xref: /openbmc/linux/fs/jffs2/wbuf.c (revision 3fddb6c9)
1 /*
2  * JFFS2 -- Journalling Flash File System, Version 2.
3  *
4  * Copyright © 2001-2007 Red Hat, Inc.
5  * Copyright © 2004 Thomas Gleixner <tglx@linutronix.de>
6  *
7  * Created by David Woodhouse <dwmw2@infradead.org>
8  * Modified debugged and enhanced by Thomas Gleixner <tglx@linutronix.de>
9  *
10  * For licensing information, see the file 'LICENCE' in this directory.
11  *
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/slab.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/crc32.h>
18 #include <linux/mtd/nand.h>
19 #include <linux/jiffies.h>
20 #include <linux/sched.h>
21 
22 #include "nodelist.h"
23 
24 /* For testing write failures */
25 #undef BREAKME
26 #undef BREAKMEHEADER
27 
28 #ifdef BREAKME
29 static unsigned char *brokenbuf;
30 #endif
31 
32 #define PAGE_DIV(x) ( ((unsigned long)(x) / (unsigned long)(c->wbuf_pagesize)) * (unsigned long)(c->wbuf_pagesize) )
33 #define PAGE_MOD(x) ( (unsigned long)(x) % (unsigned long)(c->wbuf_pagesize) )
34 
35 /* max. erase failures before we mark a block bad */
36 #define MAX_ERASE_FAILURES 	2
37 
38 struct jffs2_inodirty {
39 	uint32_t ino;
40 	struct jffs2_inodirty *next;
41 };
42 
43 static struct jffs2_inodirty inodirty_nomem;
44 
45 static int jffs2_wbuf_pending_for_ino(struct jffs2_sb_info *c, uint32_t ino)
46 {
47 	struct jffs2_inodirty *this = c->wbuf_inodes;
48 
49 	/* If a malloc failed, consider _everything_ dirty */
50 	if (this == &inodirty_nomem)
51 		return 1;
52 
53 	/* If ino == 0, _any_ non-GC writes mean 'yes' */
54 	if (this && !ino)
55 		return 1;
56 
57 	/* Look to see if the inode in question is pending in the wbuf */
58 	while (this) {
59 		if (this->ino == ino)
60 			return 1;
61 		this = this->next;
62 	}
63 	return 0;
64 }
65 
66 static void jffs2_clear_wbuf_ino_list(struct jffs2_sb_info *c)
67 {
68 	struct jffs2_inodirty *this;
69 
70 	this = c->wbuf_inodes;
71 
72 	if (this != &inodirty_nomem) {
73 		while (this) {
74 			struct jffs2_inodirty *next = this->next;
75 			kfree(this);
76 			this = next;
77 		}
78 	}
79 	c->wbuf_inodes = NULL;
80 }
81 
82 static void jffs2_wbuf_dirties_inode(struct jffs2_sb_info *c, uint32_t ino)
83 {
84 	struct jffs2_inodirty *new;
85 
86 	/* Mark the superblock dirty so that kupdated will flush... */
87 	jffs2_erase_pending_trigger(c);
88 
89 	if (jffs2_wbuf_pending_for_ino(c, ino))
90 		return;
91 
92 	new = kmalloc(sizeof(*new), GFP_KERNEL);
93 	if (!new) {
94 		D1(printk(KERN_DEBUG "No memory to allocate inodirty. Fallback to all considered dirty\n"));
95 		jffs2_clear_wbuf_ino_list(c);
96 		c->wbuf_inodes = &inodirty_nomem;
97 		return;
98 	}
99 	new->ino = ino;
100 	new->next = c->wbuf_inodes;
101 	c->wbuf_inodes = new;
102 	return;
103 }
104 
105 static inline void jffs2_refile_wbuf_blocks(struct jffs2_sb_info *c)
106 {
107 	struct list_head *this, *next;
108 	static int n;
109 
110 	if (list_empty(&c->erasable_pending_wbuf_list))
111 		return;
112 
113 	list_for_each_safe(this, next, &c->erasable_pending_wbuf_list) {
114 		struct jffs2_eraseblock *jeb = list_entry(this, struct jffs2_eraseblock, list);
115 
116 		D1(printk(KERN_DEBUG "Removing eraseblock at 0x%08x from erasable_pending_wbuf_list...\n", jeb->offset));
117 		list_del(this);
118 		if ((jiffies + (n++)) & 127) {
119 			/* Most of the time, we just erase it immediately. Otherwise we
120 			   spend ages scanning it on mount, etc. */
121 			D1(printk(KERN_DEBUG "...and adding to erase_pending_list\n"));
122 			list_add_tail(&jeb->list, &c->erase_pending_list);
123 			c->nr_erasing_blocks++;
124 			jffs2_erase_pending_trigger(c);
125 		} else {
126 			/* Sometimes, however, we leave it elsewhere so it doesn't get
127 			   immediately reused, and we spread the load a bit. */
128 			D1(printk(KERN_DEBUG "...and adding to erasable_list\n"));
129 			list_add_tail(&jeb->list, &c->erasable_list);
130 		}
131 	}
132 }
133 
134 #define REFILE_NOTEMPTY 0
135 #define REFILE_ANYWAY   1
136 
137 static void jffs2_block_refile(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, int allow_empty)
138 {
139 	D1(printk("About to refile bad block at %08x\n", jeb->offset));
140 
141 	/* File the existing block on the bad_used_list.... */
142 	if (c->nextblock == jeb)
143 		c->nextblock = NULL;
144 	else /* Not sure this should ever happen... need more coffee */
145 		list_del(&jeb->list);
146 	if (jeb->first_node) {
147 		D1(printk("Refiling block at %08x to bad_used_list\n", jeb->offset));
148 		list_add(&jeb->list, &c->bad_used_list);
149 	} else {
150 		BUG_ON(allow_empty == REFILE_NOTEMPTY);
151 		/* It has to have had some nodes or we couldn't be here */
152 		D1(printk("Refiling block at %08x to erase_pending_list\n", jeb->offset));
153 		list_add(&jeb->list, &c->erase_pending_list);
154 		c->nr_erasing_blocks++;
155 		jffs2_erase_pending_trigger(c);
156 	}
157 
158 	if (!jffs2_prealloc_raw_node_refs(c, jeb, 1)) {
159 		uint32_t oldfree = jeb->free_size;
160 
161 		jffs2_link_node_ref(c, jeb,
162 				    (jeb->offset+c->sector_size-oldfree) | REF_OBSOLETE,
163 				    oldfree, NULL);
164 		/* convert to wasted */
165 		c->wasted_size += oldfree;
166 		jeb->wasted_size += oldfree;
167 		c->dirty_size -= oldfree;
168 		jeb->dirty_size -= oldfree;
169 	}
170 
171 	jffs2_dbg_dump_block_lists_nolock(c);
172 	jffs2_dbg_acct_sanity_check_nolock(c,jeb);
173 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
174 }
175 
176 static struct jffs2_raw_node_ref **jffs2_incore_replace_raw(struct jffs2_sb_info *c,
177 							    struct jffs2_inode_info *f,
178 							    struct jffs2_raw_node_ref *raw,
179 							    union jffs2_node_union *node)
180 {
181 	struct jffs2_node_frag *frag;
182 	struct jffs2_full_dirent *fd;
183 
184 	dbg_noderef("incore_replace_raw: node at %p is {%04x,%04x}\n",
185 		    node, je16_to_cpu(node->u.magic), je16_to_cpu(node->u.nodetype));
186 
187 	BUG_ON(je16_to_cpu(node->u.magic) != 0x1985 &&
188 	       je16_to_cpu(node->u.magic) != 0);
189 
190 	switch (je16_to_cpu(node->u.nodetype)) {
191 	case JFFS2_NODETYPE_INODE:
192 		if (f->metadata && f->metadata->raw == raw) {
193 			dbg_noderef("Will replace ->raw in f->metadata at %p\n", f->metadata);
194 			return &f->metadata->raw;
195 		}
196 		frag = jffs2_lookup_node_frag(&f->fragtree, je32_to_cpu(node->i.offset));
197 		BUG_ON(!frag);
198 		/* Find a frag which refers to the full_dnode we want to modify */
199 		while (!frag->node || frag->node->raw != raw) {
200 			frag = frag_next(frag);
201 			BUG_ON(!frag);
202 		}
203 		dbg_noderef("Will replace ->raw in full_dnode at %p\n", frag->node);
204 		return &frag->node->raw;
205 
206 	case JFFS2_NODETYPE_DIRENT:
207 		for (fd = f->dents; fd; fd = fd->next) {
208 			if (fd->raw == raw) {
209 				dbg_noderef("Will replace ->raw in full_dirent at %p\n", fd);
210 				return &fd->raw;
211 			}
212 		}
213 		BUG();
214 
215 	default:
216 		dbg_noderef("Don't care about replacing raw for nodetype %x\n",
217 			    je16_to_cpu(node->u.nodetype));
218 		break;
219 	}
220 	return NULL;
221 }
222 
223 /* Recover from failure to write wbuf. Recover the nodes up to the
224  * wbuf, not the one which we were starting to try to write. */
225 
226 static void jffs2_wbuf_recover(struct jffs2_sb_info *c)
227 {
228 	struct jffs2_eraseblock *jeb, *new_jeb;
229 	struct jffs2_raw_node_ref *raw, *next, *first_raw = NULL;
230 	size_t retlen;
231 	int ret;
232 	int nr_refile = 0;
233 	unsigned char *buf;
234 	uint32_t start, end, ofs, len;
235 
236 	jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
237 
238 	spin_lock(&c->erase_completion_lock);
239 	if (c->wbuf_ofs % c->mtd->erasesize)
240 		jffs2_block_refile(c, jeb, REFILE_NOTEMPTY);
241 	else
242 		jffs2_block_refile(c, jeb, REFILE_ANYWAY);
243 	spin_unlock(&c->erase_completion_lock);
244 
245 	BUG_ON(!ref_obsolete(jeb->last_node));
246 
247 	/* Find the first node to be recovered, by skipping over every
248 	   node which ends before the wbuf starts, or which is obsolete. */
249 	for (next = raw = jeb->first_node; next; raw = next) {
250 		next = ref_next(raw);
251 
252 		if (ref_obsolete(raw) ||
253 		    (next && ref_offset(next) <= c->wbuf_ofs)) {
254 			dbg_noderef("Skipping node at 0x%08x(%d)-0x%08x which is either before 0x%08x or obsolete\n",
255 				    ref_offset(raw), ref_flags(raw),
256 				    (ref_offset(raw) + ref_totlen(c, jeb, raw)),
257 				    c->wbuf_ofs);
258 			continue;
259 		}
260 		dbg_noderef("First node to be recovered is at 0x%08x(%d)-0x%08x\n",
261 			    ref_offset(raw), ref_flags(raw),
262 			    (ref_offset(raw) + ref_totlen(c, jeb, raw)));
263 
264 		first_raw = raw;
265 		break;
266 	}
267 
268 	if (!first_raw) {
269 		/* All nodes were obsolete. Nothing to recover. */
270 		D1(printk(KERN_DEBUG "No non-obsolete nodes to be recovered. Just filing block bad\n"));
271 		c->wbuf_len = 0;
272 		return;
273 	}
274 
275 	start = ref_offset(first_raw);
276 	end = ref_offset(jeb->last_node);
277 	nr_refile = 1;
278 
279 	/* Count the number of refs which need to be copied */
280 	while ((raw = ref_next(raw)) != jeb->last_node)
281 		nr_refile++;
282 
283 	dbg_noderef("wbuf recover %08x-%08x (%d bytes in %d nodes)\n",
284 		    start, end, end - start, nr_refile);
285 
286 	buf = NULL;
287 	if (start < c->wbuf_ofs) {
288 		/* First affected node was already partially written.
289 		 * Attempt to reread the old data into our buffer. */
290 
291 		buf = kmalloc(end - start, GFP_KERNEL);
292 		if (!buf) {
293 			printk(KERN_CRIT "Malloc failure in wbuf recovery. Data loss ensues.\n");
294 
295 			goto read_failed;
296 		}
297 
298 		/* Do the read... */
299 		ret = c->mtd->read(c->mtd, start, c->wbuf_ofs - start, &retlen, buf);
300 
301 		/* ECC recovered ? */
302 		if ((ret == -EUCLEAN || ret == -EBADMSG) &&
303 		    (retlen == c->wbuf_ofs - start))
304 			ret = 0;
305 
306 		if (ret || retlen != c->wbuf_ofs - start) {
307 			printk(KERN_CRIT "Old data are already lost in wbuf recovery. Data loss ensues.\n");
308 
309 			kfree(buf);
310 			buf = NULL;
311 		read_failed:
312 			first_raw = ref_next(first_raw);
313 			nr_refile--;
314 			while (first_raw && ref_obsolete(first_raw)) {
315 				first_raw = ref_next(first_raw);
316 				nr_refile--;
317 			}
318 
319 			/* If this was the only node to be recovered, give up */
320 			if (!first_raw) {
321 				c->wbuf_len = 0;
322 				return;
323 			}
324 
325 			/* It wasn't. Go on and try to recover nodes complete in the wbuf */
326 			start = ref_offset(first_raw);
327 			dbg_noderef("wbuf now recover %08x-%08x (%d bytes in %d nodes)\n",
328 				    start, end, end - start, nr_refile);
329 
330 		} else {
331 			/* Read succeeded. Copy the remaining data from the wbuf */
332 			memcpy(buf + (c->wbuf_ofs - start), c->wbuf, end - c->wbuf_ofs);
333 		}
334 	}
335 	/* OK... we're to rewrite (end-start) bytes of data from first_raw onwards.
336 	   Either 'buf' contains the data, or we find it in the wbuf */
337 
338 	/* ... and get an allocation of space from a shiny new block instead */
339 	ret = jffs2_reserve_space_gc(c, end-start, &len, JFFS2_SUMMARY_NOSUM_SIZE);
340 	if (ret) {
341 		printk(KERN_WARNING "Failed to allocate space for wbuf recovery. Data loss ensues.\n");
342 		kfree(buf);
343 		return;
344 	}
345 
346 	/* The summary is not recovered, so it must be disabled for this erase block */
347 	jffs2_sum_disable_collecting(c->summary);
348 
349 	ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, nr_refile);
350 	if (ret) {
351 		printk(KERN_WARNING "Failed to allocate node refs for wbuf recovery. Data loss ensues.\n");
352 		kfree(buf);
353 		return;
354 	}
355 
356 	ofs = write_ofs(c);
357 
358 	if (end-start >= c->wbuf_pagesize) {
359 		/* Need to do another write immediately, but it's possible
360 		   that this is just because the wbuf itself is completely
361 		   full, and there's nothing earlier read back from the
362 		   flash. Hence 'buf' isn't necessarily what we're writing
363 		   from. */
364 		unsigned char *rewrite_buf = buf?:c->wbuf;
365 		uint32_t towrite = (end-start) - ((end-start)%c->wbuf_pagesize);
366 
367 		D1(printk(KERN_DEBUG "Write 0x%x bytes at 0x%08x in wbuf recover\n",
368 			  towrite, ofs));
369 
370 #ifdef BREAKMEHEADER
371 		static int breakme;
372 		if (breakme++ == 20) {
373 			printk(KERN_NOTICE "Faking write error at 0x%08x\n", ofs);
374 			breakme = 0;
375 			c->mtd->write(c->mtd, ofs, towrite, &retlen,
376 				      brokenbuf);
377 			ret = -EIO;
378 		} else
379 #endif
380 			ret = c->mtd->write(c->mtd, ofs, towrite, &retlen,
381 					    rewrite_buf);
382 
383 		if (ret || retlen != towrite) {
384 			/* Argh. We tried. Really we did. */
385 			printk(KERN_CRIT "Recovery of wbuf failed due to a second write error\n");
386 			kfree(buf);
387 
388 			if (retlen)
389 				jffs2_add_physical_node_ref(c, ofs | REF_OBSOLETE, ref_totlen(c, jeb, first_raw), NULL);
390 
391 			return;
392 		}
393 		printk(KERN_NOTICE "Recovery of wbuf succeeded to %08x\n", ofs);
394 
395 		c->wbuf_len = (end - start) - towrite;
396 		c->wbuf_ofs = ofs + towrite;
397 		memmove(c->wbuf, rewrite_buf + towrite, c->wbuf_len);
398 		/* Don't muck about with c->wbuf_inodes. False positives are harmless. */
399 	} else {
400 		/* OK, now we're left with the dregs in whichever buffer we're using */
401 		if (buf) {
402 			memcpy(c->wbuf, buf, end-start);
403 		} else {
404 			memmove(c->wbuf, c->wbuf + (start - c->wbuf_ofs), end - start);
405 		}
406 		c->wbuf_ofs = ofs;
407 		c->wbuf_len = end - start;
408 	}
409 
410 	/* Now sort out the jffs2_raw_node_refs, moving them from the old to the next block */
411 	new_jeb = &c->blocks[ofs / c->sector_size];
412 
413 	spin_lock(&c->erase_completion_lock);
414 	for (raw = first_raw; raw != jeb->last_node; raw = ref_next(raw)) {
415 		uint32_t rawlen = ref_totlen(c, jeb, raw);
416 		struct jffs2_inode_cache *ic;
417 		struct jffs2_raw_node_ref *new_ref;
418 		struct jffs2_raw_node_ref **adjust_ref = NULL;
419 		struct jffs2_inode_info *f = NULL;
420 
421 		D1(printk(KERN_DEBUG "Refiling block of %08x at %08x(%d) to %08x\n",
422 			  rawlen, ref_offset(raw), ref_flags(raw), ofs));
423 
424 		ic = jffs2_raw_ref_to_ic(raw);
425 
426 		/* Ick. This XATTR mess should be fixed shortly... */
427 		if (ic && ic->class == RAWNODE_CLASS_XATTR_DATUM) {
428 			struct jffs2_xattr_datum *xd = (void *)ic;
429 			BUG_ON(xd->node != raw);
430 			adjust_ref = &xd->node;
431 			raw->next_in_ino = NULL;
432 			ic = NULL;
433 		} else if (ic && ic->class == RAWNODE_CLASS_XATTR_REF) {
434 			struct jffs2_xattr_datum *xr = (void *)ic;
435 			BUG_ON(xr->node != raw);
436 			adjust_ref = &xr->node;
437 			raw->next_in_ino = NULL;
438 			ic = NULL;
439 		} else if (ic && ic->class == RAWNODE_CLASS_INODE_CACHE) {
440 			struct jffs2_raw_node_ref **p = &ic->nodes;
441 
442 			/* Remove the old node from the per-inode list */
443 			while (*p && *p != (void *)ic) {
444 				if (*p == raw) {
445 					(*p) = (raw->next_in_ino);
446 					raw->next_in_ino = NULL;
447 					break;
448 				}
449 				p = &((*p)->next_in_ino);
450 			}
451 
452 			if (ic->state == INO_STATE_PRESENT && !ref_obsolete(raw)) {
453 				/* If it's an in-core inode, then we have to adjust any
454 				   full_dirent or full_dnode structure to point to the
455 				   new version instead of the old */
456 				f = jffs2_gc_fetch_inode(c, ic->ino, ic->nlink);
457 				if (IS_ERR(f)) {
458 					/* Should never happen; it _must_ be present */
459 					JFFS2_ERROR("Failed to iget() ino #%u, err %ld\n",
460 						    ic->ino, PTR_ERR(f));
461 					BUG();
462 				}
463 				/* We don't lock f->sem. There's a number of ways we could
464 				   end up in here with it already being locked, and nobody's
465 				   going to modify it on us anyway because we hold the
466 				   alloc_sem. We're only changing one ->raw pointer too,
467 				   which we can get away with without upsetting readers. */
468 				adjust_ref = jffs2_incore_replace_raw(c, f, raw,
469 								      (void *)(buf?:c->wbuf) + (ref_offset(raw) - start));
470 			} else if (unlikely(ic->state != INO_STATE_PRESENT &&
471 					    ic->state != INO_STATE_CHECKEDABSENT &&
472 					    ic->state != INO_STATE_GC)) {
473 				JFFS2_ERROR("Inode #%u is in strange state %d!\n", ic->ino, ic->state);
474 				BUG();
475 			}
476 		}
477 
478 		new_ref = jffs2_link_node_ref(c, new_jeb, ofs | ref_flags(raw), rawlen, ic);
479 
480 		if (adjust_ref) {
481 			BUG_ON(*adjust_ref != raw);
482 			*adjust_ref = new_ref;
483 		}
484 		if (f)
485 			jffs2_gc_release_inode(c, f);
486 
487 		if (!ref_obsolete(raw)) {
488 			jeb->dirty_size += rawlen;
489 			jeb->used_size  -= rawlen;
490 			c->dirty_size += rawlen;
491 			c->used_size -= rawlen;
492 			raw->flash_offset = ref_offset(raw) | REF_OBSOLETE;
493 			BUG_ON(raw->next_in_ino);
494 		}
495 		ofs += rawlen;
496 	}
497 
498 	kfree(buf);
499 
500 	/* Fix up the original jeb now it's on the bad_list */
501 	if (first_raw == jeb->first_node) {
502 		D1(printk(KERN_DEBUG "Failing block at %08x is now empty. Moving to erase_pending_list\n", jeb->offset));
503 		list_move(&jeb->list, &c->erase_pending_list);
504 		c->nr_erasing_blocks++;
505 		jffs2_erase_pending_trigger(c);
506 	}
507 
508 	jffs2_dbg_acct_sanity_check_nolock(c, jeb);
509 	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
510 
511 	jffs2_dbg_acct_sanity_check_nolock(c, new_jeb);
512 	jffs2_dbg_acct_paranoia_check_nolock(c, new_jeb);
513 
514 	spin_unlock(&c->erase_completion_lock);
515 
516 	D1(printk(KERN_DEBUG "wbuf recovery completed OK. wbuf_ofs 0x%08x, len 0x%x\n", c->wbuf_ofs, c->wbuf_len));
517 
518 }
519 
520 /* Meaning of pad argument:
521    0: Do not pad. Probably pointless - we only ever use this when we can't pad anyway.
522    1: Pad, do not adjust nextblock free_size
523    2: Pad, adjust nextblock free_size
524 */
525 #define NOPAD		0
526 #define PAD_NOACCOUNT	1
527 #define PAD_ACCOUNTING	2
528 
529 static int __jffs2_flush_wbuf(struct jffs2_sb_info *c, int pad)
530 {
531 	struct jffs2_eraseblock *wbuf_jeb;
532 	int ret;
533 	size_t retlen;
534 
535 	/* Nothing to do if not write-buffering the flash. In particular, we shouldn't
536 	   del_timer() the timer we never initialised. */
537 	if (!jffs2_is_writebuffered(c))
538 		return 0;
539 
540 	if (!down_trylock(&c->alloc_sem)) {
541 		up(&c->alloc_sem);
542 		printk(KERN_CRIT "jffs2_flush_wbuf() called with alloc_sem not locked!\n");
543 		BUG();
544 	}
545 
546 	if (!c->wbuf_len)	/* already checked c->wbuf above */
547 		return 0;
548 
549 	wbuf_jeb = &c->blocks[c->wbuf_ofs / c->sector_size];
550 	if (jffs2_prealloc_raw_node_refs(c, wbuf_jeb, c->nextblock->allocated_refs + 1))
551 		return -ENOMEM;
552 
553 	/* claim remaining space on the page
554 	   this happens, if we have a change to a new block,
555 	   or if fsync forces us to flush the writebuffer.
556 	   if we have a switch to next page, we will not have
557 	   enough remaining space for this.
558 	*/
559 	if (pad ) {
560 		c->wbuf_len = PAD(c->wbuf_len);
561 
562 		/* Pad with JFFS2_DIRTY_BITMASK initially.  this helps out ECC'd NOR
563 		   with 8 byte page size */
564 		memset(c->wbuf + c->wbuf_len, 0, c->wbuf_pagesize - c->wbuf_len);
565 
566 		if ( c->wbuf_len + sizeof(struct jffs2_unknown_node) < c->wbuf_pagesize) {
567 			struct jffs2_unknown_node *padnode = (void *)(c->wbuf + c->wbuf_len);
568 			padnode->magic = cpu_to_je16(JFFS2_MAGIC_BITMASK);
569 			padnode->nodetype = cpu_to_je16(JFFS2_NODETYPE_PADDING);
570 			padnode->totlen = cpu_to_je32(c->wbuf_pagesize - c->wbuf_len);
571 			padnode->hdr_crc = cpu_to_je32(crc32(0, padnode, sizeof(*padnode)-4));
572 		}
573 	}
574 	/* else jffs2_flash_writev has actually filled in the rest of the
575 	   buffer for us, and will deal with the node refs etc. later. */
576 
577 #ifdef BREAKME
578 	static int breakme;
579 	if (breakme++ == 20) {
580 		printk(KERN_NOTICE "Faking write error at 0x%08x\n", c->wbuf_ofs);
581 		breakme = 0;
582 		c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen,
583 			      brokenbuf);
584 		ret = -EIO;
585 	} else
586 #endif
587 
588 		ret = c->mtd->write(c->mtd, c->wbuf_ofs, c->wbuf_pagesize, &retlen, c->wbuf);
589 
590 	if (ret || retlen != c->wbuf_pagesize) {
591 		if (ret)
592 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write failed with %d\n",ret);
593 		else {
594 			printk(KERN_WARNING "jffs2_flush_wbuf(): Write was short: %zd instead of %d\n",
595 				retlen, c->wbuf_pagesize);
596 			ret = -EIO;
597 		}
598 
599 		jffs2_wbuf_recover(c);
600 
601 		return ret;
602 	}
603 
604 	/* Adjust free size of the block if we padded. */
605 	if (pad) {
606 		uint32_t waste = c->wbuf_pagesize - c->wbuf_len;
607 
608 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf() adjusting free_size of %sblock at %08x\n",
609 			  (wbuf_jeb==c->nextblock)?"next":"", wbuf_jeb->offset));
610 
611 		/* wbuf_pagesize - wbuf_len is the amount of space that's to be
612 		   padded. If there is less free space in the block than that,
613 		   something screwed up */
614 		if (wbuf_jeb->free_size < waste) {
615 			printk(KERN_CRIT "jffs2_flush_wbuf(): Accounting error. wbuf at 0x%08x has 0x%03x bytes, 0x%03x left.\n",
616 			       c->wbuf_ofs, c->wbuf_len, waste);
617 			printk(KERN_CRIT "jffs2_flush_wbuf(): But free_size for block at 0x%08x is only 0x%08x\n",
618 			       wbuf_jeb->offset, wbuf_jeb->free_size);
619 			BUG();
620 		}
621 
622 		spin_lock(&c->erase_completion_lock);
623 
624 		jffs2_link_node_ref(c, wbuf_jeb, (c->wbuf_ofs + c->wbuf_len) | REF_OBSOLETE, waste, NULL);
625 		/* FIXME: that made it count as dirty. Convert to wasted */
626 		wbuf_jeb->dirty_size -= waste;
627 		c->dirty_size -= waste;
628 		wbuf_jeb->wasted_size += waste;
629 		c->wasted_size += waste;
630 	} else
631 		spin_lock(&c->erase_completion_lock);
632 
633 	/* Stick any now-obsoleted blocks on the erase_pending_list */
634 	jffs2_refile_wbuf_blocks(c);
635 	jffs2_clear_wbuf_ino_list(c);
636 	spin_unlock(&c->erase_completion_lock);
637 
638 	memset(c->wbuf,0xff,c->wbuf_pagesize);
639 	/* adjust write buffer offset, else we get a non contiguous write bug */
640 	if (SECTOR_ADDR(c->wbuf_ofs) == SECTOR_ADDR(c->wbuf_ofs+c->wbuf_pagesize))
641 		c->wbuf_ofs += c->wbuf_pagesize;
642 	else
643 		c->wbuf_ofs = 0xffffffff;
644 	c->wbuf_len = 0;
645 	return 0;
646 }
647 
648 /* Trigger garbage collection to flush the write-buffer.
649    If ino arg is zero, do it if _any_ real (i.e. not GC) writes are
650    outstanding. If ino arg non-zero, do it only if a write for the
651    given inode is outstanding. */
652 int jffs2_flush_wbuf_gc(struct jffs2_sb_info *c, uint32_t ino)
653 {
654 	uint32_t old_wbuf_ofs;
655 	uint32_t old_wbuf_len;
656 	int ret = 0;
657 
658 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() called for ino #%u...\n", ino));
659 
660 	if (!c->wbuf)
661 		return 0;
662 
663 	down(&c->alloc_sem);
664 	if (!jffs2_wbuf_pending_for_ino(c, ino)) {
665 		D1(printk(KERN_DEBUG "Ino #%d not pending in wbuf. Returning\n", ino));
666 		up(&c->alloc_sem);
667 		return 0;
668 	}
669 
670 	old_wbuf_ofs = c->wbuf_ofs;
671 	old_wbuf_len = c->wbuf_len;
672 
673 	if (c->unchecked_size) {
674 		/* GC won't make any progress for a while */
675 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() padding. Not finished checking\n"));
676 		down_write(&c->wbuf_sem);
677 		ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
678 		/* retry flushing wbuf in case jffs2_wbuf_recover
679 		   left some data in the wbuf */
680 		if (ret)
681 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
682 		up_write(&c->wbuf_sem);
683 	} else while (old_wbuf_len &&
684 		      old_wbuf_ofs == c->wbuf_ofs) {
685 
686 		up(&c->alloc_sem);
687 
688 		D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() calls gc pass\n"));
689 
690 		ret = jffs2_garbage_collect_pass(c);
691 		if (ret) {
692 			/* GC failed. Flush it with padding instead */
693 			down(&c->alloc_sem);
694 			down_write(&c->wbuf_sem);
695 			ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
696 			/* retry flushing wbuf in case jffs2_wbuf_recover
697 			   left some data in the wbuf */
698 			if (ret)
699 				ret = __jffs2_flush_wbuf(c, PAD_ACCOUNTING);
700 			up_write(&c->wbuf_sem);
701 			break;
702 		}
703 		down(&c->alloc_sem);
704 	}
705 
706 	D1(printk(KERN_DEBUG "jffs2_flush_wbuf_gc() ends...\n"));
707 
708 	up(&c->alloc_sem);
709 	return ret;
710 }
711 
712 /* Pad write-buffer to end and write it, wasting space. */
713 int jffs2_flush_wbuf_pad(struct jffs2_sb_info *c)
714 {
715 	int ret;
716 
717 	if (!c->wbuf)
718 		return 0;
719 
720 	down_write(&c->wbuf_sem);
721 	ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
722 	/* retry - maybe wbuf recover left some data in wbuf. */
723 	if (ret)
724 		ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
725 	up_write(&c->wbuf_sem);
726 
727 	return ret;
728 }
729 
730 static size_t jffs2_fill_wbuf(struct jffs2_sb_info *c, const uint8_t *buf,
731 			      size_t len)
732 {
733 	if (len && !c->wbuf_len && (len >= c->wbuf_pagesize))
734 		return 0;
735 
736 	if (len > (c->wbuf_pagesize - c->wbuf_len))
737 		len = c->wbuf_pagesize - c->wbuf_len;
738 	memcpy(c->wbuf + c->wbuf_len, buf, len);
739 	c->wbuf_len += (uint32_t) len;
740 	return len;
741 }
742 
743 int jffs2_flash_writev(struct jffs2_sb_info *c, const struct kvec *invecs,
744 		       unsigned long count, loff_t to, size_t *retlen,
745 		       uint32_t ino)
746 {
747 	struct jffs2_eraseblock *jeb;
748 	size_t wbuf_retlen, donelen = 0;
749 	uint32_t outvec_to = to;
750 	int ret, invec;
751 
752 	/* If not writebuffered flash, don't bother */
753 	if (!jffs2_is_writebuffered(c))
754 		return jffs2_flash_direct_writev(c, invecs, count, to, retlen);
755 
756 	down_write(&c->wbuf_sem);
757 
758 	/* If wbuf_ofs is not initialized, set it to target address */
759 	if (c->wbuf_ofs == 0xFFFFFFFF) {
760 		c->wbuf_ofs = PAGE_DIV(to);
761 		c->wbuf_len = PAGE_MOD(to);
762 		memset(c->wbuf,0xff,c->wbuf_pagesize);
763 	}
764 
765 	/*
766 	 * Sanity checks on target address.  It's permitted to write
767 	 * at PAD(c->wbuf_len+c->wbuf_ofs), and it's permitted to
768 	 * write at the beginning of a new erase block. Anything else,
769 	 * and you die.  New block starts at xxx000c (0-b = block
770 	 * header)
771 	 */
772 	if (SECTOR_ADDR(to) != SECTOR_ADDR(c->wbuf_ofs)) {
773 		/* It's a write to a new block */
774 		if (c->wbuf_len) {
775 			D1(printk(KERN_DEBUG "jffs2_flash_writev() to 0x%lx "
776 				  "causes flush of wbuf at 0x%08x\n",
777 				  (unsigned long)to, c->wbuf_ofs));
778 			ret = __jffs2_flush_wbuf(c, PAD_NOACCOUNT);
779 			if (ret)
780 				goto outerr;
781 		}
782 		/* set pointer to new block */
783 		c->wbuf_ofs = PAGE_DIV(to);
784 		c->wbuf_len = PAGE_MOD(to);
785 	}
786 
787 	if (to != PAD(c->wbuf_ofs + c->wbuf_len)) {
788 		/* We're not writing immediately after the writebuffer. Bad. */
789 		printk(KERN_CRIT "jffs2_flash_writev(): Non-contiguous write "
790 		       "to %08lx\n", (unsigned long)to);
791 		if (c->wbuf_len)
792 			printk(KERN_CRIT "wbuf was previously %08x-%08x\n",
793 			       c->wbuf_ofs, c->wbuf_ofs+c->wbuf_len);
794 		BUG();
795 	}
796 
797 	/* adjust alignment offset */
798 	if (c->wbuf_len != PAGE_MOD(to)) {
799 		c->wbuf_len = PAGE_MOD(to);
800 		/* take care of alignment to next page */
801 		if (!c->wbuf_len) {
802 			c->wbuf_len = c->wbuf_pagesize;
803 			ret = __jffs2_flush_wbuf(c, NOPAD);
804 			if (ret)
805 				goto outerr;
806 		}
807 	}
808 
809 	for (invec = 0; invec < count; invec++) {
810 		int vlen = invecs[invec].iov_len;
811 		uint8_t *v = invecs[invec].iov_base;
812 
813 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
814 
815 		if (c->wbuf_len == c->wbuf_pagesize) {
816 			ret = __jffs2_flush_wbuf(c, NOPAD);
817 			if (ret)
818 				goto outerr;
819 		}
820 		vlen -= wbuf_retlen;
821 		outvec_to += wbuf_retlen;
822 		donelen += wbuf_retlen;
823 		v += wbuf_retlen;
824 
825 		if (vlen >= c->wbuf_pagesize) {
826 			ret = c->mtd->write(c->mtd, outvec_to, PAGE_DIV(vlen),
827 					    &wbuf_retlen, v);
828 			if (ret < 0 || wbuf_retlen != PAGE_DIV(vlen))
829 				goto outfile;
830 
831 			vlen -= wbuf_retlen;
832 			outvec_to += wbuf_retlen;
833 			c->wbuf_ofs = outvec_to;
834 			donelen += wbuf_retlen;
835 			v += wbuf_retlen;
836 		}
837 
838 		wbuf_retlen = jffs2_fill_wbuf(c, v, vlen);
839 		if (c->wbuf_len == c->wbuf_pagesize) {
840 			ret = __jffs2_flush_wbuf(c, NOPAD);
841 			if (ret)
842 				goto outerr;
843 		}
844 
845 		outvec_to += wbuf_retlen;
846 		donelen += wbuf_retlen;
847 	}
848 
849 	/*
850 	 * If there's a remainder in the wbuf and it's a non-GC write,
851 	 * remember that the wbuf affects this ino
852 	 */
853 	*retlen = donelen;
854 
855 	if (jffs2_sum_active()) {
856 		int res = jffs2_sum_add_kvec(c, invecs, count, (uint32_t) to);
857 		if (res)
858 			return res;
859 	}
860 
861 	if (c->wbuf_len && ino)
862 		jffs2_wbuf_dirties_inode(c, ino);
863 
864 	ret = 0;
865 	up_write(&c->wbuf_sem);
866 	return ret;
867 
868 outfile:
869 	/*
870 	 * At this point we have no problem, c->wbuf is empty. However
871 	 * refile nextblock to avoid writing again to same address.
872 	 */
873 
874 	spin_lock(&c->erase_completion_lock);
875 
876 	jeb = &c->blocks[outvec_to / c->sector_size];
877 	jffs2_block_refile(c, jeb, REFILE_ANYWAY);
878 
879 	spin_unlock(&c->erase_completion_lock);
880 
881 outerr:
882 	*retlen = 0;
883 	up_write(&c->wbuf_sem);
884 	return ret;
885 }
886 
887 /*
888  *	This is the entry for flash write.
889  *	Check, if we work on NAND FLASH, if so build an kvec and write it via vritev
890 */
891 int jffs2_flash_write(struct jffs2_sb_info *c, loff_t ofs, size_t len,
892 		      size_t *retlen, const u_char *buf)
893 {
894 	struct kvec vecs[1];
895 
896 	if (!jffs2_is_writebuffered(c))
897 		return jffs2_flash_direct_write(c, ofs, len, retlen, buf);
898 
899 	vecs[0].iov_base = (unsigned char *) buf;
900 	vecs[0].iov_len = len;
901 	return jffs2_flash_writev(c, vecs, 1, ofs, retlen, 0);
902 }
903 
904 /*
905 	Handle readback from writebuffer and ECC failure return
906 */
907 int jffs2_flash_read(struct jffs2_sb_info *c, loff_t ofs, size_t len, size_t *retlen, u_char *buf)
908 {
909 	loff_t	orbf = 0, owbf = 0, lwbf = 0;
910 	int	ret;
911 
912 	if (!jffs2_is_writebuffered(c))
913 		return c->mtd->read(c->mtd, ofs, len, retlen, buf);
914 
915 	/* Read flash */
916 	down_read(&c->wbuf_sem);
917 	ret = c->mtd->read(c->mtd, ofs, len, retlen, buf);
918 
919 	if ( (ret == -EBADMSG || ret == -EUCLEAN) && (*retlen == len) ) {
920 		if (ret == -EBADMSG)
921 			printk(KERN_WARNING "mtd->read(0x%zx bytes from 0x%llx)"
922 			       " returned ECC error\n", len, ofs);
923 		/*
924 		 * We have the raw data without ECC correction in the buffer,
925 		 * maybe we are lucky and all data or parts are correct. We
926 		 * check the node.  If data are corrupted node check will sort
927 		 * it out.  We keep this block, it will fail on write or erase
928 		 * and the we mark it bad. Or should we do that now? But we
929 		 * should give him a chance.  Maybe we had a system crash or
930 		 * power loss before the ecc write or a erase was completed.
931 		 * So we return success. :)
932 		 */
933 		ret = 0;
934 	}
935 
936 	/* if no writebuffer available or write buffer empty, return */
937 	if (!c->wbuf_pagesize || !c->wbuf_len)
938 		goto exit;
939 
940 	/* if we read in a different block, return */
941 	if (SECTOR_ADDR(ofs) != SECTOR_ADDR(c->wbuf_ofs))
942 		goto exit;
943 
944 	if (ofs >= c->wbuf_ofs) {
945 		owbf = (ofs - c->wbuf_ofs);	/* offset in write buffer */
946 		if (owbf > c->wbuf_len)		/* is read beyond write buffer ? */
947 			goto exit;
948 		lwbf = c->wbuf_len - owbf;	/* number of bytes to copy */
949 		if (lwbf > len)
950 			lwbf = len;
951 	} else {
952 		orbf = (c->wbuf_ofs - ofs);	/* offset in read buffer */
953 		if (orbf > len)			/* is write beyond write buffer ? */
954 			goto exit;
955 		lwbf = len - orbf;		/* number of bytes to copy */
956 		if (lwbf > c->wbuf_len)
957 			lwbf = c->wbuf_len;
958 	}
959 	if (lwbf > 0)
960 		memcpy(buf+orbf,c->wbuf+owbf,lwbf);
961 
962 exit:
963 	up_read(&c->wbuf_sem);
964 	return ret;
965 }
966 
967 #define NR_OOB_SCAN_PAGES 4
968 
969 /* For historical reasons we use only 12 bytes for OOB clean marker */
970 #define OOB_CM_SIZE 12
971 
972 static const struct jffs2_unknown_node oob_cleanmarker =
973 {
974 	.magic = constant_cpu_to_je16(JFFS2_MAGIC_BITMASK),
975 	.nodetype = constant_cpu_to_je16(JFFS2_NODETYPE_CLEANMARKER),
976 	.totlen = constant_cpu_to_je32(8)
977 };
978 
979 /*
980  * Check, if the out of band area is empty. This function knows about the clean
981  * marker and if it is present in OOB, treats the OOB as empty anyway.
982  */
983 int jffs2_check_oob_empty(struct jffs2_sb_info *c,
984 			  struct jffs2_eraseblock *jeb, int mode)
985 {
986 	int i, ret;
987 	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
988 	struct mtd_oob_ops ops;
989 
990 	ops.mode = MTD_OOB_AUTO;
991 	ops.ooblen = NR_OOB_SCAN_PAGES * c->oobavail;
992 	ops.oobbuf = c->oobbuf;
993 	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
994 	ops.datbuf = NULL;
995 
996 	ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
997 	if (ret || ops.oobretlen != ops.ooblen) {
998 		printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
999 				" bytes, read %zd bytes, error %d\n",
1000 				jeb->offset, ops.ooblen, ops.oobretlen, ret);
1001 		if (!ret)
1002 			ret = -EIO;
1003 		return ret;
1004 	}
1005 
1006 	for(i = 0; i < ops.ooblen; i++) {
1007 		if (mode && i < cmlen)
1008 			/* Yeah, we know about the cleanmarker */
1009 			continue;
1010 
1011 		if (ops.oobbuf[i] != 0xFF) {
1012 			D2(printk(KERN_DEBUG "Found %02x at %x in OOB for "
1013 				  "%08x\n", ops.oobbuf[i], i, jeb->offset));
1014 			return 1;
1015 		}
1016 	}
1017 
1018 	return 0;
1019 }
1020 
1021 /*
1022  * Check for a valid cleanmarker.
1023  * Returns: 0 if a valid cleanmarker was found
1024  *          1 if no cleanmarker was found
1025  *          negative error code if an error occurred
1026  */
1027 int jffs2_check_nand_cleanmarker(struct jffs2_sb_info *c,
1028 				 struct jffs2_eraseblock *jeb)
1029 {
1030 	struct mtd_oob_ops ops;
1031 	int ret, cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1032 
1033 	ops.mode = MTD_OOB_AUTO;
1034 	ops.ooblen = cmlen;
1035 	ops.oobbuf = c->oobbuf;
1036 	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1037 	ops.datbuf = NULL;
1038 
1039 	ret = c->mtd->read_oob(c->mtd, jeb->offset, &ops);
1040 	if (ret || ops.oobretlen != ops.ooblen) {
1041 		printk(KERN_ERR "cannot read OOB for EB at %08x, requested %zd"
1042 				" bytes, read %zd bytes, error %d\n",
1043 				jeb->offset, ops.ooblen, ops.oobretlen, ret);
1044 		if (!ret)
1045 			ret = -EIO;
1046 		return ret;
1047 	}
1048 
1049 	return !!memcmp(&oob_cleanmarker, c->oobbuf, cmlen);
1050 }
1051 
1052 int jffs2_write_nand_cleanmarker(struct jffs2_sb_info *c,
1053 				 struct jffs2_eraseblock *jeb)
1054 {
1055 	int ret;
1056 	struct mtd_oob_ops ops;
1057 	int cmlen = min_t(int, c->oobavail, OOB_CM_SIZE);
1058 
1059 	ops.mode = MTD_OOB_AUTO;
1060 	ops.ooblen = cmlen;
1061 	ops.oobbuf = (uint8_t *)&oob_cleanmarker;
1062 	ops.len = ops.ooboffs = ops.retlen = ops.oobretlen = 0;
1063 	ops.datbuf = NULL;
1064 
1065 	ret = c->mtd->write_oob(c->mtd, jeb->offset, &ops);
1066 	if (ret || ops.oobretlen != ops.ooblen) {
1067 		printk(KERN_ERR "cannot write OOB for EB at %08x, requested %zd"
1068 				" bytes, read %zd bytes, error %d\n",
1069 				jeb->offset, ops.ooblen, ops.oobretlen, ret);
1070 		if (!ret)
1071 			ret = -EIO;
1072 		return ret;
1073 	}
1074 
1075 	return 0;
1076 }
1077 
1078 /*
1079  * On NAND we try to mark this block bad. If the block was erased more
1080  * than MAX_ERASE_FAILURES we mark it finaly bad.
1081  * Don't care about failures. This block remains on the erase-pending
1082  * or badblock list as long as nobody manipulates the flash with
1083  * a bootloader or something like that.
1084  */
1085 
1086 int jffs2_write_nand_badblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb, uint32_t bad_offset)
1087 {
1088 	int 	ret;
1089 
1090 	/* if the count is < max, we try to write the counter to the 2nd page oob area */
1091 	if( ++jeb->bad_count < MAX_ERASE_FAILURES)
1092 		return 0;
1093 
1094 	if (!c->mtd->block_markbad)
1095 		return 1; // What else can we do?
1096 
1097 	printk(KERN_WARNING "JFFS2: marking eraseblock at %08x\n as bad", bad_offset);
1098 	ret = c->mtd->block_markbad(c->mtd, bad_offset);
1099 
1100 	if (ret) {
1101 		D1(printk(KERN_WARNING "jffs2_write_nand_badblock(): Write failed for block at %08x: error %d\n", jeb->offset, ret));
1102 		return ret;
1103 	}
1104 	return 1;
1105 }
1106 
1107 int jffs2_nand_flash_setup(struct jffs2_sb_info *c)
1108 {
1109 	struct nand_ecclayout *oinfo = c->mtd->ecclayout;
1110 
1111 	if (!c->mtd->oobsize)
1112 		return 0;
1113 
1114 	/* Cleanmarker is out-of-band, so inline size zero */
1115 	c->cleanmarker_size = 0;
1116 
1117 	if (!oinfo || oinfo->oobavail == 0) {
1118 		printk(KERN_ERR "inconsistent device description\n");
1119 		return -EINVAL;
1120 	}
1121 
1122 	D1(printk(KERN_DEBUG "JFFS2 using OOB on NAND\n"));
1123 
1124 	c->oobavail = oinfo->oobavail;
1125 
1126 	/* Initialise write buffer */
1127 	init_rwsem(&c->wbuf_sem);
1128 	c->wbuf_pagesize = c->mtd->writesize;
1129 	c->wbuf_ofs = 0xFFFFFFFF;
1130 
1131 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1132 	if (!c->wbuf)
1133 		return -ENOMEM;
1134 
1135 	c->oobbuf = kmalloc(NR_OOB_SCAN_PAGES * c->oobavail, GFP_KERNEL);
1136 	if (!c->oobbuf) {
1137 		kfree(c->wbuf);
1138 		return -ENOMEM;
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 void jffs2_nand_flash_cleanup(struct jffs2_sb_info *c)
1145 {
1146 	kfree(c->wbuf);
1147 	kfree(c->oobbuf);
1148 }
1149 
1150 int jffs2_dataflash_setup(struct jffs2_sb_info *c) {
1151 	c->cleanmarker_size = 0;		/* No cleanmarkers needed */
1152 
1153 	/* Initialize write buffer */
1154 	init_rwsem(&c->wbuf_sem);
1155 
1156 
1157 	c->wbuf_pagesize =  c->mtd->erasesize;
1158 
1159 	/* Find a suitable c->sector_size
1160 	 * - Not too much sectors
1161 	 * - Sectors have to be at least 4 K + some bytes
1162 	 * - All known dataflashes have erase sizes of 528 or 1056
1163 	 * - we take at least 8 eraseblocks and want to have at least 8K size
1164 	 * - The concatenation should be a power of 2
1165 	*/
1166 
1167 	c->sector_size = 8 * c->mtd->erasesize;
1168 
1169 	while (c->sector_size < 8192) {
1170 		c->sector_size *= 2;
1171 	}
1172 
1173 	/* It may be necessary to adjust the flash size */
1174 	c->flash_size = c->mtd->size;
1175 
1176 	if ((c->flash_size % c->sector_size) != 0) {
1177 		c->flash_size = (c->flash_size / c->sector_size) * c->sector_size;
1178 		printk(KERN_WARNING "JFFS2 flash size adjusted to %dKiB\n", c->flash_size);
1179 	};
1180 
1181 	c->wbuf_ofs = 0xFFFFFFFF;
1182 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1183 	if (!c->wbuf)
1184 		return -ENOMEM;
1185 
1186 	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1187 
1188 	return 0;
1189 }
1190 
1191 void jffs2_dataflash_cleanup(struct jffs2_sb_info *c) {
1192 	kfree(c->wbuf);
1193 }
1194 
1195 int jffs2_nor_wbuf_flash_setup(struct jffs2_sb_info *c) {
1196 	/* Cleanmarker currently occupies whole programming regions,
1197 	 * either one or 2 for 8Byte STMicro flashes. */
1198 	c->cleanmarker_size = max(16u, c->mtd->writesize);
1199 
1200 	/* Initialize write buffer */
1201 	init_rwsem(&c->wbuf_sem);
1202 	c->wbuf_pagesize = c->mtd->writesize;
1203 	c->wbuf_ofs = 0xFFFFFFFF;
1204 
1205 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1206 	if (!c->wbuf)
1207 		return -ENOMEM;
1208 
1209 	return 0;
1210 }
1211 
1212 void jffs2_nor_wbuf_flash_cleanup(struct jffs2_sb_info *c) {
1213 	kfree(c->wbuf);
1214 }
1215 
1216 int jffs2_ubivol_setup(struct jffs2_sb_info *c) {
1217 	c->cleanmarker_size = 0;
1218 
1219 	if (c->mtd->writesize == 1)
1220 		/* We do not need write-buffer */
1221 		return 0;
1222 
1223 	init_rwsem(&c->wbuf_sem);
1224 
1225 	c->wbuf_pagesize =  c->mtd->writesize;
1226 	c->wbuf_ofs = 0xFFFFFFFF;
1227 	c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);
1228 	if (!c->wbuf)
1229 		return -ENOMEM;
1230 
1231 	printk(KERN_INFO "JFFS2 write-buffering enabled buffer (%d) erasesize (%d)\n", c->wbuf_pagesize, c->sector_size);
1232 
1233 	return 0;
1234 }
1235 
1236 void jffs2_ubivol_cleanup(struct jffs2_sb_info *c) {
1237 	kfree(c->wbuf);
1238 }
1239