xref: /openbmc/linux/fs/jffs2/wbuf.c (revision 9c261b33)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Created by David Woodhouse <dwmw2@infradead.org>
8  * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9  *
10  * For licensing information, see the file 'LICENCE' in this directory.
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/crc32.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/jiffies.h>
20 #include <linux/sched.h>
21 
22 #include "nodelist.h"
23 
24 /* For testing write failures */
25 #undef BREAKME
26 #undef BREAKMEHEADER
27 
28 #ifdef BREAKME
29 static unsigned char *brokenbuf;
30 #endif
31 
32 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
33 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
34 
35 /* max. erase failures before we mark a block bad */
36 #define MAX_ERASE_FAILURES 	2
37 
38 struct jffs2_inodirty {
39 	uint32_t ino;
40 	struct jffs2_inodirty *next;
41 };
42 
43 static struct jffs2_inodirty inodirty_nomem;
44 
45 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
46 {
47 	struct jffs2_inodirty *this = c->wbuf_inodes;
48 
49 	/* If a malloc failed, consider _everything_ dirty */
50 	if (this == &inodirty_nomem)
51 		return 1;
52 
53 	/* If ino == 0, _any_ non-GC writes mean 'yes' */
54 	if (this && !ino)
55 		return 1;
56 
57 	/* Look to see if the inode in question is pending in the wbuf */
58 	while (this) {
59 		if (this->ino == ino)
60 			return 1;
61 		this = this->next;
62 	}
63 	return 0;
64 }
65 
66 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
67 {
68 	struct jffs2_inodirty *this;
69 
70 	this = c->wbuf_inodes;
71 
72 	if (this != &inodirty_nomem) {
73 		while (this) {
74 			struct jffs2_inodirty *next = this->next;
75 			kfree(this);
76 			this = next;
77 		}
78 	}
79 	c->wbuf_inodes = NULL;
80 }
81 
82 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
83 {
84 	struct jffs2_inodirty *new;
85 
86 	/* Mark the superblock dirty so that kupdated will flush... */
87 	jffs2_dirty_trigger(c);
88 
89 	if (jffs2_wbuf_pending_for_ino(c, ino))
90 		return;
91 
92 	new = kmalloc(sizeof(*new), GFP_KERNEL);
93 	if (!new) {
94 		jffs2_dbg(1, "No memory to allocate inodirty. Fallback to all considered dirty\n");
95 		jffs2_clear_wbuf_ino_list(c);
96 		c->wbuf_inodes = &inodirty_nomem;
97 		return;
98 	}
99 	new->ino = ino;
100 	new->next = c->wbuf_inodes;
101 	c->wbuf_inodes = new;
102 	return;
103 }
104 
105 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
106 {
107 	struct list_head *this, *next;
108 	static int n;
109 
110 	if (list_empty(&c->erasable_pending_wbuf_list))
111 		return;
112 
113 	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
114 		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
115 
116 		jffs2_dbg(1, "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n",
117 			  jeb->offset);
118 		list_del(this);
119 		if ((jiffies + (n++)) & 127) {
120 			/* Most of the time, we just erase it immediately. Otherwise we
121 			   spend ages scanning it on mount, etc. */
122 			jffs2_dbg(1, "...and adding to erase_pending_list\n");
123 			list_add_tail(&jeb->list, &c->erase_pending_list);
124 			c->nr_erasing_blocks++;
125 			jffs2_garbage_collect_trigger(c);
126 		} else {
127 			/* Sometimes, however, we leave it elsewhere so it doesn't get
128 			   immediately reused, and we spread the load a bit. */
129 			jffs2_dbg(1, "...and adding to erasable_list\n");
130 			list_add_tail(&jeb->list, &c->erasable_list);
131 		}
132 	}
133 }
134 
135 #define REFILE_NOTEMPTY 0
136 #define REFILE_ANYWAY   1
137 
138 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
139 {
140 	jffs2_dbg(1, "About to refile bad block at %08x\n", jeb->offset);
141 
142 	/* File the existing block on the bad_used_list.... */
143 	if (c->nextblock == jeb)
144 		c->nextblock = NULL;
145 	else /* Not sure this should ever happen... need more coffee */
146 		list_del(&jeb->list);
147 	if (jeb->first_node) {
148 		jffs2_dbg(1, "Refiling block at %08x to bad_used_list\n",
149 			  jeb->offset);
150 		list_add(&jeb->list, &c->bad_used_list);
151 	} else {
152 		BUG_ON(allow_empty == REFILE_NOTEMPTY);
153 		/* It has to have had some nodes or we couldn't be here */
154 		jffs2_dbg(1, "Refiling block at %08x to erase_pending_list\n",
155 			  jeb->offset);
156 		list_add(&jeb->list, &c->erase_pending_list);
157 		c->nr_erasing_blocks++;
158 		jffs2_garbage_collect_trigger(c);
159 	}
160 
161 	if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
162 		uint32_t oldfree = jeb->free_size;
163 
164 		jffs2_link_node_ref(c, jeb,
165 				    (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
166 				    oldfree, NULL);
167 		/* convert to wasted */
168 		c->wasted_size += oldfree;
169 		jeb->wasted_size += oldfree;
170 		c->dirty_size -= oldfree;
171 		jeb->dirty_size -= oldfree;
172 	}
173 
174 	jffs2_dbg_dump_block_lists_nolock(c);
175 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
176 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
177 }
178 
179 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
180 							    struct jffs2_inode_info *f,
181 							    struct jffs2_raw_node_ref *raw,
182 							    union jffs2_node_union *node)
183 {
184 	struct jffs2_node_frag *frag;
185 	struct jffs2_full_dirent *fd;
186 
187 	dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
188 		    node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
189 
190 	BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
191 	       je16_to_cpu(node->u.magic) != 0);
192 
193 	switch (je16_to_cpu(node->u.nodetype)) {
194 	case JFFS2_NODETYPE_INODE:
195 		if (f->metadata && f->metadata->raw == raw) {
196 			dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
197 			return &f->metadata->raw;
198 		}
199 		frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
200 		BUG_ON(!frag);
201 		/* Find a frag which refers to the full_dnode we want to modify */
202 		while (!frag->node || frag->node->raw != raw) {
203 			frag = frag_next(frag);
204 			BUG_ON(!frag);
205 		}
206 		dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
207 		return &frag->node->raw;
208 
209 	case JFFS2_NODETYPE_DIRENT:
210 		for (fd = f->dents; fd; fd = fd->next) {
211 			if (fd->raw == raw) {
212 				dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
213 				return &fd->raw;
214 			}
215 		}
216 		BUG();
217 
218 	default:
219 		dbg_noderef("Don't care about replacing raw for nodetype %x\n",
220 			    je16_to_cpu(node->u.nodetype));
221 		break;
222 	}
223 	return NULL;
224 }
225 
226 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
227 static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf,
228 			      uint32_t ofs)
229 {
230 	int ret;
231 	size_t retlen;
232 	char *eccstr;
233 
234 	ret = mtd_read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify);
235 	if (ret && ret != -EUCLEAN && ret != -EBADMSG) {
236 		printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x failed: %d\n", c->wbuf_ofs, ret);
237 		return ret;
238 	} else if (retlen != c->wbuf_pagesize) {
239 		printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x gave short read: %zd not %d.\n", ofs, retlen, c->wbuf_pagesize);
240 		return -EIO;
241 	}
242 	if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize))
243 		return 0;
244 
245 	if (ret == -EUCLEAN)
246 		eccstr = "corrected";
247 	else if (ret == -EBADMSG)
248 		eccstr = "correction failed";
249 	else
250 		eccstr = "OK or unused";
251 
252 	printk(KERN_WARNING "Write verify error (ECC %s) at %08x. Wrote:\n",
253 	       eccstr, c->wbuf_ofs);
254 	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
255 		       c->wbuf, c->wbuf_pagesize, 0);
256 
257 	printk(KERN_WARNING "Read back:\n");
258 	print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1,
259 		       c->wbuf_verify, c->wbuf_pagesize, 0);
260 
261 	return -EIO;
262 }
263 #else
264 #define jffs2_verify_write(c,b,o) (0)
265 #endif
266 
267 /* Recover from failure to write wbuf. Recover the nodes up to the
268  * wbuf, not the one which we were starting to try to write. */
269 
270 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
271 {
272 	struct jffs2_eraseblock *jeb, *new_jeb;
273 	struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
274 	size_t retlen;
275 	int ret;
276 	int nr_refile = 0;
277 	unsigned char *buf;
278 	uint32_t start, end, ofs, len;
279 
280 	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
281 
282 	spin_lock(&c->erase_completion_lock);
283 	if (c->wbuf_ofs % c->mtd->erasesize)
284 		jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
285 	else
286 		jffs2_block_refile(c, jeb, REFILE_ANYWAY);
287 	spin_unlock(&c->erase_completion_lock);
288 
289 	BUG_ON(!ref_obsolete(jeb->last_node));
290 
291 	/* Find the first node to be recovered, by skipping over every
292 	   node which ends before the wbuf starts, or which is obsolete. */
293 	for (next = raw = jeb->first_node; next; raw = next) {
294 		next = ref_next(raw);
295 
296 		if (ref_obsolete(raw) ||
297 		    (next && ref_offset(next) <= c->wbuf_ofs)) {
298 			dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
299 				    ref_offset(raw), ref_flags(raw),
300 				    (ref_offset(raw) + ref_totlen(c, jeb, raw)),
301 				    c->wbuf_ofs);
302 			continue;
303 		}
304 		dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
305 			    ref_offset(raw), ref_flags(raw),
306 			    (ref_offset(raw) + ref_totlen(c, jeb, raw)));
307 
308 		first_raw = raw;
309 		break;
310 	}
311 
312 	if (!first_raw) {
313 		/* All nodes were obsolete. Nothing to recover. */
314 		jffs2_dbg(1, "No non-obsolete nodes to be recovered. Just filing block bad\n");
315 		c->wbuf_len = 0;
316 		return;
317 	}
318 
319 	start = ref_offset(first_raw);
320 	end = ref_offset(jeb->last_node);
321 	nr_refile = 1;
322 
323 	/* Count the number of refs which need to be copied */
324 	while ((raw = ref_next(raw)) != jeb->last_node)
325 		nr_refile++;
326 
327 	dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
328 		    start, end, end - start, nr_refile);
329 
330 	buf = NULL;
331 	if (start < c->wbuf_ofs) {
332 		/* First affected node was already partially written.
333 		 * Attempt to reread the old data into our buffer. */
334 
335 		buf = kmalloc(end - start, GFP_KERNEL);
336 		if (!buf) {
337 			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
338 
339 			goto read_failed;
340 		}
341 
342 		/* Do the read... */
343 		ret = mtd_read(c->mtd, start, c->wbuf_ofs - start, &retlen,
344 			       buf);
345 
346 		/* ECC recovered ? */
347 		if ((ret == -EUCLEAN || ret == -EBADMSG) &&
348 		    (retlen == c->wbuf_ofs - start))
349 			ret = 0;
350 
351 		if (ret || retlen != c->wbuf_ofs - start) {
352 			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
353 
354 			kfree(buf);
355 			buf = NULL;
356 		read_failed:
357 			first_raw = ref_next(first_raw);
358 			nr_refile--;
359 			while (first_raw && ref_obsolete(first_raw)) {
360 				first_raw = ref_next(first_raw);
361 				nr_refile--;
362 			}
363 
364 			/* If this was the only node to be recovered, give up */
365 			if (!first_raw) {
366 				c->wbuf_len = 0;
367 				return;
368 			}
369 
370 			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
371 			start = ref_offset(first_raw);
372 			dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
373 				    start, end, end - start, nr_refile);
374 
375 		} else {
376 			/* Read succeeded. Copy the remaining data from the wbuf */
377 			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
378 		}
379 	}
380 	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
381 	   Either 'buf' contains the data, or we find it in the wbuf */
382 
383 	/* ... and get an allocation of space from a shiny new block instead */
384 	ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
385 	if (ret) {
386 		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
387 		kfree(buf);
388 		return;
389 	}
390 
391 	/* The summary is not recovered, so it must be disabled for this erase block */
392 	jffs2_sum_disable_collecting(c->summary);
393 
394 	ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
395 	if (ret) {
396 		printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
397 		kfree(buf);
398 		return;
399 	}
400 
401 	ofs = write_ofs(c);
402 
403 	if (end-start >= c->wbuf_pagesize) {
404 		/* Need to do another write immediately, but it's possible
405 		   that this is just because the wbuf itself is completely
406 		   full, and there's nothing earlier read back from the
407 		   flash. Hence 'buf' isn't necessarily what we're writing
408 		   from. */
409 		unsigned char *rewrite_buf = buf?:c->wbuf;
410 		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
411 
412 		jffs2_dbg(1, "Write 0x%x bytes at 0x%08x in wbuf recover\n",
413 			  towrite, ofs);
414 
415 #ifdef BREAKMEHEADER
416 		static int breakme;
417 		if (breakme++ == 20) {
418 			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
419 			breakme = 0;
420 			mtd_write(c->mtd, ofs, towrite, &retlen, brokenbuf);
421 			ret = -EIO;
422 		} else
423 #endif
424 			ret = mtd_write(c->mtd, ofs, towrite, &retlen,
425 					rewrite_buf);
426 
427 		if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) {
428 			/* Argh. We tried. Really we did. */
429 			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
430 			kfree(buf);
431 
432 			if (retlen)
433 				jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
434 
435 			return;
436 		}
437 		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
438 
439 		c->wbuf_len = (end - start) - towrite;
440 		c->wbuf_ofs = ofs + towrite;
441 		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
442 		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
443 	} else {
444 		/* OK, now we're left with the dregs in whichever buffer we're using */
445 		if (buf) {
446 			memcpy(c->wbuf, buf, end-start);
447 		} else {
448 			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
449 		}
450 		c->wbuf_ofs = ofs;
451 		c->wbuf_len = end - start;
452 	}
453 
454 	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
455 	new_jeb = &c->blocks[ofs / c->sector_size];
456 
457 	spin_lock(&c->erase_completion_lock);
458 	for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
459 		uint32_t rawlen = ref_totlen(c, jeb, raw);
460 		struct jffs2_inode_cache *ic;
461 		struct jffs2_raw_node_ref *new_ref;
462 		struct jffs2_raw_node_ref **adjust_ref = NULL;
463 		struct jffs2_inode_info *f = NULL;
464 
465 		jffs2_dbg(1, "Refiling block of %08x at %08x(%d) to %08x\n",
466 			  rawlen, ref_offset(raw), ref_flags(raw), ofs);
467 
468 		ic = jffs2_raw_ref_to_ic(raw);
469 
470 		/* Ick. This XATTR mess should be fixed shortly... */
471 		if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
472 			struct jffs2_xattr_datum *xd = (void *)ic;
473 			BUG_ON(xd->node != raw);
474 			adjust_ref = &xd->node;
475 			raw->next_in_ino = NULL;
476 			ic = NULL;
477 		} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
478 			struct jffs2_xattr_datum *xr = (void *)ic;
479 			BUG_ON(xr->node != raw);
480 			adjust_ref = &xr->node;
481 			raw->next_in_ino = NULL;
482 			ic = NULL;
483 		} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
484 			struct jffs2_raw_node_ref **p = &ic->nodes;
485 
486 			/* Remove the old node from the per-inode list */
487 			while (*p && *p != (void *)ic) {
488 				if (*p == raw) {
489 					(*p) = (raw->next_in_ino);
490 					raw->next_in_ino = NULL;
491 					break;
492 				}
493 				p = &((*p)->next_in_ino);
494 			}
495 
496 			if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
497 				/* If it's an in-core inode, then we have to adjust any
498 				   full_dirent or full_dnode structure to point to the
499 				   new version instead of the old */
500 				f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink);
501 				if (IS_ERR(f)) {
502 					/* Should never happen; it _must_ be present */
503 					JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
504 						    ic->ino, PTR_ERR(f));
505 					BUG();
506 				}
507 				/* We don't lock f->sem. There's a number of ways we could
508 				   end up in here with it already being locked, and nobody's
509 				   going to modify it on us anyway because we hold the
510 				   alloc_sem. We're only changing one ->raw pointer too,
511 				   which we can get away with without upsetting readers. */
512 				adjust_ref = jffs2_incore_replace_raw(c, f, raw,
513 								      (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
514 			} else if (unlikely(ic->state != INO_STATE_PRESENT &&
515 					    ic->state != INO_STATE_CHECKEDABSENT &&
516 					    ic->state != INO_STATE_GC)) {
517 				JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
518 				BUG();
519 			}
520 		}
521 
522 		new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
523 
524 		if (adjust_ref) {
525 			BUG_ON(*adjust_ref != raw);
526 			*adjust_ref = new_ref;
527 		}
528 		if (f)
529 			jffs2_gc_release_inode(c, f);
530 
531 		if (!ref_obsolete(raw)) {
532 			jeb->dirty_size += rawlen;
533 			jeb->used_size  -= rawlen;
534 			c->dirty_size += rawlen;
535 			c->used_size -= rawlen;
536 			raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
537 			BUG_ON(raw->next_in_ino);
538 		}
539 		ofs += rawlen;
540 	}
541 
542 	kfree(buf);
543 
544 	/* Fix up the original jeb now it's on the bad_list */
545 	if (first_raw == jeb->first_node) {
546 		jffs2_dbg(1, "Failing block at %08x is now empty. Moving to erase_pending_list\n",
547 			  jeb->offset);
548 		list_move(&jeb->list, &c->erase_pending_list);
549 		c->nr_erasing_blocks++;
550 		jffs2_garbage_collect_trigger(c);
551 	}
552 
553 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
554 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
555 
556 	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
557 	jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
558 
559 	spin_unlock(&c->erase_completion_lock);
560 
561 	jffs2_dbg(1, "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n",
562 		  c->wbuf_ofs, c->wbuf_len);
563 
564 }
565 
566 /* Meaning of pad argument:
567    0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
568    1: Pad, do not adjust nextblock free_size
569    2: Pad, adjust nextblock free_size
570 */
571 #define NOPAD		0
572 #define PAD_NOACCOUNT	1
573 #define PAD_ACCOUNTING	2
574 
575 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
576 {
577 	struct jffs2_eraseblock *wbuf_jeb;
578 	int ret;
579 	size_t retlen;
580 
581 	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
582 	   del_timer() the timer we never initialised. */
583 	if (!jffs2_is_writebuffered(c))
584 		return 0;
585 
586 	if (!mutex_is_locked(&c->alloc_sem)) {
587 		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
588 		BUG();
589 	}
590 
591 	if (!c->wbuf_len)	/* already checked c->wbuf above */
592 		return 0;
593 
594 	wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
595 	if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
596 		return -ENOMEM;
597 
598 	/* claim remaining space on the page
599 	   this happens, if we have a change to a new block,
600 	   or if fsync forces us to flush the writebuffer.
601 	   if we have a switch to next page, we will not have
602 	   enough remaining space for this.
603 	*/
604 	if (pad ) {
605 		c->wbuf_len = PAD(c->wbuf_len);
606 
607 		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
608 		   with 8 byte page size */
609 		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
610 
611 		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
612 			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
613 			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
614 			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
615 			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
616 			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
617 		}
618 	}
619 	/* else jffs2_flash_writev has actually filled in the rest of the
620 	   buffer for us, and will deal with the node refs etc. later. */
621 
622 #ifdef BREAKME
623 	static int breakme;
624 	if (breakme++ == 20) {
625 		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
626 		breakme = 0;
627 		mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
628 			  brokenbuf);
629 		ret = -EIO;
630 	} else
631 #endif
632 
633 		ret = mtd_write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
634 				&retlen, c->wbuf);
635 
636 	if (ret) {
637 		printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n", ret);
638 		goto wfail;
639 	} else if (retlen != c->wbuf_pagesize) {
640 		printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
641 		       retlen, c->wbuf_pagesize);
642 		ret = -EIO;
643 		goto wfail;
644 	} else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) {
645 	wfail:
646 		jffs2_wbuf_recover(c);
647 
648 		return ret;
649 	}
650 
651 	/* Adjust free size of the block if we padded. */
652 	if (pad) {
653 		uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
654 
655 		jffs2_dbg(1, "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
656 			  (wbuf_jeb == c->nextblock) ? "next" : "",
657 			  wbuf_jeb->offset);
658 
659 		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
660 		   padded. If there is less free space in the block than that,
661 		   something screwed up */
662 		if (wbuf_jeb->free_size < waste) {
663 			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
664 			       c->wbuf_ofs, c->wbuf_len, waste);
665 			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
666 			       wbuf_jeb->offset, wbuf_jeb->free_size);
667 			BUG();
668 		}
669 
670 		spin_lock(&c->erase_completion_lock);
671 
672 		jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
673 		/* FIXME: that made it count as dirty. Convert to wasted */
674 		wbuf_jeb->dirty_size -= waste;
675 		c->dirty_size -= waste;
676 		wbuf_jeb->wasted_size += waste;
677 		c->wasted_size += waste;
678 	} else
679 		spin_lock(&c->erase_completion_lock);
680 
681 	/* Stick any now-obsoleted blocks on the erase_pending_list */
682 	jffs2_refile_wbuf_blocks(c);
683 	jffs2_clear_wbuf_ino_list(c);
684 	spin_unlock(&c->erase_completion_lock);
685 
686 	memset(c->wbuf,0xff,c->wbuf_pagesize);
687 	/* adjust write buffer offset, else we get a non contiguous write bug */
688 	c->wbuf_ofs += c->wbuf_pagesize;
689 	c->wbuf_len = 0;
690 	return 0;
691 }
692 
693 /* Trigger garbage collection to flush the write-buffer.
694    If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
695    outstanding. If ino arg non-zero, do it only if a write for the
696    given inode is outstanding. */
697 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
698 {
699 	uint32_t old_wbuf_ofs;
700 	uint32_t old_wbuf_len;
701 	int ret = 0;
702 
703 	jffs2_dbg(1, "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino);
704 
705 	if (!c->wbuf)
706 		return 0;
707 
708 	mutex_lock(&c->alloc_sem);
709 	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
710 		jffs2_dbg(1, "Ino #%d not pending in wbuf. Returning\n", ino);
711 		mutex_unlock(&c->alloc_sem);
712 		return 0;
713 	}
714 
715 	old_wbuf_ofs = c->wbuf_ofs;
716 	old_wbuf_len = c->wbuf_len;
717 
718 	if (c->unchecked_size) {
719 		/* GC won't make any progress for a while */
720 		jffs2_dbg(1, "%s(): padding. Not finished checking\n",
721 			  __func__);
722 		down_write(&c->wbuf_sem);
723 		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
724 		/* retry flushing wbuf in case jffs2_wbuf_recover
725 		   left some data in the wbuf */
726 		if (ret)
727 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
728 		up_write(&c->wbuf_sem);
729 	} else while (old_wbuf_len &&
730 		      old_wbuf_ofs == c->wbuf_ofs) {
731 
732 		mutex_unlock(&c->alloc_sem);
733 
734 		jffs2_dbg(1, "%s(): calls gc pass\n", __func__);
735 
736 		ret = jffs2_garbage_collect_pass(c);
737 		if (ret) {
738 			/* GC failed. Flush it with padding instead */
739 			mutex_lock(&c->alloc_sem);
740 			down_write(&c->wbuf_sem);
741 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
742 			/* retry flushing wbuf in case jffs2_wbuf_recover
743 			   left some data in the wbuf */
744 			if (ret)
745 				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
746 			up_write(&c->wbuf_sem);
747 			break;
748 		}
749 		mutex_lock(&c->alloc_sem);
750 	}
751 
752 	jffs2_dbg(1, "%s(): ends...\n", __func__);
753 
754 	mutex_unlock(&c->alloc_sem);
755 	return ret;
756 }
757 
758 /* Pad write-buffer to end and write it, wasting space. */
759 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
760 {
761 	int ret;
762 
763 	if (!c->wbuf)
764 		return 0;
765 
766 	down_write(&c->wbuf_sem);
767 	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
768 	/* retry - maybe wbuf recover left some data in wbuf. */
769 	if (ret)
770 		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
771 	up_write(&c->wbuf_sem);
772 
773 	return ret;
774 }
775 
776 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
777 			      size_t len)
778 {
779 	if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
780 		return 0;
781 
782 	if (len > (c->wbuf_pagesize - c->wbuf_len))
783 		len = c->wbuf_pagesize - c->wbuf_len;
784 	memcpy(c->wbuf + c->wbuf_len, buf, len);
785 	c->wbuf_len += (uint32_t) len;
786 	return len;
787 }
788 
789 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
790 		       unsigned long count, loff_t to, size_t *retlen,
791 		       uint32_t ino)
792 {
793 	struct jffs2_eraseblock *jeb;
794 	size_t wbuf_retlen, donelen = 0;
795 	uint32_t outvec_to = to;
796 	int ret, invec;
797 
798 	/* If not writebuffered flash, don't bother */
799 	if (!jffs2_is_writebuffered(c))
800 		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
801 
802 	down_write(&c->wbuf_sem);
803 
804 	/* If wbuf_ofs is not initialized, set it to target address */
805 	if (c->wbuf_ofs == 0xFFFFFFFF) {
806 		c->wbuf_ofs = PAGE_DIV(to);
807 		c->wbuf_len = PAGE_MOD(to);
808 		memset(c->wbuf,0xff,c->wbuf_pagesize);
809 	}
810 
811 	/*
812 	 * Sanity checks on target address.  It's permitted to write
813 	 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
814 	 * write at the beginning of a new erase block. Anything else,
815 	 * and you die.  New block starts at xxx000c (0-b = block
816 	 * header)
817 	 */
818 	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
819 		/* It's a write to a new block */
820 		if (c->wbuf_len) {
821 			jffs2_dbg(1, "%s(): to 0x%lx causes flush of wbuf at 0x%08x\n",
822 				  __func__, (unsigned long)to, c->wbuf_ofs);
823 			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
824 			if (ret)
825 				goto outerr;
826 		}
827 		/* set pointer to new block */
828 		c->wbuf_ofs = PAGE_DIV(to);
829 		c->wbuf_len = PAGE_MOD(to);
830 	}
831 
832 	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
833 		/* We're not writing immediately after the writebuffer. Bad. */
834 		printk(KERN_CRIT "%s(): Non-contiguous write to %08lx\n",
835 		       __func__, (unsigned long)to);
836 		if (c->wbuf_len)
837 			printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
838 			       c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
839 		BUG();
840 	}
841 
842 	/* adjust alignment offset */
843 	if (c->wbuf_len != PAGE_MOD(to)) {
844 		c->wbuf_len = PAGE_MOD(to);
845 		/* take care of alignment to next page */
846 		if (!c->wbuf_len) {
847 			c->wbuf_len = c->wbuf_pagesize;
848 			ret = __jffs2_flush_wbuf(c, NOPAD);
849 			if (ret)
850 				goto outerr;
851 		}
852 	}
853 
854 	for (invec = 0; invec < count; invec++) {
855 		int vlen = invecs[invec].iov_len;
856 		uint8_t *v = invecs[invec].iov_base;
857 
858 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
859 
860 		if (c->wbuf_len == c->wbuf_pagesize) {
861 			ret = __jffs2_flush_wbuf(c, NOPAD);
862 			if (ret)
863 				goto outerr;
864 		}
865 		vlen -= wbuf_retlen;
866 		outvec_to += wbuf_retlen;
867 		donelen += wbuf_retlen;
868 		v += wbuf_retlen;
869 
870 		if (vlen >= c->wbuf_pagesize) {
871 			ret = mtd_write(c->mtd, outvec_to, PAGE_DIV(vlen),
872 					&wbuf_retlen, v);
873 			if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
874 				goto outfile;
875 
876 			vlen -= wbuf_retlen;
877 			outvec_to += wbuf_retlen;
878 			c->wbuf_ofs = outvec_to;
879 			donelen += wbuf_retlen;
880 			v += wbuf_retlen;
881 		}
882 
883 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
884 		if (c->wbuf_len == c->wbuf_pagesize) {
885 			ret = __jffs2_flush_wbuf(c, NOPAD);
886 			if (ret)
887 				goto outerr;
888 		}
889 
890 		outvec_to += wbuf_retlen;
891 		donelen += wbuf_retlen;
892 	}
893 
894 	/*
895 	 * If there's a remainder in the wbuf and it's a non-GC write,
896 	 * remember that the wbuf affects this ino
897 	 */
898 	*retlen = donelen;
899 
900 	if (jffs2_sum_active()) {
901 		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
902 		if (res)
903 			return res;
904 	}
905 
906 	if (c->wbuf_len && ino)
907 		jffs2_wbuf_dirties_inode(c, ino);
908 
909 	ret = 0;
910 	up_write(&c->wbuf_sem);
911 	return ret;
912 
913 outfile:
914 	/*
915 	 * At this point we have no problem, c->wbuf is empty. However
916 	 * refile nextblock to avoid writing again to same address.
917 	 */
918 
919 	spin_lock(&c->erase_completion_lock);
920 
921 	jeb = &c->blocks[outvec_to / c->sector_size];
922 	jffs2_block_refile(c, jeb, REFILE_ANYWAY);
923 
924 	spin_unlock(&c->erase_completion_lock);
925 
926 outerr:
927 	*retlen = 0;
928 	up_write(&c->wbuf_sem);
929 	return ret;
930 }
931 
932 /*
933  *	This is the entry for flash write.
934  *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
935 */
936 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
937 		      size_t *retlen, const u_char *buf)
938 {
939 	struct kvec vecs[1];
940 
941 	if (!jffs2_is_writebuffered(c))
942 		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
943 
944 	vecs[0].iov_base = (unsigned char *) buf;
945 	vecs[0].iov_len = len;
946 	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
947 }
948 
949 /*
950 	Handle readback from writebuffer and ECC failure return
951 */
952 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
953 {
954 	loff_t	orbf = 0, owbf = 0, lwbf = 0;
955 	int	ret;
956 
957 	if (!jffs2_is_writebuffered(c))
958 		return mtd_read(c->mtd, ofs, len, retlen, buf);
959 
960 	/* Read flash */
961 	down_read(&c->wbuf_sem);
962 	ret = mtd_read(c->mtd, ofs, len, retlen, buf);
963 
964 	if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
965 		if (ret == -EBADMSG)
966 			printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
967 			       " returned ECC error\n", len, ofs);
968 		/*
969 		 * We have the raw data without ECC correction in the buffer,
970 		 * maybe we are lucky and all data or parts are correct. We
971 		 * check the node.  If data are corrupted node check will sort
972 		 * it out.  We keep this block, it will fail on write or erase
973 		 * and the we mark it bad. Or should we do that now? But we
974 		 * should give him a chance.  Maybe we had a system crash or
975 		 * power loss before the ecc write or a erase was completed.
976 		 * So we return success. :)
977 		 */
978 		ret = 0;
979 	}
980 
981 	/* if no writebuffer available or write buffer empty, return */
982 	if (!c->wbuf_pagesize || !c->wbuf_len)
983 		goto exit;
984 
985 	/* if we read in a different block, return */
986 	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
987 		goto exit;
988 
989 	if (ofs >= c->wbuf_ofs) {
990 		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
991 		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
992 			goto exit;
993 		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
994 		if (lwbf > len)
995 			lwbf = len;
996 	} else {
997 		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
998 		if (orbf > len)			/* is write beyond write buffer ? */
999 			goto exit;
1000 		lwbf = len - orbf;		/* number of bytes to copy */
1001 		if (lwbf > c->wbuf_len)
1002 			lwbf = c->wbuf_len;
1003 	}
1004 	if (lwbf > 0)
1005 		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
1006 
1007 exit:
1008 	up_read(&c->wbuf_sem);
1009 	return ret;
1010 }
1011 
1012 #define NR_OOB_SCAN_PAGES 4
1013 
1014 /* For historical reasons we use only 8 bytes for OOB clean marker */
1015 #define OOB_CM_SIZE 8
1016 
1017 static const struct jffs2_unknown_node oob_cleanmarker =
1018 {
1019 	.magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
1020 	.nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
1021 	.totlen = constant_cpu_to_je32(8)
1022 };
1023 
1024 /*
1025  * Check, if the out of band area is empty. This function knows about the clean
1026  * marker and if it is present in OOB, treats the OOB as empty anyway.
1027  */
1028 int jffs2_check_oob_empty(struct jffs2_sb_info *c,
1029 			  struct jffs2_eraseblock *jeb, int mode)
1030 {
1031 	int i, ret;
1032 	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1033 	struct mtd_oob_ops ops;
1034 
1035 	ops.mode = MTD_OPS_AUTO_OOB;
1036 	ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
1037 	ops.oobbuf = c->oobbuf;
1038 	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1039 	ops.datbuf = NULL;
1040 
1041 	ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1042 	if (ret || ops.oobretlen != ops.ooblen) {
1043 		printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1044 				" bytes, read %zd bytes, error %d\n",
1045 				jeb->offset, ops.ooblen, ops.oobretlen, ret);
1046 		if (!ret)
1047 			ret = -EIO;
1048 		return ret;
1049 	}
1050 
1051 	for(i = 0; i < ops.ooblen; i++) {
1052 		if (mode && i < cmlen)
1053 			/* Yeah, we know about the cleanmarker */
1054 			continue;
1055 
1056 		if (ops.oobbuf[i] != 0xFF) {
1057 			jffs2_dbg(2, "Found %02x at %x in OOB for "
1058 				  "%08x\n", ops.oobbuf[i], i, jeb->offset);
1059 			return 1;
1060 		}
1061 	}
1062 
1063 	return 0;
1064 }
1065 
1066 /*
1067  * Check for a valid cleanmarker.
1068  * Returns: 0 if a valid cleanmarker was found
1069  *	    1 if no cleanmarker was found
1070  *	    negative error code if an error occurred
1071  */
1072 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1073 				 struct jffs2_eraseblock *jeb)
1074 {
1075 	struct mtd_oob_ops ops;
1076 	int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1077 
1078 	ops.mode = MTD_OPS_AUTO_OOB;
1079 	ops.ooblen = cmlen;
1080 	ops.oobbuf = c->oobbuf;
1081 	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1082 	ops.datbuf = NULL;
1083 
1084 	ret = mtd_read_oob(c->mtd, jeb->offset, &ops);
1085 	if (ret || ops.oobretlen != ops.ooblen) {
1086 		printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1087 				" bytes, read %zd bytes, error %d\n",
1088 				jeb->offset, ops.ooblen, ops.oobretlen, ret);
1089 		if (!ret)
1090 			ret = -EIO;
1091 		return ret;
1092 	}
1093 
1094 	return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1095 }
1096 
1097 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1098 				 struct jffs2_eraseblock *jeb)
1099 {
1100 	int ret;
1101 	struct mtd_oob_ops ops;
1102 	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1103 
1104 	ops.mode = MTD_OPS_AUTO_OOB;
1105 	ops.ooblen = cmlen;
1106 	ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1107 	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1108 	ops.datbuf = NULL;
1109 
1110 	ret = mtd_write_oob(c->mtd, jeb->offset, &ops);
1111 	if (ret || ops.oobretlen != ops.ooblen) {
1112 		printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd"
1113 				" bytes, read %zd bytes, error %d\n",
1114 				jeb->offset, ops.ooblen, ops.oobretlen, ret);
1115 		if (!ret)
1116 			ret = -EIO;
1117 		return ret;
1118 	}
1119 
1120 	return 0;
1121 }
1122 
1123 /*
1124  * On NAND we try to mark this block bad. If the block was erased more
1125  * than MAX_ERASE_FAILURES we mark it finally bad.
1126  * Don't care about failures. This block remains on the erase-pending
1127  * or badblock list as long as nobody manipulates the flash with
1128  * a bootloader or something like that.
1129  */
1130 
1131 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1132 {
1133 	int 	ret;
1134 
1135 	/* if the count is < max, we try to write the counter to the 2nd page oob area */
1136 	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1137 		return 0;
1138 
1139 	printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset);
1140 	ret = mtd_block_markbad(c->mtd, bad_offset);
1141 
1142 	if (ret) {
1143 		jffs2_dbg(1, "%s(): Write failed for block at %08x: error %d\n",
1144 			  __func__, jeb->offset, ret);
1145 		return ret;
1146 	}
1147 	return 1;
1148 }
1149 
1150 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1151 {
1152 	struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1153 
1154 	if (!c->mtd->oobsize)
1155 		return 0;
1156 
1157 	/* Cleanmarker is out-of-band, so inline size zero */
1158 	c->cleanmarker_size = 0;
1159 
1160 	if (!oinfo || oinfo->oobavail == 0) {
1161 		printk(KERN_ERR "inconsistent device description\n");
1162 		return -EINVAL;
1163 	}
1164 
1165 	jffs2_dbg(1, "JFFS2 using OOB on NAND\n");
1166 
1167 	c->oobavail = oinfo->oobavail;
1168 
1169 	/* Initialise write buffer */
1170 	init_rwsem(&c->wbuf_sem);
1171 	c->wbuf_pagesize = c->mtd->writesize;
1172 	c->wbuf_ofs = 0xFFFFFFFF;
1173 
1174 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1175 	if (!c->wbuf)
1176 		return -ENOMEM;
1177 
1178 	c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
1179 	if (!c->oobbuf) {
1180 		kfree(c->wbuf);
1181 		return -ENOMEM;
1182 	}
1183 
1184 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1185 	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1186 	if (!c->wbuf_verify) {
1187 		kfree(c->oobbuf);
1188 		kfree(c->wbuf);
1189 		return -ENOMEM;
1190 	}
1191 #endif
1192 	return 0;
1193 }
1194 
1195 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1196 {
1197 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1198 	kfree(c->wbuf_verify);
1199 #endif
1200 	kfree(c->wbuf);
1201 	kfree(c->oobbuf);
1202 }
1203 
1204 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1205 	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
1206 
1207 	/* Initialize write buffer */
1208 	init_rwsem(&c->wbuf_sem);
1209 
1210 
1211 	c->wbuf_pagesize =  c->mtd->erasesize;
1212 
1213 	/* Find a suitable c->sector_size
1214 	 * - Not too much sectors
1215 	 * - Sectors have to be at least 4 K + some bytes
1216 	 * - All known dataflashes have erase sizes of 528 or 1056
1217 	 * - we take at least 8 eraseblocks and want to have at least 8K size
1218 	 * - The concatenation should be a power of 2
1219 	*/
1220 
1221 	c->sector_size = 8 * c->mtd->erasesize;
1222 
1223 	while (c->sector_size < 8192) {
1224 		c->sector_size *= 2;
1225 	}
1226 
1227 	/* It may be necessary to adjust the flash size */
1228 	c->flash_size = c->mtd->size;
1229 
1230 	if ((c->flash_size % c->sector_size) != 0) {
1231 		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1232 		printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1233 	};
1234 
1235 	c->wbuf_ofs = 0xFFFFFFFF;
1236 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1237 	if (!c->wbuf)
1238 		return -ENOMEM;
1239 
1240 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1241 	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1242 	if (!c->wbuf_verify) {
1243 		kfree(c->oobbuf);
1244 		kfree(c->wbuf);
1245 		return -ENOMEM;
1246 	}
1247 #endif
1248 
1249 	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1250 
1251 	return 0;
1252 }
1253 
1254 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1255 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1256 	kfree(c->wbuf_verify);
1257 #endif
1258 	kfree(c->wbuf);
1259 }
1260 
1261 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1262 	/* Cleanmarker currently occupies whole programming regions,
1263 	 * either one or 2 for 8Byte STMicro flashes. */
1264 	c->cleanmarker_size = max(16u, c->mtd->writesize);
1265 
1266 	/* Initialize write buffer */
1267 	init_rwsem(&c->wbuf_sem);
1268 	c->wbuf_pagesize = c->mtd->writesize;
1269 	c->wbuf_ofs = 0xFFFFFFFF;
1270 
1271 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1272 	if (!c->wbuf)
1273 		return -ENOMEM;
1274 
1275 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1276 	c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1277 	if (!c->wbuf_verify) {
1278 		kfree(c->wbuf);
1279 		return -ENOMEM;
1280 	}
1281 #endif
1282 	return 0;
1283 }
1284 
1285 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1286 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY
1287 	kfree(c->wbuf_verify);
1288 #endif
1289 	kfree(c->wbuf);
1290 }
1291 
1292 int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1293 	c->cleanmarker_size = 0;
1294 
1295 	if (c->mtd->writesize == 1)
1296 		/* We do not need write-buffer */
1297 		return 0;
1298 
1299 	init_rwsem(&c->wbuf_sem);
1300 
1301 	c->wbuf_pagesize =  c->mtd->writesize;
1302 	c->wbuf_ofs = 0xFFFFFFFF;
1303 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1304 	if (!c->wbuf)
1305 		return -ENOMEM;
1306 
1307 	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1308 
1309 	return 0;
1310 }
1311 
1312 void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1313 	kfree(c->wbuf);
1314 }
1315