1 /* 2 * JFFS2 -- Journalling Flash File System, Version 2. 3 * 4 * Copyright (C) 2001-2003 Red Hat, Inc. 5 * Copyright (C) 2004 Thomas Gleixner <tglx@linutronix.de> 6 * 7 * Created by David Woodhouse <dwmw2@infradead.org> 8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> 9 * 10 * For licensing information, see the file 'LICENCE' in this directory. 11 * 12 * $Id: wbuf.c,v 1.100 2005/09/30 13:59:13 dedekind Exp $ 13 * 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/slab.h> 18 #include <linux/mtd/mtd.h> 19 #include <linux/crc32.h> 20 #include <linux/mtd/nand.h> 21 #include <linux/jiffies.h> 22 23 #include "nodelist.h" 24 25 /* For testing write failures */ 26 #undef BREAKME 27 #undef BREAKMEHEADER 28 29 #ifdef BREAKME 30 static unsigned char *brokenbuf; 31 #endif 32 33 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) 34 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) 35 36 /* max. erase failures before we mark a block bad */ 37 #define MAX_ERASE_FAILURES 2 38 39 struct jffs2_inodirty { 40 uint32_t ino; 41 struct jffs2_inodirty *next; 42 }; 43 44 static struct jffs2_inodirty inodirty_nomem; 45 46 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) 47 { 48 struct jffs2_inodirty *this = c->wbuf_inodes; 49 50 /* If a malloc failed, consider _everything_ dirty */ 51 if (this == &inodirty_nomem) 52 return 1; 53 54 /* If ino == 0, _any_ non-GC writes mean 'yes' */ 55 if (this && !ino) 56 return 1; 57 58 /* Look to see if the inode in question is pending in the wbuf */ 59 while (this) { 60 if (this->ino == ino) 61 return 1; 62 this = this->next; 63 } 64 return 0; 65 } 66 67 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) 68 { 69 struct jffs2_inodirty *this; 70 71 this = c->wbuf_inodes; 72 73 if (this != &inodirty_nomem) { 74 while (this) { 75 struct jffs2_inodirty *next = this->next; 76 kfree(this); 77 this = next; 78 } 79 } 80 c->wbuf_inodes = NULL; 81 } 82 83 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) 84 { 85 struct jffs2_inodirty *new; 86 87 /* Mark the superblock dirty so that kupdated will flush... */ 88 jffs2_erase_pending_trigger(c); 89 90 if (jffs2_wbuf_pending_for_ino(c, ino)) 91 return; 92 93 new = kmalloc(sizeof(*new), GFP_KERNEL); 94 if (!new) { 95 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); 96 jffs2_clear_wbuf_ino_list(c); 97 c->wbuf_inodes = &inodirty_nomem; 98 return; 99 } 100 new->ino = ino; 101 new->next = c->wbuf_inodes; 102 c->wbuf_inodes = new; 103 return; 104 } 105 106 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) 107 { 108 struct list_head *this, *next; 109 static int n; 110 111 if (list_empty(&c->erasable_pending_wbuf_list)) 112 return; 113 114 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { 115 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); 116 117 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); 118 list_del(this); 119 if ((jiffies + (n++)) & 127) { 120 /* Most of the time, we just erase it immediately. Otherwise we 121 spend ages scanning it on mount, etc. */ 122 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); 123 list_add_tail(&jeb->list, &c->erase_pending_list); 124 c->nr_erasing_blocks++; 125 jffs2_erase_pending_trigger(c); 126 } else { 127 /* Sometimes, however, we leave it elsewhere so it doesn't get 128 immediately reused, and we spread the load a bit. */ 129 D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); 130 list_add_tail(&jeb->list, &c->erasable_list); 131 } 132 } 133 } 134 135 #define REFILE_NOTEMPTY 0 136 #define REFILE_ANYWAY 1 137 138 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) 139 { 140 D1(printk("About to refile bad block at %08x\n", jeb->offset)); 141 142 /* File the existing block on the bad_used_list.... */ 143 if (c->nextblock == jeb) 144 c->nextblock = NULL; 145 else /* Not sure this should ever happen... need more coffee */ 146 list_del(&jeb->list); 147 if (jeb->first_node) { 148 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); 149 list_add(&jeb->list, &c->bad_used_list); 150 } else { 151 BUG_ON(allow_empty == REFILE_NOTEMPTY); 152 /* It has to have had some nodes or we couldn't be here */ 153 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); 154 list_add(&jeb->list, &c->erase_pending_list); 155 c->nr_erasing_blocks++; 156 jffs2_erase_pending_trigger(c); 157 } 158 159 /* Adjust its size counts accordingly */ 160 c->wasted_size += jeb->free_size; 161 c->free_size -= jeb->free_size; 162 jeb->wasted_size += jeb->free_size; 163 jeb->free_size = 0; 164 165 jffs2_dbg_dump_block_lists_nolock(c); 166 jffs2_dbg_acct_sanity_check_nolock(c,jeb); 167 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 168 } 169 170 /* Recover from failure to write wbuf. Recover the nodes up to the 171 * wbuf, not the one which we were starting to try to write. */ 172 173 static void jffs2_wbuf_recover(struct jffs2_sb_info *c) 174 { 175 struct jffs2_eraseblock *jeb, *new_jeb; 176 struct jffs2_raw_node_ref **first_raw, **raw; 177 size_t retlen; 178 int ret; 179 unsigned char *buf; 180 uint32_t start, end, ofs, len; 181 182 spin_lock(&c->erase_completion_lock); 183 184 jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 185 186 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); 187 188 /* Find the first node to be recovered, by skipping over every 189 node which ends before the wbuf starts, or which is obsolete. */ 190 first_raw = &jeb->first_node; 191 while (*first_raw && 192 (ref_obsolete(*first_raw) || 193 (ref_offset(*first_raw)+ref_totlen(c, jeb, *first_raw)) < c->wbuf_ofs)) { 194 D1(printk(KERN_DEBUG "Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", 195 ref_offset(*first_raw), ref_flags(*first_raw), 196 (ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw)), 197 c->wbuf_ofs)); 198 first_raw = &(*first_raw)->next_phys; 199 } 200 201 if (!*first_raw) { 202 /* All nodes were obsolete. Nothing to recover. */ 203 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); 204 spin_unlock(&c->erase_completion_lock); 205 return; 206 } 207 208 start = ref_offset(*first_raw); 209 end = ref_offset(*first_raw) + ref_totlen(c, jeb, *first_raw); 210 211 /* Find the last node to be recovered */ 212 raw = first_raw; 213 while ((*raw)) { 214 if (!ref_obsolete(*raw)) 215 end = ref_offset(*raw) + ref_totlen(c, jeb, *raw); 216 217 raw = &(*raw)->next_phys; 218 } 219 spin_unlock(&c->erase_completion_lock); 220 221 D1(printk(KERN_DEBUG "wbuf recover %08x-%08x\n", start, end)); 222 223 buf = NULL; 224 if (start < c->wbuf_ofs) { 225 /* First affected node was already partially written. 226 * Attempt to reread the old data into our buffer. */ 227 228 buf = kmalloc(end - start, GFP_KERNEL); 229 if (!buf) { 230 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); 231 232 goto read_failed; 233 } 234 235 /* Do the read... */ 236 if (jffs2_cleanmarker_oob(c)) 237 ret = c->mtd->read_ecc(c->mtd, start, c->wbuf_ofs - start, &retlen, buf, NULL, c->oobinfo); 238 else 239 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); 240 241 if (ret == -EBADMSG && retlen == c->wbuf_ofs - start) { 242 /* ECC recovered */ 243 ret = 0; 244 } 245 if (ret || retlen != c->wbuf_ofs - start) { 246 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); 247 248 kfree(buf); 249 buf = NULL; 250 read_failed: 251 first_raw = &(*first_raw)->next_phys; 252 /* If this was the only node to be recovered, give up */ 253 if (!(*first_raw)) 254 return; 255 256 /* It wasn't. Go on and try to recover nodes complete in the wbuf */ 257 start = ref_offset(*first_raw); 258 } else { 259 /* Read succeeded. Copy the remaining data from the wbuf */ 260 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); 261 } 262 } 263 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. 264 Either 'buf' contains the data, or we find it in the wbuf */ 265 266 267 /* ... and get an allocation of space from a shiny new block instead */ 268 ret = jffs2_reserve_space_gc(c, end-start, &ofs, &len, JFFS2_SUMMARY_NOSUM_SIZE); 269 if (ret) { 270 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); 271 kfree(buf); 272 return; 273 } 274 if (end-start >= c->wbuf_pagesize) { 275 /* Need to do another write immediately, but it's possible 276 that this is just because the wbuf itself is completely 277 full, and there's nothing earlier read back from the 278 flash. Hence 'buf' isn't necessarily what we're writing 279 from. */ 280 unsigned char *rewrite_buf = buf?:c->wbuf; 281 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); 282 283 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", 284 towrite, ofs)); 285 286 #ifdef BREAKMEHEADER 287 static int breakme; 288 if (breakme++ == 20) { 289 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); 290 breakme = 0; 291 c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, 292 brokenbuf, NULL, c->oobinfo); 293 ret = -EIO; 294 } else 295 #endif 296 if (jffs2_cleanmarker_oob(c)) 297 ret = c->mtd->write_ecc(c->mtd, ofs, towrite, &retlen, 298 rewrite_buf, NULL, c->oobinfo); 299 else 300 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, rewrite_buf); 301 302 if (ret || retlen != towrite) { 303 /* Argh. We tried. Really we did. */ 304 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); 305 kfree(buf); 306 307 if (retlen) { 308 struct jffs2_raw_node_ref *raw2; 309 310 raw2 = jffs2_alloc_raw_node_ref(); 311 if (!raw2) 312 return; 313 314 raw2->flash_offset = ofs | REF_OBSOLETE; 315 raw2->__totlen = ref_totlen(c, jeb, *first_raw); 316 raw2->next_phys = NULL; 317 raw2->next_in_ino = NULL; 318 319 jffs2_add_physical_node_ref(c, raw2); 320 } 321 return; 322 } 323 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); 324 325 c->wbuf_len = (end - start) - towrite; 326 c->wbuf_ofs = ofs + towrite; 327 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); 328 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ 329 kfree(buf); 330 } else { 331 /* OK, now we're left with the dregs in whichever buffer we're using */ 332 if (buf) { 333 memcpy(c->wbuf, buf, end-start); 334 kfree(buf); 335 } else { 336 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); 337 } 338 c->wbuf_ofs = ofs; 339 c->wbuf_len = end - start; 340 } 341 342 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ 343 new_jeb = &c->blocks[ofs / c->sector_size]; 344 345 spin_lock(&c->erase_completion_lock); 346 if (new_jeb->first_node) { 347 /* Odd, but possible with ST flash later maybe */ 348 new_jeb->last_node->next_phys = *first_raw; 349 } else { 350 new_jeb->first_node = *first_raw; 351 } 352 353 raw = first_raw; 354 while (*raw) { 355 uint32_t rawlen = ref_totlen(c, jeb, *raw); 356 357 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", 358 rawlen, ref_offset(*raw), ref_flags(*raw), ofs)); 359 360 if (ref_obsolete(*raw)) { 361 /* Shouldn't really happen much */ 362 new_jeb->dirty_size += rawlen; 363 new_jeb->free_size -= rawlen; 364 c->dirty_size += rawlen; 365 } else { 366 new_jeb->used_size += rawlen; 367 new_jeb->free_size -= rawlen; 368 jeb->dirty_size += rawlen; 369 jeb->used_size -= rawlen; 370 c->dirty_size += rawlen; 371 } 372 c->free_size -= rawlen; 373 (*raw)->flash_offset = ofs | ref_flags(*raw); 374 ofs += rawlen; 375 new_jeb->last_node = *raw; 376 377 raw = &(*raw)->next_phys; 378 } 379 380 /* Fix up the original jeb now it's on the bad_list */ 381 *first_raw = NULL; 382 if (first_raw == &jeb->first_node) { 383 jeb->last_node = NULL; 384 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); 385 list_del(&jeb->list); 386 list_add(&jeb->list, &c->erase_pending_list); 387 c->nr_erasing_blocks++; 388 jffs2_erase_pending_trigger(c); 389 } 390 else 391 jeb->last_node = container_of(first_raw, struct jffs2_raw_node_ref, next_phys); 392 393 jffs2_dbg_acct_sanity_check_nolock(c, jeb); 394 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 395 396 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb); 397 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb); 398 399 spin_unlock(&c->erase_completion_lock); 400 401 D1(printk(KERN_DEBUG "wbuf recovery completed OK\n")); 402 } 403 404 /* Meaning of pad argument: 405 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. 406 1: Pad, do not adjust nextblock free_size 407 2: Pad, adjust nextblock free_size 408 */ 409 #define NOPAD 0 410 #define PAD_NOACCOUNT 1 411 #define PAD_ACCOUNTING 2 412 413 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) 414 { 415 int ret; 416 size_t retlen; 417 418 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't 419 del_timer() the timer we never initialised. */ 420 if (!jffs2_is_writebuffered(c)) 421 return 0; 422 423 if (!down_trylock(&c->alloc_sem)) { 424 up(&c->alloc_sem); 425 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); 426 BUG(); 427 } 428 429 if (!c->wbuf_len) /* already checked c->wbuf above */ 430 return 0; 431 432 /* claim remaining space on the page 433 this happens, if we have a change to a new block, 434 or if fsync forces us to flush the writebuffer. 435 if we have a switch to next page, we will not have 436 enough remaining space for this. 437 */ 438 if (pad ) { 439 c->wbuf_len = PAD(c->wbuf_len); 440 441 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR 442 with 8 byte page size */ 443 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); 444 445 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { 446 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); 447 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 448 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); 449 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); 450 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); 451 } 452 } 453 /* else jffs2_flash_writev has actually filled in the rest of the 454 buffer for us, and will deal with the node refs etc. later. */ 455 456 #ifdef BREAKME 457 static int breakme; 458 if (breakme++ == 20) { 459 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); 460 breakme = 0; 461 c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, 462 &retlen, brokenbuf, NULL, c->oobinfo); 463 ret = -EIO; 464 } else 465 #endif 466 467 if (jffs2_cleanmarker_oob(c)) 468 ret = c->mtd->write_ecc(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf, NULL, c->oobinfo); 469 else 470 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); 471 472 if (ret || retlen != c->wbuf_pagesize) { 473 if (ret) 474 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret); 475 else { 476 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", 477 retlen, c->wbuf_pagesize); 478 ret = -EIO; 479 } 480 481 jffs2_wbuf_recover(c); 482 483 return ret; 484 } 485 486 spin_lock(&c->erase_completion_lock); 487 488 /* Adjust free size of the block if we padded. */ 489 if (pad) { 490 struct jffs2_eraseblock *jeb; 491 492 jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 493 494 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", 495 (jeb==c->nextblock)?"next":"", jeb->offset)); 496 497 /* wbuf_pagesize - wbuf_len is the amount of space that's to be 498 padded. If there is less free space in the block than that, 499 something screwed up */ 500 if (jeb->free_size < (c->wbuf_pagesize - c->wbuf_len)) { 501 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", 502 c->wbuf_ofs, c->wbuf_len, c->wbuf_pagesize-c->wbuf_len); 503 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", 504 jeb->offset, jeb->free_size); 505 BUG(); 506 } 507 jeb->free_size -= (c->wbuf_pagesize - c->wbuf_len); 508 c->free_size -= (c->wbuf_pagesize - c->wbuf_len); 509 jeb->wasted_size += (c->wbuf_pagesize - c->wbuf_len); 510 c->wasted_size += (c->wbuf_pagesize - c->wbuf_len); 511 } 512 513 /* Stick any now-obsoleted blocks on the erase_pending_list */ 514 jffs2_refile_wbuf_blocks(c); 515 jffs2_clear_wbuf_ino_list(c); 516 spin_unlock(&c->erase_completion_lock); 517 518 memset(c->wbuf,0xff,c->wbuf_pagesize); 519 /* adjust write buffer offset, else we get a non contiguous write bug */ 520 c->wbuf_ofs += c->wbuf_pagesize; 521 c->wbuf_len = 0; 522 return 0; 523 } 524 525 /* Trigger garbage collection to flush the write-buffer. 526 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are 527 outstanding. If ino arg non-zero, do it only if a write for the 528 given inode is outstanding. */ 529 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) 530 { 531 uint32_t old_wbuf_ofs; 532 uint32_t old_wbuf_len; 533 int ret = 0; 534 535 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); 536 537 if (!c->wbuf) 538 return 0; 539 540 down(&c->alloc_sem); 541 if (!jffs2_wbuf_pending_for_ino(c, ino)) { 542 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); 543 up(&c->alloc_sem); 544 return 0; 545 } 546 547 old_wbuf_ofs = c->wbuf_ofs; 548 old_wbuf_len = c->wbuf_len; 549 550 if (c->unchecked_size) { 551 /* GC won't make any progress for a while */ 552 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); 553 down_write(&c->wbuf_sem); 554 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 555 /* retry flushing wbuf in case jffs2_wbuf_recover 556 left some data in the wbuf */ 557 if (ret) 558 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 559 up_write(&c->wbuf_sem); 560 } else while (old_wbuf_len && 561 old_wbuf_ofs == c->wbuf_ofs) { 562 563 up(&c->alloc_sem); 564 565 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); 566 567 ret = jffs2_garbage_collect_pass(c); 568 if (ret) { 569 /* GC failed. Flush it with padding instead */ 570 down(&c->alloc_sem); 571 down_write(&c->wbuf_sem); 572 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 573 /* retry flushing wbuf in case jffs2_wbuf_recover 574 left some data in the wbuf */ 575 if (ret) 576 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 577 up_write(&c->wbuf_sem); 578 break; 579 } 580 down(&c->alloc_sem); 581 } 582 583 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); 584 585 up(&c->alloc_sem); 586 return ret; 587 } 588 589 /* Pad write-buffer to end and write it, wasting space. */ 590 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) 591 { 592 int ret; 593 594 if (!c->wbuf) 595 return 0; 596 597 down_write(&c->wbuf_sem); 598 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 599 /* retry - maybe wbuf recover left some data in wbuf. */ 600 if (ret) 601 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 602 up_write(&c->wbuf_sem); 603 604 return ret; 605 } 606 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, unsigned long count, loff_t to, size_t *retlen, uint32_t ino) 607 { 608 struct kvec outvecs[3]; 609 uint32_t totlen = 0; 610 uint32_t split_ofs = 0; 611 uint32_t old_totlen; 612 int ret, splitvec = -1; 613 int invec, outvec; 614 size_t wbuf_retlen; 615 unsigned char *wbuf_ptr; 616 size_t donelen = 0; 617 uint32_t outvec_to = to; 618 619 /* If not NAND flash, don't bother */ 620 if (!jffs2_is_writebuffered(c)) 621 return jffs2_flash_direct_writev(c, invecs, count, to, retlen); 622 623 down_write(&c->wbuf_sem); 624 625 /* If wbuf_ofs is not initialized, set it to target address */ 626 if (c->wbuf_ofs == 0xFFFFFFFF) { 627 c->wbuf_ofs = PAGE_DIV(to); 628 c->wbuf_len = PAGE_MOD(to); 629 memset(c->wbuf,0xff,c->wbuf_pagesize); 630 } 631 632 /* Fixup the wbuf if we are moving to a new eraseblock. The checks below 633 fail for ECC'd NOR because cleanmarker == 16, so a block starts at 634 xxx0010. */ 635 if (jffs2_nor_ecc(c)) { 636 if (((c->wbuf_ofs % c->sector_size) == 0) && !c->wbuf_len) { 637 c->wbuf_ofs = PAGE_DIV(to); 638 c->wbuf_len = PAGE_MOD(to); 639 memset(c->wbuf,0xff,c->wbuf_pagesize); 640 } 641 } 642 643 /* Sanity checks on target address. 644 It's permitted to write at PAD(c->wbuf_len+c->wbuf_ofs), 645 and it's permitted to write at the beginning of a new 646 erase block. Anything else, and you die. 647 New block starts at xxx000c (0-b = block header) 648 */ 649 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { 650 /* It's a write to a new block */ 651 if (c->wbuf_len) { 652 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx causes flush of wbuf at 0x%08x\n", (unsigned long)to, c->wbuf_ofs)); 653 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 654 if (ret) { 655 /* the underlying layer has to check wbuf_len to do the cleanup */ 656 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); 657 *retlen = 0; 658 goto exit; 659 } 660 } 661 /* set pointer to new block */ 662 c->wbuf_ofs = PAGE_DIV(to); 663 c->wbuf_len = PAGE_MOD(to); 664 } 665 666 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { 667 /* We're not writing immediately after the writebuffer. Bad. */ 668 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write to %08lx\n", (unsigned long)to); 669 if (c->wbuf_len) 670 printk(KERN_CRIT "wbuf was previously %08x-%08x\n", 671 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); 672 BUG(); 673 } 674 675 /* Note outvecs[3] above. We know count is never greater than 2 */ 676 if (count > 2) { 677 printk(KERN_CRIT "jffs2_flash_writev(): count is %ld\n", count); 678 BUG(); 679 } 680 681 invec = 0; 682 outvec = 0; 683 684 /* Fill writebuffer first, if already in use */ 685 if (c->wbuf_len) { 686 uint32_t invec_ofs = 0; 687 688 /* adjust alignment offset */ 689 if (c->wbuf_len != PAGE_MOD(to)) { 690 c->wbuf_len = PAGE_MOD(to); 691 /* take care of alignment to next page */ 692 if (!c->wbuf_len) 693 c->wbuf_len = c->wbuf_pagesize; 694 } 695 696 while(c->wbuf_len < c->wbuf_pagesize) { 697 uint32_t thislen; 698 699 if (invec == count) 700 goto alldone; 701 702 thislen = c->wbuf_pagesize - c->wbuf_len; 703 704 if (thislen >= invecs[invec].iov_len) 705 thislen = invecs[invec].iov_len; 706 707 invec_ofs = thislen; 708 709 memcpy(c->wbuf + c->wbuf_len, invecs[invec].iov_base, thislen); 710 c->wbuf_len += thislen; 711 donelen += thislen; 712 /* Get next invec, if actual did not fill the buffer */ 713 if (c->wbuf_len < c->wbuf_pagesize) 714 invec++; 715 } 716 717 /* write buffer is full, flush buffer */ 718 ret = __jffs2_flush_wbuf(c, NOPAD); 719 if (ret) { 720 /* the underlying layer has to check wbuf_len to do the cleanup */ 721 D1(printk(KERN_WARNING "jffs2_flush_wbuf() called from jffs2_flash_writev() failed %d\n", ret)); 722 /* Retlen zero to make sure our caller doesn't mark the space dirty. 723 We've already done everything that's necessary */ 724 *retlen = 0; 725 goto exit; 726 } 727 outvec_to += donelen; 728 c->wbuf_ofs = outvec_to; 729 730 /* All invecs done ? */ 731 if (invec == count) 732 goto alldone; 733 734 /* Set up the first outvec, containing the remainder of the 735 invec we partially used */ 736 if (invecs[invec].iov_len > invec_ofs) { 737 outvecs[0].iov_base = invecs[invec].iov_base+invec_ofs; 738 totlen = outvecs[0].iov_len = invecs[invec].iov_len-invec_ofs; 739 if (totlen > c->wbuf_pagesize) { 740 splitvec = outvec; 741 split_ofs = outvecs[0].iov_len - PAGE_MOD(totlen); 742 } 743 outvec++; 744 } 745 invec++; 746 } 747 748 /* OK, now we've flushed the wbuf and the start of the bits 749 we have been asked to write, now to write the rest.... */ 750 751 /* totlen holds the amount of data still to be written */ 752 old_totlen = totlen; 753 for ( ; invec < count; invec++,outvec++ ) { 754 outvecs[outvec].iov_base = invecs[invec].iov_base; 755 totlen += outvecs[outvec].iov_len = invecs[invec].iov_len; 756 if (PAGE_DIV(totlen) != PAGE_DIV(old_totlen)) { 757 splitvec = outvec; 758 split_ofs = outvecs[outvec].iov_len - PAGE_MOD(totlen); 759 old_totlen = totlen; 760 } 761 } 762 763 /* Now the outvecs array holds all the remaining data to write */ 764 /* Up to splitvec,split_ofs is to be written immediately. The rest 765 goes into the (now-empty) wbuf */ 766 767 if (splitvec != -1) { 768 uint32_t remainder; 769 770 remainder = outvecs[splitvec].iov_len - split_ofs; 771 outvecs[splitvec].iov_len = split_ofs; 772 773 /* We did cross a page boundary, so we write some now */ 774 if (jffs2_cleanmarker_oob(c)) 775 ret = c->mtd->writev_ecc(c->mtd, outvecs, splitvec+1, outvec_to, &wbuf_retlen, NULL, c->oobinfo); 776 else 777 ret = jffs2_flash_direct_writev(c, outvecs, splitvec+1, outvec_to, &wbuf_retlen); 778 779 if (ret < 0 || wbuf_retlen != PAGE_DIV(totlen)) { 780 /* At this point we have no problem, 781 c->wbuf is empty. However refile nextblock to avoid 782 writing again to same address. 783 */ 784 struct jffs2_eraseblock *jeb; 785 786 spin_lock(&c->erase_completion_lock); 787 788 jeb = &c->blocks[outvec_to / c->sector_size]; 789 jffs2_block_refile(c, jeb, REFILE_ANYWAY); 790 791 *retlen = 0; 792 spin_unlock(&c->erase_completion_lock); 793 goto exit; 794 } 795 796 donelen += wbuf_retlen; 797 c->wbuf_ofs = PAGE_DIV(outvec_to) + PAGE_DIV(totlen); 798 799 if (remainder) { 800 outvecs[splitvec].iov_base += split_ofs; 801 outvecs[splitvec].iov_len = remainder; 802 } else { 803 splitvec++; 804 } 805 806 } else { 807 splitvec = 0; 808 } 809 810 /* Now splitvec points to the start of the bits we have to copy 811 into the wbuf */ 812 wbuf_ptr = c->wbuf; 813 814 for ( ; splitvec < outvec; splitvec++) { 815 /* Don't copy the wbuf into itself */ 816 if (outvecs[splitvec].iov_base == c->wbuf) 817 continue; 818 memcpy(wbuf_ptr, outvecs[splitvec].iov_base, outvecs[splitvec].iov_len); 819 wbuf_ptr += outvecs[splitvec].iov_len; 820 donelen += outvecs[splitvec].iov_len; 821 } 822 c->wbuf_len = wbuf_ptr - c->wbuf; 823 824 /* If there's a remainder in the wbuf and it's a non-GC write, 825 remember that the wbuf affects this ino */ 826 alldone: 827 *retlen = donelen; 828 829 if (jffs2_sum_active()) { 830 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to); 831 if (res) 832 return res; 833 } 834 835 if (c->wbuf_len && ino) 836 jffs2_wbuf_dirties_inode(c, ino); 837 838 ret = 0; 839 840 exit: 841 up_write(&c->wbuf_sem); 842 return ret; 843 } 844 845 /* 846 * This is the entry for flash write. 847 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev 848 */ 849 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, const u_char *buf) 850 { 851 struct kvec vecs[1]; 852 853 if (!jffs2_is_writebuffered(c)) 854 return jffs2_flash_direct_write(c, ofs, len, retlen, buf); 855 856 vecs[0].iov_base = (unsigned char *) buf; 857 vecs[0].iov_len = len; 858 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); 859 } 860 861 /* 862 Handle readback from writebuffer and ECC failure return 863 */ 864 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) 865 { 866 loff_t orbf = 0, owbf = 0, lwbf = 0; 867 int ret; 868 869 if (!jffs2_is_writebuffered(c)) 870 return c->mtd->read(c->mtd, ofs, len, retlen, buf); 871 872 /* Read flash */ 873 down_read(&c->wbuf_sem); 874 if (jffs2_cleanmarker_oob(c)) 875 ret = c->mtd->read_ecc(c->mtd, ofs, len, retlen, buf, NULL, c->oobinfo); 876 else 877 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); 878 879 if ( (ret == -EBADMSG) && (*retlen == len) ) { 880 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx) returned ECC error\n", 881 len, ofs); 882 /* 883 * We have the raw data without ECC correction in the buffer, maybe 884 * we are lucky and all data or parts are correct. We check the node. 885 * If data are corrupted node check will sort it out. 886 * We keep this block, it will fail on write or erase and the we 887 * mark it bad. Or should we do that now? But we should give him a chance. 888 * Maybe we had a system crash or power loss before the ecc write or 889 * a erase was completed. 890 * So we return success. :) 891 */ 892 ret = 0; 893 } 894 895 /* if no writebuffer available or write buffer empty, return */ 896 if (!c->wbuf_pagesize || !c->wbuf_len) 897 goto exit; 898 899 /* if we read in a different block, return */ 900 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) 901 goto exit; 902 903 if (ofs >= c->wbuf_ofs) { 904 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */ 905 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */ 906 goto exit; 907 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */ 908 if (lwbf > len) 909 lwbf = len; 910 } else { 911 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */ 912 if (orbf > len) /* is write beyond write buffer ? */ 913 goto exit; 914 lwbf = len - orbf; /* number of bytes to copy */ 915 if (lwbf > c->wbuf_len) 916 lwbf = c->wbuf_len; 917 } 918 if (lwbf > 0) 919 memcpy(buf+orbf,c->wbuf+owbf,lwbf); 920 921 exit: 922 up_read(&c->wbuf_sem); 923 return ret; 924 } 925 926 /* 927 * Check, if the out of band area is empty 928 */ 929 int jffs2_check_oob_empty( struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int mode) 930 { 931 unsigned char *buf; 932 int ret = 0; 933 int i,len,page; 934 size_t retlen; 935 int oob_size; 936 937 /* allocate a buffer for all oob data in this sector */ 938 oob_size = c->mtd->oobsize; 939 len = 4 * oob_size; 940 buf = kmalloc(len, GFP_KERNEL); 941 if (!buf) { 942 printk(KERN_NOTICE "jffs2_check_oob_empty(): allocation of temporary data buffer for oob check failed\n"); 943 return -ENOMEM; 944 } 945 /* 946 * if mode = 0, we scan for a total empty oob area, else we have 947 * to take care of the cleanmarker in the first page of the block 948 */ 949 ret = jffs2_flash_read_oob(c, jeb->offset, len , &retlen, buf); 950 if (ret) { 951 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); 952 goto out; 953 } 954 955 if (retlen < len) { 956 D1(printk(KERN_WARNING "jffs2_check_oob_empty(): Read OOB return short read " 957 "(%zd bytes not %d) for block at %08x\n", retlen, len, jeb->offset)); 958 ret = -EIO; 959 goto out; 960 } 961 962 /* Special check for first page */ 963 for(i = 0; i < oob_size ; i++) { 964 /* Yeah, we know about the cleanmarker. */ 965 if (mode && i >= c->fsdata_pos && 966 i < c->fsdata_pos + c->fsdata_len) 967 continue; 968 969 if (buf[i] != 0xFF) { 970 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for %08x\n", 971 buf[i], i, jeb->offset)); 972 ret = 1; 973 goto out; 974 } 975 } 976 977 /* we know, we are aligned :) */ 978 for (page = oob_size; page < len; page += sizeof(long)) { 979 unsigned long dat = *(unsigned long *)(&buf[page]); 980 if(dat != -1) { 981 ret = 1; 982 goto out; 983 } 984 } 985 986 out: 987 kfree(buf); 988 989 return ret; 990 } 991 992 /* 993 * Scan for a valid cleanmarker and for bad blocks 994 * For virtual blocks (concatenated physical blocks) check the cleanmarker 995 * only in the first page of the first physical block, but scan for bad blocks in all 996 * physical blocks 997 */ 998 int jffs2_check_nand_cleanmarker (struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 999 { 1000 struct jffs2_unknown_node n; 1001 unsigned char buf[2 * NAND_MAX_OOBSIZE]; 1002 unsigned char *p; 1003 int ret, i, cnt, retval = 0; 1004 size_t retlen, offset; 1005 int oob_size; 1006 1007 offset = jeb->offset; 1008 oob_size = c->mtd->oobsize; 1009 1010 /* Loop through the physical blocks */ 1011 for (cnt = 0; cnt < (c->sector_size / c->mtd->erasesize); cnt++) { 1012 /* Check first if the block is bad. */ 1013 if (c->mtd->block_isbad (c->mtd, offset)) { 1014 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Bad block at %08x\n", jeb->offset)); 1015 return 2; 1016 } 1017 /* 1018 * We read oob data from page 0 and 1 of the block. 1019 * page 0 contains cleanmarker and badblock info 1020 * page 1 contains failure count of this block 1021 */ 1022 ret = c->mtd->read_oob (c->mtd, offset, oob_size << 1, &retlen, buf); 1023 1024 if (ret) { 1025 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB failed %d for block at %08x\n", ret, jeb->offset)); 1026 return ret; 1027 } 1028 if (retlen < (oob_size << 1)) { 1029 D1 (printk (KERN_WARNING "jffs2_check_nand_cleanmarker(): Read OOB return short read (%zd bytes not %d) for block at %08x\n", retlen, oob_size << 1, jeb->offset)); 1030 return -EIO; 1031 } 1032 1033 /* Check cleanmarker only on the first physical block */ 1034 if (!cnt) { 1035 n.magic = cpu_to_je16 (JFFS2_MAGIC_BITMASK); 1036 n.nodetype = cpu_to_je16 (JFFS2_NODETYPE_CLEANMARKER); 1037 n.totlen = cpu_to_je32 (8); 1038 p = (unsigned char *) &n; 1039 1040 for (i = 0; i < c->fsdata_len; i++) { 1041 if (buf[c->fsdata_pos + i] != p[i]) { 1042 retval = 1; 1043 } 1044 } 1045 D1(if (retval == 1) { 1046 printk(KERN_WARNING "jffs2_check_nand_cleanmarker(): Cleanmarker node not detected in block at %08x\n", jeb->offset); 1047 printk(KERN_WARNING "OOB at %08x was ", offset); 1048 for (i=0; i < oob_size; i++) { 1049 printk("%02x ", buf[i]); 1050 } 1051 printk("\n"); 1052 }) 1053 } 1054 offset += c->mtd->erasesize; 1055 } 1056 return retval; 1057 } 1058 1059 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb) 1060 { 1061 struct jffs2_unknown_node n; 1062 int ret; 1063 size_t retlen; 1064 1065 n.magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 1066 n.nodetype = cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER); 1067 n.totlen = cpu_to_je32(8); 1068 1069 ret = jffs2_flash_write_oob(c, jeb->offset + c->fsdata_pos, c->fsdata_len, &retlen, (unsigned char *)&n); 1070 1071 if (ret) { 1072 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); 1073 return ret; 1074 } 1075 if (retlen != c->fsdata_len) { 1076 D1(printk(KERN_WARNING "jffs2_write_nand_cleanmarker(): Short write for block at %08x: %zd not %d\n", jeb->offset, retlen, c->fsdata_len)); 1077 return ret; 1078 } 1079 return 0; 1080 } 1081 1082 /* 1083 * On NAND we try to mark this block bad. If the block was erased more 1084 * than MAX_ERASE_FAILURES we mark it finaly bad. 1085 * Don't care about failures. This block remains on the erase-pending 1086 * or badblock list as long as nobody manipulates the flash with 1087 * a bootloader or something like that. 1088 */ 1089 1090 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) 1091 { 1092 int ret; 1093 1094 /* if the count is < max, we try to write the counter to the 2nd page oob area */ 1095 if( ++jeb->bad_count < MAX_ERASE_FAILURES) 1096 return 0; 1097 1098 if (!c->mtd->block_markbad) 1099 return 1; // What else can we do? 1100 1101 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Marking bad block at %08x\n", bad_offset)); 1102 ret = c->mtd->block_markbad(c->mtd, bad_offset); 1103 1104 if (ret) { 1105 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); 1106 return ret; 1107 } 1108 return 1; 1109 } 1110 1111 #define NAND_JFFS2_OOB16_FSDALEN 8 1112 1113 static struct nand_oobinfo jffs2_oobinfo_docecc = { 1114 .useecc = MTD_NANDECC_PLACE, 1115 .eccbytes = 6, 1116 .eccpos = {0,1,2,3,4,5} 1117 }; 1118 1119 1120 static int jffs2_nand_set_oobinfo(struct jffs2_sb_info *c) 1121 { 1122 struct nand_oobinfo *oinfo = &c->mtd->oobinfo; 1123 1124 /* Do this only, if we have an oob buffer */ 1125 if (!c->mtd->oobsize) 1126 return 0; 1127 1128 /* Cleanmarker is out-of-band, so inline size zero */ 1129 c->cleanmarker_size = 0; 1130 1131 /* Should we use autoplacement ? */ 1132 if (oinfo && oinfo->useecc == MTD_NANDECC_AUTOPLACE) { 1133 D1(printk(KERN_DEBUG "JFFS2 using autoplace on NAND\n")); 1134 /* Get the position of the free bytes */ 1135 if (!oinfo->oobfree[0][1]) { 1136 printk (KERN_WARNING "jffs2_nand_set_oobinfo(): Eeep. Autoplacement selected and no empty space in oob\n"); 1137 return -ENOSPC; 1138 } 1139 c->fsdata_pos = oinfo->oobfree[0][0]; 1140 c->fsdata_len = oinfo->oobfree[0][1]; 1141 if (c->fsdata_len > 8) 1142 c->fsdata_len = 8; 1143 } else { 1144 /* This is just a legacy fallback and should go away soon */ 1145 switch(c->mtd->ecctype) { 1146 case MTD_ECC_RS_DiskOnChip: 1147 printk(KERN_WARNING "JFFS2 using DiskOnChip hardware ECC without autoplacement. Fix it!\n"); 1148 c->oobinfo = &jffs2_oobinfo_docecc; 1149 c->fsdata_pos = 6; 1150 c->fsdata_len = NAND_JFFS2_OOB16_FSDALEN; 1151 c->badblock_pos = 15; 1152 break; 1153 1154 default: 1155 D1(printk(KERN_DEBUG "JFFS2 on NAND. No autoplacment info found\n")); 1156 return -EINVAL; 1157 } 1158 } 1159 return 0; 1160 } 1161 1162 int jffs2_nand_flash_setup(struct jffs2_sb_info *c) 1163 { 1164 int res; 1165 1166 /* Initialise write buffer */ 1167 init_rwsem(&c->wbuf_sem); 1168 c->wbuf_pagesize = c->mtd->oobblock; 1169 c->wbuf_ofs = 0xFFFFFFFF; 1170 1171 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1172 if (!c->wbuf) 1173 return -ENOMEM; 1174 1175 res = jffs2_nand_set_oobinfo(c); 1176 1177 #ifdef BREAKME 1178 if (!brokenbuf) 1179 brokenbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1180 if (!brokenbuf) { 1181 kfree(c->wbuf); 1182 return -ENOMEM; 1183 } 1184 memset(brokenbuf, 0xdb, c->wbuf_pagesize); 1185 #endif 1186 return res; 1187 } 1188 1189 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) 1190 { 1191 kfree(c->wbuf); 1192 } 1193 1194 int jffs2_dataflash_setup(struct jffs2_sb_info *c) { 1195 c->cleanmarker_size = 0; /* No cleanmarkers needed */ 1196 1197 /* Initialize write buffer */ 1198 init_rwsem(&c->wbuf_sem); 1199 1200 1201 c->wbuf_pagesize = c->mtd->erasesize; 1202 1203 /* Find a suitable c->sector_size 1204 * - Not too much sectors 1205 * - Sectors have to be at least 4 K + some bytes 1206 * - All known dataflashes have erase sizes of 528 or 1056 1207 * - we take at least 8 eraseblocks and want to have at least 8K size 1208 * - The concatenation should be a power of 2 1209 */ 1210 1211 c->sector_size = 8 * c->mtd->erasesize; 1212 1213 while (c->sector_size < 8192) { 1214 c->sector_size *= 2; 1215 } 1216 1217 /* It may be necessary to adjust the flash size */ 1218 c->flash_size = c->mtd->size; 1219 1220 if ((c->flash_size % c->sector_size) != 0) { 1221 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size; 1222 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size); 1223 }; 1224 1225 c->wbuf_ofs = 0xFFFFFFFF; 1226 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1227 if (!c->wbuf) 1228 return -ENOMEM; 1229 1230 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); 1231 1232 return 0; 1233 } 1234 1235 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { 1236 kfree(c->wbuf); 1237 } 1238 1239 int jffs2_nor_ecc_flash_setup(struct jffs2_sb_info *c) { 1240 /* Cleanmarker is actually larger on the flashes */ 1241 c->cleanmarker_size = 16; 1242 1243 /* Initialize write buffer */ 1244 init_rwsem(&c->wbuf_sem); 1245 c->wbuf_pagesize = c->mtd->eccsize; 1246 c->wbuf_ofs = 0xFFFFFFFF; 1247 1248 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1249 if (!c->wbuf) 1250 return -ENOMEM; 1251 1252 return 0; 1253 } 1254 1255 void jffs2_nor_ecc_flash_cleanup(struct jffs2_sb_info *c) { 1256 kfree(c->wbuf); 1257 } 1258 1259 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) { 1260 /* Cleanmarker currently occupies a whole programming region */ 1261 c->cleanmarker_size = MTD_PROGREGION_SIZE(c->mtd); 1262 1263 /* Initialize write buffer */ 1264 init_rwsem(&c->wbuf_sem); 1265 c->wbuf_pagesize = MTD_PROGREGION_SIZE(c->mtd); 1266 c->wbuf_ofs = 0xFFFFFFFF; 1267 1268 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1269 if (!c->wbuf) 1270 return -ENOMEM; 1271 1272 return 0; 1273 } 1274 1275 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) { 1276 kfree(c->wbuf); 1277 } 1278