xref: /openbmc/linux/fs/jffs2/wbuf.c (revision 87c2ce3b)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright (C) 2001-2003 Red Hat, Inc.
5  * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Created by David Woodhouse <dwmw2@infradead.org>
8  * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9  *
10  * For licensing information, see the file 'LICENCE' in this directory.
11  *
12  * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $
13  *
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/slab.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/crc32.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/jiffies.h>
22 
23 #include "nodelist.h"
24 
25 /* For testing write failures */
26 #undef BREAKME
27 #undef BREAKMEHEADER
28 
29 #ifdef BREAKME
30 static unsigned char *brokenbuf;
31 #endif
32 
33 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
34 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
35 
36 /* max. erase failures before we mark a block bad */
37 #define MAX_ERASE_FAILURES 	2
38 
39 struct jffs2_inodirty {
40 	uint32_t ino;
41 	struct jffs2_inodirty *next;
42 };
43 
44 static struct jffs2_inodirty inodirty_nomem;
45 
46 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
47 {
48 	struct jffs2_inodirty *this = c->wbuf_inodes;
49 
50 	/* If a malloc failed, consider _everything_ dirty */
51 	if (this == &inodirty_nomem)
52 		return 1;
53 
54 	/* If ino == 0, _any_ non-GC writes mean 'yes' */
55 	if (this && !ino)
56 		return 1;
57 
58 	/* Look to see if the inode in question is pending in the wbuf */
59 	while (this) {
60 		if (this->ino == ino)
61 			return 1;
62 		this = this->next;
63 	}
64 	return 0;
65 }
66 
67 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
68 {
69 	struct jffs2_inodirty *this;
70 
71 	this = c->wbuf_inodes;
72 
73 	if (this != &inodirty_nomem) {
74 		while (this) {
75 			struct jffs2_inodirty *next = this->next;
76 			kfree(this);
77 			this = next;
78 		}
79 	}
80 	c->wbuf_inodes = NULL;
81 }
82 
83 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
84 {
85 	struct jffs2_inodirty *new;
86 
87 	/* Mark the superblock dirty so that kupdated will flush... */
88 	jffs2_erase_pending_trigger(c);
89 
90 	if (jffs2_wbuf_pending_for_ino(c, ino))
91 		return;
92 
93 	new = kmalloc(sizeof(*new), GFP_KERNEL);
94 	if (!new) {
95 		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
96 		jffs2_clear_wbuf_ino_list(c);
97 		c->wbuf_inodes = &inodirty_nomem;
98 		return;
99 	}
100 	new->ino = ino;
101 	new->next = c->wbuf_inodes;
102 	c->wbuf_inodes = new;
103 	return;
104 }
105 
106 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
107 {
108 	struct list_head *this, *next;
109 	static int n;
110 
111 	if (list_empty(&c->erasable_pending_wbuf_list))
112 		return;
113 
114 	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
115 		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
116 
117 		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
118 		list_del(this);
119 		if ((jiffies + (n++)) & 127) {
120 			/* Most of the time, we just erase it immediately. Otherwise we
121 			   spend ages scanning it on mount, etc. */
122 			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
123 			list_add_tail(&jeb->list, &c->erase_pending_list);
124 			c->nr_erasing_blocks++;
125 			jffs2_erase_pending_trigger(c);
126 		} else {
127 			/* Sometimes, however, we leave it elsewhere so it doesn't get
128 			   immediately reused, and we spread the load a bit. */
129 			D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
130 			list_add_tail(&jeb->list, &c->erasable_list);
131 		}
132 	}
133 }
134 
135 #define REFILE_NOTEMPTY 0
136 #define REFILE_ANYWAY   1
137 
138 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
139 {
140 	D1(printk("About to refile bad block at %08x\n", jeb->offset));
141 
142 	/* File the existing block on the bad_used_list.... */
143 	if (c->nextblock == jeb)
144 		c->nextblock = NULL;
145 	else /* Not sure this should ever happen... need more coffee */
146 		list_del(&jeb->list);
147 	if (jeb->first_node) {
148 		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
149 		list_add(&jeb->list, &c->bad_used_list);
150 	} else {
151 		BUG_ON(allow_empty == REFILE_NOTEMPTY);
152 		/* It has to have had some nodes or we couldn't be here */
153 		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
154 		list_add(&jeb->list, &c->erase_pending_list);
155 		c->nr_erasing_blocks++;
156 		jffs2_erase_pending_trigger(c);
157 	}
158 
159 	/* Adjust its size counts accordingly */
160 	c->wasted_size += jeb->free_size;
161 	c->free_size -= jeb->free_size;
162 	jeb->wasted_size += jeb->free_size;
163 	jeb->free_size = 0;
164 
165 	jffs2_dbg_dump_block_lists_nolock(c);
166 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
167 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
168 }
169 
170 /* Recover from failure to write wbuf. Recover the nodes up to the
171  * wbuf, not the one which we were starting to try to write. */
172 
173 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
174 {
175 	struct jffs2_eraseblock *jeb, *new_jeb;
176 	struct jffs2_raw_node_ref **first_raw, **raw;
177 	size_t retlen;
178 	int ret;
179 	unsigned char *buf;
180 	uint32_t start, end, ofs, len;
181 
182 	spin_lock(&c->erase_completion_lock);
183 
184 	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
185 
186 	jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
187 
188 	/* Find the first node to be recovered, by skipping over every
189 	   node which ends before the wbuf starts, or which is obsolete. */
190 	first_raw = &jeb->first_node;
191 	while (*first_raw &&
192 	       (ref_obsolete(*first_raw) ||
193 		(ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) {
194 		D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
195 			  ref_offset(*first_raw), ref_flags(*first_raw),
196 			  (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)),
197 			  c->wbuf_ofs));
198 		first_raw = &(*first_raw)->next_phys;
199 	}
200 
201 	if (!*first_raw) {
202 		/* All nodes were obsolete. Nothing to recover. */
203 		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
204 		spin_unlock(&c->erase_completion_lock);
205 		return;
206 	}
207 
208 	start = ref_offset(*first_raw);
209 	end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw);
210 
211 	/* Find the last node to be recovered */
212 	raw = first_raw;
213 	while ((*raw)) {
214 		if (!ref_obsolete(*raw))
215 			end = ref_offset(*raw) + ref_totlen(c, jeb, *raw);
216 
217 		raw = &(*raw)->next_phys;
218 	}
219 	spin_unlock(&c->erase_completion_lock);
220 
221 	D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end));
222 
223 	buf = NULL;
224 	if (start < c->wbuf_ofs) {
225 		/* First affected node was already partially written.
226 		 * Attempt to reread the old data into our buffer. */
227 
228 		buf = kmalloc(end - start, GFP_KERNEL);
229 		if (!buf) {
230 			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
231 
232 			goto read_failed;
233 		}
234 
235 		/* Do the read... */
236 		if (jffs2_cleanmarker_oob(c))
237 			ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo);
238 		else
239 			ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
240 
241 		if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) {
242 			/* ECC recovered */
243 			ret = 0;
244 		}
245 		if (ret || retlen != c->wbuf_ofs - start) {
246 			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
247 
248 			kfree(buf);
249 			buf = NULL;
250 		read_failed:
251 			first_raw = &(*first_raw)->next_phys;
252 			/* If this was the only node to be recovered, give up */
253 			if (!(*first_raw))
254 				return;
255 
256 			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
257 			start = ref_offset(*first_raw);
258 		} else {
259 			/* Read succeeded. Copy the remaining data from the wbuf */
260 			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
261 		}
262 	}
263 	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
264 	   Either 'buf' contains the data, or we find it in the wbuf */
265 
266 
267 	/* ... and get an allocation of space from a shiny new block instead */
268 	ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len, JFFS2_SUMMARY_NOSUM_SIZE);
269 	if (ret) {
270 		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
271 		kfree(buf);
272 		return;
273 	}
274 	if (end-start >= c->wbuf_pagesize) {
275 		/* Need to do another write immediately, but it's possible
276 		   that this is just because the wbuf itself is completely
277 		   full, and there's nothing earlier read back from the
278 		   flash. Hence 'buf' isn't necessarily what we're writing
279 		   from. */
280 		unsigned char *rewrite_buf = buf?:c->wbuf;
281 		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
282 
283 		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
284 			  towrite, ofs));
285 
286 #ifdef BREAKMEHEADER
287 		static int breakme;
288 		if (breakme++ == 20) {
289 			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
290 			breakme = 0;
291 			c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
292 					  brokenbuf, NULL, c->oobinfo);
293 			ret = -EIO;
294 		} else
295 #endif
296 		if (jffs2_cleanmarker_oob(c))
297 			ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen,
298 						rewrite_buf, NULL, c->oobinfo);
299 		else
300 			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf);
301 
302 		if (ret || retlen != towrite) {
303 			/* Argh. We tried. Really we did. */
304 			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
305 			kfree(buf);
306 
307 			if (retlen) {
308 				struct jffs2_raw_node_ref *raw2;
309 
310 				raw2 = jffs2_alloc_raw_node_ref();
311 				if (!raw2)
312 					return;
313 
314 				raw2->flash_offset = ofs | REF_OBSOLETE;
315 				raw2->__totlen = ref_totlen(c, jeb, *first_raw);
316 				raw2->next_phys = NULL;
317 				raw2->next_in_ino = NULL;
318 
319 				jffs2_add_physical_node_ref(c, raw2);
320 			}
321 			return;
322 		}
323 		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
324 
325 		c->wbuf_len = (end - start) - towrite;
326 		c->wbuf_ofs = ofs + towrite;
327 		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
328 		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
329 		kfree(buf);
330 	} else {
331 		/* OK, now we're left with the dregs in whichever buffer we're using */
332 		if (buf) {
333 			memcpy(c->wbuf, buf, end-start);
334 			kfree(buf);
335 		} else {
336 			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
337 		}
338 		c->wbuf_ofs = ofs;
339 		c->wbuf_len = end - start;
340 	}
341 
342 	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
343 	new_jeb = &c->blocks[ofs / c->sector_size];
344 
345 	spin_lock(&c->erase_completion_lock);
346 	if (new_jeb->first_node) {
347 		/* Odd, but possible with ST flash later maybe */
348 		new_jeb->last_node->next_phys = *first_raw;
349 	} else {
350 		new_jeb->first_node = *first_raw;
351 	}
352 
353 	raw = first_raw;
354 	while (*raw) {
355 		uint32_t rawlen = ref_totlen(c, jeb, *raw);
356 
357 		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
358 			  rawlen, ref_offset(*raw), ref_flags(*raw), ofs));
359 
360 		if (ref_obsolete(*raw)) {
361 			/* Shouldn't really happen much */
362 			new_jeb->dirty_size += rawlen;
363 			new_jeb->free_size -= rawlen;
364 			c->dirty_size += rawlen;
365 		} else {
366 			new_jeb->used_size += rawlen;
367 			new_jeb->free_size -= rawlen;
368 			jeb->dirty_size += rawlen;
369 			jeb->used_size  -= rawlen;
370 			c->dirty_size += rawlen;
371 		}
372 		c->free_size -= rawlen;
373 		(*raw)->flash_offset = ofs | ref_flags(*raw);
374 		ofs += rawlen;
375 		new_jeb->last_node = *raw;
376 
377 		raw = &(*raw)->next_phys;
378 	}
379 
380 	/* Fix up the original jeb now it's on the bad_list */
381 	*first_raw = NULL;
382 	if (first_raw == &jeb->first_node) {
383 		jeb->last_node = NULL;
384 		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
385 		list_del(&jeb->list);
386 		list_add(&jeb->list, &c->erase_pending_list);
387 		c->nr_erasing_blocks++;
388 		jffs2_erase_pending_trigger(c);
389 	}
390 	else
391 		jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys);
392 
393 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
394         jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
395 
396 	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
397         jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
398 
399 	spin_unlock(&c->erase_completion_lock);
400 
401 	D1(printk(KERN_DEBUG "wbuf recovery completed OK\n"));
402 }
403 
404 /* Meaning of pad argument:
405    0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
406    1: Pad, do not adjust nextblock free_size
407    2: Pad, adjust nextblock free_size
408 */
409 #define NOPAD		0
410 #define PAD_NOACCOUNT	1
411 #define PAD_ACCOUNTING	2
412 
413 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
414 {
415 	int ret;
416 	size_t retlen;
417 
418 	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
419 	   del_timer() the timer we never initialised. */
420 	if (!jffs2_is_writebuffered(c))
421 		return 0;
422 
423 	if (!down_trylock(&c->alloc_sem)) {
424 		up(&c->alloc_sem);
425 		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
426 		BUG();
427 	}
428 
429 	if (!c->wbuf_len)	/* already checked c->wbuf above */
430 		return 0;
431 
432 	/* claim remaining space on the page
433 	   this happens, if we have a change to a new block,
434 	   or if fsync forces us to flush the writebuffer.
435 	   if we have a switch to next page, we will not have
436 	   enough remaining space for this.
437 	*/
438 	if (pad ) {
439 		c->wbuf_len = PAD(c->wbuf_len);
440 
441 		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
442 		   with 8 byte page size */
443 		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
444 
445 		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
446 			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
447 			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
448 			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
449 			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
450 			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
451 		}
452 	}
453 	/* else jffs2_flash_writev has actually filled in the rest of the
454 	   buffer for us, and will deal with the node refs etc. later. */
455 
456 #ifdef BREAKME
457 	static int breakme;
458 	if (breakme++ == 20) {
459 		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
460 		breakme = 0;
461 		c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize,
462 					&retlen, brokenbuf, NULL, c->oobinfo);
463 		ret = -EIO;
464 	} else
465 #endif
466 
467 	if (jffs2_cleanmarker_oob(c))
468 		ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo);
469 	else
470 		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
471 
472 	if (ret || retlen != c->wbuf_pagesize) {
473 		if (ret)
474 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
475 		else {
476 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
477 				retlen, c->wbuf_pagesize);
478 			ret = -EIO;
479 		}
480 
481 		jffs2_wbuf_recover(c);
482 
483 		return ret;
484 	}
485 
486 	spin_lock(&c->erase_completion_lock);
487 
488 	/* Adjust free size of the block if we padded. */
489 	if (pad) {
490 		struct jffs2_eraseblock *jeb;
491 
492 		jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
493 
494 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
495 			  (jeb==c->nextblock)?"next":"", jeb->offset));
496 
497 		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
498 		   padded. If there is less free space in the block than that,
499 		   something screwed up */
500 		if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) {
501 			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
502 			       c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len);
503 			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
504 			       jeb->offset, jeb->free_size);
505 			BUG();
506 		}
507 		jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len);
508 		c->free_size -= (c->wbuf_pagesize - c->wbuf_len);
509 		jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
510 		c->wasted_size += (c->wbuf_pagesize - c->wbuf_len);
511 	}
512 
513 	/* Stick any now-obsoleted blocks on the erase_pending_list */
514 	jffs2_refile_wbuf_blocks(c);
515 	jffs2_clear_wbuf_ino_list(c);
516 	spin_unlock(&c->erase_completion_lock);
517 
518 	memset(c->wbuf,0xff,c->wbuf_pagesize);
519 	/* adjust write buffer offset, else we get a non contiguous write bug */
520 	c->wbuf_ofs += c->wbuf_pagesize;
521 	c->wbuf_len = 0;
522 	return 0;
523 }
524 
525 /* Trigger garbage collection to flush the write-buffer.
526    If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
527    outstanding. If ino arg non-zero, do it only if a write for the
528    given inode is outstanding. */
529 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
530 {
531 	uint32_t old_wbuf_ofs;
532 	uint32_t old_wbuf_len;
533 	int ret = 0;
534 
535 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
536 
537 	if (!c->wbuf)
538 		return 0;
539 
540 	down(&c->alloc_sem);
541 	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
542 		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
543 		up(&c->alloc_sem);
544 		return 0;
545 	}
546 
547 	old_wbuf_ofs = c->wbuf_ofs;
548 	old_wbuf_len = c->wbuf_len;
549 
550 	if (c->unchecked_size) {
551 		/* GC won't make any progress for a while */
552 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
553 		down_write(&c->wbuf_sem);
554 		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
555 		/* retry flushing wbuf in case jffs2_wbuf_recover
556 		   left some data in the wbuf */
557 		if (ret)
558 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
559 		up_write(&c->wbuf_sem);
560 	} else while (old_wbuf_len &&
561 		      old_wbuf_ofs == c->wbuf_ofs) {
562 
563 		up(&c->alloc_sem);
564 
565 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
566 
567 		ret = jffs2_garbage_collect_pass(c);
568 		if (ret) {
569 			/* GC failed. Flush it with padding instead */
570 			down(&c->alloc_sem);
571 			down_write(&c->wbuf_sem);
572 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
573 			/* retry flushing wbuf in case jffs2_wbuf_recover
574 			   left some data in the wbuf */
575 			if (ret)
576 				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
577 			up_write(&c->wbuf_sem);
578 			break;
579 		}
580 		down(&c->alloc_sem);
581 	}
582 
583 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
584 
585 	up(&c->alloc_sem);
586 	return ret;
587 }
588 
589 /* Pad write-buffer to end and write it, wasting space. */
590 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
591 {
592 	int ret;
593 
594 	if (!c->wbuf)
595 		return 0;
596 
597 	down_write(&c->wbuf_sem);
598 	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
599 	/* retry - maybe wbuf recover left some data in wbuf. */
600 	if (ret)
601 		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
602 	up_write(&c->wbuf_sem);
603 
604 	return ret;
605 }
606 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino)
607 {
608 	struct kvec outvecs[3];
609 	uint32_t totlen = 0;
610 	uint32_t split_ofs = 0;
611 	uint32_t old_totlen;
612 	int ret, splitvec = -1;
613 	int invec, outvec;
614 	size_t wbuf_retlen;
615 	unsigned char *wbuf_ptr;
616 	size_t donelen = 0;
617 	uint32_t outvec_to = to;
618 
619 	/* If not NAND flash, don't bother */
620 	if (!jffs2_is_writebuffered(c))
621 		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
622 
623 	down_write(&c->wbuf_sem);
624 
625 	/* If wbuf_ofs is not initialized, set it to target address */
626 	if (c->wbuf_ofs == 0xFFFFFFFF) {
627 		c->wbuf_ofs = PAGE_DIV(to);
628 		c->wbuf_len = PAGE_MOD(to);
629 		memset(c->wbuf,0xff,c->wbuf_pagesize);
630 	}
631 
632 	/* Fixup the wbuf if we are moving to a new eraseblock.  The checks below
633 	   fail for ECC'd NOR because cleanmarker == 16, so a block starts at
634 	   xxx0010.  */
635 	if (jffs2_nor_ecc(c)) {
636 		if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) {
637 			c->wbuf_ofs = PAGE_DIV(to);
638 			c->wbuf_len = PAGE_MOD(to);
639 			memset(c->wbuf,0xff,c->wbuf_pagesize);
640 		}
641 	}
642 
643 	/* Sanity checks on target address.
644 	   It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs),
645 	   and it's permitted to write at the beginning of a new
646 	   erase block. Anything else, and you die.
647 	   New block starts at xxx000c (0-b = block header)
648 	*/
649 	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
650 		/* It's a write to a new block */
651 		if (c->wbuf_len) {
652 			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs));
653 			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
654 			if (ret) {
655 				/* the underlying layer has to check wbuf_len to do the cleanup */
656 				D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
657 				*retlen = 0;
658 				goto exit;
659 			}
660 		}
661 		/* set pointer to new block */
662 		c->wbuf_ofs = PAGE_DIV(to);
663 		c->wbuf_len = PAGE_MOD(to);
664 	}
665 
666 	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
667 		/* We're not writing immediately after the writebuffer. Bad. */
668 		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to);
669 		if (c->wbuf_len)
670 			printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
671 					  c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
672 		BUG();
673 	}
674 
675 	/* Note outvecs[3] above. We know count is never greater than 2 */
676 	if (count > 2) {
677 		printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count);
678 		BUG();
679 	}
680 
681 	invec = 0;
682 	outvec = 0;
683 
684 	/* Fill writebuffer first, if already in use */
685 	if (c->wbuf_len) {
686 		uint32_t invec_ofs = 0;
687 
688 		/* adjust alignment offset */
689 		if (c->wbuf_len != PAGE_MOD(to)) {
690 			c->wbuf_len = PAGE_MOD(to);
691 			/* take care of alignment to next page */
692 			if (!c->wbuf_len)
693 				c->wbuf_len = c->wbuf_pagesize;
694 		}
695 
696 		while(c->wbuf_len < c->wbuf_pagesize) {
697 			uint32_t thislen;
698 
699 			if (invec == count)
700 				goto alldone;
701 
702 			thislen = c->wbuf_pagesize - c->wbuf_len;
703 
704 			if (thislen >= invecs[invec].iov_len)
705 				thislen = invecs[invec].iov_len;
706 
707 			invec_ofs = thislen;
708 
709 			memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen);
710 			c->wbuf_len += thislen;
711 			donelen += thislen;
712 			/* Get next invec, if actual did not fill the buffer */
713 			if (c->wbuf_len < c->wbuf_pagesize)
714 				invec++;
715 		}
716 
717 		/* write buffer is full, flush buffer */
718 		ret = __jffs2_flush_wbuf(c, NOPAD);
719 		if (ret) {
720 			/* the underlying layer has to check wbuf_len to do the cleanup */
721 			D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret));
722 			/* Retlen zero to make sure our caller doesn't mark the space dirty.
723 			   We've already done everything that's necessary */
724 			*retlen = 0;
725 			goto exit;
726 		}
727 		outvec_to += donelen;
728 		c->wbuf_ofs = outvec_to;
729 
730 		/* All invecs done ? */
731 		if (invec == count)
732 			goto alldone;
733 
734 		/* Set up the first outvec, containing the remainder of the
735 		   invec we partially used */
736 		if (invecs[invec].iov_len > invec_ofs) {
737 			outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs;
738 			totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs;
739 			if (totlen > c->wbuf_pagesize) {
740 				splitvec = outvec;
741 				split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen);
742 			}
743 			outvec++;
744 		}
745 		invec++;
746 	}
747 
748 	/* OK, now we've flushed the wbuf and the start of the bits
749 	   we have been asked to write, now to write the rest.... */
750 
751 	/* totlen holds the amount of data still to be written */
752 	old_totlen = totlen;
753 	for ( ; invec < count; invec++,outvec++ ) {
754 		outvecs[outvec].iov_base = invecs[invec].iov_base;
755 		totlen += outvecs[outvec].iov_len = invecs[invec].iov_len;
756 		if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) {
757 			splitvec = outvec;
758 			split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen);
759 			old_totlen = totlen;
760 		}
761 	}
762 
763 	/* Now the outvecs array holds all the remaining data to write */
764 	/* Up to splitvec,split_ofs is to be written immediately. The rest
765 	   goes into the (now-empty) wbuf */
766 
767 	if (splitvec != -1) {
768 		uint32_t remainder;
769 
770 		remainder = outvecs[splitvec].iov_len - split_ofs;
771 		outvecs[splitvec].iov_len = split_ofs;
772 
773 		/* We did cross a page boundary, so we write some now */
774 		if (jffs2_cleanmarker_oob(c))
775 			ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo);
776 		else
777 			ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen);
778 
779 		if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) {
780 			/* At this point we have no problem,
781 			   c->wbuf is empty. However refile nextblock to avoid
782 			   writing again to same address.
783 			*/
784 			struct jffs2_eraseblock *jeb;
785 
786 			spin_lock(&c->erase_completion_lock);
787 
788 			jeb = &c->blocks[outvec_to / c->sector_size];
789 			jffs2_block_refile(c, jeb, REFILE_ANYWAY);
790 
791 			*retlen = 0;
792 			spin_unlock(&c->erase_completion_lock);
793 			goto exit;
794 		}
795 
796 		donelen += wbuf_retlen;
797 		c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen);
798 
799 		if (remainder) {
800 			outvecs[splitvec].iov_base += split_ofs;
801 			outvecs[splitvec].iov_len = remainder;
802 		} else {
803 			splitvec++;
804 		}
805 
806 	} else {
807 		splitvec = 0;
808 	}
809 
810 	/* Now splitvec points to the start of the bits we have to copy
811 	   into the wbuf */
812 	wbuf_ptr = c->wbuf;
813 
814 	for ( ; splitvec < outvec; splitvec++) {
815 		/* Don't copy the wbuf into itself */
816 		if (outvecs[splitvec].iov_base == c->wbuf)
817 			continue;
818 		memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len);
819 		wbuf_ptr += outvecs[splitvec].iov_len;
820 		donelen += outvecs[splitvec].iov_len;
821 	}
822 	c->wbuf_len = wbuf_ptr - c->wbuf;
823 
824 	/* If there's a remainder in the wbuf and it's a non-GC write,
825 	   remember that the wbuf affects this ino */
826 alldone:
827 	*retlen = donelen;
828 
829 	if (jffs2_sum_active()) {
830 		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
831 		if (res)
832 			return res;
833 	}
834 
835 	if (c->wbuf_len && ino)
836 		jffs2_wbuf_dirties_inode(c, ino);
837 
838 	ret = 0;
839 
840 exit:
841 	up_write(&c->wbuf_sem);
842 	return ret;
843 }
844 
845 /*
846  *	This is the entry for flash write.
847  *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
848 */
849 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf)
850 {
851 	struct kvec vecs[1];
852 
853 	if (!jffs2_is_writebuffered(c))
854 		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
855 
856 	vecs[0].iov_base = (unsigned char *) buf;
857 	vecs[0].iov_len = len;
858 	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
859 }
860 
861 /*
862 	Handle readback from writebuffer and ECC failure return
863 */
864 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
865 {
866 	loff_t	orbf = 0, owbf = 0, lwbf = 0;
867 	int	ret;
868 
869 	if (!jffs2_is_writebuffered(c))
870 		return c->mtd->read(c->mtd, ofs, len, retlen, buf);
871 
872 	/* Read flash */
873 	down_read(&c->wbuf_sem);
874 	if (jffs2_cleanmarker_oob(c))
875 		ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo);
876 	else
877 		ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
878 
879 	if ( (ret == -EBADMSG) && (*retlen == len) ) {
880 		printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n",
881 		       len, ofs);
882 		/*
883 		 * We have the raw data without ECC correction in the buffer, maybe
884 		 * we are lucky and all data or parts are correct. We check the node.
885 		 * If data are corrupted node check will sort it out.
886 		 * We keep this block, it will fail on write or erase and the we
887 		 * mark it bad. Or should we do that now? But we should give him a chance.
888 		 * Maybe we had a system crash or power loss before the ecc write or
889 		 * a erase was completed.
890 		 * So we return success. :)
891 		 */
892 	 	ret = 0;
893 	}
894 
895 	/* if no writebuffer available or write buffer empty, return */
896 	if (!c->wbuf_pagesize || !c->wbuf_len)
897 		goto exit;
898 
899 	/* if we read in a different block, return */
900 	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
901 		goto exit;
902 
903 	if (ofs >= c->wbuf_ofs) {
904 		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
905 		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
906 			goto exit;
907 		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
908 		if (lwbf > len)
909 			lwbf = len;
910 	} else {
911 		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
912 		if (orbf > len)			/* is write beyond write buffer ? */
913 			goto exit;
914 		lwbf = len - orbf; 		/* number of bytes to copy */
915 		if (lwbf > c->wbuf_len)
916 			lwbf = c->wbuf_len;
917 	}
918 	if (lwbf > 0)
919 		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
920 
921 exit:
922 	up_read(&c->wbuf_sem);
923 	return ret;
924 }
925 
926 /*
927  *	Check, if the out of band area is empty
928  */
929 int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode)
930 {
931 	unsigned char *buf;
932 	int 	ret = 0;
933 	int	i,len,page;
934 	size_t  retlen;
935 	int	oob_size;
936 
937 	/* allocate a buffer for all oob data in this sector */
938 	oob_size = c->mtd->oobsize;
939 	len = 4 * oob_size;
940 	buf = kmalloc(len, GFP_KERNEL);
941 	if (!buf) {
942 		printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n");
943 		return -ENOMEM;
944 	}
945 	/*
946 	 * if mode = 0, we scan for a total empty oob area, else we have
947 	 * to take care of the cleanmarker in the first page of the block
948 	*/
949 	ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf);
950 	if (ret) {
951 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
952 		goto out;
953 	}
954 
955 	if (retlen < len) {
956 		D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read "
957 			  "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset));
958 		ret = -EIO;
959 		goto out;
960 	}
961 
962 	/* Special check for first page */
963 	for(i = 0; i < oob_size ; i++) {
964 		/* Yeah, we know about the cleanmarker. */
965 		if (mode && i >= c->fsdata_pos &&
966 		    i < c->fsdata_pos + c->fsdata_len)
967 			continue;
968 
969 		if (buf[i] != 0xFF) {
970 			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n",
971 				  buf[i], i, jeb->offset));
972 			ret = 1;
973 			goto out;
974 		}
975 	}
976 
977 	/* we know, we are aligned :) */
978 	for (page = oob_size; page < len; page += sizeof(long)) {
979 		unsigned long dat = *(unsigned long *)(&buf[page]);
980 		if(dat != -1) {
981 			ret = 1;
982 			goto out;
983 		}
984 	}
985 
986 out:
987 	kfree(buf);
988 
989 	return ret;
990 }
991 
992 /*
993 *	Scan for a valid cleanmarker and for bad blocks
994 *	For virtual blocks (concatenated physical blocks) check the cleanmarker
995 *	only in the first page of the first physical block, but scan for bad blocks in all
996 *	physical blocks
997 */
998 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
999 {
1000 	struct jffs2_unknown_node n;
1001 	unsigned char buf[2 * NAND_MAX_OOBSIZE];
1002 	unsigned char *p;
1003 	int ret, i, cnt, retval = 0;
1004 	size_t retlen, offset;
1005 	int oob_size;
1006 
1007 	offset = jeb->offset;
1008 	oob_size = c->mtd->oobsize;
1009 
1010 	/* Loop through the physical blocks */
1011 	for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) {
1012 		/* Check first if the block is bad. */
1013 		if (c->mtd->block_isbad (c->mtd, offset)) {
1014 			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset));
1015 			return 2;
1016 		}
1017 		/*
1018 		   *    We read oob data from page 0 and 1 of the block.
1019 		   *    page 0 contains cleanmarker and badblock info
1020 		   *    page 1 contains failure count of this block
1021 		 */
1022 		ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf);
1023 
1024 		if (ret) {
1025 			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset));
1026 			return ret;
1027 		}
1028 		if (retlen < (oob_size << 1)) {
1029 			D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset));
1030 			return -EIO;
1031 		}
1032 
1033 		/* Check cleanmarker only on the first physical block */
1034 		if (!cnt) {
1035 			n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK);
1036 			n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER);
1037 			n.totlen = cpu_to_je32 (8);
1038 			p = (unsigned char *) &n;
1039 
1040 			for (i = 0; i < c->fsdata_len; i++) {
1041 				if (buf[c->fsdata_pos + i] != p[i]) {
1042 					retval = 1;
1043 				}
1044 			}
1045 			D1(if (retval == 1) {
1046 				printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset);
1047 				printk(KERN_WARNING "OOB at %08x was ", offset);
1048 				for (i=0; i < oob_size; i++) {
1049 					printk("%02x ", buf[i]);
1050 				}
1051 				printk("\n");
1052 			})
1053 		}
1054 		offset += c->mtd->erasesize;
1055 	}
1056 	return retval;
1057 }
1058 
1059 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
1060 {
1061 	struct 	jffs2_unknown_node n;
1062 	int 	ret;
1063 	size_t 	retlen;
1064 
1065 	n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
1066 	n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER);
1067 	n.totlen = cpu_to_je32(8);
1068 
1069 	ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n);
1070 
1071 	if (ret) {
1072 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1073 		return ret;
1074 	}
1075 	if (retlen != c->fsdata_len) {
1076 		D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len));
1077 		return ret;
1078 	}
1079 	return 0;
1080 }
1081 
1082 /*
1083  * On NAND we try to mark this block bad. If the block was erased more
1084  * than MAX_ERASE_FAILURES we mark it finaly bad.
1085  * Don't care about failures. This block remains on the erase-pending
1086  * or badblock list as long as nobody manipulates the flash with
1087  * a bootloader or something like that.
1088  */
1089 
1090 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1091 {
1092 	int 	ret;
1093 
1094 	/* if the count is < max, we try to write the counter to the 2nd page oob area */
1095 	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1096 		return 0;
1097 
1098 	if (!c->mtd->block_markbad)
1099 		return 1; // What else can we do?
1100 
1101 	D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset));
1102 	ret = c->mtd->block_markbad(c->mtd, bad_offset);
1103 
1104 	if (ret) {
1105 		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1106 		return ret;
1107 	}
1108 	return 1;
1109 }
1110 
1111 #define NAND_JFFS2_OOB16_FSDALEN	8
1112 
1113 static struct nand_oobinfo jffs2_oobinfo_docecc = {
1114 	.useecc = MTD_NANDECC_PLACE,
1115 	.eccbytes = 6,
1116 	.eccpos = {0,1,2,3,4,5}
1117 };
1118 
1119 
1120 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c)
1121 {
1122 	struct nand_oobinfo *oinfo = &c->mtd->oobinfo;
1123 
1124 	/* Do this only, if we have an oob buffer */
1125 	if (!c->mtd->oobsize)
1126 		return 0;
1127 
1128 	/* Cleanmarker is out-of-band, so inline size zero */
1129 	c->cleanmarker_size = 0;
1130 
1131 	/* Should we use autoplacement ? */
1132 	if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) {
1133 		D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n"));
1134 		/* Get the position of the free bytes */
1135 		if (!oinfo->oobfree[0][1]) {
1136 			printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n");
1137 			return -ENOSPC;
1138 		}
1139 		c->fsdata_pos = oinfo->oobfree[0][0];
1140 		c->fsdata_len = oinfo->oobfree[0][1];
1141 		if (c->fsdata_len > 8)
1142 			c->fsdata_len = 8;
1143 	} else {
1144 		/* This is just a legacy fallback and should go away soon */
1145 		switch(c->mtd->ecctype) {
1146 		case MTD_ECC_RS_DiskOnChip:
1147 			printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n");
1148 			c->oobinfo = &jffs2_oobinfo_docecc;
1149 			c->fsdata_pos = 6;
1150 			c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN;
1151 			c->badblock_pos = 15;
1152 			break;
1153 
1154 		default:
1155 			D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n"));
1156 			return -EINVAL;
1157 		}
1158 	}
1159 	return 0;
1160 }
1161 
1162 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1163 {
1164 	int res;
1165 
1166 	/* Initialise write buffer */
1167 	init_rwsem(&c->wbuf_sem);
1168 	c->wbuf_pagesize = c->mtd->oobblock;
1169 	c->wbuf_ofs = 0xFFFFFFFF;
1170 
1171 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1172 	if (!c->wbuf)
1173 		return -ENOMEM;
1174 
1175 	res = jffs2_nand_set_oobinfo(c);
1176 
1177 #ifdef BREAKME
1178 	if (!brokenbuf)
1179 		brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1180 	if (!brokenbuf) {
1181 		kfree(c->wbuf);
1182 		return -ENOMEM;
1183 	}
1184 	memset(brokenbuf, 0xdb, c->wbuf_pagesize);
1185 #endif
1186 	return res;
1187 }
1188 
1189 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1190 {
1191 	kfree(c->wbuf);
1192 }
1193 
1194 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1195 	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
1196 
1197 	/* Initialize write buffer */
1198 	init_rwsem(&c->wbuf_sem);
1199 
1200 
1201 	c->wbuf_pagesize =  c->mtd->erasesize;
1202 
1203 	/* Find a suitable c->sector_size
1204 	 * - Not too much sectors
1205 	 * - Sectors have to be at least 4 K + some bytes
1206 	 * - All known dataflashes have erase sizes of 528 or 1056
1207 	 * - we take at least 8 eraseblocks and want to have at least 8K size
1208 	 * - The concatenation should be a power of 2
1209 	*/
1210 
1211 	c->sector_size = 8 * c->mtd->erasesize;
1212 
1213 	while (c->sector_size < 8192) {
1214 		c->sector_size *= 2;
1215 	}
1216 
1217 	/* It may be necessary to adjust the flash size */
1218 	c->flash_size = c->mtd->size;
1219 
1220 	if ((c->flash_size % c->sector_size) != 0) {
1221 		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1222 		printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1223 	};
1224 
1225 	c->wbuf_ofs = 0xFFFFFFFF;
1226 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1227 	if (!c->wbuf)
1228 		return -ENOMEM;
1229 
1230 	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1231 
1232 	return 0;
1233 }
1234 
1235 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1236 	kfree(c->wbuf);
1237 }
1238 
1239 int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) {
1240 	/* Cleanmarker is actually larger on the flashes */
1241 	c->cleanmarker_size = 16;
1242 
1243 	/* Initialize write buffer */
1244 	init_rwsem(&c->wbuf_sem);
1245 	c->wbuf_pagesize = c->mtd->eccsize;
1246 	c->wbuf_ofs = 0xFFFFFFFF;
1247 
1248 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1249 	if (!c->wbuf)
1250 		return -ENOMEM;
1251 
1252 	return 0;
1253 }
1254 
1255 void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) {
1256 	kfree(c->wbuf);
1257 }
1258 
1259 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1260 	/* Cleanmarker currently occupies a whole programming region */
1261 	c->cleanmarker_size = MTD_PROGREGION_SIZE(c->mtd);
1262 
1263 	/* Initialize write buffer */
1264 	init_rwsem(&c->wbuf_sem);
1265 	c->wbuf_pagesize = MTD_PROGREGION_SIZE(c->mtd);
1266 	c->wbuf_ofs = 0xFFFFFFFF;
1267 
1268 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1269 	if (!c->wbuf)
1270 		return -ENOMEM;
1271 
1272 	return 0;
1273 }
1274 
1275 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1276 	kfree(c->wbuf);
1277 }
1278