1 /* 2 * JFFS2 -- Journalling Flash File System, Version 2. 3 * 4 * Copyright © 2001-2007 Red Hat, Inc. 5 * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de> 6 * 7 * Created by David Woodhouse <dwmw2@infradead.org> 8 * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de> 9 * 10 * For licensing information, see the file 'LICENCE' in this directory. 11 * 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/slab.h> 16 #include <linux/mtd/mtd.h> 17 #include <linux/crc32.h> 18 #include <linux/mtd/nand.h> 19 #include <linux/jiffies.h> 20 #include <linux/sched.h> 21 22 #include "nodelist.h" 23 24 /* For testing write failures */ 25 #undef BREAKME 26 #undef BREAKMEHEADER 27 28 #ifdef BREAKME 29 static unsigned char *brokenbuf; 30 #endif 31 32 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) ) 33 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) ) 34 35 /* max. erase failures before we mark a block bad */ 36 #define MAX_ERASE_FAILURES 2 37 38 struct jffs2_inodirty { 39 uint32_t ino; 40 struct jffs2_inodirty *next; 41 }; 42 43 static struct jffs2_inodirty inodirty_nomem; 44 45 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino) 46 { 47 struct jffs2_inodirty *this = c->wbuf_inodes; 48 49 /* If a malloc failed, consider _everything_ dirty */ 50 if (this == &inodirty_nomem) 51 return 1; 52 53 /* If ino == 0, _any_ non-GC writes mean 'yes' */ 54 if (this && !ino) 55 return 1; 56 57 /* Look to see if the inode in question is pending in the wbuf */ 58 while (this) { 59 if (this->ino == ino) 60 return 1; 61 this = this->next; 62 } 63 return 0; 64 } 65 66 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c) 67 { 68 struct jffs2_inodirty *this; 69 70 this = c->wbuf_inodes; 71 72 if (this != &inodirty_nomem) { 73 while (this) { 74 struct jffs2_inodirty *next = this->next; 75 kfree(this); 76 this = next; 77 } 78 } 79 c->wbuf_inodes = NULL; 80 } 81 82 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino) 83 { 84 struct jffs2_inodirty *new; 85 86 /* Mark the superblock dirty so that kupdated will flush... */ 87 jffs2_erase_pending_trigger(c); 88 89 if (jffs2_wbuf_pending_for_ino(c, ino)) 90 return; 91 92 new = kmalloc(sizeof(*new), GFP_KERNEL); 93 if (!new) { 94 D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n")); 95 jffs2_clear_wbuf_ino_list(c); 96 c->wbuf_inodes = &inodirty_nomem; 97 return; 98 } 99 new->ino = ino; 100 new->next = c->wbuf_inodes; 101 c->wbuf_inodes = new; 102 return; 103 } 104 105 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c) 106 { 107 struct list_head *this, *next; 108 static int n; 109 110 if (list_empty(&c->erasable_pending_wbuf_list)) 111 return; 112 113 list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) { 114 struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list); 115 116 D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset)); 117 list_del(this); 118 if ((jiffies + (n++)) & 127) { 119 /* Most of the time, we just erase it immediately. Otherwise we 120 spend ages scanning it on mount, etc. */ 121 D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n")); 122 list_add_tail(&jeb->list, &c->erase_pending_list); 123 c->nr_erasing_blocks++; 124 jffs2_erase_pending_trigger(c); 125 } else { 126 /* Sometimes, however, we leave it elsewhere so it doesn't get 127 immediately reused, and we spread the load a bit. */ 128 D1(printk(KERN_DEBUG "...and adding to erasable_list\n")); 129 list_add_tail(&jeb->list, &c->erasable_list); 130 } 131 } 132 } 133 134 #define REFILE_NOTEMPTY 0 135 #define REFILE_ANYWAY 1 136 137 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty) 138 { 139 D1(printk("About to refile bad block at %08x\n", jeb->offset)); 140 141 /* File the existing block on the bad_used_list.... */ 142 if (c->nextblock == jeb) 143 c->nextblock = NULL; 144 else /* Not sure this should ever happen... need more coffee */ 145 list_del(&jeb->list); 146 if (jeb->first_node) { 147 D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset)); 148 list_add(&jeb->list, &c->bad_used_list); 149 } else { 150 BUG_ON(allow_empty == REFILE_NOTEMPTY); 151 /* It has to have had some nodes or we couldn't be here */ 152 D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset)); 153 list_add(&jeb->list, &c->erase_pending_list); 154 c->nr_erasing_blocks++; 155 jffs2_erase_pending_trigger(c); 156 } 157 158 if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) { 159 uint32_t oldfree = jeb->free_size; 160 161 jffs2_link_node_ref(c, jeb, 162 (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE, 163 oldfree, NULL); 164 /* convert to wasted */ 165 c->wasted_size += oldfree; 166 jeb->wasted_size += oldfree; 167 c->dirty_size -= oldfree; 168 jeb->dirty_size -= oldfree; 169 } 170 171 jffs2_dbg_dump_block_lists_nolock(c); 172 jffs2_dbg_acct_sanity_check_nolock(c,jeb); 173 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 174 } 175 176 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c, 177 struct jffs2_inode_info *f, 178 struct jffs2_raw_node_ref *raw, 179 union jffs2_node_union *node) 180 { 181 struct jffs2_node_frag *frag; 182 struct jffs2_full_dirent *fd; 183 184 dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n", 185 node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype)); 186 187 BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 && 188 je16_to_cpu(node->u.magic) != 0); 189 190 switch (je16_to_cpu(node->u.nodetype)) { 191 case JFFS2_NODETYPE_INODE: 192 if (f->metadata && f->metadata->raw == raw) { 193 dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata); 194 return &f->metadata->raw; 195 } 196 frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset)); 197 BUG_ON(!frag); 198 /* Find a frag which refers to the full_dnode we want to modify */ 199 while (!frag->node || frag->node->raw != raw) { 200 frag = frag_next(frag); 201 BUG_ON(!frag); 202 } 203 dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node); 204 return &frag->node->raw; 205 206 case JFFS2_NODETYPE_DIRENT: 207 for (fd = f->dents; fd; fd = fd->next) { 208 if (fd->raw == raw) { 209 dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd); 210 return &fd->raw; 211 } 212 } 213 BUG(); 214 215 default: 216 dbg_noderef("Don't care about replacing raw for nodetype %x\n", 217 je16_to_cpu(node->u.nodetype)); 218 break; 219 } 220 return NULL; 221 } 222 223 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY 224 static int jffs2_verify_write(struct jffs2_sb_info *c, unsigned char *buf, 225 uint32_t ofs) 226 { 227 int ret; 228 size_t retlen; 229 char *eccstr; 230 231 ret = c->mtd->read(c->mtd, ofs, c->wbuf_pagesize, &retlen, c->wbuf_verify); 232 if (ret && ret != -EUCLEAN && ret != -EBADMSG) { 233 printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x failed: %d\n", c->wbuf_ofs, ret); 234 return ret; 235 } else if (retlen != c->wbuf_pagesize) { 236 printk(KERN_WARNING "jffs2_verify_write(): Read back of page at %08x gave short read: %zd not %d.\n", ofs, retlen, c->wbuf_pagesize); 237 return -EIO; 238 } 239 if (!memcmp(buf, c->wbuf_verify, c->wbuf_pagesize)) 240 return 0; 241 242 if (ret == -EUCLEAN) 243 eccstr = "corrected"; 244 else if (ret == -EBADMSG) 245 eccstr = "correction failed"; 246 else 247 eccstr = "OK or unused"; 248 249 printk(KERN_WARNING "Write verify error (ECC %s) at %08x. Wrote:\n", 250 eccstr, c->wbuf_ofs); 251 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1, 252 c->wbuf, c->wbuf_pagesize, 0); 253 254 printk(KERN_WARNING "Read back:\n"); 255 print_hex_dump(KERN_WARNING, "", DUMP_PREFIX_OFFSET, 16, 1, 256 c->wbuf_verify, c->wbuf_pagesize, 0); 257 258 return -EIO; 259 } 260 #else 261 #define jffs2_verify_write(c,b,o) (0) 262 #endif 263 264 /* Recover from failure to write wbuf. Recover the nodes up to the 265 * wbuf, not the one which we were starting to try to write. */ 266 267 static void jffs2_wbuf_recover(struct jffs2_sb_info *c) 268 { 269 struct jffs2_eraseblock *jeb, *new_jeb; 270 struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL; 271 size_t retlen; 272 int ret; 273 int nr_refile = 0; 274 unsigned char *buf; 275 uint32_t start, end, ofs, len; 276 277 jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 278 279 spin_lock(&c->erase_completion_lock); 280 if (c->wbuf_ofs % c->mtd->erasesize) 281 jffs2_block_refile(c, jeb, REFILE_NOTEMPTY); 282 else 283 jffs2_block_refile(c, jeb, REFILE_ANYWAY); 284 spin_unlock(&c->erase_completion_lock); 285 286 BUG_ON(!ref_obsolete(jeb->last_node)); 287 288 /* Find the first node to be recovered, by skipping over every 289 node which ends before the wbuf starts, or which is obsolete. */ 290 for (next = raw = jeb->first_node; next; raw = next) { 291 next = ref_next(raw); 292 293 if (ref_obsolete(raw) || 294 (next && ref_offset(next) <= c->wbuf_ofs)) { 295 dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n", 296 ref_offset(raw), ref_flags(raw), 297 (ref_offset(raw) + ref_totlen(c, jeb, raw)), 298 c->wbuf_ofs); 299 continue; 300 } 301 dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n", 302 ref_offset(raw), ref_flags(raw), 303 (ref_offset(raw) + ref_totlen(c, jeb, raw))); 304 305 first_raw = raw; 306 break; 307 } 308 309 if (!first_raw) { 310 /* All nodes were obsolete. Nothing to recover. */ 311 D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n")); 312 c->wbuf_len = 0; 313 return; 314 } 315 316 start = ref_offset(first_raw); 317 end = ref_offset(jeb->last_node); 318 nr_refile = 1; 319 320 /* Count the number of refs which need to be copied */ 321 while ((raw = ref_next(raw)) != jeb->last_node) 322 nr_refile++; 323 324 dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n", 325 start, end, end - start, nr_refile); 326 327 buf = NULL; 328 if (start < c->wbuf_ofs) { 329 /* First affected node was already partially written. 330 * Attempt to reread the old data into our buffer. */ 331 332 buf = kmalloc(end - start, GFP_KERNEL); 333 if (!buf) { 334 printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n"); 335 336 goto read_failed; 337 } 338 339 /* Do the read... */ 340 ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf); 341 342 /* ECC recovered ? */ 343 if ((ret == -EUCLEAN || ret == -EBADMSG) && 344 (retlen == c->wbuf_ofs - start)) 345 ret = 0; 346 347 if (ret || retlen != c->wbuf_ofs - start) { 348 printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n"); 349 350 kfree(buf); 351 buf = NULL; 352 read_failed: 353 first_raw = ref_next(first_raw); 354 nr_refile--; 355 while (first_raw && ref_obsolete(first_raw)) { 356 first_raw = ref_next(first_raw); 357 nr_refile--; 358 } 359 360 /* If this was the only node to be recovered, give up */ 361 if (!first_raw) { 362 c->wbuf_len = 0; 363 return; 364 } 365 366 /* It wasn't. Go on and try to recover nodes complete in the wbuf */ 367 start = ref_offset(first_raw); 368 dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n", 369 start, end, end - start, nr_refile); 370 371 } else { 372 /* Read succeeded. Copy the remaining data from the wbuf */ 373 memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs); 374 } 375 } 376 /* OK... we're to rewrite (end-start) bytes of data from first_raw onwards. 377 Either 'buf' contains the data, or we find it in the wbuf */ 378 379 /* ... and get an allocation of space from a shiny new block instead */ 380 ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE); 381 if (ret) { 382 printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n"); 383 kfree(buf); 384 return; 385 } 386 387 /* The summary is not recovered, so it must be disabled for this erase block */ 388 jffs2_sum_disable_collecting(c->summary); 389 390 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile); 391 if (ret) { 392 printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n"); 393 kfree(buf); 394 return; 395 } 396 397 ofs = write_ofs(c); 398 399 if (end-start >= c->wbuf_pagesize) { 400 /* Need to do another write immediately, but it's possible 401 that this is just because the wbuf itself is completely 402 full, and there's nothing earlier read back from the 403 flash. Hence 'buf' isn't necessarily what we're writing 404 from. */ 405 unsigned char *rewrite_buf = buf?:c->wbuf; 406 uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize); 407 408 D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n", 409 towrite, ofs)); 410 411 #ifdef BREAKMEHEADER 412 static int breakme; 413 if (breakme++ == 20) { 414 printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs); 415 breakme = 0; 416 c->mtd->write(c->mtd, ofs, towrite, &retlen, 417 brokenbuf); 418 ret = -EIO; 419 } else 420 #endif 421 ret = c->mtd->write(c->mtd, ofs, towrite, &retlen, 422 rewrite_buf); 423 424 if (ret || retlen != towrite || jffs2_verify_write(c, rewrite_buf, ofs)) { 425 /* Argh. We tried. Really we did. */ 426 printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n"); 427 kfree(buf); 428 429 if (retlen) 430 jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL); 431 432 return; 433 } 434 printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs); 435 436 c->wbuf_len = (end - start) - towrite; 437 c->wbuf_ofs = ofs + towrite; 438 memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len); 439 /* Don't muck about with c->wbuf_inodes. False positives are harmless. */ 440 } else { 441 /* OK, now we're left with the dregs in whichever buffer we're using */ 442 if (buf) { 443 memcpy(c->wbuf, buf, end-start); 444 } else { 445 memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start); 446 } 447 c->wbuf_ofs = ofs; 448 c->wbuf_len = end - start; 449 } 450 451 /* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */ 452 new_jeb = &c->blocks[ofs / c->sector_size]; 453 454 spin_lock(&c->erase_completion_lock); 455 for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) { 456 uint32_t rawlen = ref_totlen(c, jeb, raw); 457 struct jffs2_inode_cache *ic; 458 struct jffs2_raw_node_ref *new_ref; 459 struct jffs2_raw_node_ref **adjust_ref = NULL; 460 struct jffs2_inode_info *f = NULL; 461 462 D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n", 463 rawlen, ref_offset(raw), ref_flags(raw), ofs)); 464 465 ic = jffs2_raw_ref_to_ic(raw); 466 467 /* Ick. This XATTR mess should be fixed shortly... */ 468 if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) { 469 struct jffs2_xattr_datum *xd = (void *)ic; 470 BUG_ON(xd->node != raw); 471 adjust_ref = &xd->node; 472 raw->next_in_ino = NULL; 473 ic = NULL; 474 } else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) { 475 struct jffs2_xattr_datum *xr = (void *)ic; 476 BUG_ON(xr->node != raw); 477 adjust_ref = &xr->node; 478 raw->next_in_ino = NULL; 479 ic = NULL; 480 } else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) { 481 struct jffs2_raw_node_ref **p = &ic->nodes; 482 483 /* Remove the old node from the per-inode list */ 484 while (*p && *p != (void *)ic) { 485 if (*p == raw) { 486 (*p) = (raw->next_in_ino); 487 raw->next_in_ino = NULL; 488 break; 489 } 490 p = &((*p)->next_in_ino); 491 } 492 493 if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) { 494 /* If it's an in-core inode, then we have to adjust any 495 full_dirent or full_dnode structure to point to the 496 new version instead of the old */ 497 f = jffs2_gc_fetch_inode(c, ic->ino, !ic->pino_nlink); 498 if (IS_ERR(f)) { 499 /* Should never happen; it _must_ be present */ 500 JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n", 501 ic->ino, PTR_ERR(f)); 502 BUG(); 503 } 504 /* We don't lock f->sem. There's a number of ways we could 505 end up in here with it already being locked, and nobody's 506 going to modify it on us anyway because we hold the 507 alloc_sem. We're only changing one ->raw pointer too, 508 which we can get away with without upsetting readers. */ 509 adjust_ref = jffs2_incore_replace_raw(c, f, raw, 510 (void *)(buf?:c->wbuf) + (ref_offset(raw) - start)); 511 } else if (unlikely(ic->state != INO_STATE_PRESENT && 512 ic->state != INO_STATE_CHECKEDABSENT && 513 ic->state != INO_STATE_GC)) { 514 JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state); 515 BUG(); 516 } 517 } 518 519 new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic); 520 521 if (adjust_ref) { 522 BUG_ON(*adjust_ref != raw); 523 *adjust_ref = new_ref; 524 } 525 if (f) 526 jffs2_gc_release_inode(c, f); 527 528 if (!ref_obsolete(raw)) { 529 jeb->dirty_size += rawlen; 530 jeb->used_size -= rawlen; 531 c->dirty_size += rawlen; 532 c->used_size -= rawlen; 533 raw->flash_offset = ref_offset(raw) | REF_OBSOLETE; 534 BUG_ON(raw->next_in_ino); 535 } 536 ofs += rawlen; 537 } 538 539 kfree(buf); 540 541 /* Fix up the original jeb now it's on the bad_list */ 542 if (first_raw == jeb->first_node) { 543 D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset)); 544 list_move(&jeb->list, &c->erase_pending_list); 545 c->nr_erasing_blocks++; 546 jffs2_erase_pending_trigger(c); 547 } 548 549 jffs2_dbg_acct_sanity_check_nolock(c, jeb); 550 jffs2_dbg_acct_paranoia_check_nolock(c, jeb); 551 552 jffs2_dbg_acct_sanity_check_nolock(c, new_jeb); 553 jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb); 554 555 spin_unlock(&c->erase_completion_lock); 556 557 D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len)); 558 559 } 560 561 /* Meaning of pad argument: 562 0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway. 563 1: Pad, do not adjust nextblock free_size 564 2: Pad, adjust nextblock free_size 565 */ 566 #define NOPAD 0 567 #define PAD_NOACCOUNT 1 568 #define PAD_ACCOUNTING 2 569 570 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad) 571 { 572 struct jffs2_eraseblock *wbuf_jeb; 573 int ret; 574 size_t retlen; 575 576 /* Nothing to do if not write-buffering the flash. In particular, we shouldn't 577 del_timer() the timer we never initialised. */ 578 if (!jffs2_is_writebuffered(c)) 579 return 0; 580 581 if (mutex_trylock(&c->alloc_sem)) { 582 mutex_unlock(&c->alloc_sem); 583 printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n"); 584 BUG(); 585 } 586 587 if (!c->wbuf_len) /* already checked c->wbuf above */ 588 return 0; 589 590 wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size]; 591 if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1)) 592 return -ENOMEM; 593 594 /* claim remaining space on the page 595 this happens, if we have a change to a new block, 596 or if fsync forces us to flush the writebuffer. 597 if we have a switch to next page, we will not have 598 enough remaining space for this. 599 */ 600 if (pad ) { 601 c->wbuf_len = PAD(c->wbuf_len); 602 603 /* Pad with JFFS2_DIRTY_BITMASK initially. this helps out ECC'd NOR 604 with 8 byte page size */ 605 memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len); 606 607 if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) { 608 struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len); 609 padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK); 610 padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING); 611 padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len); 612 padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4)); 613 } 614 } 615 /* else jffs2_flash_writev has actually filled in the rest of the 616 buffer for us, and will deal with the node refs etc. later. */ 617 618 #ifdef BREAKME 619 static int breakme; 620 if (breakme++ == 20) { 621 printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs); 622 breakme = 0; 623 c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, 624 brokenbuf); 625 ret = -EIO; 626 } else 627 #endif 628 629 ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf); 630 631 if (ret) { 632 printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n", ret); 633 goto wfail; 634 } else if (retlen != c->wbuf_pagesize) { 635 printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n", 636 retlen, c->wbuf_pagesize); 637 ret = -EIO; 638 goto wfail; 639 } else if ((ret = jffs2_verify_write(c, c->wbuf, c->wbuf_ofs))) { 640 wfail: 641 jffs2_wbuf_recover(c); 642 643 return ret; 644 } 645 646 /* Adjust free size of the block if we padded. */ 647 if (pad) { 648 uint32_t waste = c->wbuf_pagesize - c->wbuf_len; 649 650 D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n", 651 (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset)); 652 653 /* wbuf_pagesize - wbuf_len is the amount of space that's to be 654 padded. If there is less free space in the block than that, 655 something screwed up */ 656 if (wbuf_jeb->free_size < waste) { 657 printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n", 658 c->wbuf_ofs, c->wbuf_len, waste); 659 printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n", 660 wbuf_jeb->offset, wbuf_jeb->free_size); 661 BUG(); 662 } 663 664 spin_lock(&c->erase_completion_lock); 665 666 jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL); 667 /* FIXME: that made it count as dirty. Convert to wasted */ 668 wbuf_jeb->dirty_size -= waste; 669 c->dirty_size -= waste; 670 wbuf_jeb->wasted_size += waste; 671 c->wasted_size += waste; 672 } else 673 spin_lock(&c->erase_completion_lock); 674 675 /* Stick any now-obsoleted blocks on the erase_pending_list */ 676 jffs2_refile_wbuf_blocks(c); 677 jffs2_clear_wbuf_ino_list(c); 678 spin_unlock(&c->erase_completion_lock); 679 680 memset(c->wbuf,0xff,c->wbuf_pagesize); 681 /* adjust write buffer offset, else we get a non contiguous write bug */ 682 if (SECTOR_ADDR(c->wbuf_ofs) == SECTOR_ADDR(c->wbuf_ofs+c->wbuf_pagesize)) 683 c->wbuf_ofs += c->wbuf_pagesize; 684 else 685 c->wbuf_ofs = 0xffffffff; 686 c->wbuf_len = 0; 687 return 0; 688 } 689 690 /* Trigger garbage collection to flush the write-buffer. 691 If ino arg is zero, do it if _any_ real (i.e. not GC) writes are 692 outstanding. If ino arg non-zero, do it only if a write for the 693 given inode is outstanding. */ 694 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino) 695 { 696 uint32_t old_wbuf_ofs; 697 uint32_t old_wbuf_len; 698 int ret = 0; 699 700 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino)); 701 702 if (!c->wbuf) 703 return 0; 704 705 mutex_lock(&c->alloc_sem); 706 if (!jffs2_wbuf_pending_for_ino(c, ino)) { 707 D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino)); 708 mutex_unlock(&c->alloc_sem); 709 return 0; 710 } 711 712 old_wbuf_ofs = c->wbuf_ofs; 713 old_wbuf_len = c->wbuf_len; 714 715 if (c->unchecked_size) { 716 /* GC won't make any progress for a while */ 717 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n")); 718 down_write(&c->wbuf_sem); 719 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 720 /* retry flushing wbuf in case jffs2_wbuf_recover 721 left some data in the wbuf */ 722 if (ret) 723 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 724 up_write(&c->wbuf_sem); 725 } else while (old_wbuf_len && 726 old_wbuf_ofs == c->wbuf_ofs) { 727 728 mutex_unlock(&c->alloc_sem); 729 730 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n")); 731 732 ret = jffs2_garbage_collect_pass(c); 733 if (ret) { 734 /* GC failed. Flush it with padding instead */ 735 mutex_lock(&c->alloc_sem); 736 down_write(&c->wbuf_sem); 737 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 738 /* retry flushing wbuf in case jffs2_wbuf_recover 739 left some data in the wbuf */ 740 if (ret) 741 ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING); 742 up_write(&c->wbuf_sem); 743 break; 744 } 745 mutex_lock(&c->alloc_sem); 746 } 747 748 D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n")); 749 750 mutex_unlock(&c->alloc_sem); 751 return ret; 752 } 753 754 /* Pad write-buffer to end and write it, wasting space. */ 755 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c) 756 { 757 int ret; 758 759 if (!c->wbuf) 760 return 0; 761 762 down_write(&c->wbuf_sem); 763 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 764 /* retry - maybe wbuf recover left some data in wbuf. */ 765 if (ret) 766 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 767 up_write(&c->wbuf_sem); 768 769 return ret; 770 } 771 772 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf, 773 size_t len) 774 { 775 if (len && !c->wbuf_len && (len >= c->wbuf_pagesize)) 776 return 0; 777 778 if (len > (c->wbuf_pagesize - c->wbuf_len)) 779 len = c->wbuf_pagesize - c->wbuf_len; 780 memcpy(c->wbuf + c->wbuf_len, buf, len); 781 c->wbuf_len += (uint32_t) len; 782 return len; 783 } 784 785 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs, 786 unsigned long count, loff_t to, size_t *retlen, 787 uint32_t ino) 788 { 789 struct jffs2_eraseblock *jeb; 790 size_t wbuf_retlen, donelen = 0; 791 uint32_t outvec_to = to; 792 int ret, invec; 793 794 /* If not writebuffered flash, don't bother */ 795 if (!jffs2_is_writebuffered(c)) 796 return jffs2_flash_direct_writev(c, invecs, count, to, retlen); 797 798 down_write(&c->wbuf_sem); 799 800 /* If wbuf_ofs is not initialized, set it to target address */ 801 if (c->wbuf_ofs == 0xFFFFFFFF) { 802 c->wbuf_ofs = PAGE_DIV(to); 803 c->wbuf_len = PAGE_MOD(to); 804 memset(c->wbuf,0xff,c->wbuf_pagesize); 805 } 806 807 /* 808 * Sanity checks on target address. It's permitted to write 809 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to 810 * write at the beginning of a new erase block. Anything else, 811 * and you die. New block starts at xxx000c (0-b = block 812 * header) 813 */ 814 if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) { 815 /* It's a write to a new block */ 816 if (c->wbuf_len) { 817 D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx " 818 "causes flush of wbuf at 0x%08x\n", 819 (unsigned long)to, c->wbuf_ofs)); 820 ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT); 821 if (ret) 822 goto outerr; 823 } 824 /* set pointer to new block */ 825 c->wbuf_ofs = PAGE_DIV(to); 826 c->wbuf_len = PAGE_MOD(to); 827 } 828 829 if (to != PAD(c->wbuf_ofs + c->wbuf_len)) { 830 /* We're not writing immediately after the writebuffer. Bad. */ 831 printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write " 832 "to %08lx\n", (unsigned long)to); 833 if (c->wbuf_len) 834 printk(KERN_CRIT "wbuf was previously %08x-%08x\n", 835 c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len); 836 BUG(); 837 } 838 839 /* adjust alignment offset */ 840 if (c->wbuf_len != PAGE_MOD(to)) { 841 c->wbuf_len = PAGE_MOD(to); 842 /* take care of alignment to next page */ 843 if (!c->wbuf_len) { 844 c->wbuf_len = c->wbuf_pagesize; 845 ret = __jffs2_flush_wbuf(c, NOPAD); 846 if (ret) 847 goto outerr; 848 } 849 } 850 851 for (invec = 0; invec < count; invec++) { 852 int vlen = invecs[invec].iov_len; 853 uint8_t *v = invecs[invec].iov_base; 854 855 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); 856 857 if (c->wbuf_len == c->wbuf_pagesize) { 858 ret = __jffs2_flush_wbuf(c, NOPAD); 859 if (ret) 860 goto outerr; 861 } 862 vlen -= wbuf_retlen; 863 outvec_to += wbuf_retlen; 864 donelen += wbuf_retlen; 865 v += wbuf_retlen; 866 867 if (vlen >= c->wbuf_pagesize) { 868 ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen), 869 &wbuf_retlen, v); 870 if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen)) 871 goto outfile; 872 873 vlen -= wbuf_retlen; 874 outvec_to += wbuf_retlen; 875 c->wbuf_ofs = outvec_to; 876 donelen += wbuf_retlen; 877 v += wbuf_retlen; 878 } 879 880 wbuf_retlen = jffs2_fill_wbuf(c, v, vlen); 881 if (c->wbuf_len == c->wbuf_pagesize) { 882 ret = __jffs2_flush_wbuf(c, NOPAD); 883 if (ret) 884 goto outerr; 885 } 886 887 outvec_to += wbuf_retlen; 888 donelen += wbuf_retlen; 889 } 890 891 /* 892 * If there's a remainder in the wbuf and it's a non-GC write, 893 * remember that the wbuf affects this ino 894 */ 895 *retlen = donelen; 896 897 if (jffs2_sum_active()) { 898 int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to); 899 if (res) 900 return res; 901 } 902 903 if (c->wbuf_len && ino) 904 jffs2_wbuf_dirties_inode(c, ino); 905 906 ret = 0; 907 up_write(&c->wbuf_sem); 908 return ret; 909 910 outfile: 911 /* 912 * At this point we have no problem, c->wbuf is empty. However 913 * refile nextblock to avoid writing again to same address. 914 */ 915 916 spin_lock(&c->erase_completion_lock); 917 918 jeb = &c->blocks[outvec_to / c->sector_size]; 919 jffs2_block_refile(c, jeb, REFILE_ANYWAY); 920 921 spin_unlock(&c->erase_completion_lock); 922 923 outerr: 924 *retlen = 0; 925 up_write(&c->wbuf_sem); 926 return ret; 927 } 928 929 /* 930 * This is the entry for flash write. 931 * Check, if we work on NAND FLASH, if so build an kvec and write it via vritev 932 */ 933 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len, 934 size_t *retlen, const u_char *buf) 935 { 936 struct kvec vecs[1]; 937 938 if (!jffs2_is_writebuffered(c)) 939 return jffs2_flash_direct_write(c, ofs, len, retlen, buf); 940 941 vecs[0].iov_base = (unsigned char *) buf; 942 vecs[0].iov_len = len; 943 return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0); 944 } 945 946 /* 947 Handle readback from writebuffer and ECC failure return 948 */ 949 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf) 950 { 951 loff_t orbf = 0, owbf = 0, lwbf = 0; 952 int ret; 953 954 if (!jffs2_is_writebuffered(c)) 955 return c->mtd->read(c->mtd, ofs, len, retlen, buf); 956 957 /* Read flash */ 958 down_read(&c->wbuf_sem); 959 ret = c->mtd->read(c->mtd, ofs, len, retlen, buf); 960 961 if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) { 962 if (ret == -EBADMSG) 963 printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)" 964 " returned ECC error\n", len, ofs); 965 /* 966 * We have the raw data without ECC correction in the buffer, 967 * maybe we are lucky and all data or parts are correct. We 968 * check the node. If data are corrupted node check will sort 969 * it out. We keep this block, it will fail on write or erase 970 * and the we mark it bad. Or should we do that now? But we 971 * should give him a chance. Maybe we had a system crash or 972 * power loss before the ecc write or a erase was completed. 973 * So we return success. :) 974 */ 975 ret = 0; 976 } 977 978 /* if no writebuffer available or write buffer empty, return */ 979 if (!c->wbuf_pagesize || !c->wbuf_len) 980 goto exit; 981 982 /* if we read in a different block, return */ 983 if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs)) 984 goto exit; 985 986 if (ofs >= c->wbuf_ofs) { 987 owbf = (ofs - c->wbuf_ofs); /* offset in write buffer */ 988 if (owbf > c->wbuf_len) /* is read beyond write buffer ? */ 989 goto exit; 990 lwbf = c->wbuf_len - owbf; /* number of bytes to copy */ 991 if (lwbf > len) 992 lwbf = len; 993 } else { 994 orbf = (c->wbuf_ofs - ofs); /* offset in read buffer */ 995 if (orbf > len) /* is write beyond write buffer ? */ 996 goto exit; 997 lwbf = len - orbf; /* number of bytes to copy */ 998 if (lwbf > c->wbuf_len) 999 lwbf = c->wbuf_len; 1000 } 1001 if (lwbf > 0) 1002 memcpy(buf+orbf,c->wbuf+owbf,lwbf); 1003 1004 exit: 1005 up_read(&c->wbuf_sem); 1006 return ret; 1007 } 1008 1009 #define NR_OOB_SCAN_PAGES 4 1010 1011 /* For historical reasons we use only 8 bytes for OOB clean marker */ 1012 #define OOB_CM_SIZE 8 1013 1014 static const struct jffs2_unknown_node oob_cleanmarker = 1015 { 1016 .magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK), 1017 .nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER), 1018 .totlen = constant_cpu_to_je32(8) 1019 }; 1020 1021 /* 1022 * Check, if the out of band area is empty. This function knows about the clean 1023 * marker and if it is present in OOB, treats the OOB as empty anyway. 1024 */ 1025 int jffs2_check_oob_empty(struct jffs2_sb_info *c, 1026 struct jffs2_eraseblock *jeb, int mode) 1027 { 1028 int i, ret; 1029 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE); 1030 struct mtd_oob_ops ops; 1031 1032 ops.mode = MTD_OOB_AUTO; 1033 ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail; 1034 ops.oobbuf = c->oobbuf; 1035 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; 1036 ops.datbuf = NULL; 1037 1038 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops); 1039 if (ret || ops.oobretlen != ops.ooblen) { 1040 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd" 1041 " bytes, read %zd bytes, error %d\n", 1042 jeb->offset, ops.ooblen, ops.oobretlen, ret); 1043 if (!ret) 1044 ret = -EIO; 1045 return ret; 1046 } 1047 1048 for(i = 0; i < ops.ooblen; i++) { 1049 if (mode && i < cmlen) 1050 /* Yeah, we know about the cleanmarker */ 1051 continue; 1052 1053 if (ops.oobbuf[i] != 0xFF) { 1054 D2(printk(KERN_DEBUG "Found %02x at %x in OOB for " 1055 "%08x\n", ops.oobbuf[i], i, jeb->offset)); 1056 return 1; 1057 } 1058 } 1059 1060 return 0; 1061 } 1062 1063 /* 1064 * Check for a valid cleanmarker. 1065 * Returns: 0 if a valid cleanmarker was found 1066 * 1 if no cleanmarker was found 1067 * negative error code if an error occurred 1068 */ 1069 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c, 1070 struct jffs2_eraseblock *jeb) 1071 { 1072 struct mtd_oob_ops ops; 1073 int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE); 1074 1075 ops.mode = MTD_OOB_AUTO; 1076 ops.ooblen = cmlen; 1077 ops.oobbuf = c->oobbuf; 1078 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; 1079 ops.datbuf = NULL; 1080 1081 ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops); 1082 if (ret || ops.oobretlen != ops.ooblen) { 1083 printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd" 1084 " bytes, read %zd bytes, error %d\n", 1085 jeb->offset, ops.ooblen, ops.oobretlen, ret); 1086 if (!ret) 1087 ret = -EIO; 1088 return ret; 1089 } 1090 1091 return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen); 1092 } 1093 1094 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c, 1095 struct jffs2_eraseblock *jeb) 1096 { 1097 int ret; 1098 struct mtd_oob_ops ops; 1099 int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE); 1100 1101 ops.mode = MTD_OOB_AUTO; 1102 ops.ooblen = cmlen; 1103 ops.oobbuf = (uint8_t *)&oob_cleanmarker; 1104 ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0; 1105 ops.datbuf = NULL; 1106 1107 ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops); 1108 if (ret || ops.oobretlen != ops.ooblen) { 1109 printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd" 1110 " bytes, read %zd bytes, error %d\n", 1111 jeb->offset, ops.ooblen, ops.oobretlen, ret); 1112 if (!ret) 1113 ret = -EIO; 1114 return ret; 1115 } 1116 1117 return 0; 1118 } 1119 1120 /* 1121 * On NAND we try to mark this block bad. If the block was erased more 1122 * than MAX_ERASE_FAILURES we mark it finaly bad. 1123 * Don't care about failures. This block remains on the erase-pending 1124 * or badblock list as long as nobody manipulates the flash with 1125 * a bootloader or something like that. 1126 */ 1127 1128 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset) 1129 { 1130 int ret; 1131 1132 /* if the count is < max, we try to write the counter to the 2nd page oob area */ 1133 if( ++jeb->bad_count < MAX_ERASE_FAILURES) 1134 return 0; 1135 1136 if (!c->mtd->block_markbad) 1137 return 1; // What else can we do? 1138 1139 printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset); 1140 ret = c->mtd->block_markbad(c->mtd, bad_offset); 1141 1142 if (ret) { 1143 D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret)); 1144 return ret; 1145 } 1146 return 1; 1147 } 1148 1149 int jffs2_nand_flash_setup(struct jffs2_sb_info *c) 1150 { 1151 struct nand_ecclayout *oinfo = c->mtd->ecclayout; 1152 1153 if (!c->mtd->oobsize) 1154 return 0; 1155 1156 /* Cleanmarker is out-of-band, so inline size zero */ 1157 c->cleanmarker_size = 0; 1158 1159 if (!oinfo || oinfo->oobavail == 0) { 1160 printk(KERN_ERR "inconsistent device description\n"); 1161 return -EINVAL; 1162 } 1163 1164 D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n")); 1165 1166 c->oobavail = oinfo->oobavail; 1167 1168 /* Initialise write buffer */ 1169 init_rwsem(&c->wbuf_sem); 1170 c->wbuf_pagesize = c->mtd->writesize; 1171 c->wbuf_ofs = 0xFFFFFFFF; 1172 1173 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1174 if (!c->wbuf) 1175 return -ENOMEM; 1176 1177 c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL); 1178 if (!c->oobbuf) { 1179 kfree(c->wbuf); 1180 return -ENOMEM; 1181 } 1182 1183 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY 1184 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1185 if (!c->wbuf_verify) { 1186 kfree(c->oobbuf); 1187 kfree(c->wbuf); 1188 return -ENOMEM; 1189 } 1190 #endif 1191 return 0; 1192 } 1193 1194 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c) 1195 { 1196 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY 1197 kfree(c->wbuf_verify); 1198 #endif 1199 kfree(c->wbuf); 1200 kfree(c->oobbuf); 1201 } 1202 1203 int jffs2_dataflash_setup(struct jffs2_sb_info *c) { 1204 c->cleanmarker_size = 0; /* No cleanmarkers needed */ 1205 1206 /* Initialize write buffer */ 1207 init_rwsem(&c->wbuf_sem); 1208 1209 1210 c->wbuf_pagesize = c->mtd->erasesize; 1211 1212 /* Find a suitable c->sector_size 1213 * - Not too much sectors 1214 * - Sectors have to be at least 4 K + some bytes 1215 * - All known dataflashes have erase sizes of 528 or 1056 1216 * - we take at least 8 eraseblocks and want to have at least 8K size 1217 * - The concatenation should be a power of 2 1218 */ 1219 1220 c->sector_size = 8 * c->mtd->erasesize; 1221 1222 while (c->sector_size < 8192) { 1223 c->sector_size *= 2; 1224 } 1225 1226 /* It may be necessary to adjust the flash size */ 1227 c->flash_size = c->mtd->size; 1228 1229 if ((c->flash_size % c->sector_size) != 0) { 1230 c->flash_size = (c->flash_size / c->sector_size) * c->sector_size; 1231 printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size); 1232 }; 1233 1234 c->wbuf_ofs = 0xFFFFFFFF; 1235 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1236 if (!c->wbuf) 1237 return -ENOMEM; 1238 1239 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY 1240 c->wbuf_verify = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1241 if (!c->wbuf_verify) { 1242 kfree(c->oobbuf); 1243 kfree(c->wbuf); 1244 return -ENOMEM; 1245 } 1246 #endif 1247 1248 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); 1249 1250 return 0; 1251 } 1252 1253 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) { 1254 #ifdef CONFIG_JFFS2_FS_WBUF_VERIFY 1255 kfree(c->wbuf_verify); 1256 #endif 1257 kfree(c->wbuf); 1258 } 1259 1260 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) { 1261 /* Cleanmarker currently occupies whole programming regions, 1262 * either one or 2 for 8Byte STMicro flashes. */ 1263 c->cleanmarker_size = max(16u, c->mtd->writesize); 1264 1265 /* Initialize write buffer */ 1266 init_rwsem(&c->wbuf_sem); 1267 c->wbuf_pagesize = c->mtd->writesize; 1268 c->wbuf_ofs = 0xFFFFFFFF; 1269 1270 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1271 if (!c->wbuf) 1272 return -ENOMEM; 1273 1274 return 0; 1275 } 1276 1277 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) { 1278 kfree(c->wbuf); 1279 } 1280 1281 int jffs2_ubivol_setup(struct jffs2_sb_info *c) { 1282 c->cleanmarker_size = 0; 1283 1284 if (c->mtd->writesize == 1) 1285 /* We do not need write-buffer */ 1286 return 0; 1287 1288 init_rwsem(&c->wbuf_sem); 1289 1290 c->wbuf_pagesize = c->mtd->writesize; 1291 c->wbuf_ofs = 0xFFFFFFFF; 1292 c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL); 1293 if (!c->wbuf) 1294 return -ENOMEM; 1295 1296 printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size); 1297 1298 return 0; 1299 } 1300 1301 void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) { 1302 kfree(c->wbuf); 1303 } 1304