1 /* 2 * JFFS2 -- Journalling Flash File System, Version 2. 3 * 4 * Copyright © 2001-2007 Red Hat, Inc. 5 * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de> 6 * 7 * Created by David Woodhouse <dwmw2@infradead.org> 8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> 9 * 10 * For licensing information, see the file 'LICENCE' in this directory. 11 * 12 */ 13 14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/mtd/mtd.h> 19 #include <linux/crc32.h> 20 #include <linux/mtd/rawnand.h> 21 #include <linux/jiffies.h> 22 #include <linux/sched.h> 23 #include <linux/writeback.h> 24 25 #include "nodelist.h" 26 27 /* For testing write failures */ 28 #undef BREAKME 29 #undef BREAKMEHEADER 30 31 #ifdef BREAKME 32 static unsigned char *brokenbuf; 33 #endif 34 35 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) 36 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) 37 38 /* max. erase failures before we mark a block bad */ 39 #define MAX_ERASE_FAILURES 2 40 41 struct jffs2_inodirty { 42 uint32_t ino; 43 struct jffs2_inodirty *next; 44 }; 45 46 static struct jffs2_inodirty inodirty_nomem; 47 48 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) 49 { 50 struct jffs2_inodirty *this = c->wbuf_inodes; 51 52 /* If a malloc failed, consider _everything_ dirty */ 53 if (this == &inodirty_nomem) 54 return 1; 55 56 /* If ino == 0, _any_ non-GC writes mean 'yes' */ 57 if (this && !ino) 58 return 1; 59 60 /* Look to see if the inode in question is pending in the wbuf */ 61 while (this) { 62 if (this->ino == ino) 63 return 1; 64 this = this->next; 65 } 66 return 0; 67 } 68 69 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) 70 { 71 struct jffs2_inodirty *this; 72 73 this = c->wbuf_inodes; 74 75 if (this != &inodirty_nomem) { 76 while (this) { 77 struct jffs2_inodirty *next = this->next; 78 kfree(this); 79 this = next; 80 } 81 } 82 c->wbuf_inodes = NULL; 83 } 84 85 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) 86 { 87 struct jffs2_inodirty *new; 88 89 /* Schedule delayed write-buffer write-out */ 90 jffs2_dirty_trigger(c); 91 92 if (jffs2_wbuf_pending_for_ino(c, ino)) 93 return; 94 95 new = kmalloc(sizeof(*new), GFP_KERNEL); 96 if (!new) { 97 jffs2_dbg(1, "No memory to allocate inodirty. Fallback to all considered dirty\n"); 98 jffs2_clear_wbuf_ino_list(c); 99 c->wbuf_inodes = &inodirty_nomem; 100 return; 101 } 102 new->ino = ino; 103 new->next = c->wbuf_inodes; 104 c->wbuf_inodes = new; 105 return; 106 } 107 108 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) 109 { 110 struct list_head *this, *next; 111 static int n; 112 113 if (list_empty(&c->erasable_pending_wbuf_list)) 114 return; 115 116 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { 117 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); 118 119 jffs2_dbg(1, "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", 120 jeb->offset); 121 list_del(this); 122 if ((jiffies + (n++)) & 127) { 123 /* Most of the time, we just erase it immediately. Otherwise we 124 spend ages scanning it on mount, etc. */ 125 jffs2_dbg(1, "...and adding to erase_pending_list\n"); 126 list_add_tail(&jeb->list, &c->erase_pending_list); 127 c->nr_erasing_blocks++; 128 jffs2_garbage_collect_trigger(c); 129 } else { 130 /* Sometimes, however, we leave it elsewhere so it doesn't get 131 immediately reused, and we spread the load a bit. */ 132 jffs2_dbg(1, "...and adding to erasable_list\n"); 133 list_add_tail(&jeb->list, &c->erasable_list); 134 } 135 } 136 } 137 138 #define REFILE_NOTEMPTY 0 139 #define REFILE_ANYWAY 1 140 141 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) 142 { 143 jffs2_dbg(1, "About to refile bad block at %08x\n", jeb->offset); 144 145 /* File the existing block on the bad_used_list.... */ 146 if (c->nextblock == jeb) 147 c->nextblock = NULL; 148 else /* Not sure this should ever happen... need more coffee */ 149 list_del(&jeb->list); 150 if (jeb->first_node) { 151 jffs2_dbg(1, "Refiling block at %08x to bad_used_list\n", 152 jeb->offset); 153 list_add(&jeb->list, &c->bad_used_list); 154 } else { 155 BUG_ON(allow_empty == REFILE_NOTEMPTY); 156 /* It has to have had some nodes or we couldn't be here */ 157 jffs2_dbg(1, "Refiling block at %08x to erase_pending_list\n", 158 jeb->offset); 159 list_add(&jeb->list, &c->erase_pending_list); 160 c->nr_erasing_blocks++; 161 jffs2_garbage_collect_trigger(c); 162 } 163 164 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) { 165 uint32_t oldfree = jeb->free_size; 166 167 jffs2_link_node_ref(c, jeb, 168 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE, 169 oldfree, NULL); 170 /* convert to wasted */ 171 c->wasted_size += oldfree; 172 jeb->wasted_size += oldfree; 173 c->dirty_size -= oldfree; 174 jeb->dirty_size -= oldfree; 175 } 176 177 jffs2_dbg_dump_block_lists_nolock(c); 178 jffs2_dbg_acct_sanity_check_nolock(c,jeb); 179 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 180 } 181 182 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c, 183 struct jffs2_inode_info *f, 184 struct jffs2_raw_node_ref *raw, 185 union jffs2_node_union *node) 186 { 187 struct jffs2_node_frag *frag; 188 struct jffs2_full_dirent *fd; 189 190 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n", 191 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype)); 192 193 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 && 194 je16_to_cpu(node->u.magic) != 0); 195 196 switch (je16_to_cpu(node->u.nodetype)) { 197 case JFFS2_NODETYPE_INODE: 198 if (f->metadata && f->metadata->raw == raw) { 199 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata); 200 return &f->metadata->raw; 201 } 202 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset)); 203 BUG_ON(!frag); 204 /* Find a frag which refers to the full_dnode we want to modify */ 205 while (!frag->node || frag->node->raw != raw) { 206 frag = frag_next(frag); 207 BUG_ON(!frag); 208 } 209 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node); 210 return &frag->node->raw; 211 212 case JFFS2_NODETYPE_DIRENT: 213 for (fd = f->dents; fd; fd = fd->next) { 214 if (fd->raw == raw) { 215 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd); 216 return &fd->raw; 217 } 218 } 219 BUG(); 220 221 default: 222 dbg_noderef("Don't care about replacing raw for nodetype %x\n", 223 je16_to_cpu(node->u.nodetype)); 224 break; 225 } 226 return NULL; 227 } 228 229 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY 230 static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf, 231 uint32_t ofs) 232 { 233 int ret; 234 size_t retlen; 235 char *eccstr; 236 237 ret = mtd_read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify); 238 if (ret && ret != -EUCLEAN && ret != -EBADMSG) { 239 pr_warn("%s(): Read back of page at %08x failed: %d\n", 240 __func__, c->wbuf_ofs, ret); 241 return ret; 242 } else if (retlen != c->wbuf_pagesize) { 243 pr_warn("%s(): Read back of page at %08x gave short read: %zd not %d\n", 244 __func__, ofs, retlen, c->wbuf_pagesize); 245 return -EIO; 246 } 247 if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize)) 248 return 0; 249 250 if (ret == -EUCLEAN) 251 eccstr = "corrected"; 252 else if (ret == -EBADMSG) 253 eccstr = "correction failed"; 254 else 255 eccstr = "OK or unused"; 256 257 pr_warn("Write verify error (ECC %s) at %08x. Wrote:\n", 258 eccstr, c->wbuf_ofs); 259 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1, 260 c->wbuf, c->wbuf_pagesize, 0); 261 262 pr_warn("Read back:\n"); 263 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1, 264 c->wbuf_verify, c->wbuf_pagesize, 0); 265 266 return -EIO; 267 } 268 #else 269 #define jffs2_verify_write(c,b,o) (0) 270 #endif 271 272 /* Recover from failure to write wbuf. Recover the nodes up to the 273 * wbuf, not the one which we were starting to try to write. */ 274 275 static void jffs2_wbuf_recover(struct jffs2_sb_info *c) 276 { 277 struct jffs2_eraseblock *jeb, *new_jeb; 278 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL; 279 size_t retlen; 280 int ret; 281 int nr_refile = 0; 282 unsigned char *buf; 283 uint32_t start, end, ofs, len; 284 285 jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 286 287 spin_lock(&c->erase_completion_lock); 288 if (c->wbuf_ofs % c->mtd->erasesize) 289 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); 290 else 291 jffs2_block_refile(c, jeb, REFILE_ANYWAY); 292 spin_unlock(&c->erase_completion_lock); 293 294 BUG_ON(!ref_obsolete(jeb->last_node)); 295 296 /* Find the first node to be recovered, by skipping over every 297 node which ends before the wbuf starts, or which is obsolete. */ 298 for (next = raw = jeb->first_node; next; raw = next) { 299 next = ref_next(raw); 300 301 if (ref_obsolete(raw) || 302 (next && ref_offset(next) <= c->wbuf_ofs)) { 303 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", 304 ref_offset(raw), ref_flags(raw), 305 (ref_offset(raw) + ref_totlen(c, jeb, raw)), 306 c->wbuf_ofs); 307 continue; 308 } 309 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n", 310 ref_offset(raw), ref_flags(raw), 311 (ref_offset(raw) + ref_totlen(c, jeb, raw))); 312 313 first_raw = raw; 314 break; 315 } 316 317 if (!first_raw) { 318 /* All nodes were obsolete. Nothing to recover. */ 319 jffs2_dbg(1, "No non-obsolete nodes to be recovered. Just filing block bad\n"); 320 c->wbuf_len = 0; 321 return; 322 } 323 324 start = ref_offset(first_raw); 325 end = ref_offset(jeb->last_node); 326 nr_refile = 1; 327 328 /* Count the number of refs which need to be copied */ 329 while ((raw = ref_next(raw)) != jeb->last_node) 330 nr_refile++; 331 332 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n", 333 start, end, end - start, nr_refile); 334 335 buf = NULL; 336 if (start < c->wbuf_ofs) { 337 /* First affected node was already partially written. 338 * Attempt to reread the old data into our buffer. */ 339 340 buf = kmalloc(end - start, GFP_KERNEL); 341 if (!buf) { 342 pr_crit("Malloc failure in wbuf recovery. Data loss ensues.\n"); 343 344 goto read_failed; 345 } 346 347 /* Do the read... */ 348 ret = mtd_read(c->mtd, start, c->wbuf_ofs - start, &retlen, 349 buf); 350 351 /* ECC recovered ? */ 352 if ((ret == -EUCLEAN || ret == -EBADMSG) && 353 (retlen == c->wbuf_ofs - start)) 354 ret = 0; 355 356 if (ret || retlen != c->wbuf_ofs - start) { 357 pr_crit("Old data are already lost in wbuf recovery. Data loss ensues.\n"); 358 359 kfree(buf); 360 buf = NULL; 361 read_failed: 362 first_raw = ref_next(first_raw); 363 nr_refile--; 364 while (first_raw && ref_obsolete(first_raw)) { 365 first_raw = ref_next(first_raw); 366 nr_refile--; 367 } 368 369 /* If this was the only node to be recovered, give up */ 370 if (!first_raw) { 371 c->wbuf_len = 0; 372 return; 373 } 374 375 /* It wasn't. Go on and try to recover nodes complete in the wbuf */ 376 start = ref_offset(first_raw); 377 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n", 378 start, end, end - start, nr_refile); 379 380 } else { 381 /* Read succeeded. Copy the remaining data from the wbuf */ 382 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); 383 } 384 } 385 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. 386 Either 'buf' contains the data, or we find it in the wbuf */ 387 388 /* ... and get an allocation of space from a shiny new block instead */ 389 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE); 390 if (ret) { 391 pr_warn("Failed to allocate space for wbuf recovery. Data loss ensues.\n"); 392 kfree(buf); 393 return; 394 } 395 396 /* The summary is not recovered, so it must be disabled for this erase block */ 397 jffs2_sum_disable_collecting(c->summary); 398 399 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile); 400 if (ret) { 401 pr_warn("Failed to allocate node refs for wbuf recovery. Data loss ensues.\n"); 402 kfree(buf); 403 return; 404 } 405 406 ofs = write_ofs(c); 407 408 if (end-start >= c->wbuf_pagesize) { 409 /* Need to do another write immediately, but it's possible 410 that this is just because the wbuf itself is completely 411 full, and there's nothing earlier read back from the 412 flash. Hence 'buf' isn't necessarily what we're writing 413 from. */ 414 unsigned char *rewrite_buf = buf?:c->wbuf; 415 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); 416 417 jffs2_dbg(1, "Write 0x%x bytes at 0x%08x in wbuf recover\n", 418 towrite, ofs); 419 420 #ifdef BREAKMEHEADER 421 static int breakme; 422 if (breakme++ == 20) { 423 pr_notice("Faking write error at 0x%08x\n", ofs); 424 breakme = 0; 425 mtd_write(c->mtd, ofs, towrite, &retlen, brokenbuf); 426 ret = -EIO; 427 } else 428 #endif 429 ret = mtd_write(c->mtd, ofs, towrite, &retlen, 430 rewrite_buf); 431 432 if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) { 433 /* Argh. We tried. Really we did. */ 434 pr_crit("Recovery of wbuf failed due to a second write error\n"); 435 kfree(buf); 436 437 if (retlen) 438 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL); 439 440 return; 441 } 442 pr_notice("Recovery of wbuf succeeded to %08x\n", ofs); 443 444 c->wbuf_len = (end - start) - towrite; 445 c->wbuf_ofs = ofs + towrite; 446 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); 447 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ 448 } else { 449 /* OK, now we're left with the dregs in whichever buffer we're using */ 450 if (buf) { 451 memcpy(c->wbuf, buf, end-start); 452 } else { 453 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); 454 } 455 c->wbuf_ofs = ofs; 456 c->wbuf_len = end - start; 457 } 458 459 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ 460 new_jeb = &c->blocks[ofs / c->sector_size]; 461 462 spin_lock(&c->erase_completion_lock); 463 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) { 464 uint32_t rawlen = ref_totlen(c, jeb, raw); 465 struct jffs2_inode_cache *ic; 466 struct jffs2_raw_node_ref *new_ref; 467 struct jffs2_raw_node_ref **adjust_ref = NULL; 468 struct jffs2_inode_info *f = NULL; 469 470 jffs2_dbg(1, "Refiling block of %08x at %08x(%d) to %08x\n", 471 rawlen, ref_offset(raw), ref_flags(raw), ofs); 472 473 ic = jffs2_raw_ref_to_ic(raw); 474 475 /* Ick. This XATTR mess should be fixed shortly... */ 476 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) { 477 struct jffs2_xattr_datum *xd = (void *)ic; 478 BUG_ON(xd->node != raw); 479 adjust_ref = &xd->node; 480 raw->next_in_ino = NULL; 481 ic = NULL; 482 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) { 483 struct jffs2_xattr_datum *xr = (void *)ic; 484 BUG_ON(xr->node != raw); 485 adjust_ref = &xr->node; 486 raw->next_in_ino = NULL; 487 ic = NULL; 488 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) { 489 struct jffs2_raw_node_ref **p = &ic->nodes; 490 491 /* Remove the old node from the per-inode list */ 492 while (*p && *p != (void *)ic) { 493 if (*p == raw) { 494 (*p) = (raw->next_in_ino); 495 raw->next_in_ino = NULL; 496 break; 497 } 498 p = &((*p)->next_in_ino); 499 } 500 501 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) { 502 /* If it's an in-core inode, then we have to adjust any 503 full_dirent or full_dnode structure to point to the 504 new version instead of the old */ 505 f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink); 506 if (IS_ERR(f)) { 507 /* Should never happen; it _must_ be present */ 508 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n", 509 ic->ino, PTR_ERR(f)); 510 BUG(); 511 } 512 /* We don't lock f->sem. There's a number of ways we could 513 end up in here with it already being locked, and nobody's 514 going to modify it on us anyway because we hold the 515 alloc_sem. We're only changing one ->raw pointer too, 516 which we can get away with without upsetting readers. */ 517 adjust_ref = jffs2_incore_replace_raw(c, f, raw, 518 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start)); 519 } else if (unlikely(ic->state != INO_STATE_PRESENT && 520 ic->state != INO_STATE_CHECKEDABSENT && 521 ic->state != INO_STATE_GC)) { 522 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state); 523 BUG(); 524 } 525 } 526 527 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic); 528 529 if (adjust_ref) { 530 BUG_ON(*adjust_ref != raw); 531 *adjust_ref = new_ref; 532 } 533 if (f) 534 jffs2_gc_release_inode(c, f); 535 536 if (!ref_obsolete(raw)) { 537 jeb->dirty_size += rawlen; 538 jeb->used_size -= rawlen; 539 c->dirty_size += rawlen; 540 c->used_size -= rawlen; 541 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE; 542 BUG_ON(raw->next_in_ino); 543 } 544 ofs += rawlen; 545 } 546 547 kfree(buf); 548 549 /* Fix up the original jeb now it's on the bad_list */ 550 if (first_raw == jeb->first_node) { 551 jffs2_dbg(1, "Failing block at %08x is now empty. Moving to erase_pending_list\n", 552 jeb->offset); 553 list_move(&jeb->list, &c->erase_pending_list); 554 c->nr_erasing_blocks++; 555 jffs2_garbage_collect_trigger(c); 556 } 557 558 jffs2_dbg_acct_sanity_check_nolock(c, jeb); 559 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 560 561 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb); 562 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb); 563 564 spin_unlock(&c->erase_completion_lock); 565 566 jffs2_dbg(1, "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", 567 c->wbuf_ofs, c->wbuf_len); 568 569 } 570 571 /* Meaning of pad argument: 572 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. 573 1: Pad, do not adjust nextblock free_size 574 2: Pad, adjust nextblock free_size 575 */ 576 #define NOPAD 0 577 #define PAD_NOACCOUNT 1 578 #define PAD_ACCOUNTING 2 579 580 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) 581 { 582 struct jffs2_eraseblock *wbuf_jeb; 583 int ret; 584 size_t retlen; 585 586 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't 587 del_timer() the timer we never initialised. */ 588 if (!jffs2_is_writebuffered(c)) 589 return 0; 590 591 if (!mutex_is_locked(&c->alloc_sem)) { 592 pr_crit("jffs2_flush_wbuf() called with alloc_sem not locked!\n"); 593 BUG(); 594 } 595 596 if (!c->wbuf_len) /* already checked c->wbuf above */ 597 return 0; 598 599 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 600 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1)) 601 return -ENOMEM; 602 603 /* claim remaining space on the page 604 this happens, if we have a change to a new block, 605 or if fsync forces us to flush the writebuffer. 606 if we have a switch to next page, we will not have 607 enough remaining space for this. 608 */ 609 if (pad ) { 610 c->wbuf_len = PAD(c->wbuf_len); 611 612 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR 613 with 8 byte page size */ 614 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); 615 616 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { 617 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); 618 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 619 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); 620 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); 621 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); 622 } 623 } 624 /* else jffs2_flash_writev has actually filled in the rest of the 625 buffer for us, and will deal with the node refs etc. later. */ 626 627 #ifdef BREAKME 628 static int breakme; 629 if (breakme++ == 20) { 630 pr_notice("Faking write error at 0x%08x\n", c->wbuf_ofs); 631 breakme = 0; 632 mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, 633 brokenbuf); 634 ret = -EIO; 635 } else 636 #endif 637 638 ret = mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, 639 &retlen, c->wbuf); 640 641 if (ret) { 642 pr_warn("jffs2_flush_wbuf(): Write failed with %d\n", ret); 643 goto wfail; 644 } else if (retlen != c->wbuf_pagesize) { 645 pr_warn("jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", 646 retlen, c->wbuf_pagesize); 647 ret = -EIO; 648 goto wfail; 649 } else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) { 650 wfail: 651 jffs2_wbuf_recover(c); 652 653 return ret; 654 } 655 656 /* Adjust free size of the block if we padded. */ 657 if (pad) { 658 uint32_t waste = c->wbuf_pagesize - c->wbuf_len; 659 660 jffs2_dbg(1, "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", 661 (wbuf_jeb == c->nextblock) ? "next" : "", 662 wbuf_jeb->offset); 663 664 /* wbuf_pagesize - wbuf_len is the amount of space that's to be 665 padded. If there is less free space in the block than that, 666 something screwed up */ 667 if (wbuf_jeb->free_size < waste) { 668 pr_crit("jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", 669 c->wbuf_ofs, c->wbuf_len, waste); 670 pr_crit("jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", 671 wbuf_jeb->offset, wbuf_jeb->free_size); 672 BUG(); 673 } 674 675 spin_lock(&c->erase_completion_lock); 676 677 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL); 678 /* FIXME: that made it count as dirty. Convert to wasted */ 679 wbuf_jeb->dirty_size -= waste; 680 c->dirty_size -= waste; 681 wbuf_jeb->wasted_size += waste; 682 c->wasted_size += waste; 683 } else 684 spin_lock(&c->erase_completion_lock); 685 686 /* Stick any now-obsoleted blocks on the erase_pending_list */ 687 jffs2_refile_wbuf_blocks(c); 688 jffs2_clear_wbuf_ino_list(c); 689 spin_unlock(&c->erase_completion_lock); 690 691 memset(c->wbuf,0xff,c->wbuf_pagesize); 692 /* adjust write buffer offset, else we get a non contiguous write bug */ 693 c->wbuf_ofs += c->wbuf_pagesize; 694 c->wbuf_len = 0; 695 return 0; 696 } 697 698 /* Trigger garbage collection to flush the write-buffer. 699 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are 700 outstanding. If ino arg non-zero, do it only if a write for the 701 given inode is outstanding. */ 702 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) 703 { 704 uint32_t old_wbuf_ofs; 705 uint32_t old_wbuf_len; 706 int ret = 0; 707 708 jffs2_dbg(1, "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino); 709 710 if (!c->wbuf) 711 return 0; 712 713 mutex_lock(&c->alloc_sem); 714 if (!jffs2_wbuf_pending_for_ino(c, ino)) { 715 jffs2_dbg(1, "Ino #%d not pending in wbuf. Returning\n", ino); 716 mutex_unlock(&c->alloc_sem); 717 return 0; 718 } 719 720 old_wbuf_ofs = c->wbuf_ofs; 721 old_wbuf_len = c->wbuf_len; 722 723 if (c->unchecked_size) { 724 /* GC won't make any progress for a while */ 725 jffs2_dbg(1, "%s(): padding. Not finished checking\n", 726 __func__); 727 down_write(&c->wbuf_sem); 728 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 729 /* retry flushing wbuf in case jffs2_wbuf_recover 730 left some data in the wbuf */ 731 if (ret) 732 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 733 up_write(&c->wbuf_sem); 734 } else while (old_wbuf_len && 735 old_wbuf_ofs == c->wbuf_ofs) { 736 737 mutex_unlock(&c->alloc_sem); 738 739 jffs2_dbg(1, "%s(): calls gc pass\n", __func__); 740 741 ret = jffs2_garbage_collect_pass(c); 742 if (ret) { 743 /* GC failed. Flush it with padding instead */ 744 mutex_lock(&c->alloc_sem); 745 down_write(&c->wbuf_sem); 746 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 747 /* retry flushing wbuf in case jffs2_wbuf_recover 748 left some data in the wbuf */ 749 if (ret) 750 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 751 up_write(&c->wbuf_sem); 752 break; 753 } 754 mutex_lock(&c->alloc_sem); 755 } 756 757 jffs2_dbg(1, "%s(): ends...\n", __func__); 758 759 mutex_unlock(&c->alloc_sem); 760 return ret; 761 } 762 763 /* Pad write-buffer to end and write it, wasting space. */ 764 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) 765 { 766 int ret; 767 768 if (!c->wbuf) 769 return 0; 770 771 down_write(&c->wbuf_sem); 772 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 773 /* retry - maybe wbuf recover left some data in wbuf. */ 774 if (ret) 775 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 776 up_write(&c->wbuf_sem); 777 778 return ret; 779 } 780 781 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf, 782 size_t len) 783 { 784 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize)) 785 return 0; 786 787 if (len > (c->wbuf_pagesize - c->wbuf_len)) 788 len = c->wbuf_pagesize - c->wbuf_len; 789 memcpy(c->wbuf + c->wbuf_len, buf, len); 790 c->wbuf_len += (uint32_t) len; 791 return len; 792 } 793 794 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, 795 unsigned long count, loff_t to, size_t *retlen, 796 uint32_t ino) 797 { 798 struct jffs2_eraseblock *jeb; 799 size_t wbuf_retlen, donelen = 0; 800 uint32_t outvec_to = to; 801 int ret, invec; 802 803 /* If not writebuffered flash, don't bother */ 804 if (!jffs2_is_writebuffered(c)) 805 return jffs2_flash_direct_writev(c, invecs, count, to, retlen); 806 807 down_write(&c->wbuf_sem); 808 809 /* If wbuf_ofs is not initialized, set it to target address */ 810 if (c->wbuf_ofs == 0xFFFFFFFF) { 811 c->wbuf_ofs = PAGE_DIV(to); 812 c->wbuf_len = PAGE_MOD(to); 813 memset(c->wbuf,0xff,c->wbuf_pagesize); 814 } 815 816 /* 817 * Sanity checks on target address. It's permitted to write 818 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to 819 * write at the beginning of a new erase block. Anything else, 820 * and you die. New block starts at xxx000c (0-b = block 821 * header) 822 */ 823 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { 824 /* It's a write to a new block */ 825 if (c->wbuf_len) { 826 jffs2_dbg(1, "%s(): to 0x%lx causes flush of wbuf at 0x%08x\n", 827 __func__, (unsigned long)to, c->wbuf_ofs); 828 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 829 if (ret) 830 goto outerr; 831 } 832 /* set pointer to new block */ 833 c->wbuf_ofs = PAGE_DIV(to); 834 c->wbuf_len = PAGE_MOD(to); 835 } 836 837 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { 838 /* We're not writing immediately after the writebuffer. Bad. */ 839 pr_crit("%s(): Non-contiguous write to %08lx\n", 840 __func__, (unsigned long)to); 841 if (c->wbuf_len) 842 pr_crit("wbuf was previously %08x-%08x\n", 843 c->wbuf_ofs, c->wbuf_ofs + c->wbuf_len); 844 BUG(); 845 } 846 847 /* adjust alignment offset */ 848 if (c->wbuf_len != PAGE_MOD(to)) { 849 c->wbuf_len = PAGE_MOD(to); 850 /* take care of alignment to next page */ 851 if (!c->wbuf_len) { 852 c->wbuf_len = c->wbuf_pagesize; 853 ret = __jffs2_flush_wbuf(c, NOPAD); 854 if (ret) 855 goto outerr; 856 } 857 } 858 859 for (invec = 0; invec < count; invec++) { 860 int vlen = invecs[invec].iov_len; 861 uint8_t *v = invecs[invec].iov_base; 862 863 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); 864 865 if (c->wbuf_len == c->wbuf_pagesize) { 866 ret = __jffs2_flush_wbuf(c, NOPAD); 867 if (ret) 868 goto outerr; 869 } 870 vlen -= wbuf_retlen; 871 outvec_to += wbuf_retlen; 872 donelen += wbuf_retlen; 873 v += wbuf_retlen; 874 875 if (vlen >= c->wbuf_pagesize) { 876 ret = mtd_write(c->mtd, outvec_to, PAGE_DIV(vlen), 877 &wbuf_retlen, v); 878 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen)) 879 goto outfile; 880 881 vlen -= wbuf_retlen; 882 outvec_to += wbuf_retlen; 883 c->wbuf_ofs = outvec_to; 884 donelen += wbuf_retlen; 885 v += wbuf_retlen; 886 } 887 888 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); 889 if (c->wbuf_len == c->wbuf_pagesize) { 890 ret = __jffs2_flush_wbuf(c, NOPAD); 891 if (ret) 892 goto outerr; 893 } 894 895 outvec_to += wbuf_retlen; 896 donelen += wbuf_retlen; 897 } 898 899 /* 900 * If there's a remainder in the wbuf and it's a non-GC write, 901 * remember that the wbuf affects this ino 902 */ 903 *retlen = donelen; 904 905 if (jffs2_sum_active()) { 906 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to); 907 if (res) 908 return res; 909 } 910 911 if (c->wbuf_len && ino) 912 jffs2_wbuf_dirties_inode(c, ino); 913 914 ret = 0; 915 up_write(&c->wbuf_sem); 916 return ret; 917 918 outfile: 919 /* 920 * At this point we have no problem, c->wbuf is empty. However 921 * refile nextblock to avoid writing again to same address. 922 */ 923 924 spin_lock(&c->erase_completion_lock); 925 926 jeb = &c->blocks[outvec_to / c->sector_size]; 927 jffs2_block_refile(c, jeb, REFILE_ANYWAY); 928 929 spin_unlock(&c->erase_completion_lock); 930 931 outerr: 932 *retlen = 0; 933 up_write(&c->wbuf_sem); 934 return ret; 935 } 936 937 /* 938 * This is the entry for flash write. 939 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev 940 */ 941 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, 942 size_t *retlen, const u_char *buf) 943 { 944 struct kvec vecs[1]; 945 946 if (!jffs2_is_writebuffered(c)) 947 return jffs2_flash_direct_write(c, ofs, len, retlen, buf); 948 949 vecs[0].iov_base = (unsigned char *) buf; 950 vecs[0].iov_len = len; 951 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); 952 } 953 954 /* 955 Handle readback from writebuffer and ECC failure return 956 */ 957 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) 958 { 959 loff_t orbf = 0, owbf = 0, lwbf = 0; 960 int ret; 961 962 if (!jffs2_is_writebuffered(c)) 963 return mtd_read(c->mtd, ofs, len, retlen, buf); 964 965 /* Read flash */ 966 down_read(&c->wbuf_sem); 967 ret = mtd_read(c->mtd, ofs, len, retlen, buf); 968 969 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) { 970 if (ret == -EBADMSG) 971 pr_warn("mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", 972 len, ofs); 973 /* 974 * We have the raw data without ECC correction in the buffer, 975 * maybe we are lucky and all data or parts are correct. We 976 * check the node. If data are corrupted node check will sort 977 * it out. We keep this block, it will fail on write or erase 978 * and the we mark it bad. Or should we do that now? But we 979 * should give him a chance. Maybe we had a system crash or 980 * power loss before the ecc write or a erase was completed. 981 * So we return success. :) 982 */ 983 ret = 0; 984 } 985 986 /* if no writebuffer available or write buffer empty, return */ 987 if (!c->wbuf_pagesize || !c->wbuf_len) 988 goto exit; 989 990 /* if we read in a different block, return */ 991 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) 992 goto exit; 993 994 if (ofs >= c->wbuf_ofs) { 995 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */ 996 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */ 997 goto exit; 998 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */ 999 if (lwbf > len) 1000 lwbf = len; 1001 } else { 1002 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */ 1003 if (orbf > len) /* is write beyond write buffer ? */ 1004 goto exit; 1005 lwbf = len - orbf; /* number of bytes to copy */ 1006 if (lwbf > c->wbuf_len) 1007 lwbf = c->wbuf_len; 1008 } 1009 if (lwbf > 0) 1010 memcpy(buf+orbf,c->wbuf+owbf,lwbf); 1011 1012 exit: 1013 up_read(&c->wbuf_sem); 1014 return ret; 1015 } 1016 1017 #define NR_OOB_SCAN_PAGES 4 1018 1019 /* For historical reasons we use only 8 bytes for OOB clean marker */ 1020 #define OOB_CM_SIZE 8 1021 1022 static const struct jffs2_unknown_node oob_cleanmarker = 1023 { 1024 .magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK), 1025 .nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER), 1026 .totlen = constant_cpu_to_je32(8) 1027 }; 1028 1029 /* 1030 * Check, if the out of band area is empty. This function knows about the clean 1031 * marker and if it is present in OOB, treats the OOB as empty anyway. 1032 */ 1033 int jffs2_check_oob_empty(struct jffs2_sb_info *c, 1034 struct jffs2_eraseblock *jeb, int mode) 1035 { 1036 int i, ret; 1037 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE); 1038 struct mtd_oob_ops ops; 1039 1040 ops.mode = MTD_OPS_AUTO_OOB; 1041 ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail; 1042 ops.oobbuf = c->oobbuf; 1043 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; 1044 ops.datbuf = NULL; 1045 1046 ret = mtd_read_oob(c->mtd, jeb->offset, &ops); 1047 if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) { 1048 pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n", 1049 jeb->offset, ops.ooblen, ops.oobretlen, ret); 1050 if (!ret || mtd_is_bitflip(ret)) 1051 ret = -EIO; 1052 return ret; 1053 } 1054 1055 for(i = 0; i < ops.ooblen; i++) { 1056 if (mode && i < cmlen) 1057 /* Yeah, we know about the cleanmarker */ 1058 continue; 1059 1060 if (ops.oobbuf[i] != 0xFF) { 1061 jffs2_dbg(2, "Found %02x at %x in OOB for " 1062 "%08x\n", ops.oobbuf[i], i, jeb->offset); 1063 return 1; 1064 } 1065 } 1066 1067 return 0; 1068 } 1069 1070 /* 1071 * Check for a valid cleanmarker. 1072 * Returns: 0 if a valid cleanmarker was found 1073 * 1 if no cleanmarker was found 1074 * negative error code if an error occurred 1075 */ 1076 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c, 1077 struct jffs2_eraseblock *jeb) 1078 { 1079 struct mtd_oob_ops ops; 1080 int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE); 1081 1082 ops.mode = MTD_OPS_AUTO_OOB; 1083 ops.ooblen = cmlen; 1084 ops.oobbuf = c->oobbuf; 1085 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; 1086 ops.datbuf = NULL; 1087 1088 ret = mtd_read_oob(c->mtd, jeb->offset, &ops); 1089 if ((ret && !mtd_is_bitflip(ret)) || ops.oobretlen != ops.ooblen) { 1090 pr_err("cannot read OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n", 1091 jeb->offset, ops.ooblen, ops.oobretlen, ret); 1092 if (!ret || mtd_is_bitflip(ret)) 1093 ret = -EIO; 1094 return ret; 1095 } 1096 1097 return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen); 1098 } 1099 1100 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, 1101 struct jffs2_eraseblock *jeb) 1102 { 1103 int ret; 1104 struct mtd_oob_ops ops; 1105 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE); 1106 1107 ops.mode = MTD_OPS_AUTO_OOB; 1108 ops.ooblen = cmlen; 1109 ops.oobbuf = (uint8_t *)&oob_cleanmarker; 1110 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; 1111 ops.datbuf = NULL; 1112 1113 ret = mtd_write_oob(c->mtd, jeb->offset, &ops); 1114 if (ret || ops.oobretlen != ops.ooblen) { 1115 pr_err("cannot write OOB for EB at %08x, requested %zd bytes, read %zd bytes, error %d\n", 1116 jeb->offset, ops.ooblen, ops.oobretlen, ret); 1117 if (!ret) 1118 ret = -EIO; 1119 return ret; 1120 } 1121 1122 return 0; 1123 } 1124 1125 /* 1126 * On NAND we try to mark this block bad. If the block was erased more 1127 * than MAX_ERASE_FAILURES we mark it finally bad. 1128 * Don't care about failures. This block remains on the erase-pending 1129 * or badblock list as long as nobody manipulates the flash with 1130 * a bootloader or something like that. 1131 */ 1132 1133 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) 1134 { 1135 int ret; 1136 1137 /* if the count is < max, we try to write the counter to the 2nd page oob area */ 1138 if( ++jeb->bad_count < MAX_ERASE_FAILURES) 1139 return 0; 1140 1141 pr_warn("marking eraseblock at %08x as bad\n", bad_offset); 1142 ret = mtd_block_markbad(c->mtd, bad_offset); 1143 1144 if (ret) { 1145 jffs2_dbg(1, "%s(): Write failed for block at %08x: error %d\n", 1146 __func__, jeb->offset, ret); 1147 return ret; 1148 } 1149 return 1; 1150 } 1151 1152 static struct jffs2_sb_info *work_to_sb(struct work_struct *work) 1153 { 1154 struct delayed_work *dwork; 1155 1156 dwork = to_delayed_work(work); 1157 return container_of(dwork, struct jffs2_sb_info, wbuf_dwork); 1158 } 1159 1160 static void delayed_wbuf_sync(struct work_struct *work) 1161 { 1162 struct jffs2_sb_info *c = work_to_sb(work); 1163 struct super_block *sb = OFNI_BS_2SFFJ(c); 1164 1165 if (!sb_rdonly(sb)) { 1166 jffs2_dbg(1, "%s()\n", __func__); 1167 jffs2_flush_wbuf_gc(c, 0); 1168 } 1169 } 1170 1171 void jffs2_dirty_trigger(struct jffs2_sb_info *c) 1172 { 1173 struct super_block *sb = OFNI_BS_2SFFJ(c); 1174 unsigned long delay; 1175 1176 if (sb_rdonly(sb)) 1177 return; 1178 1179 delay = msecs_to_jiffies(dirty_writeback_interval * 10); 1180 if (queue_delayed_work(system_long_wq, &c->wbuf_dwork, delay)) 1181 jffs2_dbg(1, "%s()\n", __func__); 1182 } 1183 1184 int jffs2_nand_flash_setup(struct jffs2_sb_info *c) 1185 { 1186 if (!c->mtd->oobsize) 1187 return 0; 1188 1189 /* Cleanmarker is out-of-band, so inline size zero */ 1190 c->cleanmarker_size = 0; 1191 1192 if (c->mtd->oobavail == 0) { 1193 pr_err("inconsistent device description\n"); 1194 return -EINVAL; 1195 } 1196 1197 jffs2_dbg(1, "using OOB on NAND\n"); 1198 1199 c->oobavail = c->mtd->oobavail; 1200 1201 /* Initialise write buffer */ 1202 init_rwsem(&c->wbuf_sem); 1203 INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync); 1204 c->wbuf_pagesize = c->mtd->writesize; 1205 c->wbuf_ofs = 0xFFFFFFFF; 1206 1207 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1208 if (!c->wbuf) 1209 return -ENOMEM; 1210 1211 c->oobbuf = kmalloc_array(NR_OOB_SCAN_PAGES, c->oobavail, GFP_KERNEL); 1212 if (!c->oobbuf) { 1213 kfree(c->wbuf); 1214 return -ENOMEM; 1215 } 1216 1217 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY 1218 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1219 if (!c->wbuf_verify) { 1220 kfree(c->oobbuf); 1221 kfree(c->wbuf); 1222 return -ENOMEM; 1223 } 1224 #endif 1225 return 0; 1226 } 1227 1228 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) 1229 { 1230 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY 1231 kfree(c->wbuf_verify); 1232 #endif 1233 kfree(c->wbuf); 1234 kfree(c->oobbuf); 1235 } 1236 1237 int jffs2_dataflash_setup(struct jffs2_sb_info *c) { 1238 c->cleanmarker_size = 0; /* No cleanmarkers needed */ 1239 1240 /* Initialize write buffer */ 1241 init_rwsem(&c->wbuf_sem); 1242 INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync); 1243 c->wbuf_pagesize = c->mtd->erasesize; 1244 1245 /* Find a suitable c->sector_size 1246 * - Not too much sectors 1247 * - Sectors have to be at least 4 K + some bytes 1248 * - All known dataflashes have erase sizes of 528 or 1056 1249 * - we take at least 8 eraseblocks and want to have at least 8K size 1250 * - The concatenation should be a power of 2 1251 */ 1252 1253 c->sector_size = 8 * c->mtd->erasesize; 1254 1255 while (c->sector_size < 8192) { 1256 c->sector_size *= 2; 1257 } 1258 1259 /* It may be necessary to adjust the flash size */ 1260 c->flash_size = c->mtd->size; 1261 1262 if ((c->flash_size % c->sector_size) != 0) { 1263 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size; 1264 pr_warn("flash size adjusted to %dKiB\n", c->flash_size); 1265 } 1266 1267 c->wbuf_ofs = 0xFFFFFFFF; 1268 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1269 if (!c->wbuf) 1270 return -ENOMEM; 1271 1272 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY 1273 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1274 if (!c->wbuf_verify) { 1275 kfree(c->wbuf); 1276 return -ENOMEM; 1277 } 1278 #endif 1279 1280 pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n", 1281 c->wbuf_pagesize, c->sector_size); 1282 1283 return 0; 1284 } 1285 1286 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { 1287 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY 1288 kfree(c->wbuf_verify); 1289 #endif 1290 kfree(c->wbuf); 1291 } 1292 1293 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) { 1294 /* Cleanmarker currently occupies whole programming regions, 1295 * either one or 2 for 8Byte STMicro flashes. */ 1296 c->cleanmarker_size = max(16u, c->mtd->writesize); 1297 1298 /* Initialize write buffer */ 1299 init_rwsem(&c->wbuf_sem); 1300 INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync); 1301 1302 c->wbuf_pagesize = c->mtd->writesize; 1303 c->wbuf_ofs = 0xFFFFFFFF; 1304 1305 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1306 if (!c->wbuf) 1307 return -ENOMEM; 1308 1309 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY 1310 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1311 if (!c->wbuf_verify) { 1312 kfree(c->wbuf); 1313 return -ENOMEM; 1314 } 1315 #endif 1316 return 0; 1317 } 1318 1319 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) { 1320 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY 1321 kfree(c->wbuf_verify); 1322 #endif 1323 kfree(c->wbuf); 1324 } 1325 1326 int jffs2_ubivol_setup(struct jffs2_sb_info *c) { 1327 c->cleanmarker_size = 0; 1328 1329 if (c->mtd->writesize == 1) 1330 /* We do not need write-buffer */ 1331 return 0; 1332 1333 init_rwsem(&c->wbuf_sem); 1334 INIT_DELAYED_WORK(&c->wbuf_dwork, delayed_wbuf_sync); 1335 1336 c->wbuf_pagesize = c->mtd->writesize; 1337 c->wbuf_ofs = 0xFFFFFFFF; 1338 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1339 if (!c->wbuf) 1340 return -ENOMEM; 1341 1342 pr_info("write-buffering enabled buffer (%d) erasesize (%d)\n", 1343 c->wbuf_pagesize, c->sector_size); 1344 1345 return 0; 1346 } 1347 1348 void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) { 1349 kfree(c->wbuf); 1350 } 1351