  *      blkno	-  starting block number of the bits to be freed.
2221  *      nblocks	-  number of bits to be freed.
2222  *
2223  * RETURN VALUES: 0 for success
2224  *
2225  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2226  */
2227 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2228 		       int nblocks)
2229 {
2230 	int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2231 	dmtree_t *tp = (dmtree_t *) & dp->tree;
2232 	int rc = 0;
2233 	int size;
2234 
2235 	/* determine the bit number and word within the dmap of the
2236 	 * starting block.
2237 	 */
2238 	dbitno = blkno & (BPERDMAP - 1);
2239 	word = dbitno >> L2DBWORD;
2240 
2241 	/* block range better be within the dmap.
2242 	 */
2243 	assert(dbitno + nblocks <= BPERDMAP);
2244 
2245 	/* free the bits of the dmaps words corresponding to the block range.
2246 	 * not all bits of the first and last words may be contained within
2247 	 * the block range.  if this is the case, we'll work against those
2248 	 * words (i.e. partial first and/or last) on an individual basis
2249 	 * (a single pass), freeing the bits of interest by hand and updating
2250 	 * the leaf corresponding to the dmap word. a single pass will be used
2251 	 * for all dmap words fully contained within the specified range.
2252 	 * within this pass, the bits of all fully contained dmap words will
2253 	 * be marked as free in a single shot and the leaves will be updated. a
2254 	 * single leaf may describe the free space of multiple dmap words,
2255 	 * so we may update only a subset of the actual leaves corresponding
2256 	 * to the dmap words of the block range.
2257 	 *
2258 	 * dbJoin() is used to update leaf values and will join the binary
2259 	 * buddy system of the leaves if the new leaf values indicate this
2260 	 * should be done.
2261 	 */
2262 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2263 		/* determine the bit number within the word and
2264 		 * the number of bits within the word.
2265 		 */
2266 		wbitno = dbitno & (DBWORD - 1);
2267 		nb = min(rembits, DBWORD - wbitno);
2268 
2269 		/* check if only part of a word is to be freed.
2270 		 */
2271 		if (nb < DBWORD) {
2272 			/* free (zero) the appropriate bits within this
2273 			 * dmap word.
2274 			 */
2275 			dp->wmap[word] &=
2276 			    cpu_to_le32(~(ONES << (DBWORD - nb)
2277 					  >> wbitno));
2278 
2279 			/* update the leaf for this dmap word.
2280 			 */
2281 			rc = dbJoin(tp, word,
2282 				    dbMaxBud((u8 *) & dp->wmap[word]));
2283 			if (rc)
2284 				return rc;
2285 
2286 			word += 1;
2287 		} else {
2288 			/* one or more dmap words are fully contained
2289 			 * within the block range.  determine how many
2290 			 * words and free (zero) the bits of these words.
2291 			 */
2292 			nwords = rembits >> L2DBWORD;
2293 			memset(&dp->wmap[word], 0, nwords * 4);
2294 
2295 			/* determine how many bits.
2296 			 */
2297 			nb = nwords << L2DBWORD;
2298 
2299 			/* now update the appropriate leaves to reflect
2300 			 * the freed words.
2301 			 */
2302 			for (; nwords > 0; nwords -= nw) {
2303 				/* determine what the leaf value should be
2304 				 * updated to as the minimum of the l2 number
2305 				 * of bits being freed and the l2 (max) number
2306 				 * of bits that can be described by this leaf.
2307 				 */
2308 				size =
2309 				    min(LITOL2BSZ
2310 					(word, L2LPERDMAP, BUDMIN),
2311 					NLSTOL2BSZ(nwords));
2312 
2313 				/* update the leaf.
2314 				 */
2315 				rc = dbJoin(tp, word, size);
2316 				if (rc)
2317 					return rc;
2318 
2319 				/* get the number of dmap words handled.
2320 				 */
2321 				nw = BUDSIZE(size, BUDMIN);
2322 				word += nw;
2323 			}
2324 		}
2325 	}
2326 
2327 	/* update the free count for this dmap.
2328 	 */
2329 	dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) + nblocks);
2330 
2331 	BMAP_LOCK(bmp);
2332 
2333 	/* update the free count for the allocation group and
2334 	 * map.
2335 	 */
2336 	agno = blkno >> bmp->db_agl2size;
2337 	bmp->db_nfree += nblocks;
2338 	bmp->db_agfree[agno] += nblocks;
2339 
2340 	/* check if this allocation group is not completely free and
2341 	 * if it is currently the maximum (rightmost) allocation group.
2342 	 * if so, establish the new maximum allocation group number by
2343 	 * searching left for the first allocation group with allocation.
2344 	 */
2345 	if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2346 	    (agno == bmp->db_numag - 1 &&
2347 	     bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2348 		while (bmp->db_maxag > 0) {
2349 			bmp->db_maxag -= 1;
2350 			if (bmp->db_agfree[bmp->db_maxag] !=
2351 			    bmp->db_agsize)
2352 				break;
2353 		}
2354 
2355 		/* re-establish the allocation group preference if the
2356 		 * current preference is right of the maximum allocation
2357 		 * group.
2358 		 */
2359 		if (bmp->db_agpref > bmp->db_maxag)
2360 			bmp->db_agpref = bmp->db_maxag;
2361 	}
2362 
2363 	BMAP_UNLOCK(bmp);
2364 
2365 	return 0;
2366 }
2367 
2368 
2369 /*
2370  * NAME:	dbAdjCtl()
2371  *
2372  * FUNCTION:	adjust a dmap control page at a specified level to reflect
2373  *		the change in a lower level dmap or dmap control page's
2374  *		maximum string of free blocks (i.e. a change in the root
2375  *		of the lower level object's dmtree) due to the allocation
2376  *		or deallocation of a range of blocks with a single dmap.
2377  *
2378  *		on entry, this routine is provided with the new value of
2379  *		the lower level dmap or dmap control page root and the
2380  *		starting block number of the block range whose allocation
2381  *		or deallocation resulted in the root change.  this range
2382  *		is respresented by a single leaf of the current dmapctl
2383  *		and the leaf will be updated with this value, possibly
2384  *		causing a binary buddy system within the leaves to be
2385  *		split or joined.  the update may also cause the dmapctl's
2386  *		dmtree to be updated.
2387  *
2388  *		if the adjustment of the dmap control page, itself, causes its
2389  *		root to change, this change will be bubbled up to the next dmap
2390  *		control level by a recursive call to this routine, specifying
2391  *		the new root value and the next dmap control page level to
2392  *		be adjusted.
2393  * PARAMETERS:
2394  *      bmp	-  pointer to bmap descriptor
2395  *      blkno	-  the first block of a block range within a dmap.  it is
2396  *		   the allocation or deallocation of this block range that
2397  *		   requires the dmap control page to be adjusted.
2398  *      newval	-  the new value of the lower level dmap or dmap control
2399  *		   page root.
2400  *      alloc	-  TRUE if adjustment is due to an allocation.
2401  *      level	-  current level of dmap control page (i.e. L0, L1, L2) to
2402  *		   be adjusted.
2403  *
2404  * RETURN VALUES:
2405  *      0	- success
2406  *      -EIO	- i/o error
2407  *
2408  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2409  */
2410 static int
2411 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2412 {
2413 	struct metapage *mp;
2414 	s8 oldroot;
2415 	int oldval;
2416 	s64 lblkno;
2417 	struct dmapctl *dcp;
2418 	int rc, leafno, ti;
2419 
2420 	/* get the buffer for the dmap control page for the specified
2421 	 * block number and control page level.
2422 	 */
2423 	lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2424 	mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2425 	if (mp == NULL)
2426 		return -EIO;
2427 	dcp = (struct dmapctl *) mp->data;
2428 
2429 	if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2430 		jfs_error(bmp->db_ipbmap->i_sb,
2431 			  "dbAdjCtl: Corrupt dmapctl page");
2432 		release_metapage(mp);
2433 		return -EIO;
2434 	}
2435 
2436 	/* determine the leaf number corresponding to the block and
2437 	 * the index within the dmap control tree.
2438 	 */
2439 	leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2440 	ti = leafno + le32_to_cpu(dcp->leafidx);
2441 
2442 	/* save the current leaf value and the current root level (i.e.
2443 	 * maximum l2 free string described by this dmapctl).
2444 	 */
2445 	oldval = dcp->stree[ti];
2446 	oldroot = dcp->stree[ROOT];
2447 
2448 	/* check if this is a control page update for an allocation.
2449 	 * if so, update the leaf to reflect the new leaf value using
2450 	 * dbSplit(); otherwise (deallocation), use dbJoin() to udpate
2451 	 * the leaf with the new value.  in addition to updating the
2452 	 * leaf, dbSplit() will also split the binary buddy system of
2453 	 * the leaves, if required, and bubble new values within the
2454 	 * dmapctl tree, if required.  similarly, dbJoin() will join
2455 	 * the binary buddy system of leaves and bubble new values up
2456 	 * the dmapctl tree as required by the new leaf value.
2457 	 */
2458 	if (alloc) {
2459 		/* check if we are in the middle of a binary buddy
2460 		 * system.  this happens when we are performing the
2461 		 * first allocation out of an allocation group that
2462 		 * is part (not the first part) of a larger binary
2463 		 * buddy system.  if we are in the middle, back split
2464 		 * the system prior to calling dbSplit() which assumes
2465 		 * that it is at the front of a binary buddy system.
2466 		 */
2467 		if (oldval == NOFREE) {
2468 			rc = dbBackSplit((dmtree_t *) dcp, leafno);
2469 			if (rc)
2470 				return rc;
2471 			oldval = dcp->stree[ti];
2472 		}
2473 		dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2474 	} else {
2475 		rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2476 		if (rc)
2477 			return rc;
2478 	}
2479 
2480 	/* check if the root of the current dmap control page changed due
2481 	 * to the update and if the current dmap control page is not at
2482 	 * the current top level (i.e. L0, L1, L2) of the map.  if so (i.e.
2483 	 * root changed and this is not the top level), call this routine
2484 	 * again (recursion) for the next higher level of the mapping to
2485 	 * reflect the change in root for the current dmap control page.
2486 	 */
2487 	if (dcp->stree[ROOT] != oldroot) {
2488 		/* are we below the top level of the map.  if so,
2489 		 * bubble the root up to the next higher level.
2490 		 */
2491 		if (level < bmp->db_maxlevel) {
2492 			/* bubble up the new root of this dmap control page to
2493 			 * the next level.
2494 			 */
2495 			if ((rc =
2496 			     dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2497 				      level + 1))) {
2498 				/* something went wrong in bubbling up the new
2499 				 * root value, so backout the changes to the
2500 				 * current dmap control page.
2501 				 */
2502 				if (alloc) {
2503 					dbJoin((dmtree_t *) dcp, leafno,
2504 					       oldval);
2505 				} else {
2506 					/* the dbJoin() above might have
2507 					 * caused a larger binary buddy system
2508 					 * to form and we may now be in the
2509 					 * middle of it.  if this is the case,
2510 					 * back split the buddies.
2511 					 */
2512 					if (dcp->stree[ti] == NOFREE)
2513 						dbBackSplit((dmtree_t *)
2514 							    dcp, leafno);
2515 					dbSplit((dmtree_t *) dcp, leafno,
2516 						dcp->budmin, oldval);
2517 				}
2518 
2519 				/* release the buffer and return the error.
2520 				 */
2521 				release_metapage(mp);
2522 				return (rc);
2523 			}
2524 		} else {
2525 			/* we're at the top level of the map. update
2526 			 * the bmap control page to reflect the size
2527 			 * of the maximum free buddy system.
2528 			 */
2529 			assert(level == bmp->db_maxlevel);
2530 			if (bmp->db_maxfreebud != oldroot) {
2531 				jfs_error(bmp->db_ipbmap->i_sb,
2532 					  "dbAdjCtl: the maximum free buddy is "
2533 					  "not the old root");
2534 			}
2535 			bmp->db_maxfreebud = dcp->stree[ROOT];
2536 		}
2537 	}
2538 
2539 	/* write the buffer.
2540 	 */
2541 	write_metapage(mp);
2542 
2543 	return (0);
2544 }
2545 
2546 
2547 /*
2548  * NAME:	dbSplit()
2549  *
2550  * FUNCTION:    update the leaf of a dmtree with a new value, splitting
2551  *		the leaf from the binary buddy system of the dmtree's
2552  *		leaves, as required.
2553  *
2554  * PARAMETERS:
2555  *      tp	- pointer to the tree containing the leaf.
2556  *      leafno	- the number of the leaf to be updated.
2557  *      splitsz	- the size the binary buddy system starting at the leaf
2558  *		  must be split to, specified as the log2 number of blocks.
2559  *      newval	- the new value for the leaf.
2560  *
2561  * RETURN VALUES: none
2562  *
2563  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2564  */
2565 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2566 {
2567 	int budsz;
2568 	int cursz;
2569 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2570 
2571 	/* check if the leaf needs to be split.
2572 	 */
2573 	if (leaf[leafno] > tp->dmt_budmin) {
2574 		/* the split occurs by cutting the buddy system in half
2575 		 * at the specified leaf until we reach the specified
2576 		 * size.  pick up the starting split size (current size
2577 		 * - 1 in l2) and the corresponding buddy size.
2578 		 */
2579 		cursz = leaf[leafno] - 1;
2580 		budsz = BUDSIZE(cursz, tp->dmt_budmin);
2581 
2582 		/* split until we reach the specified size.
2583 		 */
2584 		while (cursz >= splitsz) {
2585 			/* update the buddy's leaf with its new value.
2586 			 */
2587 			dbAdjTree(tp, leafno ^ budsz, cursz);
2588 
2589 			/* on to the next size and buddy.
2590 			 */
2591 			cursz -= 1;
2592 			budsz >>= 1;
2593 		}
2594 	}
2595 
2596 	/* adjust the dmap tree to reflect the specified leaf's new
2597 	 * value.
2598 	 */
2599 	dbAdjTree(tp, leafno, newval);
2600 }
2601 
2602 
2603 /*
2604  * NAME:	dbBackSplit()
2605  *
2606  * FUNCTION:    back split the binary buddy system of dmtree leaves
2607  *		that hold a specified leaf until the specified leaf
2608  *		starts its own binary buddy system.
2609  *
2610  *		the allocators typically perform allocations at the start
2611  *		of binary buddy systems and dbSplit() is used to accomplish
2612  *		any required splits.  in some cases, however, allocation
2613  *		may occur in the middle of a binary system and requires a
2614  *		back split, with the split proceeding out from the middle of
2615  *		the system (less efficient) rather than the start of the
2616  *		system (more efficient).  the cases in which a back split
2617  *		is required are rare and are limited to the first allocation
2618  *		within an allocation group which is a part (not first part)
2619  *		of a larger binary buddy system and a few exception cases
2620  *		in which a previous join operation must be backed out.
2621  *
2622  * PARAMETERS:
2623  *      tp	- pointer to the tree containing the leaf.
2624  *      leafno	- the number of the leaf to be updated.
2625  *
2626  * RETURN VALUES: none
2627  *
2628  * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2629  */
2630 static int dbBackSplit(dmtree_t * tp, int leafno)
2631 {
2632 	int budsz, bud, w, bsz, size;
2633 	int cursz;
2634 	s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2635 
2636 	/* leaf should be part (not first part) of a binary
2637 	 * buddy system.
2638 	 */
2639 	assert(leaf[leafno] == NOFREE);
2640 
2641 	/* the back split is accomplished by iteratively finding the leaf
2642 	 * that starts the buddy system that contains the specified leaf and
2643 	 * splitting that system in two.  this iteration continues until
2644 	 * the specified leaf becomes the start of a buddy system.
2645 	 *
2646 	 * determine maximum possible l2 size for the specified leaf.
2647 	 */
2648 	size =
2649 	    LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2650 		      tp->dmt_budmin);
2651 
2652 	/* determine the number of leaves covered by this size.  this
2653 	 * is the buddy size that we will start with as we search for
2654 	 * the buddy system that contains the specified leaf.
2655 	 */
2656 	budsz = BUDSIZE(size, tp->dmt_budmin);
2657 
2658 	/* back split.
2659 	 */
2660 	while (leaf[leafno] == NOFREE) {
2661 		/* find the leftmost buddy leaf.
2662 		 */
2663 		for (w = leafno, bsz = budsz;; bsz <<= 1,
2664 		     w = (w < bud) ? w : bud) {
2665 			if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2666 				jfs_err("JFS: block map error in dbBackSplit");
2667 				return -EIO;
2668 			}
2669 
2670 			/* determine the buddy.
2671 			 */
2672 			bud = w ^ bsz;
2673 
2674 			/* check if this buddy is the start of the system.
2675 			 */
2676 			if (leaf[bud] != NOFREE) {
2677 				/* split the leaf at the start of the
2678 				 * system in two.
2679 				 */
2680 				cursz = leaf[bud] - 1;
2681 				dbSplit(tp, bud, cursz, cursz);
2682 				break;
2683 			}
2684 		}
2685 	}
2686 
2687 	if (leaf[leafno] != size) {
2688 		jfs_err("JFS: wrong leaf value in dbBackSplit");
2689 		return -EIO;
2690 	}
2691 	return 0;
2692 }
2693 
2694 
2695 /*
2696  * NAME:	dbJoin()
2697  *
2698  * FUNCTION:    update the leaf of a dmtree with a new value, joining
2699  *		the leaf with other leaves of the dmtree into a multi-leaf
2700  *		binary buddy system, as required.
2701  *
2702  * PARAMETERS:
2703  *      tp	- pointer to the tree containing the leaf.
2704  *      leafno	- the number of the leaf to be updated.
2705  *      newval	- the new value for the leaf.
2706  *
2707  * RETURN VALUES: none
2708  */
2709 static int dbJoin(dmtree_t * tp, int leafno, int newval)
2710 {
2711 	int budsz, buddy;
2712 	s8 *leaf;
2713 
2714 	/* can the new leaf value require a join with other leaves ?
2715 	 */
2716 	if (newval >= tp->dmt_budmin) {
2717 		/* pickup a pointer to the leaves of the tree.
2718 		 */
2719 		leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2720 
2721 		/* try to join the specified leaf into a large binary
2722 		 * buddy system.  the join proceeds by attempting to join
2723 		 * the specified leafno with its buddy (leaf) at new value.
2724 		 * if the join occurs, we attempt to join the left leaf
2725 		 * of the joined buddies with its buddy at new value + 1.
2726 		 * we continue to join until we find a buddy that cannot be
2727 		 * joined (does not have a value equal to the size of the
2728 		 * last join) or until all leaves have been joined into a
2729 		 * single system.
2730 		 *
2731 		 * get the buddy size (number of words covered) of
2732 		 * the new value.
2733 		 */
2734 		budsz = BUDSIZE(newval, tp->dmt_budmin);
2735 
2736 		/* try to join.
2737 		 */
2738 		while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2739 			/* get the buddy leaf.
2740 			 */
2741 			buddy = leafno ^ budsz;
2742 
2743 			/* if the leaf's new value is greater than its
2744 			 * buddy's value, we join no more.
2745 			 */
2746 			if (newval > leaf[buddy])
2747 				break;
2748 
2749 			/* It shouldn't be less */
2750 			if (newval < leaf[buddy])
2751 				return -EIO;
2752 
2753 			/* check which (leafno or buddy) is the left buddy.
2754 			 * the left buddy gets to claim the blocks resulting
2755 			 * from the join while the right gets to claim none.
2756 			 * the left buddy is also eligable to participate in
2757 			 * a join at the next higher level while the right
2758 			 * is not.
2759 			 *
2760 			 */
2761 			if (leafno < buddy) {
2762 				/* leafno is the left buddy.
2763 				 */
2764 				dbAdjTree(tp, buddy, NOFREE);
2765 			} else {
2766 				/* buddy is the left buddy and becomes
2767 				 * leafno.
2768 				 */
2769 				dbAdjTree(tp, leafno, NOFREE);
2770 				leafno = buddy;
2771 			}
2772 
2773 			/* on to try the next join.
2774 			 */
2775 			newval += 1;
2776 			budsz <<= 1;
2777 		}
2778 	}
2779 
2780 	/* update the leaf value.
2781 	 */
2782 	dbAdjTree(tp, leafno, newval);
2783 
2784 	return 0;
2785 }
2786 
2787 
2788 /*
2789  * NAME:	dbAdjTree()
2790  *
2791  * FUNCTION:    update a leaf of a dmtree with a new value, adjusting
2792  *		the dmtree, as required, to reflect the new leaf value.
2793  *		the combination of any buddies must already be done before
2794  *		this is called.
2795  *
2796  * PARAMETERS:
2797  *      tp	- pointer to the tree to be adjusted.
2798  *      leafno	- the number of the leaf to be updated.
2799  *      newval	- the new value for the leaf.
2800  *
2801  * RETURN VALUES: none
2802  */
2803 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2804 {
2805 	int lp, pp, k;
2806 	int max;
2807 
2808 	/* pick up the index of the leaf for this leafno.
2809 	 */
2810 	lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2811 
2812 	/* is the current value the same as the old value ?  if so,
2813 	 * there is nothing to do.
2814 	 */
2815 	if (tp->dmt_stree[lp] == newval)
2816 		return;
2817 
2818 	/* set the new value.
2819 	 */
2820 	tp->dmt_stree[lp] = newval;
2821 
2822 	/* bubble the new value up the tree as required.
2823 	 */
2824 	for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2825 		/* get the index of the first leaf of the 4 leaf
2826 		 * group containing the specified leaf (leafno).
2827 		 */
2828 		lp = ((lp - 1) & ~0x03) + 1;
2829 
2830 		/* get the index of the parent of this 4 leaf group.
2831 		 */
2832 		pp = (lp - 1) >> 2;
2833 
2834 		/* determine the maximum of the 4 leaves.
2835 		 */
2836 		max = TREEMAX(&tp->dmt_stree[lp]);
2837 
2838 		/* if the maximum of the 4 is the same as the
2839 		 * parent's value, we're done.
2840 		 */
2841 		if (tp->dmt_stree[pp] == max)
2842 			break;
2843 
2844 		/* parent gets new value.
2845 		 */
2846 		tp->dmt_stree[pp] = max;
2847 
2848 		/* parent becomes leaf for next go-round.
2849 		 */
2850 		lp = pp;
2851 	}
2852 }
2853 
2854 
2855 /*
2856  * NAME:	dbFindLeaf()
2857  *
2858  * FUNCTION:    search a dmtree_t for sufficient free blocks, returning
2859  *		the index of a leaf describing the free blocks if
2860  *		sufficient free blocks are found.
2861  *
2862  *		the search starts at the top of the dmtree_t tree and
2863  *		proceeds down the tree to the leftmost leaf with sufficient
2864  *		free space.
2865  *
2866  * PARAMETERS:
2867  *      tp	- pointer to the tree to be searched.
2868  *      l2nb	- log2 number of free blocks to search for.
2869  *	leafidx	- return pointer to be set to the index of the leaf
2870  *		  describing at least l2nb free blocks if sufficient
2871  *		  free blocks are found.
2872  *
2873  * RETURN VALUES:
2874  *      0	- success
2875  *      -ENOSPC	- insufficient free blocks.
2876  */
2877 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2878 {
2879 	int ti, n = 0, k, x = 0;
2880 
2881 	/* first check the root of the tree to see if there is
2882 	 * sufficient free space.
2883 	 */
2884 	if (l2nb > tp->dmt_stree[ROOT])
2885 		return -ENOSPC;
2886 
2887 	/* sufficient free space available. now search down the tree
2888 	 * starting at the next level for the leftmost leaf that
2889 	 * describes sufficient free space.
2890 	 */
2891 	for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2892 	     k > 0; k--, ti = ((ti + n) << 2) + 1) {
2893 		/* search the four nodes at this level, starting from
2894 		 * the left.
2895 		 */
2896 		for (x = ti, n = 0; n < 4; n++) {
2897 			/* sufficient free space found.  move to the next
2898 			 * level (or quit if this is the last level).
2899 			 */
2900 			if (l2nb <= tp->dmt_stree[x + n])
2901 				break;
2902 		}
2903 
2904 		/* better have found something since the higher
2905 		 * levels of the tree said it was here.
2906 		 */
2907 		assert(n < 4);
2908 	}
2909 
2910 	/* set the return to the leftmost leaf describing sufficient
2911 	 * free space.
2912 	 */
2913 	*leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
2914 
2915 	return (0);
2916 }
2917 
2918 
2919 /*
2920  * NAME:	dbFindBits()
2921  *
2922  * FUNCTION:    find a specified number of binary buddy free bits within a
2923  *		dmap bitmap word value.
2924  *
2925  *		this routine searches the bitmap value for (1 << l2nb) free
2926  *		bits at (1 << l2nb) alignments within the value.
2927  *
2928  * PARAMETERS:
2929  *      word	-  dmap bitmap word value.
2930  *      l2nb	-  number of free bits specified as a log2 number.
2931  *
2932  * RETURN VALUES:
2933  *      starting bit number of free bits.
2934  */
2935 static int dbFindBits(u32 word, int l2nb)
2936 {
2937 	int bitno, nb;
2938 	u32 mask;
2939 
2940 	/* get the number of bits.
2941 	 */
2942 	nb = 1 << l2nb;
2943 	assert(nb <= DBWORD);
2944 
2945 	/* complement the word so we can use a mask (i.e. 0s represent
2946 	 * free bits) and compute the mask.
2947 	 */
2948 	word = ~word;
2949 	mask = ONES << (DBWORD - nb);
2950 
2951 	/* scan the word for nb free bits at nb alignments.
2952 	 */
2953 	for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
2954 		if ((mask & word) == mask)
2955 			break;
2956 	}
2957 
2958 	ASSERT(bitno < 32);
2959 
2960 	/* return the bit number.
2961 	 */
2962 	return (bitno);
2963 }
2964 
2965 
2966 /*
2967  * NAME:	dbMaxBud(u8 *cp)
2968  *
2969  * FUNCTION:    determine the largest binary buddy string of free
2970  *		bits within 32-bits of the map.
2971  *
2972  * PARAMETERS:
2973  *      cp	-  pointer to the 32-bit value.
2974  *
2975  * RETURN VALUES:
2976  *      largest binary buddy of free bits within a dmap word.
2977  */
2978 static int dbMaxBud(u8 * cp)
2979 {
2980 	signed char tmp1, tmp2;
2981 
2982 	/* check if the wmap word is all free. if so, the
2983 	 * free buddy size is BUDMIN.
2984 	 */
2985 	if (*((uint *) cp) == 0)
2986 		return (BUDMIN);
2987 
2988 	/* check if the wmap word is half free. if so, the
2989 	 * free buddy size is BUDMIN-1.
2990 	 */
2991 	if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
2992 		return (BUDMIN - 1);
2993 
2994 	/* not all free or half free. determine the free buddy
2995 	 * size thru table lookup using quarters of the wmap word.
2996 	 */
2997 	tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
2998 	tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
2999 	return (max(tmp1, tmp2));
3000 }
3001 
3002 
3003 /*
3004  * NAME:	cnttz(uint word)
3005  *
3006  * FUNCTION:    determine the number of trailing zeros within a 32-bit
3007  *		value.
3008  *
3009  * PARAMETERS:
3010  *      value	-  32-bit value to be examined.
3011  *
3012  * RETURN VALUES:
3013  *      count of trailing zeros
3014  */
3015 static int cnttz(u32 word)
3016 {
3017 	int n;
3018 
3019 	for (n = 0; n < 32; n++, word >>= 1) {
3020 		if (word & 0x01)
3021 			break;
3022 	}
3023 
3024 	return (n);
3025 }
3026 
3027 
3028 /*
3029  * NAME:	cntlz(u32 value)
3030  *
3031  * FUNCTION:    determine the number of leading zeros within a 32-bit
3032  *		value.
3033  *
3034  * PARAMETERS:
3035  *      value	-  32-bit value to be examined.
3036  *
3037  * RETURN VALUES:
3038  *      count of leading zeros
3039  */
3040 static int cntlz(u32 value)
3041 {
3042 	int n;
3043 
3044 	for (n = 0; n < 32; n++, value <<= 1) {
3045 		if (value & HIGHORDER)
3046 			break;
3047 	}
3048 	return (n);
3049 }
3050 
3051 
3052 /*
3053  * NAME:	blkstol2(s64 nb)
3054  *
3055  * FUNCTION:	convert a block count to its log2 value. if the block
3056  *	        count is not a l2 multiple, it is rounded up to the next
3057  *		larger l2 multiple.
3058  *
3059  * PARAMETERS:
3060  *      nb	-  number of blocks
3061  *
3062  * RETURN VALUES:
3063  *      log2 number of blocks
3064  */
3065 static int blkstol2(s64 nb)
3066 {
3067 	int l2nb;
3068 	s64 mask;		/* meant to be signed */
3069 
3070 	mask = (s64) 1 << (64 - 1);
3071 
3072 	/* count the leading bits.
3073 	 */
3074 	for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3075 		/* leading bit found.
3076 		 */
3077 		if (nb & mask) {
3078 			/* determine the l2 value.
3079 			 */
3080 			l2nb = (64 - 1) - l2nb;
3081 
3082 			/* check if we need to round up.
3083 			 */
3084 			if (~mask & nb)
3085 				l2nb++;
3086 
3087 			return (l2nb);
3088 		}
3089 	}
3090 	assert(0);
3091 	return 0;		/* fix compiler warning */
3092 }
3093 
3094 
3095 /*
3096  * NAME:    	dbAllocBottomUp()
3097  *
3098  * FUNCTION:	alloc the specified block range from the working block
3099  *		allocation map.
3100  *
3101  *		the blocks will be alloc from the working map one dmap
3102  *		at a time.
3103  *
3104  * PARAMETERS:
3105  *      ip	-  pointer to in-core inode;
3106  *      blkno	-  starting block number to be freed.
3107  *      nblocks	-  number of blocks to be freed.
3108  *
3109  * RETURN VALUES:
3110  *      0	- success
3111  *      -EIO	- i/o error
3112  */
3113 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3114 {
3115 	struct metapage *mp;
3116 	struct dmap *dp;
3117 	int nb, rc;
3118 	s64 lblkno, rem;
3119 	struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3120 	struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3121 
3122 	IREAD_LOCK(ipbmap);
3123 
3124 	/* block to be allocated better be within the mapsize. */
3125 	ASSERT(nblocks <= bmp->db_mapsize - blkno);
3126 
3127 	/*
3128 	 * allocate the blocks a dmap at a time.
3129 	 */
3130 	mp = NULL;
3131 	for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3132 		/* release previous dmap if any */
3133 		if (mp) {
3134 			write_metapage(mp);
3135 		}
3136 
3137 		/* get the buffer for the current dmap. */
3138 		lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3139 		mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3140 		if (mp == NULL) {
3141 			IREAD_UNLOCK(ipbmap);
3142 			return -EIO;
3143 		}
3144 		dp = (struct dmap *) mp->data;
3145 
3146 		/* determine the number of blocks to be allocated from
3147 		 * this dmap.
3148 		 */
3149 		nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3150 
3151 		/* allocate the blocks. */
3152 		if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3153 			release_metapage(mp);
3154 			IREAD_UNLOCK(ipbmap);
3155 			return (rc);
3156 		}
3157 	}
3158 
3159 	/* write the last buffer. */
3160 	write_metapage(mp);
3161 
3162 	IREAD_UNLOCK(ipbmap);
3163 
3164 	return (0);
3165 }
3166 
3167 
3168 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3169 			 int nblocks)
3170 {
3171 	int rc;
3172 	int dbitno, word, rembits, nb, nwords, wbitno, agno;
3173 	s8 oldroot, *leaf;
3174 	struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3175 
3176 	/* save the current value of the root (i.e. maximum free string)
3177 	 * of the dmap tree.
3178 	 */
3179 	oldroot = tp->stree[ROOT];
3180 
3181 	/* pick up a pointer to the leaves of the dmap tree */
3182 	leaf = tp->stree + LEAFIND;
3183 
3184 	/* determine the bit number and word within the dmap of the
3185 	 * starting block.
3186 	 */
3187 	dbitno = blkno & (BPERDMAP - 1);
3188 	word = dbitno >> L2DBWORD;
3189 
3190 	/* block range better be within the dmap */
3191 	assert(dbitno + nblocks <= BPERDMAP);
3192 
3193 	/* allocate the bits of the dmap's words corresponding to the block
3194 	 * range. not all bits of the first and last words may be contained
3195 	 * within the block range.  if this is the case, we'll work against
3196 	 * those words (i.e. partial first and/or last) on an individual basis
3197 	 * (a single pass), allocating the bits of interest by hand and
3198 	 * updating the leaf corresponding to the dmap word. a single pass
3199 	 * will be used for all dmap words fully contained within the
3200 	 * specified range.  within this pass, the bits of all fully contained
3201 	 * dmap words will be marked as free in a single shot and the leaves
3202 	 * will be updated. a single leaf may describe the free space of
3203 	 * multiple dmap words, so we may update only a subset of the actual
3204 	 * leaves corresponding to the dmap words of the block range.
3205 	 */
3206 	for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3207 		/* determine the bit number within the word and
3208 		 * the number of bits within the word.
3209 		 */
3210 		wbitno = dbitno & (DBWORD - 1);
3211 		nb = min(rembits, DBWORD - wbitno);
3212 
3213 		/* check if only part of a word is to be allocated.
3214 		 */
3215 		if (nb < DBWORD) {
3216 			/* allocate (set to 1) the appropriate bits within
3217 			 * this dmap word.
3218 			 */
3219 			dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3220 						      >> wbitno);
3221 
3222 			word++;
3223 		} else {
3224 			/* one or more dmap words are fully contained
3225 			 * within the block range.  determine how many
3226 			 * words and allocate (set to 1) the bits of these
3227 			 * words.
3228 			 */
3229 			nwords = rembits >> L2DBWORD;
3230 			memset(&dp->wmap[word], (int) ONES, nwords * 4);
3231 
3232 			/* determine how many bits */
3233 			nb = nwords << L2DBWORD;
3234 			word += nwords;
3235 		}
3236 	}
3237 
3238 	/* update the free count for this dmap */
3239 	dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) - nblocks);
3240 
3241 	/* reconstruct summary tree */
3242 	dbInitDmapTree(dp);
3243 
3244 	BMAP_LOCK(bmp);
3245 
3246 	/* if this allocation group is completely free,
3247 	 * update the highest active allocation group number
3248 	 * if this allocation group is the new max.
3249 	 */
3250 	agno = blkno >> bmp->db_agl2size;
3251 	if (agno > bmp->db_maxag)
3252 		bmp->db_maxag = agno;
3253 
3254 	/* update the free count for the allocation group and map */
3255 	bmp->db_agfree[agno] -= nblocks;
3256 	bmp->db_nfree -= nblocks;
3257 
3258 	BMAP_UNLOCK(bmp);
3259 
3260 	/* if the root has not changed, done. */
3261 	if (tp->stree[ROOT] == oldroot)
3262 		return (0);
3263 
3264 	/* root changed. bubble the change up to the dmap control pages.
3265 	 * if the adjustment of the upper level control pages fails,
3266 	 * backout the bit allocation (thus making everything consistent).
3267 	 */
3268 	if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3269 		dbFreeBits(bmp, dp, blkno, nblocks);
3270 
3271 	return (rc);
3272 }
3273 
3274 
3275 /*
3276  * NAME:	dbExtendFS()
3277  *
3278  * FUNCTION:	extend bmap from blkno for nblocks;
3279  * 		dbExtendFS() updates bmap ready for dbAllocBottomUp();
3280  *
3281  * L2
3282  *  |
3283  *   L1---------------------------------L1
3284  *    |                                  |
3285  *     L0---------L0---------L0           L0---------L0---------L0
3286  *      |          |          |            |          |          |
3287  *       d0,...,dn  d0,...,dn  d0,...,dn    d0,...,dn  d0,...,dn  d0,.,dm;
3288  * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3289  *
3290  * <---old---><----------------------------extend----------------------->
3291  */
3292 int dbExtendFS(struct inode *ipbmap, s64 blkno,	s64 nblocks)
3293 {
3294 	struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3295 	int nbperpage = sbi->nbperpage;
3296 	int i, i0 = TRUE, j, j0 = TRUE, k, n;
3297 	s64 newsize;
3298 	s64 p;
3299 	struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3300 	struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3301 	struct dmap *dp;
3302 	s8 *l0leaf, *l1leaf, *l2leaf;
3303 	struct bmap *bmp = sbi->bmap;
3304 	int agno, l2agsize, oldl2agsize;
3305 	s64 ag_rem;
3306 
3307 	newsize = blkno + nblocks;
3308 
3309 	jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3310 		 (long long) blkno, (long long) nblocks, (long long) newsize);
3311 
3312 	/*
3313 	 *      initialize bmap control page.
3314 	 *
3315 	 * all the data in bmap control page should exclude
3316 	 * the mkfs hidden dmap page.
3317 	 */
3318 
3319 	/* update mapsize */
3320 	bmp->db_mapsize = newsize;
3321 	bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3322 
3323 	/* compute new AG size */
3324 	l2agsize = dbGetL2AGSize(newsize);
3325 	oldl2agsize = bmp->db_agl2size;
3326 
3327 	bmp->db_agl2size = l2agsize;
3328 	bmp->db_agsize = 1 << l2agsize;
3329 
3330 	/* compute new number of AG */
3331 	agno = bmp->db_numag;
3332 	bmp->db_numag = newsize >> l2agsize;
3333 	bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3334 
3335 	/*
3336 	 *      reconfigure db_agfree[]
3337 	 * from old AG configuration to new AG configuration;
3338 	 *
3339 	 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3340 	 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3341 	 * note: new AG size = old AG size * (2**x).
3342 	 */
3343 	if (l2agsize == oldl2agsize)
3344 		goto extend;
3345 	k = 1 << (l2agsize - oldl2agsize);
3346 	ag_rem = bmp->db_agfree[0];	/* save agfree[0] */
3347 	for (i = 0, n = 0; i < agno; n++) {
3348 		bmp->db_agfree[n] = 0;	/* init collection point */
3349 
3350 		/* coalesce cotiguous k AGs; */
3351 		for (j = 0; j < k && i < agno; j++, i++) {
3352 			/* merge AGi to AGn */
3353 			bmp->db_agfree[n] += bmp->db_agfree[i];
3354 		}
3355 	}
3356 	bmp->db_agfree[0] += ag_rem;	/* restore agfree[0] */
3357 
3358 	for (; n < MAXAG; n++)
3359 		bmp->db_agfree[n] = 0;
3360 
3361 	/*
3362 	 * update highest active ag number
3363 	 */
3364 
3365 	bmp->db_maxag = bmp->db_maxag / k;
3366 
3367 	/*
3368 	 *      extend bmap
3369 	 *
3370 	 * update bit maps and corresponding level control pages;
3371 	 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3372 	 */
3373       extend:
3374 	/* get L2 page */
3375 	p = BMAPBLKNO + nbperpage;	/* L2 page */
3376 	l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3377 	if (!l2mp) {
3378 		jfs_error(ipbmap->i_sb, "dbExtendFS: L2 page could not be read");
3379 		return -EIO;
3380 	}
3381 	l2dcp = (struct dmapctl *) l2mp->data;
3382 
3383 	/* compute start L1 */
3384 	k = blkno >> L2MAXL1SIZE;
3385 	l2leaf = l2dcp->stree + CTLLEAFIND + k;
3386 	p = BLKTOL1(blkno, sbi->l2nbperpage);	/* L1 page */
3387 
3388 	/*
3389 	 * extend each L1 in L2
3390 	 */
3391 	for (; k < LPERCTL; k++, p += nbperpage) {
3392 		/* get L1 page */
3393 		if (j0) {
3394 			/* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3395 			l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3396 			if (l1mp == NULL)
3397 				goto errout;
3398 			l1dcp = (struct dmapctl *) l1mp->data;
3399 
3400 			/* compute start L0 */
3401 			j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3402 			l1leaf = l1dcp->stree + CTLLEAFIND + j;
3403 			p = BLKTOL0(blkno, sbi->l2nbperpage);
3404 			j0 = FALSE;
3405 		} else {
3406 			/* assign/init L1 page */
3407 			l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3408 			if (l1mp == NULL)
3409 				goto errout;
3410 
3411 			l1dcp = (struct dmapctl *) l1mp->data;
3412 
3413 			/* compute start L0 */
3414 			j = 0;
3415 			l1leaf = l1dcp->stree + CTLLEAFIND;
3416 			p += nbperpage;	/* 1st L0 of L1.k  */
3417 		}
3418 
3419 		/*
3420 		 * extend each L0 in L1
3421 		 */
3422 		for (; j < LPERCTL; j++) {
3423 			/* get L0 page */
3424 			if (i0) {
3425 				/* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3426 
3427 				l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3428 				if (l0mp == NULL)
3429 					goto errout;
3430 				l0dcp = (struct dmapctl *) l0mp->data;
3431 
3432 				/* compute start dmap */
3433 				i = (blkno & (MAXL0SIZE - 1)) >>
3434 				    L2BPERDMAP;
3435 				l0leaf = l0dcp->stree + CTLLEAFIND + i;
3436 				p = BLKTODMAP(blkno,
3437 					      sbi->l2nbperpage);
3438 				i0 = FALSE;
3439 			} else {
3440 				/* assign/init L0 page */
3441 				l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3442 				if (l0mp == NULL)
3443 					goto errout;
3444 
3445 				l0dcp = (struct dmapctl *) l0mp->data;
3446 
3447 				/* compute start dmap */
3448 				i = 0;
3449 				l0leaf = l0dcp->stree + CTLLEAFIND;
3450 				p += nbperpage;	/* 1st dmap of L0.j */
3451 			}
3452 
3453 			/*
3454 			 * extend each dmap in L0
3455 			 */
3456 			for (; i < LPERCTL; i++) {
3457 				/*
3458 				 * reconstruct the dmap page, and
3459 				 * initialize corresponding parent L0 leaf
3460 				 */
3461 				if ((n = blkno & (BPERDMAP - 1))) {
3462 					/* read in dmap page: */
3463 					mp = read_metapage(ipbmap, p,
3464 							   PSIZE, 0);
3465 					if (mp == NULL)
3466 						goto errout;
3467 					n = min(nblocks, (s64)BPERDMAP - n);
3468 				} else {
3469 					/* assign/init dmap page */
3470 					mp = read_metapage(ipbmap, p,
3471 							   PSIZE, 0);
3472 					if (mp == NULL)
3473 						goto errout;
3474 
3475 					n = min(nblocks, (s64)BPERDMAP);
3476 				}
3477 
3478 				dp = (struct dmap *) mp->data;
3479 				*l0leaf = dbInitDmap(dp, blkno, n);
3480 
3481 				bmp->db_nfree += n;
3482 				agno = le64_to_cpu(dp->start) >> l2agsize;
3483 				bmp->db_agfree[agno] += n;
3484 
3485 				write_metapage(mp);
3486 
3487 				l0leaf++;
3488 				p += nbperpage;
3489 
3490 				blkno += n;
3491 				nblocks -= n;
3492 				if (nblocks == 0)
3493 					break;
3494 			}	/* for each dmap in a L0 */
3495 
3496 			/*
3497 			 * build current L0 page from its leaves, and
3498 			 * initialize corresponding parent L1 leaf
3499 			 */
3500 			*l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3501 			write_metapage(l0mp);
3502 			l0mp = NULL;
3503 
3504 			if (nblocks)
3505 				l1leaf++;	/* continue for next L0 */
3506 			else {
3507 				/* more than 1 L0 ? */
3508 				if (j > 0)
3509 					break;	/* build L1 page */
3510 				else {
3511 					/* summarize in global bmap page */
3512 					bmp->db_maxfreebud = *l1leaf;
3513 					release_metapage(l1mp);
3514 					release_metapage(l2mp);
3515 					goto finalize;
3516 				}
3517 			}
3518 		}		/* for each L0 in a L1 */
3519 
3520 		/*
3521 		 * build current L1 page from its leaves, and
3522 		 * initialize corresponding parent L2 leaf
3523 		 */
3524 		*l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3525 		write_metapage(l1mp);
3526 		l1mp = NULL;
3527 
3528 		if (nblocks)
3529 			l2leaf++;	/* continue for next L1 */
3530 		else {
3531 			/* more than 1 L1 ? */
3532 			if (k > 0)
3533 				break;	/* build L2 page */
3534 			else {
3535 				/* summarize in global bmap page */
3536 				bmp->db_maxfreebud = *l2leaf;
3537 				release_metapage(l2mp);
3538 				goto finalize;
3539 			}
3540 		}
3541 	}			/* for each L1 in a L2 */
3542 
3543 	jfs_error(ipbmap->i_sb,
3544 		  "dbExtendFS: function has not returned as expected");
3545 errout:
3546 	if (l0mp)
3547 		release_metapage(l0mp);
3548 	if (l1mp)
3549 		release_metapage(l1mp);
3550 	release_metapage(l2mp);
3551 	return -EIO;
3552 
3553 	/*
3554 	 *      finalize bmap control page
3555 	 */
3556 finalize:
3557 
3558 	return 0;
3559 }
3560 
3561 
3562 /*
3563  *	dbFinalizeBmap()
3564  */
3565 void dbFinalizeBmap(struct inode *ipbmap)
3566 {
3567 	struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3568 	int actags, inactags, l2nl;
3569 	s64 ag_rem, actfree, inactfree, avgfree;
3570 	int i, n;
3571 
3572 	/*
3573 	 *      finalize bmap control page
3574 	 */
3575 //finalize:
3576 	/*
3577 	 * compute db_agpref: preferred ag to allocate from
3578 	 * (the leftmost ag with average free space in it);
3579 	 */
3580 //agpref:
3581 	/* get the number of active ags and inacitve ags */
3582 	actags = bmp->db_maxag + 1;
3583 	inactags = bmp->db_numag - actags;
3584 	ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1);	/* ??? */
3585 
3586 	/* determine how many blocks are in the inactive allocation
3587 	 * groups. in doing this, we must account for the fact that
3588 	 * the rightmost group might be a partial group (i.e. file
3589 	 * system size is not a multiple of the group size).
3590 	 */
3591 	inactfree = (inactags && ag_rem) ?
3592 	    ((inactags - 1) << bmp->db_agl2size) + ag_rem
3593 	    : inactags << bmp->db_agl2size;
3594 
3595 	/* determine how many free blocks are in the active
3596 	 * allocation groups plus the average number of free blocks
3597 	 * within the active ags.
3598 	 */
3599 	actfree = bmp->db_nfree - inactfree;
3600 	avgfree = (u32) actfree / (u32) actags;
3601 
3602 	/* if the preferred allocation group has not average free space.
3603 	 * re-establish the preferred group as the leftmost
3604 	 * group with average free space.
3605 	 */
3606 	if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3607 		for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3608 		     bmp->db_agpref++) {
3609 			if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3610 				break;
3611 		}
3612 		if (bmp->db_agpref >= bmp->db_numag) {
3613 			jfs_error(ipbmap->i_sb,
3614 				  "cannot find ag with average freespace");
3615 		}
3616 	}
3617 
3618 	/*
3619 	 * compute db_aglevel, db_agheigth, db_width, db_agstart:
3620 	 * an ag is covered in aglevel dmapctl summary tree,
3621 	 * at agheight level height (from leaf) with agwidth number of nodes
3622 	 * each, which starts at agstart index node of the smmary tree node
3623 	 * array;
3624 	 */
3625 	bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3626 	l2nl =
3627 	    bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3628 	bmp->db_agheigth = l2nl >> 1;
3629 	bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheigth << 1));
3630 	for (i = 5 - bmp->db_agheigth, bmp->db_agstart = 0, n = 1; i > 0;
3631 	     i--) {
3632 		bmp->db_agstart += n;
3633 		n <<= 2;
3634 	}
3635 
3636 }
3637 
3638 
3639 /*
3640  * NAME:	dbInitDmap()/ujfs_idmap_page()
3641  *
3642  * FUNCTION:	initialize working/persistent bitmap of the dmap page
3643  *		for the specified number of blocks:
3644  *
3645  *		at entry, the bitmaps had been initialized as free (ZEROS);
3646  *		The number of blocks will only account for the actually
3647  *		existing blocks. Blocks which don't actually exist in
3648  *		the aggregate will be marked as allocated (ONES);
3649  *
3650  * PARAMETERS:
3651  *	dp	- pointer to page of map
3652  *	nblocks	- number of blocks this page
3653  *
3654  * RETURNS: NONE
3655  */
3656 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3657 {
3658 	int blkno, w, b, r, nw, nb, i;
3659 
3660 	/* starting block number within the dmap */
3661 	blkno = Blkno & (BPERDMAP - 1);
3662 
3663 	if (blkno == 0) {
3664 		dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3665 		dp->start = cpu_to_le64(Blkno);
3666 
3667 		if (nblocks == BPERDMAP) {
3668 			memset(&dp->wmap[0], 0, LPERDMAP * 4);
3669 			memset(&dp->pmap[0], 0, LPERDMAP * 4);
3670 			goto initTree;
3671 		}
3672 	} else {
3673 		dp->nblocks =
3674 		    cpu_to_le32(le32_to_cpu(dp->nblocks) + nblocks);
3675 		dp->nfree = cpu_to_le32(le32_to_cpu(dp->nfree) + nblocks);
3676 	}
3677 
3678 	/* word number containing start block number */
3679 	w = blkno >> L2DBWORD;
3680 
3681 	/*
3682 	 * free the bits corresponding to the block range (ZEROS):
3683 	 * note: not all bits of the first and last words may be contained
3684 	 * within the block range.
3685 	 */
3686 	for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3687 		/* number of bits preceding range to be freed in the word */
3688 		b = blkno & (DBWORD - 1);
3689 		/* number of bits to free in the word */
3690 		nb = min(r, DBWORD - b);
3691 
3692 		/* is partial word to be freed ? */
3693 		if (nb < DBWORD) {
3694 			/* free (set to 0) from the bitmap word */
3695 			dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3696 						     >> b));
3697 			dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3698 						     >> b));
3699 
3700 			/* skip the word freed */
3701 			w++;
3702 		} else {
3703 			/* free (set to 0) contiguous bitmap words */
3704 			nw = r >> L2DBWORD;
3705 			memset(&dp->wmap[w], 0, nw * 4);
3706 			memset(&dp->pmap[w], 0, nw * 4);
3707 
3708 			/* skip the words freed */
3709 			nb = nw << L2DBWORD;
3710 			w += nw;
3711 		}
3712 	}
3713 
3714 	/*
3715 	 * mark bits following the range to be freed (non-existing
3716 	 * blocks) as allocated (ONES)
3717 	 */
3718 
3719 	if (blkno == BPERDMAP)
3720 		goto initTree;
3721 
3722 	/* the first word beyond the end of existing blocks */
3723 	w = blkno >> L2DBWORD;
3724 
3725 	/* does nblocks fall on a 32-bit boundary ? */
3726 	b = blkno & (DBWORD - 1);
3727 	if (b) {
3728 		/* mark a partial word allocated */
3729 		dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3730 		w++;
3731 	}
3732 
3733 	/* set the rest of the words in the page to allocated (ONES) */
3734 	for (i = w; i < LPERDMAP; i++)
3735 		dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3736 
3737 	/*
3738 	 * init tree
3739 	 */
3740       initTree:
3741 	return (dbInitDmapTree(dp));
3742 }
3743 
3744 
3745 /*
3746  * NAME:	dbInitDmapTree()/ujfs_complete_dmap()
3747  *
3748  * FUNCTION:	initialize summary tree of the specified dmap:
3749  *
3750  *		at entry, bitmap of the dmap has been initialized;
3751  *
3752  * PARAMETERS:
3753  *	dp	- dmap to complete
3754  *	blkno	- starting block number for this dmap
3755  *	treemax	- will be filled in with max free for this dmap
3756  *
3757  * RETURNS:	max free string at the root of the tree
3758  */
3759 static int dbInitDmapTree(struct dmap * dp)
3760 {
3761 	struct dmaptree *tp;
3762 	s8 *cp;
3763 	int i;
3764 
3765 	/* init fixed info of tree */
3766 	tp = &dp->tree;
3767 	tp->nleafs = cpu_to_le32(LPERDMAP);
3768 	tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3769 	tp->leafidx = cpu_to_le32(LEAFIND);
3770 	tp->height = cpu_to_le32(4);
3771 	tp->budmin = BUDMIN;
3772 
3773 	/* init each leaf from corresponding wmap word:
3774 	 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3775 	 * bitmap word are allocated.
3776 	 */
3777 	cp = tp->stree + le32_to_cpu(tp->leafidx);
3778 	for (i = 0; i < LPERDMAP; i++)
3779 		*cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3780 
3781 	/* build the dmap's binary buddy summary tree */
3782 	return (dbInitTree(tp));
3783 }
3784 
3785 
3786 /*
3787  * NAME:	dbInitTree()/ujfs_adjtree()
3788  *
3789  * FUNCTION:	initialize binary buddy summary tree of a dmap or dmapctl.
3790  *
3791  *		at entry, the leaves of the tree has been initialized
3792  *		from corresponding bitmap word or root of summary tree
3793  *		of the child control page;
3794  *		configure binary buddy system at the leaf level, then
3795  *		bubble up the values of the leaf nodes up the tree.
3796  *
3797  * PARAMETERS:
3798  *	cp	- Pointer to the root of the tree
3799  *	l2leaves- Number of leaf nodes as a power of 2
3800  *	l2min	- Number of blocks that can be covered by a leaf
3801  *		  as a power of 2
3802  *
3803  * RETURNS: max free string at the root of the tree
3804  */
3805 static int dbInitTree(struct dmaptree * dtp)
3806 {
3807 	int l2max, l2free, bsize, nextb, i;
3808 	int child, parent, nparent;
3809 	s8 *tp, *cp, *cp1;
3810 
3811 	tp = dtp->stree;
3812 
3813 	/* Determine the maximum free string possible for the leaves */
3814 	l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3815 
3816 	/*
3817 	 * configure the leaf levevl into binary buddy system
3818 	 *
3819 	 * Try to combine buddies starting with a buddy size of 1
3820 	 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3821 	 * can be combined if both buddies have a maximum free of l2min;
3822 	 * the combination will result in the left-most buddy leaf having
3823 	 * a maximum free of l2min+1.
3824 	 * After processing all buddies for a given size, process buddies
3825 	 * at the next higher buddy size (i.e. current size * 2) and
3826 	 * the next maximum free (current free + 1).
3827 	 * This continues until the maximum possible buddy combination
3828 	 * yields maximum free.
3829 	 */
3830 	for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3831 	     l2free++, bsize = nextb) {
3832 		/* get next buddy size == current buddy pair size */
3833 		nextb = bsize << 1;
3834 
3835 		/* scan each adjacent buddy pair at current buddy size */
3836 		for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3837 		     i < le32_to_cpu(dtp->nleafs);
3838 		     i += nextb, cp += nextb) {
3839 			/* coalesce if both adjacent buddies are max free */
3840 			if (*cp == l2free && *(cp + bsize) == l2free) {
3841 				*cp = l2free + 1;	/* left take right */
3842 				*(cp + bsize) = -1;	/* right give left */
3843 			}
3844 		}
3845 	}
3846 
3847 	/*
3848 	 * bubble summary information of leaves up the tree.
3849 	 *
3850 	 * Starting at the leaf node level, the four nodes described by
3851 	 * the higher level parent node are compared for a maximum free and
3852 	 * this maximum becomes the value of the parent node.
3853 	 * when all lower level nodes are processed in this fashion then
3854 	 * move up to the next level (parent becomes a lower level node) and
3855 	 * continue the process for that level.
3856 	 */
3857 	for (child = le32_to_cpu(dtp->leafidx),
3858 	     nparent = le32_to_cpu(dtp->nleafs) >> 2;
3859 	     nparent > 0; nparent >>= 2, child = parent) {
3860 		/* get index of 1st node of parent level */
3861 		parent = (child - 1) >> 2;
3862 
3863 		/* set the value of the parent node as the maximum
3864 		 * of the four nodes of the current level.
3865 		 */
3866 		for (i = 0, cp = tp + child, cp1 = tp + parent;
3867 		     i < nparent; i++, cp += 4, cp1++)
3868 			*cp1 = TREEMAX(cp);
3869 	}
3870 
3871 	return (*tp);
3872 }
3873 
3874 
3875 /*
3876  *	dbInitDmapCtl()
3877  *
3878  * function: initialize dmapctl page
3879  */
3880 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3881 {				/* start leaf index not covered by range */
3882 	s8 *cp;
3883 
3884 	dcp->nleafs = cpu_to_le32(LPERCTL);
3885 	dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3886 	dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3887 	dcp->height = cpu_to_le32(5);
3888 	dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3889 
3890 	/*
3891 	 * initialize the leaves of current level that were not covered
3892 	 * by the specified input block range (i.e. the leaves have no
3893 	 * low level dmapctl or dmap).
3894 	 */
3895 	cp = &dcp->stree[CTLLEAFIND + i];
3896 	for (; i < LPERCTL; i++)
3897 		*cp++ = NOFREE;
3898 
3899 	/* build the dmap's binary buddy summary tree */
3900 	return (dbInitTree((struct dmaptree *) dcp));
3901 }
3902 
3903 
3904 /*
3905  * NAME:	dbGetL2AGSize()/ujfs_getagl2size()
3906  *
3907  * FUNCTION:	Determine log2(allocation group size) from aggregate size
3908  *
3909  * PARAMETERS:
3910  *	nblocks	- Number of blocks in aggregate
3911  *
3912  * RETURNS: log2(allocation group size) in aggregate blocks
3913  */
3914 static int dbGetL2AGSize(s64 nblocks)
3915 {
3916 	s64 sz;
3917 	s64 m;
3918 	int l2sz;
3919 
3920 	if (nblocks < BPERDMAP * MAXAG)
3921 		return (L2BPERDMAP);
3922 
3923 	/* round up aggregate size to power of 2 */
3924 	m = ((u64) 1 << (64 - 1));
3925 	for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
3926 		if (m & nblocks)
3927 			break;
3928 	}
3929 
3930 	sz = (s64) 1 << l2sz;
3931 	if (sz < nblocks)
3932 		l2sz += 1;
3933 
3934 	/* agsize = roundupSize/max_number_of_ag */
3935 	return (l2sz - L2MAXAG);
3936 }
3937 
3938 
3939 /*
3940  * NAME:	dbMapFileSizeToMapSize()
3941  *
3942  * FUNCTION:	compute number of blocks the block allocation map file
3943  *		can cover from the map file size;
3944  *
3945  * RETURNS:	Number of blocks which can be covered by this block map file;
3946  */
3947 
3948 /*
3949  * maximum number of map pages at each level including control pages
3950  */
3951 #define MAXL0PAGES	(1 + LPERCTL)
3952 #define MAXL1PAGES	(1 + LPERCTL * MAXL0PAGES)
3953 #define MAXL2PAGES	(1 + LPERCTL * MAXL1PAGES)
3954 
3955 /*
3956  * convert number of map pages to the zero origin top dmapctl level
3957  */
3958 #define BMAPPGTOLEV(npages)	\
3959 	(((npages) <= 3 + MAXL0PAGES) ? 0 \
3960        : ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
3961 
3962 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
3963 {
3964 	struct super_block *sb = ipbmap->i_sb;
3965 	s64 nblocks;
3966 	s64 npages, ndmaps;
3967 	int level, i;
3968 	int complete, factor;
3969 
3970 	nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
3971 	npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
3972 	level = BMAPPGTOLEV(npages);
3973 
3974 	/* At each level, accumulate the number of dmap pages covered by
3975 	 * the number of full child levels below it;
3976 	 * repeat for the last incomplete child level.
3977 	 */
3978 	ndmaps = 0;
3979 	npages--;		/* skip the first global control page */
3980 	/* skip higher level control pages above top level covered by map */
3981 	npages -= (2 - level);
3982 	npages--;		/* skip top level's control page */
3983 	for (i = level; i >= 0; i--) {
3984 		factor =
3985 		    (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
3986 		complete = (u32) npages / factor;
3987 		ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL
3988 				      : ((i == 1) ? LPERCTL : 1));
3989 
3990 		/* pages in last/incomplete child */
3991 		npages = (u32) npages % factor;
3992 		/* skip incomplete child's level control page */
3993 		npages--;
3994 	}
3995 
3996 	/* convert the number of dmaps into the number of blocks
3997 	 * which can be covered by the dmaps;
3998 	 */
3999 	nblocks = ndmaps << L2BPERDMAP;
4000 
4001 	return (nblocks);
4002 }
4003